
Résumé. Nous montrons que les espaces vectoriels convenables au sens de
Frölicher et Kriegl forment une catégorie différentielle. Ces catégories ont
été introduites par Blute, Cockett et Seely en tant que modèles de la logique
linéaire différentielle de Ehrhard et Regnier. Nous montrons que la catégorie
en question rend parfaitement compte des intuitions de cette logique.
Il était déjà clair dans l’ouvrage de Frölicher et Kriegl que la catégorie des
espaces vectoriels convenables a une structure remarquable. Nous donnons
ici une interprétation catégorique à une partie importante de cette structure.
Ainsi, nous montrons que cette catégorie possède une comonade dont la
catégorie de coKleisli coincide avec la catégorie des fonctions infiniment
différentiables et que cette comonade modélise la modalité exponentielle de
la logique linéaire.
Le système logique suggère de nouvelles structures. Nous mettons no-
tamment en évidence l’existence d’un morphisme de codéréliction qui
permet d’obtenir la dérivée de n’importe quel morphisme par simple
précomposition.
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Abstract. We show that the category of convenient vector spaces in the sense
of Frölicher and Kriegl is a differential category. Differential categories were
introduced by Blute, Cockett and Seely as the categorical models of the differ-
ential linear logic of Ehrhard and Regnier. Indeed we claim that this category
fully captures the intuition of this logic.
It was already evident in the monograph of Frölicher and Kriegl that the cat-
egory of convenient vector spaces has remarkable structure. We here give
much of that structure a logical interpretation. For example, this category sup-
ports a comonad for which the coKleisli category is the category of smooth
maps on convenient vector spaces. We show this comonad models the expo-
nential modality of linear logic.
Furthermore, we show that the logical system suggests new structure. In
particular, we demonstrate the existence of a codereliction map. Such a map
allows for the differentiation of arbitrary maps by simple precomposition.
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1. Introduction

Differential linear logic was introduced by Ehrhard and Regnier [5, 6] in or-
der to describe the differentiation of higher order functionals from a syntactic
or logical perspective. There are models of this logic [3, 4] with sufficient
analytical structure to demonstrate that the formalism does indeed capture
differentiation. But there were no models directly connected to differential
geometry, which is of course where differentiation is of the highest signifi-
cance. The purpose of this paper is to demonstrate that the convenient vector
spaces of Frölicher and Kriegl [9] constitute a model of this logic.

The question of how to differentiate functions into and out of func-
tion spaces has a significant history. For instance, the importance of such
structures is fundamental in the classical theory of variational calculus, see
e.g. [7]. It is also a notoriously difficult question. This can be seen by con-
sidering the category of smooth manifolds and smooth functions between
them. While products evidently exist in this category, there is no way to
make the set of functions between two manifolds into a manifold. Cate-
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gory theory provides an appropriate framework for the analysis of function
spaces, through the notion of cartesian closed categories; in particular we
note that the category of smooth manifolds is not cartesian closed.

In the categorical approach to modelling logics, one typically starts with
a logic presented as a sequent calculus. One then arranges equivalence
classes of proofs into a category. If the equivalence relation is chosen wisely,
the resulting category will be a free category with structure. For example, the
conjunction-implication fragment of intuitionistic logic yields the free carte-
sian closed category; the tensor-implication fragment of intuitionistic linear
logic yields the free symmetric monoidal closed category. Then a general
model is defined as a structure preserving functor from the free category. In
both these cases, the implication connective is modelled as a function space,
i.e. the right adjoint to product. Any attempt to model the differential linear
logic should be a category where morphisms are smooth maps for some no-
tion of smoothness. Then, to model logical implication, the category must
also be closed. This is how we will capture functional differentiation.

More precisely, a significant question raised by the work of Ehrhard and
Regnier is to write down the appropriate notion of categorical model of dif-
ferential linear logic. This was undertaken by Blute, Cockett and Seely in
[2]. There, a notion of differential category is defined and several examples
are given in addition to the usual one made from the syntax of the logic.

In this paper, we focus on the category of convenient vector spaces and
bounded linear maps, and demonstrate that it is a differential category. In-
deed, this category has a number of remarkable properties. It is symmet-
ric monoidal closed, complete and cocomplete. But most significantly, it is
equipped with a comonad, for which the resulting coKleisli category is the
category of smooth maps, in an appropriate sense. It is already remarkable
that the very structure of linear logic [10] appears in this category, but fur-
thermore it is a model of the much newer theory of differential linear logic.

After describing the category of convenient spaces, we demonstrate that
it is a model of intuitionistic linear logic, and that the coKleisli category cor-
responding to the model of the exponential modality (the comonad) is the
category of smooth maps. We construct a differential operator on smooth
maps, and show that it is a model of the differential inference rule of differ-
ential linear logic, i.e. a differential category.

One of the most surprising aspects of this approach to differentiation is
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the decomposition of the smooth maps from X to Y into a space of linear
maps from !X to Y , where !X is the exponential modality of X . In fact,
in the convenient setting, !X is a space of distributions. It is the convenient
vector space obtained by taking the Mackey closure of the linear space gen-
erated by the Dirac distributions. From this perspective, differentiation is
given by precomposition with a special map called codereliction1. This may
seem unusual from the functional analysis perspective, but is very natural
from the linear logic viewpoint.

We note that much of the structure we describe here can be found scat-
tered in the literature [9, 11, 12, 13], but we believe the presentation here
sheds new light on both the categorical and logical structures.
Acknowledgements: The first author would like to thank NSERC for its
financial support. The authors would like to especially thank Phil Scott for
his helpful contributions.

2. Convenient vector spaces

In this section, we present the category of convenient spaces. They can be
seen either as topological or bornological vector spaces, with the two struc-
tures satisfying a compatibility. We give a brief review of ideas related to
bornology, but assume the reader is familiar with locally convex spaces. See
[12] for this.

For the significance of bornology and an analysis of convergence proper-
ties, see [11]. A set is bornological if, roughly speaking, it is equipped with
a notion of boundedness.

Definition 2.1. A set X is bornological if equipped with a bornology, i.e. a
set of subsets BX , called bounded, such that:

• all singletons are in BX ;

• BX is downward closed with respect to inclusion;

• BX is closed under finite unions.

A map between bornological spaces is bornological if it takes bounded sets
to bounded sets. The resulting category will be denoted Born.

1The name arises from the fact that this is dual to the usual linear logic rule dereliction.
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Theorem 2.2. The category Born is cartesian closed.

Proof. (Sketch [9, §1.2]) The product bornology is defined to be the coarsest
bornology such that the projections are bornological. So a subset of X × Y
is bounded if and only if its two projections are bornological.

The closedness follows from definition of the bornology on X ⇒ Y as
the set of bornological functions. A subset B ⊆ X ⇒ Y is bounded if and
only if B(A) is bounded in Y , for all A bounded in X . 2

As this bornology will arise in a number of different contexts, we will denote
X ⇒ Y by Born(X, Y ). We note that the above product construction works
for products of arbitrary cardinality.

Definition 2.3. A convex bornological vector space is a vector space E
equipped with a bornology such that

1. B is closed under the convex hull operation.

2. If B ∈ B, then −B ∈ B and 2B ∈ B.

The last condition ensures that addition and scalar multiplication are bornolog-
ical maps, when the reals are given the usual bornology. A map of convex
bornological vector spaces is just a linear, bonological map. We thus get a
category that we denote CBS.

As described in [9, 12, 11], the topology and bornology of a convenient
vector space are related by an adjunction, which we now describe.

Let E be a locally convex space. Say that B ⊆ E is bounded if it is
absorbed by every neighborhood of 0, that is to say if U is a neighborhood
of 0, then there exists a positive real number λ such that B ⊆ λU . This
is called the von Neumann bornology associated to E. We will denote the
corresponding convex bornological space by βE.

On the other hand, let E be a convex bornological space. Define a topol-
ogy on E by saying that its associated topology is the finest locally convex
topology compatible with the original bornology. We will denote by γE the
vector space E endowed with this topology. More concretely, one says that
the bornivorous disks form a neighborhood basis at 0. A disk is a subset A
which is both convex and satisfies that λA ⊆ A, for all λ with |λ| ≤ 1. A
disk A is said to be bornivorous when for every bounded subsets B of E,
there is λ 6= 0 such that λB ⊆ A.
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Theorem 2.4. (See Thm 2.1.10 of [9]) The functor β : LCS → CBS is right
adjoint to the functor γ : CBS → LCS. Moreover, if E is a CBS and F a
LCS, then LCS(γE, F ) = CBS(E, βF ).

Definition 2.5. A convex bornological space E is topological if E = βγE.
A locally convex space E is bornological if E = γβE.

Let V be a vector space. Any subspace V ′ of its dual space V ∗ induces
a bornology on V defined by: U ⊆ V is bounded if and only if it is scalarly
bounded, i.e. `(U) is bounded in the reals, for all ` in V ′. It follows from
Lemma 2.1.23 of [9] that such bornologies are topological. Thus to spec-
ify a topological bornology, it suffices to specify such a V ′. We will take
advantage of this frequently in what follows.

Let tCBS denote the full subcategory of topological convex bornological
vector spaces and bornological linear maps, and let bLCS denote the cate-
gory of bornological locally convex spaces and continuous linear maps. We
note immediately:

Corollary 2.6. The categories tCBS and bLCS are isomorphic.

The tCBS’s that we are interested in have the desirable further properties
of separation and completion. We begin with the easiest of the two notions.
We note E ′ the space of linear bornological functionals over a tCBS E.

Definition 2.7. A convex bornological vector space E is separated if E ′

separates points, that is for any x 6= 0 ∈ E, there is l ∈ E ′ such that
l(x) 6= 0.

One can verify a number of equivalent definitions as done in [9], page
53. For example, E is separated if and only if the singleton {0} is the only
linear subspace which is bounded.

Bornological completeness is a different and weaker notion than topo-
logical completeness, so we give some details.

Definition 2.8. Let E be a bornological space. A net (xγ)γ∈Γ is Mackey-
Cauchy if there exists a bounded subset B and a net (µγ,γ′)γ,γ′∈Γ,Γ′ of real
numbers converging to 0 such that

xγ − xγ′ ∈ µγ,γ′B.
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Contrary to what generally happens in locally convex spaces, here the
convergence of Mackey-Cauchy nets is equivalent to the convergence of
Mackey-Cauchy sequences.

Definition 2.9. • A bornological space is Mackey-complete if every Mackey-
Cauchy net converges

• A convenient vector space (CVS) is a Mackey-complete, separated,
topological convex bornological vector space.

• The category of convenient vector spaces and bornological linear maps
is denoted Con.

Later we will be considering C∞, a category of convenient vector spaces
and smooth maps. It will be important to distinguish the two.

We note that Kriegl and Michor in [13] denote the concept of Mackey
completeness as c∞-completeness and define a convenient vector space as
a c∞-complete locally convex space. If one takes the bornological maps
between these as morphisms, then the result is an equivalent category.

We note that the category of convenient vector spaces is closed under
several crucial operations. The following is easy to check:

Theorem 2.10 (See Theorem 2.6.5, [9], and Theorem 2.15 of [13]).

• Assuming that Ej is convenient for all j ∈ J , then
∏

j∈J Ej is conve-
nient with respect to the product bornology, with J an arbitrary index-
ing set.

• If E is convenient, then so is Born(X,E) where X is an arbitrary
bornological set.

There is a standard notion of Mackey-Cauchy completion and separation.
These provide an adjunction in the usual way.

Theorem 2.11 (See Section 2.6 of [9]). By the process of separation and
completion, we obtain a functor

ω : tCBS→ Con

which is left adjoint to the inclusion.
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3. Monoidal structure

Theorem 3.1. The category Con is symmetric monoidal closed.

The fact that Con is a symmetric monoidal closed category is proved
in the Section 3.8 of [9]. Roughly, it stems from the cartesian closedness
of the category of bornological spaces and bornological maps [11]. In this
paragraph, we briefly describe the main steps of the construction.

Let E and F be CVS. We will denote their algebraic tensor product by
E⊗̂F , and define a bornology on it by specifying its dual space. Define

(E⊗̂F )′ = {h : E⊗̂F → R | ĥ : E × F → R is bornological}

where ĥ refers to the associated bilinear map, and to be bornological means
with respect to the product bornology.

Now, the tensor product E⊗F in Con is the Mackey closure of the alge-
braic tensor product equipped with this bornology. Evidently, the tensor unit
will be the base field I = R. Let Con(E,F ) denote the space of bornologi-
cal linear maps. We endow it with the bornology induced by the dual space
defined by:

Con(E,F )′ = {h : Con(E,F )→ R | If U is equibounded, then h(U) is bounded},

where a subset U of linear maps from E to F is equibounded if and only
if for every bounded subset B of E, U(B) = {f(x) | f ∈ U, x ∈ B} is
bounded in F.

It follows from the cartesian closedness of the category of bornological
spaces that there is an isomorphism

Con(E1;E2, F ) ∼= Con(E1,Con(E2, F ))

where Con(E1;E2, F ) is the space of multilinear, bornological maps. Now,
the algebraic tensor product, equipped with the above bornology, classifies
bornological multilinear maps. Therefore, the above structure makes Con a
symmetric monoidal closed category.
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4. Smooth curves and maps

4.1 Smooth curves

Let E be a convenient vector space.
The notion of a smooth curve into a locally convex space E is straight-

forward. One simply has a curve c : R→ E and defines its derivative by:

c′(t) = lim
s→0

c(t+ s)− c(t)
s

.

Note that this limit is simply the limit in the underlying topological space of
E. Then, we define a curve to be smooth if all iterated derivatives exist. We
denote the set of smooth curves in E by CE .

Theorem 4.1 (See 2.14 of [13]). Suppose E is convenient. Then:

If c : R → E is a curve such that ` ◦ c is smooth for every
bornological linear map ` : F → R, then c is itself smooth.

In order to endow CE with a convenient structure, we introduce the no-
tion of difference quotients which is the key idea behind the theory of finite
difference methods, as described in [15]. Let R<i> ⊆ Ri+1 consist of those
i + 1-tuples with no two elements equal. It inherits its bornological struc-
ture from Ri+1. Given any function f : R → E with E a vector space, we
recursively define maps

δif : R<i> → E,

by saying δ0f = f , and then the prescription:

δif(t0, t1, . . . , ti) =
i

t0 − ti
[ δi−1f(t0, t1, . . . , ti−1)− δi−1f(t1, . . . , ti) ].

For example,

δ1f(t0, t1) =
1

t0 − t1
[ f(t0)− f(t1) ].

Notice that the extension of this map along the missing diagonal would be
the derivative of f . There are similar interpretations of the higher-order for-
mulas. So these difference formulas provide approximations to derivatives.
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Lemma 4.2 (See 1.3.22 of [9]). Let c : R → E be a function. Then c is a
smooth curve if and only if for all natural numbers i, δic is a bornological
map.

By Lemma 4.2, the above described difference quotients define an infi-
nite family of maps:

δi : CE → Born(R<i>, E).

Definition 4.3. Say that U ⊆ CE is bounded if and only if its image δi(U) is
bounded for every natural number i.

Theorem 4.4 (See 3.7 of [13]). This structure makes CE a convenient vector
space.

4.2 Smooth maps

We are then left with the question of how to define smoothness of a function
between two locally convex spaces.

Definition 4.5. A function f : E → F is smooth if f(CE) ⊆ CF . Let
C∞(E,F ) denote the set of smooth functions from E to F .

We note the obvious fact that CE = C∞(R, E), as seen by considering
the identity id : R→ R as a smooth curve.

Lemma 4.6 (See 2.11 of [13]). A linear map between convenient vector
spaces is smooth if and only if it is bornological.

Let C∞ denote the category of convenient vector spaces and smooth
maps. Note that the preceding lemma implies the existence of the forget-
ful functor U : Con→ C∞ which is the identity on objects and maps.

One of the crucial results of [9] and [13] is that C∞ is a cartesian closed
category. In fact, this category is the coKleisli category of a model of in-
tuitionistic linear logic, from which the above follows. But this is hardly
an enlightening proof! We first give a convenient vector space structure on
C∞(E,F ).

Now, let E and F be convenient vector spaces. If c : R→ E is a smooth
curve, we get a map c∗ : C∞(E,F )→ CF by precomposing.
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Definition 4.7. Say that U ⊆ C∞(E,F ) is bounded if and only if its image
c∗(U) is bounded in CF for every smooth curve in CE .

The space C∞(E,F ) has a natural interpretation as a projective limit:

Lemma 4.8 (See [13], p. 30). The space C∞(E,F ) is the projective limit
of spaces CF , one for each c ∈ CE . Equivalently, it consists of the Mackey-
closed linear subspace of

C∞(E,F ) ⊆
∏
c∈CE

CF

consisting of all collections (fc)c∈CE such that fc ◦ g = fc ◦ g for every g ∈
C∞(R,R).

As C∞(E,F ) is equivalent to a Mackey-closed subspace of a convenient
vector space:

Corollary 4.9. The above structure makes C∞(E,F ) a convenient vector
space.

As another consequence of the above Lemma, we get a characterization
of smooth curves in C∞(E,F ):

Corollary 4.10. A curve f : R → C∞(E,F ) is smooth if and only if t 7→
c∗(f(t)) : R→ F is smooth for all smooth curves c in CE .

Theorem 4.11 (See Theorem 3.12 of [13]). The category C∞ is cartesian
closed.

As usual, having a cartesian closed category gives us an enormous amount
of structure to work with, as will be seen in what follows.

5. Convenient vector spaces as a differential category

5.1 Differential categories

Differential categories were introduced as the categorical models of differ-
ential linear logic. We assume a symmetric, monoidal closed category with
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biproducts2. The biproducts induce an additive structure on Hom-sets, which
is necessary for the equations described below. We also assume the existence
of a symmetric monoidal comonad called the exponential modality and de-
noted ! . Such a functor has structure maps of the following form:

ρ : ! → ! ! , ε : ! → id, ϕ : !A⊗ !B → ! (A⊗B), ϕ : I → ! I,

satisfying a standard set of properties. See [16] for an excellent overview of
the topic. In the presence of biproducts, the functor ! determines a bialgebra
modality, i.e. for each object A, the object !A naturally has the structure of
a bialgebra:

∆: !A→ !A⊗ !A, e : !A→ I,

∇ : !A⊗ !A→ !A, ν : I → !A.

The bialgebra structure on !A is obtained via the exponential isomorphism:

! (A⊕B) ∼= !A⊗ !B

Then, for example, the comultiplication is obtained by applying the functor
! to the biproduct map A → A ⊕ A, and then composing with the above
isomorphism.

To model the remaining differential structure, we need to have a deriving
transformation, i.e. a natural transformation of the form:

dA : A⊗ !A −→ !A

satisfying equations corresponding to the standard rules of calculus:

• The derivative of a constant is 0.

• Leibniz rule.

• The derivative of a linear function is a constant.

• Chain rule.
2Actually, weaker axioms suffice [2].
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In fact, it suffices to have a natural transformation called codereliction [6, 2]:

coderA : A −→ !A,

satisfying certain equations which are analogues of the above listed equa-
tions:

[dC.1] coder; e = 0,

[dC.2] coder; ∆ = coder ⊗ ν + ν ⊗ coder,

[dC.3] coder; ε = 1,

[dC.4] (coder ⊗ 1);∇; ρ = (coder ⊗∆); ((∇; coder)⊗ ρ));∇.

As shown by Fiore [8] these equations are equivalent to the diagrams
below:

1. Strength

A⊗ !B
coderA⊗1 //

1⊗εA ))RRRRRRRRRRRRRR !A⊗ !B
φ // ! (A⊗B)

A⊗B
coderA⊗B

55kkkkkkkkkkkkkk

2. Comonad

!A
ε

��7777777

A

coderA

CC������

1
// A

A

'
��

coderA // !A
ρ // ! !A

A⊗ I
coderA⊗ν

// !A⊗ !A
coder⊗ρ

// ! !A⊗ ! !A

∇

OO

We can finally recover the deriving transformation from the coderelic-
tion:

dA : A⊗ !A coder⊗1−−−−−→ !A⊗ !A ∇−−−−→ !A.

Thanks to the conditions satisfied by the codereliction, we deduce the rules
of the deriving transformation: the strength condition entails that the deriva-
tive of a constant is zero and the Leibniz rule; the first comonad condition
induces the linearity rule; and the second the chain rule.
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5.2 The exponential modality on convenient vector spaces

In the category of convenient vector spaces, the comonad described in Theo-
rem 5.1.1 of [9] precisely demonstrates the relationship between linear maps
and smooth maps which was envisioned by the differential linear logic.

We begin by noting that if E is a convenient vector space and x ∈ E,
there is a canonical morphism of the form δx : C∞(E,R) → R, defined by
δx(f) = f(x). This is of course the Dirac delta distribution.

Lemma 5.1. The Dirac distribution map δ : E → C∞(E,R)′ is smooth.

Proof. First, we show the map is well-defined. Let x ∈ E, it is easy to see
that δx is linear. Let us check it is bornological. Let U be a bounded subset
of C∞(E,R), that is c∗(U) is bounded in R for every smooth curve c ∈ CE .
In particular, δx(U) = U(x) = const∗x(U) is bounded. Here, constx is the
constant curve at x.

Now, let us show that δ is smooth. Let c and f be smooth curves into E
and C∞(E,R) respectively. The map t 7→ δc(t)f(t) = f(t)(c(t)) is smooth.
We conclude by cartesian closedness. 2

Definition 5.2. The exponential modality !E is the Mackey-closure of the
linear span of the set δ(E) in C∞(E,R)′. It obtains its bornology as a sub-
space of C∞(E,R)′.

In general, !E is smaller than C∞(E,R)′, but in the case where E is
finite-dimensional, the two coincide; this is the content of Corollary 5.1.8
of [9]. Furthermore, in this case, the elements of !E correspond to the
distributions of compact support, as demonstrated in Proposition 5.1.5 of
[9]. See also Théorème XXV, p.89 of [17].

Thanks to the following lemma, the Dirac delta distributions are linearly
independant. In the sequel, we will define bornological (multi)linear func-
tions over the exponential of convenient vector spaces by their values over
the Dirac delta distributions and extending them by linearity to their linear
span and then by Mackey-completion thanks to Theorem 2.11.

Lemma 5.3. Let v1, v2, . . . , vn be a set of pairwise distinct vectors in E.
Then the corresponding δ-functionals are linearly independent in C∞(E,R)′.
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Proof. Suppose we have

r1δv1 + r2δv2 + . . .+ rnδvn = 0.

We will show that r1 = 0. Since E is separated, there exist bounded
linear functionals on E, denoted `2, `3, . . . , `n, such that for all i, `i(v1) 6=
`i(vi).

Consider the smooth function on E defined by f = Πn
i=2(`i − c`i(vi)).

Here cr denotes the constant function at r. The result follows from applying
the the above equation to f . 2

Proposition 5.4. Endowed with the bornological linear maps φI : I → ! I
defined by φI(1) = δ1 and φ : !E ⊗ !F → ! (E ⊗ F ) defined on basis
elements by φ(δx ⊗ δy) = δx⊗y and then extending linearly and completing,
the endofunctor ! is symmetric monoidal.

We will now demonstrate that this determines a comonad on Con.

Theorem 5.5. [See [9], Theorem 5.1.1] We have the following canonical
adjunction:

C∞(E,UF ) ∼= Con( !E,F )

Proof. We establish the bijection, leaving the straightforward calculation of
naturality to the reader. So let ϕ : !E → F be a bornological linear map.
Define a smooth map from E to F by ϕ̂(e) = ϕ(δe). Note that ϕ̂ is smooth
because it is the composite of ϕ and δ; ϕ is smooth since it is bornological
and linear.

Conversely, suppose f : E → F is a smooth map. Define a linear map f̃
from the linear span of δ(E) to F by defining f̃(δe) = f(e), and extending
linearly. Let us show that f̃ is bornological. Let U be bounded in the linear
span of δ(E). The image f̃(U) is equal to U({f}) which is bounded as the
image of a singleton set.

We can then extend f to the Mackey completion of the span of δ(E),
using the adjunction of Theorem 2.11. We get a bornological linear function
f̄ : !E → F .

It is clear that this determines a bijection and hence an adjunction. 2
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We now describe the structure that comes out of this adjunction:

• The counit is the linear map ε : !E → E, defined by ε(δx) = x, and
then extending linearly and applying the adjunction of Theorem 2.11.

• The unit is the smooth map ι : E → !E, defined by ι(x) = δx.

• The associated comonad has comultiplication ρ : !E → ! !E given
by ρ(δx) = δδx .

Proposition 5.6. The category Con has finite biproducts which are compat-
ible with the monoidal structure:

! (E ⊕ F ) ∼= !E ⊗ !F

Proof (See Lemma 5.2.4 of [9]). The existence of finite biproducts is straight-
forward, as in the usual vector space setting.

The trick in establishing the isomorphism, as usual, is to verify that
! (E × F ) satisfies the universal property of the tensor product.

First we note that there is a bilinear map mE,F : !E × !F → ! (E ×
F ). Consider the smooth map ιE×F : E × F → ! (E × F ). By cartesian
closedness, we get a smooth map E → C∞(F, ! (E × F )), which extends
to a linear map !E → C∞(F, ! (E × F )) ∼= Con( !F, ! (E × F )). The
transpose is the desired bilinear map. It satisfies mE,F ◦ (ιE × ιF ) = ιE×F .
Note that the map mE,F is in fact determined by this equation, since !E is
the Mackey closure of the linear span of the image of ιE . In particular, we
have

!σ ◦mE,F ◦ σ = mF,E

where σ is the symmetry.
We check thatmE,F satisfies the appropriate universality. Assume f : !E×

!F → G is a bornological bilinear map. Let us show that f is smooth.
Let (c1, c2) : R → !E × !F be a smooth curve. We want to show that
t 7→ f(c1(t), c2(t)) is a smooth curve into G. Thanks to Theorem 4.1, it is
sufficient to show that for every linear bornological functional l over G, the
real function l◦f ◦(c1, c2) : R→ R is smooth. Now, notice that, from simple
calculations of difference quotients, we get

δ1(l ◦ f ◦ (c1, c2)) = l ◦ f ◦ (δ1(c1), c2) + l ◦ f ◦ (c1, δ
1(c2))
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and hence δ1(l◦f ◦(c1, c2)) is bornological. More generally, every difference
quotient of l ◦ f ◦ (c1, c2) is bornological. From Lemma 4.2, we get that it
is smooth. Then, in turn, f ◦ (ι × ι) is smooth. By Theorem 5.5, f lifts to
a linear map f̄ : ! (E × F ) → G. By definition, f̄ ◦ δ(x1,x2) = f(x1, x2).
Hence f factors through m and f̄ .

Therefore, the universal property is satisfied by ! (E×F ) which is hence
isomorphic to !E ⊗ !F . 2

Theorem 5.7. The category Con is a model of intuitionistic linear logic.

From the biproduct structure we deduce the bialgebra structure:

• ∆: !E → !E ⊗ !E is ∆(δx) = δx ⊗ δx, and then extending linearly
and using the functor ω to extend to the completion.

• e : !E → I is e(δx) = 1.

• ∇ : !E ⊗ !E → !E is∇(δx ⊗ δy) = δx+y.

• ν : I → !E is ν(1) = δ0.

Thus it remains to establish a codereliction map of the form:

coder : E → !E

Theorem 5.8. The category Con is a differential category, with coderelic-
tion given by

coder(v) = lim
t→0

δtv − δ0

t

The first part of the proof, that coder is a bornological linear map from
E to !E, is an adaptation of the proof by Michor and Kriegl of Theorem 5.9
below. As we will see, their more general result then follows.

Proof. Let us first recall that δ is smooth, hence t 7→ δtv is a smooth curve
and the limit is well defined. We now prove that coder : E → !E is
smooth. Let c be a smooth curve in CE . Then, for any real t, c∗(coder)(t) =

lims→0
δsc(t)−δ0

s
. Consider the smooth map h : R × R → !E defined by

h(s, t) = δsc(t). Its partial derivative at 0 with respect to the second argument
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is smooth and gives us the partial derivative at 0: ∂2h(t, 0) = c∗(coder)(t).
Hence, c∗(coder) is a smooth curve. And we have proved that coder is
smooth.

We now check that the codereliction is linear. It is obviously homoge-
neous. Then, for any v, w ∈ E, we consider the smooth map g : R × R →
!E, defined by g(t, s) = δtv+sw. By computation of the derivative of the
smooth map t 7→ g(t, t), we get: (t 7→ g(t, t))′(0) = ∂1g(0, 0) + ∂2g(0, 0),
that is coder(v + w) = coder(v) + coder(w).

We have proved that coder is linear and smooth, thus it is bornologi-
cal thanks to Lemma 4.6. It remains only to check the two codereliction
equations:

1. Strength: an element v ⊗ δy ∈ E ⊗ !F is sent to lim
t→0

(δt(v⊗y)−δ0)

t
under

both legs of the diagram.

2. Comonad: the first comonad law follows from the continuity of ε; for
the second one, the clockwise chase of v ∈ E gives us lim

t→0

δδtv−δδ0
t

and

the counterclockwise gives us lim
s,t→0

δ[ st (δtv−δ0)+δ0]−δδ0
s

. To prove the two

are equal, it is sufficient to consider the limit on the diagonal s = t→
0.

2

Using this codereliction map, we can build a more general differentiation
operator by precomposition:

Consider f : !E → F then define df : E ⊗ !E → F as the composite:

E ⊗ !E coder⊗1 // !E ⊗ !E ∇ // !E
f // F

v⊗δx
� // lim

t→0

δtv−δ0
t
⊗δx � // lim

t→0

δtv+x−δx
t

� // lim
t→0

f(tv+x)−f(x)
t

We then obtain the following result of Kriegl and Michor as a corollary:

Theorem 5.9 (See [13], Theorem 1.3.18). Let E and F be convenient vector
spaces. The differentiation operator

d : C∞(E,F )→ C∞(E,Con(E,F ))

BLUTE, EHRHARD & TASSON - A CONVENIENT DIFFERENTIAL CATEGORY

- 228 -



defined as

df(x)(v) = lim
t→0

f(x+ tv)− f(x)

t

is linear and bounded. In particular, this limit exists and is linear in the
variable v.

Conversely, if we start with the general differentiation operator, we can
recover codereliction as the differential at 0 of ι, that is:

coder(v) = dι(0)(v) = lim
t→0

δtv − δ0

t

6. Conclusion

Fundamental to understanding the structure of convenient vector spaces is
the duality between bornology and topology in the definition of convenient
vector spaces. Another place where there is such duality is the notion of a
finiteness space, introduced in [4]. But there, the duality is between bornol-
ogy and the linear topology of Lefschetz [14]. The advantage of the present
setting is that the topology takes place in the more familiar world of locally
convex spaces. However, it remains an interesting question to work out a
similar structure in the Lefschetz setting. This program was initiated in the
thesis of the third author [19].

Evidently, a next fundamental question is the logical/syntactic structure
of integration. One would like an integral linear logic, which would again
treat integration as an inference rule. It should not be a surprise at this point
that convenient vector spaces are extremely well-behaved with respect to
integration. The category Con will likely provide an excellent indicator of
the appropriate structure.

One can also ask about other classes of functions beside the smooth ones.
Chapter 3 of [13] is devoted to the calculus of holomorphic and real-analytic
functions on convenient vector spaces. It is an important question as to
whether there is an analogous comonad to be found, inducing the category
of holomorphic maps as its coKleisli category. Then one can investigate
whether the corresponding logic is in any way changed.

Of course, once one has a good notion of structured vector spaces, it is
always a good question to ask whether one can build manifolds from such
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spaces. Manifolds based on convenient vector spaces is the subject of the
latter half of [13], and it seems an excellent idea to view these structures
from the logical perspective developed here.

Convenient vector spaces and similar structures are under active consid-
eration today, see [1, 18]. We hope the logical perspective introduced here
gives new insights in this domain.
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[3] T. Ehrhard. On Köthe sequence spaces and linear logic. Mathematical
Structures in Computer Science 12, pp. 579-623, (2002).

[4] T. Ehrhard. Finiteness spaces. Mathematical Structures in Computer
Science 15, pp. 615-646, (2005)

[5] T. Ehrhard, L. Regnier. The differential λ-calculus. Theoretical Com-
puter Science 309, pp. 1-41, (2003).

[6] T. Ehrhard, L. Regnier. Differential interaction nets. Theoretical Com-
puter Science 364, pp. 166–195, (2006).

[7] I. Gelfand and S. Fomin, Calculus of Variations, Dover Publishing,
(2000).

[8] M. Fiore, Differential structure in models of multiplicative biadditive
intuitionistic linear logic. Proceedings of TLCA, pp 163–177, (2007).
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Thesis, (2009).

Richard Blute
Department of Mathematics
University of Ottawa
Ottawa, Ontario, K1N 6N5, CANADA
rblute@uottawa.ca

Thomas Ehrhard
CNRS, PPS, UMR 7126
Univ Paris Diderot, Sorbonne Paris Cit
F-75205 Paris, France
thomas.ehrhard@pps.jussieu.fr

BLUTE, EHRHARD & TASSON - A CONVENIENT DIFFERENTIAL CATEGORY

- 231 -



Christine Tasson
Univ Paris Diderot, Sorbonne Paris Cit
PPS, UMR 7126, CNRS
F-75205 Paris, France
christine.tasson@pps.jussieu.fr

BLUTE, ERHARD & TASSON - A CONVENIENT DIFFERENTIAL CATEGORY

- 232 -


