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Abstract

Une caractérisation des catégories localement bornées et un critère pour
identifier les sous-catégories α-orthogonales dans ces catégories (pour un car-
dinal régulier α) sont donnés.

1 Introduction

In [11], P. Gabriel and F. Ulmer proved that in locally presentable categories the
orthogonal subcategoryN⊥ is reflective for any setN of morphisms. The key point
of the proof is the fact that for any object of the base category there is some infinite
regular cardinal α such that the object is α-small, where α-smallness means α-
presentability. In [10] and [15], P. Freyd and M. Kelly gave a generalization of this
property for a wider range of categories, using a different concept of smallness for
objects: boundedness. They showed that in a locally bounded category (as defined
in [14] and [17]) the subcategory of all objects orthogonal to a set of morphisms is
reflective. (In fact they went further: they proved that N⊥ is reflective for every
class N which is the union of a set of morphisms with a class of epimorphisms.)

In a cocomplete category A an object A is said to be α-bounded if the hom-
functorA(A,−) preserves α-directed unions. A locally bounded category (see [14])
is a complete and cocomplete categoryAwith a proper factorization system (E ,M)
and an E-generator G such that (i)A has E-cointersections and (ii) there is a regular
cardinal α such that each object of G is α-bounded. We call these categories locally
α-bounded when they are E-cowellpowered and α is a regular cardinal which fits
the condition (ii). Locally presentable categories and epi-reflective subcategories of
the category of topological spaces are examples of locally bounded categories. We
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show that a cocomplete and cowellpowered category is locally bounded precisely
when there is a regular cardinal α and a set H of α-bounded objects such that any
object A of A is an α-directed union of objects of H. This characterization will be
useful in the study of small-orthogonality classes, that is, subcategories of the form
N⊥ for N a set of morphisms.

In [13] the α-orthogonality classes of a locally α-presentable category were
proved to be exactly the subcategories closed under limits and α-directed colim-
its, for all uncountable regular cardinals α. (Recall that, following [4], an α-
orthogonality class is a subcategory of the form N⊥ for some set N of morphisms
whose domains and codomains are α-presentable.) This characterization does not
work for α = ℵ0, as was shown in [20] and [12]. A description of theℵ0-orthogonality
classes in locally finitely presentable categories in terms of closure properties was
given in [5]: they are the subcategories A closed under products, directed colim-
its and A-pure subobjects. In the context of locally bounded categories we shall
adopt the terminology α-orthogonality class as expected: the meaning is as in [4],
just replacing “presentable” by “bounded”. The aim of this paper is to charac-
terize the reflective subcategories of locally bounded categories which are small-
orthogonality classes. In cowellpowered locally bounded categories a subcategory
is a small-orthogonality class iff it is an α-orthogonality class for some α. We
are going to restrict ourselves to reflective subcategories whose reflector preserves
M-monomorphisms. For example, reflective subcategories of Top whose closure
under subspaces is the category Top0 of T0 spaces have anM-preserving reflector,
for M = {embeddings}. Also the reflector from the category Norm of normed
spaces and linear contractions into its subcategory Ban of Banach spaces preserves
embeddings. In [18] Ringel studied the properties of M-preserving reflectors for
M the class of monomorphisms. We show that, in locally α-bounded categories,
a reflective subcategory with an M-preserving reflector is an α-orthogonality class
iff it is closed under α-directed unions and α-B-neat subobjects. (The notion of α-
B-neat morphism is parallel to the one of α-B-pure morphism, used in [5]: If B is a
subcategory ofA, a morphism f : A → B ofA is said to be α-B-neat provided that,
if we have morphisms e, u and v such that f · u = v · e and e is a B-epimorphism,
then there exists a morphism u′ such that u′ · e = u.) For instance, the category
Top0 is an ℵ0-orthogonality class of Top, but the category Sob of sober spaces is
not an ℵ0-orthogonality class of Top0. The category Ban is an ℵ1-orthogonality
class of Norm.
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2 Properties of locally bounded categories

LetA be a category with a proper factorization system (E ,M) (where proper means
that E and M consist of epimorphisms and monomorphisms, respectively). Recall
that E and M determine each other: E = M↑ and M = E↓ ([10]).

A set G is said to be an E-generator of A if for each object A there is some
subset {Gi, i ∈ I} of G and an E-morphism e : qi∈IGi → A. (A detailed study of
E-generators is made in, e.g., [6] and [7].)

Let mi : Ai → A, i ∈ I , be a diagram in A with all mi ∈ M. The M-union
(or just union) of (mi)i∈I is the supremum of (mi)i∈I , up to isomorphism, in the
class of all M-subobjects of A. It coincides with the M-part m : B → A of the
(E ,M)-factorization of the canonical morphismqi∈IAi → A. We shall often write
∪i∈Imi = m or ∪i∈IAi = B for short.

Let α be an infinite regular cardinal. An object A is said to be α-bounded if the
hom-functor A(A,−) preserves α-directed unions.

2.1. Definition (1) ([14], [17]) A category A is said to be locally bounded if it
is cocomplete, has a proper factorization system (E ,M), and there is an infinite
regular cardinal α such that:

(i) A has E-cointersections;

(ii) A has an E-generator all of whose objects are α-bounded.

(2) By a locally α-bounded category with respect to M we shall mean a category
under the conditions of (1), for a given α, which moreover is E-cowellpowered. The
reference to M will often be omitted.

2.2. Remark Every locally bounded category is complete. In [14] and [17], the
authors include completeness in the definition of locally bounded category. How-
ever the completeness comes for free, since any E-cocomplete category with an
E-generator is complete. This follows from the fact that any such category is total
(see [7]), that is, the Yoneda embedding A ↪→ [Aop,Set] has a left adjoint ([16]);
and any total category is complete and M-complete (see [7] and [8]).

2.3. Examples (1) Every locally presentable category is locally bounded with re-
spect to monomorphisms, and also with respect to strong monomorphisms (see [10]
and [2]).

(2) The category Top of topological spaces is locally ℵ0-bounded with respect
to strong monomorphisms (= embeddings). And every epi-reflective subcategory
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of Top is locally ℵ0-bounded with respect to embeddings. More generally, any E-
reflective subcategory B of a locally α-bounded category with respect to M is also
locally α-bounded with respect to M∩Mor(B) ([10], [2]).

(3) Any topological category over Set (see [3]) is locally ℵ0-bounded with re-
spect to strong monomorphisms.

(4) The category Ban of Banach spaces and linear contractions is locally ℵ1-
bounded ([14], [17]).

2.4. Remark The following properties are easily verified:
(i) In a locally bounded category, for every object A there is an infinite regular

cardinal α such that A is α-bounded ([10], 3.1.2).
(ii) In a cocomplete category if β and γ are regular cardinals such that β ≤ γ,

then every β-bounded object is also γ-bounded; consequently, the fulfillment of 2.1
for α = β ensures that it also holds for α = γ.

2.5. Lemma In a cocomplete category with a proper factorization system (E ,M)
any E-quotient of an α-bounded object is α-bounded.

Proof Let B be α-bounded, let e : B → E belong to E and let

Ci
ni // C (i ∈ I)

be an α-directedM-union, that is, 1C = ∪i∈Ini. Given f : E → C, there are some
i and some morphism f ′ : B → Ci such that f · e = ni · f ′. Then, since ni ∈ M
and e ∈M↑, there exists f ′′ : E → Ci such that f = ni · f ′′. 2

2.6. Remark The property stated in Lemma 2.5 is in contrast to the case of α-
presentability: a quotient of an α-presentable object is not necessarily α-presentable
(see Remark 1.3 of [4]).

2.7. Lemma In a cocomplete category with a proper (E ,M) factorization system:
(i) any α-small colimit of α-bounded objects is α-bounded;
(ii) any α-small union of α-bounded objects is α-bounded.

Proof (i) We are going to prove the statement for the particular case of coproducts.
Then the result follows for colimits taking into account Lemma 2.5 and the fact that
M⊆ Mono implies that RegEpi ⊆ E .

Let Ak (k ∈ K) be an α-small set of α-bounded objects. Let ci : Ci → C (i ∈
I) be an α-directed union, and consider a morphism d : qk∈KAk → C. Since every
Ak is α-bounded, there are morphisms fk : Ak → Cik such that d · νk = cik · fk

for all k (where νk are the injections of the coproduct). Since K is α-small and
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I is α-directed, there is some i ∈ I such that ik ≤ i, k ∈ K. Then, putting

gk = ( Ak
fk // Cik

// Ci ), we obtain ci ·gk = d·νk. Let h : qAk → Ci be the
morphism determined by the morphisms gk and the universality of the coproduct.
Then we have d = ci · h.

(ii) Let mk : Ak → A (k ∈ K) be a union (not necessarily α-directed) with K
α-small and all Ak α-bounded. Let ci : Ci → C (i ∈ I) be an α-directed union,
and consider a morphism f : A → C. Since 1A = ∪k∈Kmk, the induced canonical
morphism e : qAk → A belongs to E . Put

d = f · e
and let i and h : qAk → Ci be obtained as in (i). Then, we have the following
commutative diagram:

qAk
e //

h
² ²

A = ∪Ak

f

² ²
Ci

ci // C

By the diagonal fill-in property, there exists a morphism t : A → Ci such that
ci · t = f . 2

2.8. Theorem Let A be a cocomplete and E-cowellpowered category with a proper
factorization system (E ,M). The following conditions are equivalent:

(i) A is locally α-bounded with respect to M.
(ii) There is a set H of α-bounded objects such that any object of A is an α-

directed M-union of objects of H.

Proof (ii) ⇒ (i): It is clear that if H is a set as in (ii), then it is an E-generator of

A. In fact, given A ∈ A, let Hi
mi // A (i ∈ I) be an α-directed M-union, with

all Hi in H. This means exactly that the induced canonical morphism qHi → A
belongs to E .

(i) ⇒ (ii): Let G be an E-generator of A with all objects α-bounded. The class
of objects

H = { E-quotients of α-small coproducts of objects of G}
is essentially small, because G is small and A is E-cowellpowered. Moreover, from
2.5 and 2.7, the objects of H are α-bounded. We show that H fulfils (ii).

Let A ∈ A, and let

{fi : Gi → A, i ∈ I} =
⋃

G∈G
A(G,A) .
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Let
J = {J ⊆ I : J is α-small}.

Consider the following commutative diagram

Gj

νJ
j

²²

fj

( (QQQQQQQQQQQQQQQQ

GJ
eJ //

νK
J

² ²

QJ
mJ //

dK
J

² ² Â
Â
Â A

GK eK

// QK

mK

> >}}}}}}}}

where:
• GJ = qj∈JGj and the morphisms νJ

j are the corresponding injections;
• for each J ⊆ K, νK

J : GJ → GK is the obvious canonical morphism;
• fJ : GJ → A is the morphism determined by fj , j ∈ J ;
•mJ · eJ is the (E ,M) factorization of fJ : GJ → A;
• for each J ⊆ K, dK

J : QJ → QK is the morphism given by the diagonal
fill-in property applied to the equality (mK · eK) · νK

J = mJ · eJ .
For J equipped with the inclusion order, both the diagrams

(
νK

J : GJ → GK

)
J⊆K, J,K∈J and

(
dK

J : QJ → QK

)
J⊆K, J,K∈J

are α-directed. Moreover the colimit of the former one is qi∈IGi. Let γJ : QJ →
C = ColimQJ be the colimit cocone of the latter one. Then there is a morphism e :
qi∈IGi → C making the left-hand square of the following diagram commutative.

GJ
eJ //

νJ

² ²

QJ
mJ //

γJ

²²

A

qi∈IGi e
// C

e′
// ∪J∈JQJ

m′

OO

The morphism e belongs to E , since all eJ do. Let m′ ·e′ be the (E ,M) factorization
of the canonical morphism from C to A determined by the morphisms mJ . By
hypothesis, m′ · (e′ · e) : qi∈IGi → A belongs to E (because G is an E-generator).
Consequently, m′ lies in E , and, since it also belongs toM, is an isomorphism, that
is, A is an union of the M-subobjects

mJ : QJ → A, J ∈ J . 2
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2.9. Corollary A locally bounded category is E-cowellpowered iff for every regular
infinite cardinal β the class of all β-bounded objects is essentially small.

Proof Let A be locally α-bounded. Without loss of generality we assume that β ≥
α. Then A is also locally β-bounded and has a set H of β-bounded objects such
that any object of A is an M-union of objects of H. Given a β-bounded object A
let mi : Hi → A (i ∈ I) be that existing union. The β-boundedness of A implies
the equality mi · t = 1A for some t : A → Hi. But then A ' Hi.

Conversely, let A be a category fulfilling the conditions of 2.1(1), and such that
for every regular infinite cardinal β the class of all β-bounded objects is essentially
small. Given an object X ofA, there is some regular infinite cardinal β such that X
is β-bounded (see 2.4(i)). Consequently, by 2.5, the class of E-quotients of X has a
representative set. 2

3 Small-orthogonality classes

In this section we study the following problem: When is a reflective subcategory1

B of a locally bounded category A a small-orthogonality class, i.e., a category of
the form N⊥, for N a set of morphisms? In this study we restrict ourselves to the
particular case of the reflector R : A → B preserving M-monomorphisms. More
precisely, we characterize those reflective subcategories of a locally α-bounded cat-
egory with anM-preserving reflector which are of the formN⊥ with all morphisms
of N having α-bounded domains and codomains.

In the case of locally presentable categories the subcategories of the form N⊥

for N a set of morphisms with α-presentable domains and codomains were charac-
terized in [13] and [5] (see Introduction).

Throughout this section by an α-orthogonality class of a locally bounded cat-
egory we shall mean a subcategory of the form N⊥ for some set N whose all
morphisms have α-bounded domains and codomains. We borrow this terminology
from [4] using boundedness instead of presentability.

3.1. Remark Recall that, for a subcategory B ofA, a morphism g : C → D ofA is
said to be a B-epimorphism if for any pair of morphisms a, b : D → B with B ∈ B,
the equality a · g = b · g implies a = b.

LetA = Top. If B = Haus the B-epimorphisms are just the dense morphisms
of Top. If B = Top0 the B-epimorphisms are the b-dense morphisms, i.e., the
continuous maps f : X → Y such that {y} ∩H ∩ f(X) 6= ∅ for each y ∈ Y and

1Throughout this paper all subcategories are assumed to be full and isomorphism-closed.
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each open set H of Y containing y. More generally, ifA has equalizers and a proper
factorization system (E ,M), then for any subcategory B of A the B-epimorphisms
are the morphisms which are dense with respect to the regular closure operator
induced in A by B ([9]).

If B is reflective in A it is easy to see that the B-epimorphisms are just those
morphisms of A whose image by the reflector is an epimorphism in B.

3.2. Definition Let A be a locally bounded category and let B be a subcategory of
A. A morphism f : A → B of A is said to be α-B-neat provided that in each
commutative diagram

C
g //

u

² ²

D

v

² ²
A

f // B

with C and D α-bounded and g a B-epimorphism, u factorizes through g, i.e.,
u = u′ · g for some u′.

3.3. Remark The following properties are easily established (compare with the
properties of B-pure morphisms in [5]):

(i) The composition of α-B-neat morphisms is an α-B-neat morphism.
(ii) If f · g is α-B-neat than g is α-B-neat.
(iii) Every γ-B-neat morphism is α-B-neat for γ ≥ α.
(iv) All α-B-neat morphisms are monomorphisms; and every equalizer is an

α-B-neat morphism.
(v) If B is cogenerating in A, then

StrongMono(A) ⊆ {α-B-neat morphisms}.
The last statement follows from the fact that, in this case, every B-epimorphism is
an epimorphism in A.

3.4. Proposition Let A be a locally α-bounded category with respect to M. Then
any α-orthogonality class of A is a reflective subcategory of A which is

(i) closed under α-directed M-unions;
(ii) locally α-bounded with respect to M′ = M∩Mor(B);
(iii) closed under α-B-neat subobjects.

Proof Let B = N⊥ for N a set of morphisms in A with α-bounded domains and
codomains. From [10], we know that B is reflective and has an (E ′,M′) proper
factorization system, with E ′ = (M′)↑. Moreover, cowellpoweredness of A with
respect to E implies E ′-cowellpoweredness of B. Let R : A → B be the reflector.

(i) Let
bi : Bi → Z (i ∈ I)

L. SOUSA - ON BOUNDEDNESS AND SMALL ORTHOGONALITY CLASSES

- 74 -



be an α-directed M-union in A with all Bi ∈ B. We want to show that Z ∈
B = N⊥. Let h : X → Y be a morphism of N and let f : X → Z. Since
X is α-bounded there is some i and some f ′ : X → Bi such that bi · f ′ = f .
The morphism f ′ factorizes through h, because Bi ∈ B, and, hence, so does the
morphism f . To show the uniqueness of the last factorization, let y, y′ : Y → Z be
such that y ·h = y′ ·h. Since Y is α-bounded, we can find k ∈ I and t, t′ : Y → Bk

such that y = bk · t and y′ = bk · t′. Now the equality bk · t · h = bk · t′ · h, the
orthogonality of Bk to h and the fact that bk ∈M imply that t = t′, thus y = y′.

(ii) Of course B is cocomplete. Moreover:
(a) If X is an α-bounded object of A, then RX is an α-bounded object of B.

This is clear since, from (i), every α-directed M′-union in B is an α-directed M-
union in A.

(b) If G is an E-generator ofA then it is well known that R(G) is an E ′-generator
of B ([10]). In fact, let A ∈ B, and let e : qi∈IGi → A be a morphism of E with all
Gi in G. Then the morphism Re : qi∈IRGi → A belongs to E ′ since, as it is easily
seen, R(E) ⊆ (M′)↑.

(iii) Let m : Z → B be an α-B-neat morphism with B ∈ B. We want to show
that Z ∈ B. Let h : X → Y lay in N . Given a morphism f : X → Z, since
B ∈ N⊥, we get f ′ such that f ′ · h = m · f . Because m is α-B-neat, there is f ′′

such that f ′′ · h = f . The uniqueness of f ′′ follows from the fact that m · f factors
uniquely through h and m is a monomorphism. 2

3.5. Remark Let A be a locally α-bounded category with respect to M. Let B be
a subcategory of A which is locally α-bounded with respect to M∩Mor(B) and
closed under limits and under α-directed M-unions. Then B is reflective. In fact,
the inclusion functor B ↪→ A fulfils the solution set condition: Given A ∈ A, there
is some regular cardinal λ ≥ α such that A is λ-bounded in A and B is a locally
λ-bounded category. Consequently, there is a set {Bi, i ∈ I} of λ-bounded objects
of B such that every object of B is a λ-directed M∩Mor(B)-union of Bi’s. But,
being closed inA under α-directed unions, B is also closed under λ-directed unions.
Then, any morphism g : A → B with codomain in B factorizes through some of
the objects Bi.

Next we want to characterize the reflective subcategories of a locally bounded
category which are small-orthogonality classes. We restrict ourselves to reflective
subcategories whose reflector preserves M-monomorphisms. This kind of reflec-
tors were studied by Ringel in [18], for M = {monomorphisms}. Top0 and Sob
are examples of subcategories of Top whose reflector preserves embeddings. Let
Sobα denote the limit-closure in Top of the ordinal α regarded as a topological
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space with the Alexandrov topology. Both Top and Top0 have an {embeddings}-
preserving reflector into Sobα (see [19]). Also the inclusion functor of the category
Ban of Banach spaces into the category Norm of normed spaces and linear con-
tractions has a reflector which preserves embeddings.

3.6. Theorem Let A be a locally α-bounded category with respect to M. Let B
be a reflective subcategory of A whose reflector preserves morphisms of M. Then
B is an α-orthogonality class in A iff it is closed under α-directed M-unions and
α-B-neat subobjects.

Proof The necessity was proved in 3.4.
In order to prove the sufficiency, we first show that the reflector R : A → B

preserves α-directed M-unions. Given an α-directed M-union mi : Xi → X (i ∈
I), we have commutative diagrams

Xi

rXi //

mi

² ²

νi

# #GG
GG

GG
GG

G RXi

Rνi

yysssssssss

Rmi

² ²

qi∈IXi
r //

e
{{vvvvvvvvv

qi∈IRXi

Re % %KKKKKKKKKK

X rX

// RX

where e ∈ E . But, as is easy to see, R(E) ⊆ E ′ = (M′)↑ for M′ = M∩Mor(B).
Then the morphisms Rmi : RXi → RX form an M′-union in B.

To finish the proof, we show that, for

N = {h : X → Y in A, h ⊥ B, X, Y α-bounded},

N⊥ ⊆ B, and thus B = N⊥. Let X ∈ N⊥. We show that the reflection rX : X →
RX of X in B is α-B-neat; consequently, as B is closed under α-B-subobjects,
X ∈ B. Let f : Y → Z be a B-epimorphism with Y and Z α-bounded. Given
morphisms s : Y → X and t : Z → RX such that t · f = rX · s, let mi : Xi → X
be an α-directed M-union in A with all Xi α-bounded. Then there is some i ∈ I
and s′ : Y → Xi such that mi · s′ = s. The closedness of B under α-directed M-
unions and the fact that Z is α-bounded implies the existence of some j ∈ I and a
morphism t′ : Z → RXj such that Rmj · t′ = t. Since I is α-directed, we can then
find k ∈ I and morphisms s and t such that the following diagram is commutative
(the commutativity of the upper quadrilateral is derived from the fact that Rmk is
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monic):

Y
f //

s

² ²

s

Ã ÃB
BB

BB
BB

B Z

t

²²

t

{{ww
ww

ww
ww

w

Xk

rXk //

mk~~||
||

||
||

RXk

Rmk # #GGGGGGGG

X rX

// RX

Let Xk
f ′ // W Z

s′oo be the pushout of f along s. Since rXk
⊥ B, any mor-

phism g : Xk → B with B ∈ B is factorizable through f ′. Furthermore, as
one easily sees, the pushout of a B-epimorphism is also a B-epimorphism. Hence
f ′ ⊥ B. The domain of f ′ is α-bounded, and from Lemma 2.7, also its codomain
is α-bounded, then f ′ ∈ N . Hence there is a morphism n : W → X such that
n · f ′ = mk. Therefore, n · s′ is the needed diagonal morphism, since (n · s′) · f =
n · f ′ · s = mk · s = s. 2

3.7. Examples (1) The category Top0 is an ℵ0-orthogonality class in Top. In fact
Top0 = {h}⊥ where h is the map h : {0, 1} → {0}, considering the two-elements
set with the trivial topology.

(2) The category Top1 of T1 topological spaces is an ℵ0-orthogonality class
of Top. It is just the subcategory of all objects orthogonal to the quotient S ↪→
{0}, where S is the Sierpiński space. In this case, the reflector does not preserve
embeddings.

(3) Sob is not an ℵ0-orthogonality class in Top0, and, consequently, it is not
an ℵ0-orthogonality class in Top. This follows from the above theorem taking into
account that Sob is not closed under ℵ0-Sob-neat subobjects in Top0.

For that, we show that every Sob-epimorphism e : X → Y with X and Y finite
is a surjection. (We recall that the Sob-epimorphisms of Top0 are the b-dense mor-
phisms, see 3.1.) Let y ∈ Y , let {Hi, i ∈ I} be the set of all open neighbourhoods
of y, and put H =

⋂
i∈I Hi. Since I is finite, H is an open containing y, and, then,

H ∩ e(X) ∩ {y} 6= ∅. Let y′ be an element of that intersection. Thus {y′} ⊆ {y}.
But for all Hi we have y′ ∈ Hi, hence {y} = {y′}. Since Y ∈ Top0, we conclude
that y = y′, then y ∈ e(X).

As a consequence we have that
{embeddings} ⊆ { ℵ0-Sob-neat morphisms}.

But then, if Sob were closed under ℵ0-Sob-neat subobjects, it would also be
closed under embeddings, what is obviously false (since the reflections are embed-
dings).
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(4) The category Norm of normed (real or complex) vectorial spaces and linear
contractions is a locally ℵ0-bounded category with respect to embeddings, and its
ℵ0-bounded objects are the spaces with finite dimension. Analogously, all spaces
with countable dimension are ℵ1-bounded. The subcategory Ban of all Banach
spaces is an ℵ1-orthogonality class of Norm. In fact, it is easy to see that

Ban = N⊥

whereN is the class of all dense embeddings X ↪→ Y with X and Y with countable
dimensions.

Acknowledgement I acknowledge the referee for the suggestion of the name α-B-
neat.
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