
Résumé.  Le domaine récent de la topologie algébrique dirigée étudie les
"espaces dirigés", où chemins et homotopies peuvent être non réversibles.
Les applications principales concernent la programmation parallèle.

On introduit ici, pour un espace dirigé, une catégorie fondamentale de
dimension infinie, de type cubique lax: les cubes singuliers de l'espace ont
une structure cubique, où les concatenations sont associatives à une re-
paramétrisation invertible près, mais les dégénérescences sont seulement
lax-unitaires. En outre cette structure est symétrique, par permutation des
variables des cubes singuliers, ce qui simplifie les propriétés de cohérence.

Les "cubes de Moore" de l'espace donnent une catégorie cubique stricte,
moyennant une construction similaire.

Abstract. The recent domain of directed algebraic topology studies
'directed spaces', where paths and homotopies need not be reversible. The
main applications are concerned with concurrency.

We introduce here, for a directed space, an infinite dimensional funda-
mental category, of a lax cubical type: the singular cubes of the space have
a cubical structure, where concatenations are associative up to invertible
reparametrisation while degeneracies are only lax-unital. Moreover, this
structure is symmetric, by permuting the variables of singular cubes; this
simplifies the coherence properties.

By a similar construction, the 'Moore cubes' of the space give a strict
symmetric cubical category.
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Introduction

Directed algebraic topology studies structures with privileged directions, like
'directed spaces' in some sense: for instance, ordered or locally ordered topological
spaces, 'spaces with distinguished paths' (examined below), simplicial and cubical
sets, etc. Such objects have directed paths and homotopies, which need not be
reversible. The present applications deal mostly with the analysis of concurrent
processes, see [FGR1, FGR2, FRGH, Ga1, Ga2, GG, GH, Go, R1, R2], but the
theory aims to model non-reversible phenomena in any domain. Directed algebraic
topology is the subject of a recent issue of the journal 'Applied Categorical
Structures', guest-edited by the present author (vol. 15, no. 4, 2007), and of a recent
book [G10]. The ideas at the basis of the present paper have been exposed at the
conference 'Applied Topological Methods in Computer Sciences III', Paris 2008.

Directed spaces can be studied with homology and homotopy theories, modified
to keep an account of privileged directions: namely, preordered homology groups
[G3] and fundamental higher categories (in some sense) instead of the classical
homology groups and fundamental higher groupoids of algebraic topology. Thus,
directed algebraic topology is more clearly linked with higher dimensional category
theory, and can also yield some geometric intuition to the latter.

Here, we want to study an infinite dimensional version of the fundamental
category of a d-space, or space with distinguished paths (1.1), our main notion of
directed space, which was introduced in [G2] and also studied in various works by
various authors [G4-G6, G10, FhR, FjR, R2, Bu, Ga3]. While there is no problem in
defining the fundamental category  !"1(X)  of a d-space [G2], the construction of
higher versions is complicated, even in dimension 2: see [G4] for a strict 2-
categorical version and [G5, G6] for lax ones.

The present approach is cubical, rather than globular, and follows a study of
weak cubical categories begun by the author in [G7-G9, G11]. We start from the
standard n-dimensional cube  In = [0, 1]n  and its directed version  !In  (1.2). The
singular cubes of a d-space  X,  i.e. the maps  !In  X  of d-spaces, form a 'basic
symmetric pre-cubical category' ! X (Section 1), i.e. a symmetric cubical set
equipped with concatenation laws in all directions, satisfying various geometrical
properties and linked by transposition symmetries; the term 'basic' means that these
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operations are not (yet) required to satisfy associativity, interchange and unitarity, in
any sense - even weak or lax.

To take these aspects into account, we formalise in Section 2 the notion of a u-lax
symmetric cubical category. The previous framework (a basic symmetric pre-cubical
category) is enriched with transversal maps between n-dimensional objects; these
maps include comparisons for associativity, interchange and unitarity, which are
only assumed to be invertible in the first two cases. The new structure is thus a
generalisation of a weak symmetric cubical category introduced in [G7, G9]; it is
very similar to the 'quasi cubical' case considered in [G8] for higher cospans
composed with homotopy pushouts, in relation with higher dimensional cobordism.

Then, in Sections 3 and 4, we make the previous structure  ! X   into the
singular u-lax symmetric cubical category  !Sng(X)  of the d-space  X,  by adding
transversal maps and comparisons. Here, a transversal map  f: x  y  between two
singular cubes  x, y: !In  X  is given by a reparametrisation mapping  f: !In 
!In  such that  x = yf;  the obvious transversal composition of such maps is strictly
categorical. The operations of concatenation of the singular cubes become thus
weakly associative (up to invertible reparametrisations) and lax unital (up to non-
invertible reparametrisations), while interchange - here - works strictly. The non-
directed structure  Sng(X)  associated to a topological space  X  is briefly described
in 4.6.

In Section 5 we outline a strict version of the previous framework. It is based on
the Moore directed cubes of a d-space, defined on products of directed intervals of
variable length  ah # 0

(1) I(a1,..., an)  =  "h=1,...,n ![0, ah].

These have operations of concatenation that are strictly associative and unital,
also because we allow these intervals to be degenerate. Transversal maps are given
by 'Moore reparametrisations', but their role is less evident here, since no
comparisons are needed: we get a strict symmetric cubical category  !MSng(X).

We end, in Section 6, with a few hints to a family  T(A)  of u-lax symmetric
cubical categories, depending on a topological space  A,  and related to higher
categories of tangles, as considered in [BL, Ch]. This family is constructed starting
from  T = Sng(S0),  the u-lax symmetric cubical category associated to the discrete
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space on two points  S0,  where a singular n-cube  x: In  S0  can be identified to a
subset of  In.

As a general principle of higher category theory, weak structures seem to be
more important than the strict ones; this is why the strict structure of Moore cubes
has here a marginal position. Let us also recall that interest is arising in category
theory and algebraic topology for categorical structures (possibly higher
dimensional) with lax units or 'no units' (see [MBB, Ko1, Ko2, JK, G8, G12]).

References to the rich literature on higher categories can be found in two recent
books, by T. Leinster [Le] and E. Cheng, A. Lauda [CL]; but these works are mostly
developed in the globular approach, rather than the cubical one. Strict cubical
categories with connections (and no transversal maps) are studied in [ABS], and
proved to be equivalent to the ordinary (globular) $-categories. Weak symmetric
cubical categories have been studied by the present author [G7-G9, G11]; pseudo
double categories are a truncated version of the latter, studied in [GP] and three
subsequent papers by the same authors.

Cubical sets have been extensively studied by R. Brown and P.J. Higgins, which
introduced their connections in [BH1, BH2]. The present author began a systematic
use of their symmetries in [G1]. There is a recent preprint on symmetric cubical sets,
by S.B. Isaacson [Is], which investigates their non-directed homotopy theory.

For a (non-directed) topological space  X,  a recent preprint by R. Brown [Br]
deals with a cubical structure  M*(X)  based on 'Moore hyperrectangles', equivalent
to our Moore cubes (see a note at the end of Section 5.3). With respect to the
present structure  !MSng(X),  the 'strict cubical category'  M*(X)  has connections
and no transpositions nor transversal maps; it might be called a 'basic cubical
category with connections', in the present terminology - where a 'cubical category' is
always assumed to have transversal maps.

One dimensional reparametrisation mappings  f: !I  !I,  in the same sense as
here, have been studied in [G5, G6, FhR, R3].

As a matter of notation, the indices  %, &  take the values  0, 1,  that are more often
written as  –, +.  I  denotes the standard interval  [0, 1]  with euclidean topology.
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1. The singular cubes of a d-space and their concatenations

We briefly recall the notion of d-space, introduced in [G2]. Then we show that
the singular (directed) cubes of a d-space  X,  with obvious concatenations in all
directions, form a 'basic symmetric pre-cubical category'  ! X.  These operations
satisfy a strict middle-four interchange; their weak associativity and lax unitarity
properties will be studied in Section 4, after developing adequate structures.

1.1. Spaces with distinguished paths. A d-space  X,  or space with distinguished
paths, is a topological space equipped with a set  dX  of (continuous) maps  a: I 
X,  called distinguished paths or directed paths or d-paths, satisfying three axioms:

(i) (constant paths)  every constant map  I  X  is distinguished,

(ii) (partial reparametrisation)  dX  is closed under composition with every
(weakly) increasing map  I  I,

(iii) (concatenation)  dX  is closed under path-concatenation: if the d-paths  a, b  are
consecutive in  X  (i.e.  a(1) = b(0)),  then their ordinary concatenation  a + b  is also
a d-path.

A directed map  f: X  Y  (or d-map, or map of d-spaces) is a continuous
mapping between d-spaces which preserves the directed paths: if  a ' dX,  then  fa '
dY.

The category of d-spaces is written as  dTop.  It has all limits and colimits,
constructed as in  Top  and equipped with the initial or final d-structure for the
structural maps; for instance a path  I  "Xj  with values in a product is directed if
and only if all its components  I  Xj  are so. The forgetful functor  U: dTop 
Top  preserves thus all limits and colimits; a topological space is generally viewed as
a d-space by its natural structure, where all paths are directed (via the right adjoint to
U).

Reversing d-paths, by the involution  r(t) = 1 – t,  yields the opposite d-space  RX
= Xop,  where  a ' d(Xop)  if and only if  ar  is in  dX.  This defines the reversor
endofunctor

(1) R: dTop  dTop, RX  =  Xop.
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A d-space  X  is said to be reversible if it coincides with  Xop,  and reflexive if it
is isomorphic to the latter.

1.2. Standard objects.  The directed real line, or d-line  !R,  is the euclidean line
with directed paths given by the (weakly) increasing maps  I  R.  Its cartesian
power in  dTop,  the n-dimensional real d-space  !Rn  is similarly described (with
respect to the product order of  Rn,  x ( y  if  xi ( yi  for all  i).  The standard d-
interval  !I = ![0, 1]  has the subspace structure of the d-line; the standard d-cube
!In  is its n-th power, and a subspace of  !Rn  (with the induced structure). These d-
spaces are not reversible (for  n > 0),  but they are all reflexive.

The standard directed circle  !S1  will be the standard circle with the
anticlockwise structure, where the directed paths  a: I  S1  move this way, in the
oriented plane  R2:  a(t) = (cos)(t), sin)(t)),  with an increasing (continuous)
argument  ): I  R.

!S1  can be obtained as the coequaliser in  dTop  of the following pair of maps

(1) *–, *+: {*}               !I, *–(*)  =  0,    *+(*)  =  1.

Indeed, the ordinary construction of this coequaliser is the quotient  !I/*I,  which
identifies the endpoints; the d-structure of the quotient (generated by the projected
paths) is the desired one precisely because of the axioms on concatenation and
reparametrisation of d-paths.

The directed circle can also be described as an orbit d-space

(2) !S1  =  !R/Z,

with respect to the action of the group of integers on the directed line  !R,  by
translations; in this quotient, the distinguished paths of  !S1  are simply the
projections of the increasing paths in the line.

The directed n-dimensional sphere is defined, for  n > 0,  as the quotient of the
directed cube  !In  modulo the equivalence relation which collapses its (ordinary)
boundary  *In  to a single point, while  !S0  has the discrete topology and the natural
d-structure (obviously discrete)

(3) !Sn  =  (!In)/(*In)    (n > 0), !S0  =  S0  =  {–1, 1}.
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All directed spheres are reflexive.

1.3. Directed interval and paths. A (standard) path in a d-space  X  is a d-map  a:
!I  X  defined on the standard d-interval. Plainly, this is the same as a structural
map  a ' dX,  and will also be called a directed path when we want to stress the
difference from ordinary paths in the underlying space  UX.

  The basic, 'first order' structure of  !I  consists of four maps, linking its 0-th
cartesian power, the singleton  !I0 = {*},  to  !I  or to the opposite d-space  !Iop

(1) *% : {*}               !I, *–(*)  =  0,   *+(*)  =  1 (faces),

e: !I  {*}, e(t)  =  * (degeneracy),

r: !I  !Iop, r(t)  =  1 – t (reflection).

Identifying a point  x  of the space  X  with the corresponding map  x: {*}  X,
this basic structure determines:

(a) the endpoints of a path  a: !I  X,  i.e.  *–(a) = a*– = a(0),  *+(a) = a*+ = a(1),

(b) the trivial path at the point  x,  i.e.  0x = e(x) = xe,

(c) the reflected path of  a  in  Xop,  i.e.  r(a) = (Ra).r: !I  !Iop  Xop.

Two consecutive paths  a, b: !I  X  (*+(a) = *–(b),  i.e.  a(1) = b(0))  have a
concatenated path  a + b,  which is distinguished, by definition of d-structure. This
amounts to saying that, in  dTop,  the standard concatenation pushout – pasting two
copies of the d-interval, one after the other – can be realised as  !I  itself (as for
spaces: pasting two copies of  I  gives  I)

 *+

{*}  !I
(2) *–    c– c–(t)  =  t/2, c+(t)  =  (t+1)/2.

 !I  !I
c+

This pushout is preserved by cartesian product with any fixed d-space ([G2],
Lemma 1.8).
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Finally, there is a 'second order' structure which involves the standard directed
square  !I2 = [0, 1] × [0, 1]  and is used to construct (directed) homotopies of
(directed) paths

(3) g–: !I2  !I, g–(t, t')  =  max(t, t') (lower connection),

g+: !I2  !I, g+(t, t')  =  min(t, t') (upper connection),

s: !I2  !I2, s(t, t')  =  (t', t) (transposition).

Together with (1), these maps complete the structure of  !I  as a lattice in  Top
(isomorphic to the opposite lattice, via  r).  The choice of the superscripts of  g–, g+

comes from the fact that the unit of  g%  is  *%(*).  Within homotopy theory, the
importance of these binary operations has been highlighted by R. Brown and P.J.
Higgins [BH1, BH2], which introduced the term of connection, or higher
degeneracy (with a notation similar to the previous one for faces, degeneracy and
connections:  *%, +, ,%;  notice that for simplicial sets the letter  s  generally denotes
degeneracies).

Here, we will use the transposition symmetry  s,  but not the connections; the
article [Br] shows as the latter can be used in the context of Moore cubes (or
standard cubes, of course).

1.4. The singular symmetric cubical set of a d-space. Every d-space  X  has an
associated symmetric cubical set - a notion whose general definition will be recalled
below (see 1.5)

(1) ! X  =  ((! nX), (*%i ), (ei), (si)).

Firstly, the component of  ! X  in degree  n # 0  is the set of singular (directed)
n-cubes of  X,  which will also be called n-cubes of  X

(2) ! nX  =  dTop(!In, X).

In particular, a 0-cube  x: !I0  X  is identified with a point of  X,  and a 1-cube
x: !I  X  is a (directed) path.

Secondly, after the basic structure recalled above, the higher faces, degeneracies
and transpositions of the standard cubes are defined as follows
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(3) *%i   =  !Ii–1 × *% × !In–i:  !In–1  !In, *%i (t1,..., tn–1)  =  (t1,..., %,..., tn–i),

ei  =  !Ii–1 × e × !In–i:  !In  !In–1, ei(t1,..., tn)  =  (t1,..., t̂i,..., tn),

si  =  !Ii–1 × s × !In–i:  !In+1  !In+1, si(t1,..., tn+1)  =  (t1,..., ti+1, ti,..., tn+1),

where  % = 0, 1,  i = 1,..., n  (and, as usual,  t̂i  means to omit the coordinate  ti).

These maps produce (contravariantly, by pre-composition) the faces,
degeneracies and transpositions of our symmetric cubical set  ! X,  which will be
denoted by the same symbols

(4) *%i : ! nX  ! n–1X, *%i (x)  =  x.*%i ,

ei: ! n–1X  ! nX, ei(x)  =  x.ei,

si: ! n+1X  ! n+1X si(x)  =  x.si (% = 0, 1,  i = 1,..., n).

Every n-cube  x: !In  X  has  2n  vertices:  *%1*
&
2*

-
3(x) = *-1*

&
1*

%
1 (x),  for  n = 3.

The contravariant action of the transpositions  s1,..., sn–1  on  ! nX  can
obviously be extended to a (right) action of the group of permutations of the
coordinates of  In.  This amounts to saying that the transpositions  si  satisfy the
Moore relations, under which they generate the symmetric group  Sn

(5) si.si  =  1, si.sj.si  =  sj.si.sj    (i = j–1), si.sj  =  sj.si    (i < j–1),

(see Coxeter-Moser [CM], 6.2; or Johnson [Jo], Section 5, Thm. 3).

Notice also that we have applied the functors

(6) (–)n
i   =  !Ii–1 × – × !In–i:  dTop  dTop (i = 1,..., n),

to deduce the higher structural maps (3) from the basic ones,  *%, e, s,  introduced in
1.3. This procedure is usual in homotopy theory based on a standard interval, and
will be repeatedly used below.

1.5. Symmetric cubical sets. Let us recall some points on the classical notion of
cubical set (see  [K1, K2, BH1, BH2]) and the less known notion of symmetric
cubical set.

A cubical set  X = ((Xn), (*%i ), (ei))  is a sequence of sets  (Xn)n#0  equipped with
faces  (*%i )  and degeneracies  (ei)
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(1) *%i : Xn               Xn–1 :ei   (i = 1,..., n;  % = ±),

satisfying the cubical relations :

(2) *%i .*&j   =  *&j .*%i +1   (j ( i), ej.ei  =  ei+1.ej      (j ( i),

*%i .ej  =  ej.*%i –1     (j < i), or   id   (j = i), or    ej–1.*%i    (j > i).

A morphism  f = (fn): X  Y  is a sequence of mappings  fn: Xn  Yn
commuting with faces and degeneracies. All this forms a category  Cub,  which is a
category of presheaves: a cubical set can be viewed as a functor  X: Iop  Set,
where  I   is the subcategory of  Set  consisting of the elementary cubes  2n = {0,
1}n,  together with the maps  {0, 1}m  {0, 1}n  which delete some coordinates and
insert some 0's and 1's, without modifying the order of the remaining coordinates
[GM]. Therefore,  Cub  has all limits and colimits and is cartesian closed. However,
the important monoidal structure is the Kan tensor product, which is non-symmetric
and biclosed [BH2] (but this is not used here).

A symmetric cubical set [GM, G7] is a cubical set which is further equipped with
transpositions

(3) si: Xn  Xn (i = 1,..., n–1;  n # 2).

which satisfy the Moore relations (1.4.5) and the following coherence conditions:

j < i j = i j = i+1  j > i+1

(4) *%j .si = si–1.*%j *%i +1 *%i si.*%j ,

si.ej =  ej.si–1 ei+1 ei ej.si.

Because of the Moore relations, the symmetric group  Sn  operates on  Xn.

A morphism of symmetric cubical sets  f = (fn): X  Y  is a sequence of
mappings  fn: Xn  Yn  commuting with faces, degeneracies and transpositions.
The resulting category  sCub  is again a category of presheaves  X: Isop  Set,  for
the symmetric cubical site  Is.  The latter can be defined as the subcategory of  Set
consisting of the elementary cubes  2n = {0, 1}n  together with the maps  2m  2n

which delete some coordinates, permute the remaining ones and insert some 0's and
1's. It is a subcategory of the extended cubical site  K  of  [GM], which also contains
the connections.
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Again,  sCub  has all limits and colimits and is cartesian closed; moreover, it
inherits from  Cub  a symmetric monoidal closed structure [G9] and one internal
hom (that is not used here).

1.6. An equivalent presentation. The presence of transpositions makes all faces
and degeneracies determined by those belonging to a fixed direction, e.g. the 1-
indexed ones,  *%1   and  e1.  In fact, from  *%i +1 = *%i .si  and  ei+1 = si.ei,  we deduce
that:

(1) *%i +1  =  *%1 .s1. ... .si, ei+1  =  si. ... .s1.e1.

Thus, as proved in [G8],1.2, a symmetric cubical set can be equivalently defined
as a system

(2) X  =  ((Xn), (*%1 ), (e1), (si)),

*%1 : Xn               Xn–1 :e1, si: Xn+1  Xn+1 (n # 1),

under the Moore relations for transpositions (1.4.5) and the axioms:

(3) *%1 .*&1  =  *&1.*%1 .s1, si.*%1   =  *%1 .si+1, *%1 .e1  =  id,

e1e1  =  s1.e1e1, e1.si  =  si+1.e1.

1.7. A basic symmetric pre-cubical category. The symmetric cubical set  ! X
can be further equipped with partial operations of concatenation in direction  i,  or  i-
concatenation, or i-composition (with  i = 1,..., n  for n-dimensional cubes); globally,
we will speak of cubical compositions (as opposed to the transversal composition
that will be introduced later).

Indeed, acting on the concatenation pushout (1.3.2), the functors  (–)n
i   (1.4.6)

produce the n-dimensional i-concatenation pushout, with embeddings  c%i :  !In 
!In

*+
i

!In–1   !In c%i   =  !Ii–1 × c% × !In–i:  !In  !In,
(1) *–

i    c–
i c–(..., ti,...)  =  (..., ti/2,...),

!In  !In c+(..., ti,...)  =  (..., (ti + 1)/2,...).
  c+

i
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(We have already recalled that the basic concatenation pushout is preserved by
products with fixed d-spaces.) Now, given two i-consecutive n-cubes  x, y: !In  X
(with  *+

i x = *–
i y),  their i-concatenation  z = x +i y  is computed on the previous

pushout

(2) z: !In  X, z.c–
i   =  x,      z.c+

i   =  y.

! X  becomes thus a basic symmetric pre-cubical category, i.e. a symmetric
cubical set with 'geometrically consistent' cubical compositions. (This structure was
called a 'reduced symmetric pre-cubical category' in [G9], Section 3.5.) More
precisely, this means that  ! X  is a symmetric cubical set with the following
additional structure.

For  1 ( i ( n,  the i-concatenation  x +i y  (or i-composition) of two n-cubes  x,
y  is defined when  x, y  are i-consecutive, i.e.  *+

i (x) = *–
i (y),  and satisfies the

following 'geometric' relations with faces, degeneracies and transpositions:

(3) *–
i (x +i y)  =  *–

i (x), *+
i (x +i y)  =  *+

i (y),

*%j (x +i y)  =  *%j (x) +i–1 *%j (y) (j < i),

  =  *%j (x) +i *%j (y) (j > i),

(4) ej(x +i y)  =  ej(x) +i+1 ej(y) (j ( i ( n),

 =  ej(x) +i ej(y) (i < j ( n+1) (nullary interchange).

(5) si–1(x +i y)  =  si–1(x) +i–1 si–1(y), si(x +i y)  =  si(x) +i+1 si(y),

sj(x +i y)  =  sj(x) +i sj(y) (j . i–1, i).

There are no other conditions: in the definition of a basic symmetric pre-cubical
category we are not assuming that the i-compositions behave in a categorical way or
satisfy the binary interchange law, in any sense - strict or weak or lax.

However, for the singular structure  ! X  which we are studying, the binary
interchange law holds strictly. Indeed, for  1 ( i < j ( n,  and n-cubes  x, y, z, u,  we
obviously have

(6) (x +i y) +j (z +i u)  =  (x +j z) +i (y +j u) (middle-four interchange),

whenever these compositions make sense:
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(7) *+
i (x)  =  *–

i (y), *+
i (z)  =  *–

i (u),
   x    y

*+
j (x)  =  *–

j (z), *+
j (y)  =  *–

j (u),    i
   z    u    j

Comparisons for associativity and unitarity of singular cubes will be introduced
in Section 4.

2. Weak symmetric cubical categories with lax units

We now define a notion of cubical structure adapted to the present situation, and
called a u-lax symmetric cubical category. It is a generalisation of the weak case
introduced in [G7, G9] and is similar to the 'quasi cubical' case considered in [G8]
for higher cospans composed with homotopy pushouts (the latter is even more
relaxed, with weaker cubical relations for degeneracies).

Here we allow the comparisons for left and right unitarity to be non-invertible
and directed towards simpler expressions, while we require that the comparisons for
associativity and interchange be invertible; indeed, this is the situation that we find in
our leading examples (like singular cubes, here, or cubical cospans in [G8]). One
should also notice that - for associativity and interchange - there seems to be no
formal reason that might distinguish a particular direction, while - for unitarity - a
rewriting rule would normally point towards simplification.

2.1. Symmetric pre-cubical categories. As a first step, let us recall that a
symmetric pre-cubical category is a category object  A  within the category of basic
symmetric pre-cubical categories and their morphisms (1.7)

  *
%
0  c0

(1) A(0)               A(1)               A(2) (% = ±).
 e0

Explicitly, this means the following data and axioms.
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(wcub.1) A basic symmetric pre-cubical category  A(0) = ((An), (*%i ), (ei), (si), (+i)),
whose entries are called n-cubes, or n-dimensional objects of  A.

(wcub.2) A basic symmetric pre-cubical category  A(1) = ((Mn), (*%i ), (ei), (si), (+i)),
whose entries are called n-maps of  A,  or also (n+1)-cells.

(wcub.3) Symmetric cubical functors  *%0   and  e0,  called  0-faces and 0-degeneracy,
with  *%0 .e0 = id.

Typically, an n-map will be written as  f: x  x',  where  *–
0f = x,  *+

0f = x'  are n-
cubes. Every n-dimensional object  x  has an identity  e0(x): x  x.  Note that  *%0
and  e0  preserve cubical faces  (*%i ,  with  i > 0),  cubical degeneracies  (ei),
transpositions  (si)  and cubical concatenations  (+i).  In particular, given two i-
consecutive n-maps  f, g,  their 0-faces are also i-consecutive and we have:

(2) f +i g:  x +i y   x' +i y' (for  f: x  x',  g: y  y';  *+
i f = *–

i g).

(wcub.4) A composition law  c0  which assigns to 0-consecutive n-maps  f: x  x',
h: x'  x"  (of the same dimension), an n-map  hf: x  x"  (also written  h.f).
This composition law is (strictly) categorical, and forms a category  An = (An, Mn,
*%0 , e0, c0).  It is also consistent with the basic symmetric pre-cubical structure, in the
following sense

(3) *%i (hf)  =  (*%i h).(*%i f), ei(hf)  =  (eih)(eif), si(hf)  =  (sih)(sif),

 *–
i f  *–

i h
(h +i k).(f +i g)  =  hf +i kg

 x – f – h   x"  
0

 

 y – g – k   y"    i

 *+
i g  *+

i k

The last condition is the (strict) middle-four interchange between the strict
composition  c0  and any weak one. An n-map  f: x  x'  is said to be special if its
2n  vertices are identities

(4) *%%%%f:  *%%%%x  *%%%%x' *%%%%  =  *%1 1 *%2 2 ... *%n n (%i = ±).
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In degree 0, this just means an identity.

2.2. Comparisons. We now define a u-lax symmetric cubical category  A  as a
symmetric pre-cubical category (2.1), which is further equipped with some special
transversal maps, playing the role of comparisons for units, associativity and cubical
interchange, as follows. (We only assign the comparisons in direction 1; all the
others can be obtained with transpositions.)

(ucub.5) For every n-cube  x,  we have a special n-map  /1x,  which is natural on n-
maps and has the following faces (for  n > 0)

(1) /1x: (e1*–
1x) +1 x    x (left-unit 1-comparison),

*%1/1x  =  e0*%1 x, *%j /1x  =  /1*%j x      (1 < j ( n),

*–
1x *–

1x

 e0*–
1x      0

*+
j x    x *+

j x    j

   e1*–
1x /1*+

j x /1*–
j x    1

*–
j x    x  *–

j x  e0*+
1x  (1 < j ( n).

*+
1x *+

1x

The naturality condition means that, for every n-map  f: x  x',  the following
square of n-maps commutes

/1x
(e1*–

1x) +1 x   x
(2) (e1*–

1f) +1 f     f

(e1*–
1x') +1 x'   x'

/1x'

(ucub.6) For every n-cube  x,  we have a special n-map  01x,  which is natural on n-
maps and has the following faces (the naturality diagram, similar to diagram (2), is
not written down)
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(3) 01x: x +1 (e1*+
1x)    x, (right-unit 1-comparison),

*%101x  =  e0*%1 x, *%j 01x  =  01*%j x      (1 < j ( n),

*–
1x  *–

1x

 e0*–
1x      0

*+
j x    x *+

j x    j
   x 01*+

j x 01*–
j x    1

*–
j x    e1*+

1x  *–
j x  e0*+

1x  (1 < j ( n).

*+
1x *+

1x

(ucub.7) For three 1-consecutive n-cubes  x, y, z,  we have an invertible special n-
map  11(x, y, z),  which is natural on n-maps and has the following faces

(4) 11(x, y, z):  x +1 (y +1 z)    (x +1 y) +1 z (associativity 1-comparison),

*–
111(x, y, z)  =  e0*–

1x, *+
111(x, y, z)  =  e0*+

1z,

*%j 11(x, y, z)  =  11(*%j x, *%j y, *%j z)   (1 < j ( n),

*–
1x *–

1x

 e0*–
1x  *+

j x  *+
j x

 x +1 y

*+
j y *+

j y    0

 *–
j x    x  *–

j x    j

  11*+
j   11*–

j    1

*+
j z     z *+

j z

 *–
j y  *–

j y

 y +1 z

 *–
j z  *–

j z  e0*+
1z  (1 < j ( n).

 *+
1z  *+

1z
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(ucub.8) Given four n-cubes  x, y, z, u  which satisfy the boundary conditions
making the following concatenations possible, we have an invertible n-map  21
(interchange 1-comparison) which is natural on n-maps and has the following faces
(partially displayed below)

(5) 21(x, y, z, u): (x +1 y) +2 (z +1 u)    (x +2 z) +1 (y +2 u),

*–
121(x, y, z, u)  =  e0(*–

1x +2 *–
1z),  *+

121(x, y, z, u)  =  e0(*+
1y +2 *+

1u),

*–
221(x, y, z, u)  =  e0(*–

2x +1 *–
2y),  *+

222(x, y, z, u)  =  e0(*+
2z +1 *+

2u),

*%j 21(x, y, z, u)  =  21(*%j x, *%j y, *%j z, *%j u)   (2 < j ( n),

*–
2x *–

2y *–
2x *–

2y

 e0  *+
1y    x   y *+

1y    0

  +2   +2    1

 *–
1x   x +1 y  e0 *+

1u  *–
1x e0   z   u *+

1u    2

 *–
1z   z +1 u   *–

1z  e0  

 *+
2z   *+

2u  *+
2z  *+

2u

(ucub.9) Finally, these comparisons must satisfy some conditions of coherence,
listed below (2.3).

A  is a weak symmetric cubical category, as defined in [G7-G9], if the unit
comparisons  /, 0  are also invertible. (In this version, the axioms above are denoted
as (wcub.5-9).) Among the examples studied in such papers are: the weak
symmetric cubical category  $Sp(X)  (resp.  $Cosp(X))  of cubical spans (resp.
cospans) on a category  X  with pullbacks (resp. pushouts); the strict symmetric
cubical category  $Rel  of cubical relations; structures of 'collared cospans' related to
higher cobordism.

2.3. Coherence. The coherence axiom (ucub.9) means that the following diagrams
of transversal maps commute (assuming that all the cubical compositions make
sense):
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(i) coherence pentagon for  1 = 11:

(x +1 y)  +1  (z +1 u)
 1 1

(1) x +1 (y +1 (z +1 u)) ((x +1 y) +1 z) +1 u

1+1   1  1+1

x +1 ((y +1 z) +1 u) (x +1 (y +1 z)) +1 u

(ii) coherence conditions for  1 = 11,  / = /1  and  0 = 01

   1
e1*–

1x +1 (x +1 y) (e1*–
1x +1 x) +1 y

(2)  / /+1
  x +1 y

   1
x +1 (e1*–

1y +1 y) (x +1 e1*+
1x) +1 y

(3) 1+/ 0+1
  x +1 y

   1
x +1 (y +1 e1*+

1y) (x +1 y) +1 e1*+
1y

(4) 1+0 0

  x +1 y

(iii) coherence hexagon for  1 = 11  and  2 = 21  (writing  +  for  +1)

1+1
(x + (y + z)) +2 (x' + (y' + z'))     ((x + y) + z) +2 ((x' + y') + z')

   2    2

(5) (x +2 x') + ((y + z) +2 (y' + z'))   ((x + y) +2 (x' + y')) + (z +2 z')
   1+2    2+

(x +2 x') + ((y +2 y') + (z +2 z')) ((x +2 x') + (y +2 y')) + (z +2 z')
   1
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(iv) coherence conditions for  2 = 21,  / = /1  and  0 = 01  (writing  +  for  +1)

  /+/   0+0
 (e1*–

1x +x) +2 (e1*–
1y + y) x +2 y    (x + e1*+

1 x) +2 (y + e1*+
1 y)

   2    2

(6) (e1*–
1x +2 e1*–

1y) + (x +2 y) (x +2 y) + (e1*+
1 x +2 e1*+

1 y)

 e1*–
1(x +2 y) + (x +2 y)   x +2 y (x +2 y) + e1*+

1(x +2 y)
/   0

The equality in the left (or right) column of this diagram follows from the
'geometric relations' 1.7.4 (nullary interchange) and 1.7.3. Notice also that we do not
require the condition  /1e1x = 01e1x: e1x +1 e1x  e1x,  which is not satisfied in
our case (cf. 4.3), even though  e1x +1 e1x  does coincide with  e1x.

3. Reparametrisation mappings

We study now the reparametrisation mappings  !In  !In  and their interaction
with the singular cubes of a d-space, as a first step in the construction of the cubical
structure  !Sng(X).

3.1. Directed reparametrisation mappings. An n-dimensional (directed)
reparametrisation mapping  f: !In  !In  will be a d-map (i.e. an order-preserving
continuous mapping) which sends each face of the domain to the corresponding face
of the codomain, i.e. satisfies the following equivalent conditions (for  i = 1,..., n  and
% = 0,1)

(a) f(*%i (!In)))  3  *%i (!In),

(b)   f.*%i   =  *%i .ei.f.*%i .

As a consequence,  f  sends each vertex of its domain to the corresponding vertex
of the codomain; more generally, the 'lower' faces of any dimension are transformed
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into the corresponding ones. But actually, onto them, and  f  itself is surjective, as we
prove below, by an Intermediate Value Theorem on the Cube (see 3.5).

Reparametrisation mappings of dimension  n  form a monoid  Sn,  under the
usual composition.

Moreover, there are faces, transpositions and degeneracies (which will be proved
to form a symmetric cubical object  S  within monoids, in 3.2)

(1) *%i :  Sn  Sn–1, si: Sn  Sn, ei: Sn  Sn+1,

*%i (f)  =  ei.f.*%i : !In–1  !In  !In  !In–1 (f ' Sn),

si(f)  =  si.f.si: !In  !In  !In  !In (f ' Sn),

ei(f): !In  !In (f ' Sn–1),

e1(f)(t1,..., tn)  =  (t1, f(t2,..., tn)), ei+1(f)  =  si(....s2(s1(e1(f)))...).

We use underlined symbols to avoid confusing the face  *%i (f) = ei.f.*%i   of  f  as
a reparametrisation mapping with its face  *%i (f) = f.*%i : !In–1  !In  as an n-cube
of its codomain; likewise for degeneracies and transpositions.

Notice also that we have defined all degeneracies  ei  using  e1  and the
transpositions (according to the formula 1.6.1). Explicitly, if  f ' S n–1,  the
reparametrisation  ei(f)  operates by setting apart the i-th coordinate  ti,  then
applying  f ' Sn–1  to the remaining  n–1  coordinates and finally reinserting  ti  at
the original i-th place:

ei(f)(t1,..., tn)  =  (f1(t1,..., t̂i,..., tn),..., ti,..., fn–1(t1,..., t̂i,..., tn)).

In other words,  ei(f)  is determined by the following two conditions

(2) ei.ei(f)  =  f.ei, pi.ei(f)  =  pi (f ' Sn–1),

where  pi: !In  !I  denotes the i-th projection (the one omitted by  ei: !In  !In–

1).  For instance, if  f: !I  !I  is in  S1,  its two degeneracies in  S2  are computed
by the following formulas:

(3) e1(f)(t1, t2)  =  (t1, f(t2)), e2(f)(t1, t2)  =  (f(t1), t2) (t1, t2 ' I).
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Reparametrisation mappings will be used to reparametrise the singular cubes  x:
!In  X  of a d-space. The interactions of the two 'algebras' will be developed in
3.4.

Notice that the following squares commute (also because of (2))

f   f   f
 !In  !In   !In–1 !In–1  !In  !In

(4)   *%i    *%i    ei    ei     si    si

  !In–1 !In–1  !In  !In  !In  !In

*%i f  eif
 sif

3.2. Theorem (The structure of reparametrisation mappings). Reparametrisation
mappings, with the faces, degeneracies and transpositions defined above, form a
symmetric cubical object in the category of monoids.

Proof. Faces and degeneracies preserve the composition of reparametrisation
mappings (and - plainly - the identity). Indeed, applying 3.1(b) and the
characterisation 3.1.2 for  ei,  we have

*%i (gf)  =  ei.gf.*%i   =  eig.*%i ei.f*%i   =  *%i (g).*%i (f),

ei.ei(gf)  =  (gf)ei,  =  g(eiei(f))  =  ei.ei(g).ei(f),

pi.ei(gf)  =  pi  =  pi.ei(g).ei(f),

si(gf)  =  si.gf.si  =  sigsi.sifsi  =  si(g).si(f).

Finally, we verify the symmetric cubical identities, working with the simpler
presentation of 1.6.3 to reduce computations, and taking into account the fact that the
structural maps of cubes satisfy the follwing dual conditions

(1) *&1*
%
1   =  s1.*%1*&1, *%1 .si  =  si+1.*%1 , e1.*%1   =  id,

e1e1  =  e1e1.s1, si.e1  =  e1.si+1.

Now, we have:

- *%1*
&
1(f)  =  (e1e1).f.(*&1*%1 )  =  (e1e1s1).f.(s1.*%1 .*&1)  =  *&1*%1 s1(f),

- si.*%1 (f)  =  sie1.f.*%1 si  =  e1si+1.f.si+1.*%1   =  *%1 .si+1(f),
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- *%1 e1(f)  =  e1,e1(f).*%1   =  f.e1*%1   =  f,

- e1(e1si(f))  =  (si.f.si).e1  =  si.f.e1.si+1  =  si.e1.e1(f).si+1  =   e1.si+1.e1(f).si+1  =
e1(si+1e1(f)),

- p1(e1si(f))  =  p1  =  si+1.p1.si+1  =  si+1.p1.e1(f).si+1  =   p1.si+1.e1(f).si+1  =  
p1(si+1e1(f)).

The n-dimensional reparametrisation mapping

(e1e1(f))(t1,..., tn) = (t1, t2, f(t3,..., tn)),

is plainly invariant under  s1 = s1.( – ).s1.  Finally, the Moore relations for the
transpositions  si  follow trivially from those of the original  si.  For instance, for  i =
j–1:

- si.sj.si(f)  =  (si.(sj.(si.f.si).sj).si)  =  sj.si.sj(f).

3.3. Concatenating reparametrisation mappings. The cubical set  S   has the
following i-concatenation, or i-composition.

If  f, g ' Sn  are i-consecutive  (*+
i f = *–

i g),  we define:

 ui(f(t1,..., 2ti,..., tn)), if 0 ( ti ( 1/2,
(1) (f +i g)(..., ti,...)  = 

 vi(g(t1,..., 2ti – 1,..., tn)), if  1/2 ( ti ( 1,

where the map  ui: !In  !In  halves the i-th coordinate, while  vi: !In  !In

operates on this coordinate as  t  (t + 1)/2  (all the other coordinates staying
unchanged).

Finally, it is obvious that  f +i g  is again a reparametrisation mapping.

3.4. Proposition (The interaction of cubes and reparametrisation mappings). For a
d-space  X,  the reparametrisations of its singular cubes agree with faces,
degeneracies, transpositions and concatenations, in the following sense

(1) *%i (xf)  =  *%i (x).*%i (f), ei(xf)  =  ei(x).ei(f), si(xf)  =  si(x).si(f),

(2) (x +i y).(f +i g)  =  xf +i yg,
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where  x, y: !In  X  are i-consecutive singular n-cubes and  f, g  are i-
consecutive mappings in  Sn.

Proof. The formulas (1) are an easy consequence of the definitions (in 3.1)

(3) *%i (xf)  =  (xf)*%i   =  x.*%i ei.f*%i   =  *%i (x).*%i (f),

ei(xf)  =  (xf)ei,  =  xei.ei(f)  =  ei(x).ei(f),

si(xf)  =  (xf)si  =  x.sisi.fsi  =  si(x).si(f).

The first point also proves that  xf +i yg  makes sense, in (2). Then, this formula
is easily verified, with the definitions of concatenations of cubes and reparametrisa-
tions (in 1.7.2 and 3.3.1).

3.5. Theorem (Intermediate Value Theorem on the Cube). Let  f: In  In  be a
continuous mapping which sends each (n–1)-dimensional face to itself. Then  f  is
surjective and sends each 'lower' face (of any dimension) onto itself.

Proof. Let us begin by considering the affine homotopy  h: f  id: In  In

(1) h(t1,..., tn, t)  =  (1 – t).f(t1,..., tn) + t.(t1,..., tn),

and note that it sends each face of  In  into itself, because  f  and  id  both do, and
each face is convex. Now, let us prove that  f  is surjective, by induction on  n.  Our
thesis being trivial for  n = 0,  let us assume it holds for  n–1  and prove it for  n > 0.

Every restriction of  f  to an (n–1)-dimensional face of the cube gives a map  In–1

 In–1  which satisfies the hypothesis, and is surjective; whence, the restriction  f':
*In  *In  to the boundary of the cube is surjective.

Collapsing the boundary  *In  to a point, we get an induced endomap of the
sphere,  f": Sn  Sn,  which is still homotopic to the identity, by a homotopy
induced by  h;  therefore  f"  is also surjective, or its image would be contained in a
contractible space and  f"  would be homotopic to a constant map. Therefore, the
image of  f  also contains the interior points of  In  and  f  is surjective.

3.6. Remarks. The previous statement is trivial for  n = 0,  and amounts to the
classical Intermediate Value Theorem for  n = 1.  For  n = 2,  one might describe the
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statement as follows: in order to cover a picture with a rectangular piece of cloth, it is
sufficient to ensure that each edge of the cloth is placed on the 'corresponding' edge
of the picture (so that vertices are necessarily placed at vertices and each edge covers
an edge).

Notice also that, for  n # 2,  it is not sufficient to assume that  f  covers the
boundary of the cube, as simple examples can show. The crucial assumption is that
the restriction of  f  to the boundary is not homotopically trivial. This can be
formulated as follows.

Intermediate Value Theorem on the Ball. Let  f: Bn  Bn  be a map which sends
the boundary  Sn–1  into itself. If the restriction  f': Sn–1  Sn–1  is not homotopic
to a constant map (or, equivalently, if its homological degree is not null), then  f  is
surjective.

An equivalent formulation can be found in Agoston's text [Ag], Section 7.4. (We
thank Sibe Mardešić for this reference.)

4. Transversal maps and comparisons

Reparametrisation mappings are now used to define the transversal maps of the
singular cubes of a d-space  X.  These include comparisons for the associativity and
unitarity of the operations of concatenation, yielding the u-lax symmetric cubical
category  !Sng(X).

4.1. Transversal maps. For a d-space  X,  a transversal map  f: x  y  between
two singular n-cubes  x, y  of  X  will be a reparametrisation mapping  f: !In  !In

such that  x = yf.

More precisely, a transversal map should be defined as a triple  f̂ = (f, x, y),  and
we will use this notation when useful. Notice that  y  always determines  x,  while  x
determines  y  if  f  is bijective.

The choice of the direction of  f,  from  x  to  y,  is formal but has the advantage
of agreeing with the composition of reparametrisations. In fact, the n-cubes of  X
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and their transversal maps form a category  !Sngn(X),  with obvious faces, identities
and composition

(1) *–
0(f, x, y)  =  x, *+

0(f, x, y)  =  y, e0(x)  =  (id, x, x),

c0(f, g)  =  gf: x  z (for  g: y  z,  so that  x = yf = zgf).

!Sng0(X)  is a discrete category: the only transversal maps between 0-cubes are
the identities.

Transversal maps also form a symmetric cubical set, using the cubical structure
of reparametrisation maps (defined in 3.1) and that of singular cubes

(2) *%i (f, x, y)  =  (*%i f,  *%i x,  *%i y), ei(f, x, y)  =  (eif,  eix,  eiy),

si(f, x, y)  =  (sif,  six,  siy).

This is legitimate, since the relation  x = yf  implies

(3) *%i (x)  =  yf.*%i   =  y.*%i .ei.f.*%i   =  *%i (y).*%i (f),

ei(x)  =  yf.ei  =  y.ei.ei(f)  =  ei(y).ei(f),

si(x)  =  yf.si  =  y.si.si.f.si  =  si(y).si(f).

Finally, we define the i-concatenation of i-consecutive transversal maps as

(4) (f, x, y) +i (g, z, u)  =  (f +i g,  x +i z,  y +i u) (*+
i (f, x, y) = *–

i (g, z, u)),

where  f +i g: In  In  is the i-concatenation of reparametrisation maps (3.3.1), and
the relations  x = yf  and  z = ug  imply that

(5) (y +i u)(f +i g)  =  yf +i ug  =  x +i z.

4.2. Associativity comparison. Given three consecutive paths (1-cubes)  x, y, z: !I
 X,  the two ternary concatenations  w' = x +1 (y +1 z)  and  w" = (x +1 y) +1 z

 x(2t) (0 ( t ( 1/2),   x(4t) (0 ( t ( 1/4),
(1)  w'(t) =  y(4t – 2) (1/2 ( t ( 3/4), w"(t) =   y(4t – 1) (1/4 ( t ( 1/2),

z(4t – 3) (3/4 ( t ( 1), z(2t – 1) (1/2 ( t ( 1),

can be turned one into the other by a suitable invertible reparametrisation of the
interval. Namely, we have an invertible transversal map  1: w'  w"  (w' = w"1),
where  1: !I  !I  is the following reparametrisation function
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  1
t/2 (0 ( t ( 1/2),

(2) 1(t) = t – 1/4 (1/2 ( t ( 3/4),
  1 2t – 1 (3/4 ( t ( 1).

     1

In degree  n,  we shall use the reparametrisation maps obtained from  1  in the
usual way

(3) 1i  =  !Ii–1 × 1 × !In–i: !In  !In.

It follows that the i-concatenation of singular n-cubes is associative up to the
following family of invertible transversal maps

(4) 1i(x, y, z):  x +i (y +i z)  (x +i y) +i z.

This family is natural, with respect to transversal maps: given three n-maps

f: x'  x, g: y'  y, h: z'  z,

that are consecutive in direction  i,  we must verify that the following square
commutes

 1 i
 x' +i (y' +i z')   (x' +i y') +i z'

(5) f +i (g +i h)     (f +i g) +i h
 x +i (y +i z)   (x +i y) +i z 1i'

Plainly, it is sufficient to check this for  n = 1  (and  i = 1).  Then, both
composites transform the partition  (0, 1/2, 3/4, 1)  of  I  into the partition  (0, 1/4,
1/2, 1),  by a pasting of 'affine modifications' of  f, g, h  on domain and codomain.
The common result of both compositions is thus the transversal map defined by the
following reparametrisation function

f(2t)/4 (0 ( t ( 1/2),
k(t)  = 1/4 + g(4t – 2)/4 (1/2 ( t ( 3/4),

1/2 + h(4t – 3)/2 (3/4 ( t ( 1).
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4.3. Identity comparisons. Given a path  x: I  X  with endpoints  x0 = x(0),  x1
= x(1),  the two concatenations  x', x"  of  x  with trivial paths can be obtained from
the original path  x  by non-invertible reparametrisations of the interval, with two
piecewise affine functions  /, 0:

  1
  0 x'  =  e1(x0) +1 x  =  x/, /(t)  =  max(0, 2t – 1),

(1)
  / x"  =  x +1 e1(x1)  =  x0, 0(t)  =  min(2t, 1).

     1

In degree  n,  we shall use the reparametrisation maps

(2) /i  =  !Ii–1 × / × !In–i: !In  !In, 0i  =  !Ii–1 × 0 × !In–i: !In  !In.

We have thus two natural transversal maps

(3) /i(x):  x/i  x, 0i(x):  x0i  x,

x/i  =  ei(*–
i x) +i x, x0i  =  x +i ei(*+

i x).

We do not need other comparisons: we have already remarked, at the end of 1.7,
that  ! X  has a strict interchange of concatenations (binary and nullary).

4.4. The u-lax cubical category of a directed space. For a d-space  X,  we have
thus defined the u-lax symmetric cubical category  !Sng(X):  it consists of the basic
symmetric pre-cubical category  ! X  (1.7), with the addition of:

- transversal maps given by reparametrisations (4.1),

- invertible comparisons for pseudo associativity (4.2),

- comparisons for lax unitarity (4.3),

- identity comparisons for strict interchange.

The coherence conditions of 2.3 are satisfied. To verify this point for the
pentagon, it is sufficient to note that the five associativity comparisons of diagram
2.3.1 are produced by the mapping

(1) 11  =  1 × !In–1: !In  !In.
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Their action on the first coordinate is piecewise affine, and determined by the
following partitions of the interval  [0, 1]

(0, 1/4, 1/2, 3/4, 1)
 1 1

(2) (0, 1/2, 3/4, 7/8, 1) (0, 1/8/, 1/4, 1/2, 1)

1+1   
1  1+1

(0, 1/2, 5/8, 3/4, 1) (0, 1/4, 3/8, 1/2, 1)

Now, both composites coincide with the piecewise affine mapping which
transforms the left-hand partition into that at the right. The other axioms of
coherence are verified in the same way.

Notice also that, when  2  is the identity, the coherence hexagon 2.3.5 reduces to
a condition of consistency of the associativity comparison  1 = 11  with 2-
concatenation:

(3) 1(x, y, z) +2 1(x', y', z')  =  1(x +2 x', y +2 y', z +2 z').

4.5. Remarks. It would be interesting to quotient singular cubes up to invertible
reparametrisations, but this is not easily done because - of course - we want to have
induced concatenations. Now, if  x +i y  and  x' +i y'  are defined in  !Sngn(X),  and
there exist two invertible reparametrisations  f: x'  x,  g: y'  y,  these need not
be i-consecutive, and there are cases where there is no reparametrisation at all from
x' +i y'  to  x +i y.

We give such an example in dimension 2. Let us start from two 1-consecutive 2-
cubes  x, y  of the ordinary plane  R2,   that have constant faces  *%1   and are injective
outside of such faces, like

 x, y: !I2  R2, x(t, t')  =  (t, t'.t(1 – t)), y(t, t')  =  (t + 1, t'.t(1 – t)).

There is precisely one transversal endomap  f: x  x,  namely the identity,
because its reparametrisation  f: !I2  !I2  must be the identity on a dense subset
of the standard square.
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Let now  g = id × 4: !I2  !I2  be an invertible reparametrisation map given by
a directed homeomorphism  4: !I  !I  other than the identity (for instance,  4(t) =
t2).  There is only one transversal endomap  yg  y,  and is given by  g: !I2 
!I2.

The 2-cubes  x, y  and  y' = yg  have the same (constant) 1-indexed faces, whence
there are concatenated cubes  x +1 y  and  x +1 y',  with values in  R2.

However, there is no transversal map  x +1 y'  x +1 y:  indeed, its
reparametrisation mapping  h: !I2  !I2  should restrict to the identity on  [0, 1/2]
× I  and to  id × 4  on  [1/2, 1] × I,  which gives a contradiction on the intersection
{1/2} × I  of these rectangles.

One might think of solving this problem by considering 'piecewise
reparametrisations' on 'multi-partitions' of the singular cubes, but this leads to two
problems.

(a) If  f: *+
i (x)  *–

i (y)  is a (global) invertible transversal map, it is easy to show
that there exists a cube  y'  and an invertible transversal map  f': y'  y  such that  x
+i y'  is defined; but  y' = yf'  is constructed by extending the reparametrisation
mapping  f;  a 'piecewise reparametrisation' of our faces would not allow us to
construct a cube  y'.

(b) The relation between cubes obtained this way is not transitive.

Extending our relation by transitivity would solve the second point but still
stumble on the first. The same happens with a different approach, by partial
reparametrisation mappings defined on convenient dense open subsets.

4.6. The non-directed case. Let now  X  be a (non-directed) topological space. As
already said, we view it as a d-space by its natural (reversible) structure, where all
paths are directed.

Now, the singular symmetric cubical set  ! X  (1.4) will be written as  X  and
equipped with reversions produced, contravariantly, by the reversions of the
standard cube

(1) ri  =  Ii–1 × r × In–i:  In  In, ri(t1,..., tn+1)  =  (t1,..., 1 – ti,..., tn).

ri: nX  nX ri(x)  =  x.ri (i = 1,..., n),
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We now replace the weak symmetric cubical category  !Sng(X)  with a larger
structure  Sng(X),  where the transversal maps  (f, x, y): x  y  are given by
reparametrisation mappings  f: In  In  that need not preserve the natural ordering
(but, of course, still have to send each face onto itself).

The weak symmetric cubical category  Sng(X)  is also equipped with reversions,
extending those of its cubes: if  (f, x, y): x  y  is a transversal map between
singular n-cubes of  X,  we let

(2) ri(f)  =  ri.f.ri: In  In, ri(f, x, y)  =  (rif,  rix,  riy).

The theory of reversible symmetric cubical sets is sketched in [GM], Section 9.
(The site  !K  considered there also contains the connections, that can be discarded.)

The definition of a weak reversible symmetric cubical category is not difficult to
set up, blending the theory mentioned above with the non-reversible notion studied
above. Of course, new consistency and coherence conditions must be added, like:

(3) r1(x +1 y)  =  r1(y) +1 r1(x),

r1(/1x)  =  01(r1(x)), r1(11(x, y, z))  =  11(r1(z), r1(y), r1(x)).

5. The Moore symmetric cubical category of a d-space

In this section we briefly consider a strict version of the previous construction. It
is based on the Moore directed cubes of a d-space, defined on 'multi-intervals'. Their
cubical compositions are strictly associative and unital. Reparametrisation mappings
of multi-intervals provide transversal maps and the (extended) Moore symmetric
cubical category  !MSng(X)  of a d-space.

5.1. Multi-intervals. A (directed) multi-interval will be a product of directed
intervals, possibly degenerate, of variable length  a # 0  (or  ah # 0)

(1) I(a)  =  ![0, a], I(a1,..., an)  =  "h=1,...,n ![0, ah].

The topological dimension of this parallelepiped can be any integer between  0
and  n,  but we say that it has formal dimension  n  and span  (a1,..., an) ' [0, 5[n.
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There is precisely one directed multi-interval of formal dimension  0,  i.e. the empty
product  {*};  its span is the empty family.

The faces, degeneracies and transpositions of multi-intervals are defined as
follows

(2) *%i :  "h.i I(ah)  "h I(ah), *%i (t1,..., tn–1)  =  (t1,..., %ai,..., tn–1),

ei:  "h I(ah)  "h.i I(ah), ei(t1,..., tn)  =  (t1,..., t̂i,..., tn),

si:  "h I(a6i(h))  "h I(ah), si(t1,..., tn)  =  (t1,..., ti+1, ti,..., .., tn) (i < n).

Here,  6i: {1,..., n}  {1,..., n}  denotes the involution that interchanges  i  and
i+1.  Notice also that - as a consequence of using multi-intervals instead of standard
cubes:

- the upper face  *+
i   is determined by its codomain, or equivalently by its domain

and the number  ai,

- the degeneracy  ei  is determined by its domain, or equivalently by its codomain
and  ai,

-  *–
i   and  si  are determined by their domain, or equivalently by their codomain.

In order to reparametrise cubes, we will need degeneracies whose codomain is
known; in such a case, the degeneracy  ei  in (2) can be written as  ea

i ,  to mean that it
is determined by its codomain  "h.i I(ah)  together with  ai = a # 0.

Working with the singular cubes, in the previous sections, we have used the
standard degeneracy  e1

i ,  which preserves them. Below, working with Moore cubes,
we will use the strict degeneracy  e0

i ,  that has the advantage of giving strict identities
for i-concatenation

(3) e0
i :  "h I(ah)  "h.i I(ah) (ai = 0).

5.2. The cocubical relations. The faces and degeneracies of multi-intervals satisfy
cocubical relations analogous to those of a cocubical set. We display them on
diagrams because the symbols  *%i ,  ei,  si  are far from containing the whole
information
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  *%i
"h.i+1,j I(ah) "h.j I(ah)

(1) *&j .*%i   =  *%i +1*
&
j (j ( i),   *&j *&j

"h.i+1 I(ah)  "h I(ah)
  *%i +1

  ei
"h I(ah) "h.j I(ah)

(2) ei.ej  =  ej.ei+1 (j ( i), ei+1 ei

"h.i+1 I(ah) "h.i+1,j I(ah)
ej

(3) ei.*%i   =  id "h.i I(ah) "h I(ah) "h.i I(ah)

  *%i
"h.i I(ah) "h I(ah)

(4) ej.*%i   =  *%i –1.ej (j < i), ej ej

"h.j,i–1 I(ah)   "h.j I(ah)
  *%i –1

  *%i
"h.i I(ah) "h I(ah)

(5) ej.*%i   =  *%i . ej–1 (j > i), ej–1 ej

"h.i,j–1 I(ah)  "h.j I(ah)
   *%i

This structure is thus a sort of 'cocubical aggregate' of directed spaces, more
general than a cocubical directed space: in dimension  n  there are various objects (all
the multi-intervals of formal dimension  n),  instead of a single one. The cocubical
set of the standard cubes  !In  is a 'substructure' of the present structure.

Furthermore, the transpositions  si: "h I(a6(h))  "h I(ah)  satisfy the Moore
relations (1.4.5) and the coherence conditions with faces and degeneracies already
stated above (in the contravariant form of cubical relations, see 1.5.4):

GRANDIS - A LAX SYMMETRIC CUBICAL CATEGORY...

- 146 -



j < i j = i j = i+1 j > i+1

(6) si.*%j = *%j .si–1 *%i +1 *%i *%j .si,

ej.si =  si–1.ej ei+1 ei si.ej.

For instance, the first two rewriting rules on  si.*%j (for  j <  i  and  j = i,
respectively) amount to the commutativity of the following diagrams:

  *%j   *%i
"h.j I(a6i(h)) "h I(a6i(h)) "h.i+1 I(a6i(h)) "h I(a6i(h))

(7) si–1 si    *%i +1 si

"h.j I(ah)  "h I(ah) "h I(ah)
  *%j

5.3. Moore cubes. We now introduce the Moore symmetric cubical set of a d-space
X

(1) M(X)  =  ((MnX), (*%i ), (ei), (si)).

A Moore (directed) n-cube of  X  will be a map with values in  X  and defined on
a multi-interval of formal dimension  n

(2) x: "h=1,...,n I(ah)  X, sp(x)  =  (a1,..., an).

Faces, degeneracies and transpositions of  M (X)  are obtained by pre-
composing with those of multi-intervals, and will be denoted by the same symbols

(3) *%i : MnX  Mn–1X, *%i (x)  =  x.*%i : "h.i I(ah)  X,

ei: Mn–1X  MnX, ei(x)  =  x.e0
i : "h<i I(ah) × {0} ×"h#i I(ah)  X,

si: MnX  MnX si(x)  =  x.si: "h I(a6i(h))  X (i ( n–1).

Notice, again, that the (strict) degeneracy  ei(x) = x.e0
i   of a singular cube  x: !In–

1  X  is not a singular cube of  X:  the standard degeneracy used in the previous
section is  x.e1

i : !In  X.  We use the same notation  ei(x),  since the context is
generally sufficient to specify whether we are working within Moore or singular
cubes of  X.
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These maps satisfy cubical relations, dual to those considered above, so that
M(X)  is indeed a symmetric cubical set, as defined in 1.5. Again, the contravariant
action of the transpositions  s1,..., sn–1  on  MnX  can be extended to a (right) action
of the symmetric group  Sn.

As we have already seen in 1.6, the presence of transpositions makes all faces
and degeneracies determined by (say) the 1-indexed ones,  *%1   and  e1:

(4) *%i +1  =  *%1 .s1. ... .si, ei+1  =  si. ... .s1.e1.

For a (non-directed) topological space  X,  R. Brown [Br] has recently given a
cubical construction  M*(X)  similar to the present  M (X).  His n-cubes, called
Moore hyperrectangles, are pairs  (x, a),  where  x: [0, 5[n  X  is a map,  a =
(a1,..., an) ' [0, 5[n,  and  x(t1,..., tn)  is independent of the coordinate  ti  for  ti # ai.
This is obviously equivalent to the present definition of n-cubes (letting all paths of
X  be distinguished), but the cubical structure considered in [Br] is different from
the present one, as already mentioned in the Introduction.

5.4. A basic symmetric cubical category. The symmetric cubical set  M(X)  can
be further equipped with partial operations, called cubical compositions, the
concatenation in direction  i,  or  i-concatenation, or i-composition.

In dimension  n,  and for  i = 1,..., n,  it is based on the following i-concatenation
pushout, with embeddings  c%i

  *+
i

"h.i I(ah)   "h I(ah) ah = bh = dh   for  h . i,
(1) *–

i    c–
i di = ai + bi,

"h I(bh)  "h I(dh)
  c+

i

c–
i (t1,..., tn)  =  (t1,..., tn), c+

i (t1,..., tn)  =  (t1,..., ai + ti,..., tn).

Now, given two i-consecutive Moore n-cubes  x: "h I(ah)  X  and  y: "h
I(bh)  X  (with  *+

i x = *–
i y),  their i-concatenation  z = x +i y  is computed on the

previous pushout

(2) z: "h I(dh)  X, z.c–
i   =  x,      z.c+

i   =  y,
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sp(z)  =  (a1,..., ai + bi,..., an)  =  (b1,..., ai + bi,..., bn),

z(t1,..., tn)  =  x(t1,..., tn)   for  ti ( ai,

z(t1,..., tn)  =  y(t1,..., ti– ai,..., tn)   for  ti # ai.

M(X)  becomes thus a basic symmetric cubical category, i.e. a symmetric cubical
set with 'geometrically consistent' cubical compositions, that satisfy a strict
interchange law, are strictly associative and have strict identities given by
degeneracies. (Again, the term 'basic' refers to the fact that transversal maps have not
yet been added.)

5.5. Moore reparametrisation mappings. An n-dimensional (directed)
reparametrisation mapping with domain-span  (a1,..., an)  and codomain-span
(b1,..., bn).

(1) f: I(a1,..., an)  I(b1,..., bn),

will be a d-map (i.e. an order-preserving continuous mapping) which sends each
face of the domain multi-interval to the corresponding face of the codomain, i.e.
satisfies the following equivalent conditions (for  i = 1,..., n  and  % = 0,1)

(a) f(*%i ("h I(ah)))  3  *%i ("h I(bh)),

(b)   f.*%i   =  *%i .ei.f.*%i ,

(in the second formula, notice that  ei  is determined by its domain, which is the
codomain of  f).

Again, the faces of any dimension are transformed onto the corresponding ones
and  f  itself is surjective (by the obvious extension of Theorem 3.5). In particular,
ah = 0  implies  bh = 0.  The topological dimension of the domain is thus greater
than or equal to that of the codomain, while the formal dimensions are the same.

Multi-intervals of formal dimension  n  and their reparametrisation mappings
form a category  Rn,  under the usual composition. There are faces, transpositions
and degeneracies:

(2) *%i :  Rn               Rn–1, si: Rn  Rn, ei: Rn  Rn+1,

*%i (f)  =  ei.f.*%i : "h.i I(ah)  "h I(ah)  "h I(bh)  "h.i I(bh),
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si(f)  =  si.f.si: "h I(a6i(h))  "h I(ah)  "h I(bh)  "h I(b6i(h)),

ei(f): "h<i I(ah) × {0} × "h>i I(ah)    "h<i I(bh) × {0} × "h>i I(bh),

e1(f)(0, t2,..., tn)  =  (0, f(t2,..., tn)), ei+1(f)  =  si(....s2(s1(e1(f)))...).

Moore reparametrisation mappings, with the faces, degeneracies and
transpositions defined above, form a symmetric cubical object in the category of
small categories. (The proof is similar to that of Theorem 3.2, for standard
reparametrisations.)

Notice that these faces and transpositions extend those of standard
reparametrisations, while degeneracies do not. Here  ei(f)  is determined by the
following condition

(3) e0
i .ei(f)  =  f.e0

i .

5.6. Concatenating reparametrisation mappings. The cubical object  R  has the
following i-directed concatenation. Take two reparametrisation mappings  f, g  that
are i-consecutive, i.e.  *+

i f = *–
i g

(1) f: "h I(ah)  "h I(bh), g: "h I(ch)  "h I(dh),
(ah = ch,  bh = dh,    for  h . i).

Their i-concatenation has spans  (a1,..., ai + ci,..., an)  and  (b1,..., bi + di,..., bn)

 f(t1,..., ti,..., tn), for  0 ( ti ( ai,
(2) (f +i g)(t1,.., tn)  = 

 (0,..., bi,..., 0) + g(t1,..., ti – ai,..., tn), for  ai ( ti ( ai + bi.

For a d-space  X,  reparametrisation of its Moore cubes agrees with faces,
degeneracies, transpositions and i-indexed compositions, in the following sense

(3) *%i (xf)  =  *%i (x).*%i (f), ei(xf)  =  ei(x).ei(f), si(xf)  =  si(x).si(f),

(4) (x +i y).(f +i g)  =  xf +i yg,

where  f, g  are i-consecutive mappings in  Rn,  as in 5.6.1, and  x, y  are i-
consecutive Moore n-cubes (such that  xf  and  yg  are defined). The proof is similar
to that of Proposition 3.4, for standard reparametrisations.
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5.7. Moore transversal maps. For a d-space  X,  a transversal map  f: x  y
between two Moore n-cubes  x, y  of  X  will be a reparametrisation mapping such
that  x = yf

(1) f: "h I(ah)  "h I(bh), y: "h I(bh)  X, x = yf: "h I(ah)  X.

Also here, a transversal map should be defined as a triple  f̂ = (f, x, y),  and we
will use this notation when useful. Again,  y  determines  x  (and conversely if  f  is
bijective).

The Moore n-cubes of  X  and their transversal maps form a category
!MSngn(X),  with obvious faces, identities and composition

(2) *–
0(f, x, y)  =  x, *+

0(f, x, y)  =  y, e0(x)  =  (id, x, x),

c0(f, g)  =  gf: x  z (for  g: y  z,  so that  x = yf = zgf).

This category is discrete in degree 0: the only transversal maps between 0-cubes
are the identities.

Transversal maps also form a symmetric cubical set, using the cubical structure
of Moore cubes (5.3) and of their reparametrisation maps (5.5)

(3) *%i (f, x, y)  =  (*%i f,  *%i x,  *%i y), ei(f, x, y)  =  (eif,  eix,  eiy),

si(f, x, y)  =  (sif,  six,  siy).

Finally, one defines the i-concatenation of i-consecutive transversal maps as

(4) (f, x, y) +i (g, z, u)  =  (f +i g,  x +i z,  y +i u) (*+
i (f, x, y) = *–

i (g, z, u)),

where  f +i g  is the i-concatenation of reparametrisation maps (5.6).

This completes the definition of the Moore symmetric cubical category
!MSng(X)  of the d-space  X.

6. Some hints to lax cubical structures of tangles

We end with a few hints to a family  T(A)  of u-lax symmetric cubical categories,
depending on a topological space  A,  and related to higher categories of tangles, as
considered in [BL, Ch].
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In this section the faces, degeneracies and transpositions of the standard cubes
In  are written as  7%i : In–1  In,  +i: In  In–1  and  6i: In  In.

6.1. A preparatory structure. Let us come back to the u-lax symmetric cubical
category  Sng(S)  associated to a topological space  S  (4.6).

It is interesting to note that, if we start from the discrete space on two points  S0

= {–1, 1},  a singular n-cube  x: In  S0  can be identified with a subset  X 3 In,
namely the counterimage  x-1{1}.  We obtain thus a particular u-lax symmetric
cubical category  T = Sng(S0),  which can be viewed as a starting point to define a u-
lax symmetric cubical category of tangles.

Concretely,  T  can be described in the following terms.

(a) An n-cube is a subset  X 3 In.

(b) Faces, degeneracies and transpositions of n-cubes are obtained as counterimages
of the corresponding maps  7%i ,  +i  and  6i  between standard cubes

(1) *%i (X)  =  (7%i )–1(X), ei(X)  =  (+i)–1(X), si(X)  =  (6i)–1(X)  =  6i(X).

(c) The i-concatenation  X +i Y  of i-consecutive n-cubes is defined by the union of
their images in two i-consecutive halves of  In:

(2) X +i Y  =  4i(X) 8 9i(Y),

4i(t1,..., tn)  =  (t1,..., ti/2,..., tn), 9i(t1,..., tn)  =  (t1,..., (ti+1)/2,..., tn).

(d) A transversal map  (f, X, Y): X  Y  is given by a reparametrisation mapping  f:
In  In  (see 4.6) such that  X = f–1(Y)  (which implies  f(X) = Y,  because  f  is
surjective).

(e) Their faces are (again) defined by the faces of reparametrisation mappings and
of n-cubes; similarly for degeneracies, transpositions and concatenations

(3) *%i (f, x, y)  =  (*%i f,  *%i x,  *%i y), ei(f, x, y)  =  (eif,  eix,  eiy),

si(f, x, y)  =  (sif,  six,  siy),

(f, x, y) +i (g, z, u)  =  (f +i g,  x +i z,  y +i u) (*+
i (f, x, y)  =  *–

i (g, z, u)).
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(f) Interchange is strict. Invertible comparisons for associativity and non-invertible
ones for unitarity are given by the reparametrisation mappings  1i,  /i,  0i: In  In

defined in 4.2. 4.3.

Replacing the discrete topology on  {–1, 1}  with the Sierpinski topology, where
the point 1 is open (resp. closed), we obtain the substructure  T'  (resp.  T")  whose
n-cubes are the open (resp. closed) subsets of  In.  Replacing  S0  with the discrete
space  Sp = {0, 1,..., p}  on  p+1  points, we obtain a u-lax symmetric cubical
category  Tp = Sng(Sp)  where an n-cube amounts to an (ordered!) family  (X1,...,
Xp)  of  p  disjoint subsets of  In.

6.2. Tangles. Finally, to approach the theory of tangles, we modify the previous
construction obtaining a u-lax symmetric cubical category  T(A),  depending on a
fixed topological space  A,  and giving back  T  when  A  is the singleton. (A
standard case would be to choose the k-dimensional cube  Ik.)

T(A)  is defined as follows.

(a) An n-cube is a subset  X 3 A × In.

(b) Faces, degeneracies and transpositions of n-cubes are obtained as counterimages

(1) *%i (X)  =  (A × 7%i )–1(X), ei(X)  =  (A × +i)–1(X),

si(X)  =  (A × 6i)–1(X)  =  (A × 6i)(X).

(c) The i-concatenation  X +i Y  of (i-consecutive) n-cubes is defined by the union
of their images in two i-consecutive halves of  A × In:

(2) X +i Y  =  (A × 4i)(X) 8 (A × 9i)(Y).

(d) A transversal map  (f, X, Y): X  Y  is given by a reparametrisation mapping  f:
In  In  (see 4.6) such that  X = (A × f)–1(Y)  (which implies  (A × f)(X) = Y).

(e) Their faces, degeneracies, transpositions and concatenations are defined as in
6.1.3. Comparisons as in 6.1(f).

More generally, the u-lax symmetric cubical category  Tp = Sng(Sp)  considered
above yields a structure  Tp(A),  of interest for p-colored tangles.
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