
Résumé.  Cet article est une introduction élémentaire à la topologie
algébrique lisse, suivant une approche particulière: notre but est d'étudier
des "espaces lisses avec singularités', par des méthodes d'homotopie
adaptées à cette tâche. On explore ici des régions euclidiennes, moyennant
des chemins de classe Ck, en tenant compte du nombre de leurs arrêts en
fonction de  k.  Le groupoïde fondamental de l'espace acquiert ainsi une
séquence de poids qui dépend d'un index de classe Ck et qui peut
distinguer l'ordre des singularités "linéaires". On peut envisager d'appliquer
ces méthodes à la théorie des réseaux.

Abstract. This article is a basic introduction to a particular approach within
smooth algebraic topology: our aim is to study 'smooth spaces with
singularities', by methods of homotopy theory adapted to this task. Here we
explore euclidean regions by paths of (variable) class Ck, counting their
stops. The fundamental groupoid of the space acquires thus a sequence of
integral Ck-weights that depend on a smoothness index; a sequence that
can distinguish 'linear' singularities and their order. These methods can be
applied to the theory of networks.

Mathematics Subject Classifications (2000): 58A40, 58KXX, 58A20,
55Q05.
Key words: differential space, jet, singularity, homotopy groups.

Introduction

We want to explore a 'smooth space with singularities', in order to distinguish its
singularities and their order. Now, it is obvious and well-known that smooth paths
can go through singularities, by braking at the crossing. Therefore, it will be
important to count these stops, or - alternatively - to consider smooth paths that
never stop.
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 As a concrete situation which can be analysed in this way, consider a piece of
railway network as represented below, with two main tracks linked by switches at  p
and  q

p'          p                                                                          p"

q'                                                                            q          q"

(1)

Plainly, a train can move from  p'  to  q"  (or vice versa) without stopping, but
cannot do the same from  q'  to  p"  (or vice versa). Moreover, a route through  p'
and  q"  should require a slowing down (with respect to a straight route), which can
be expressed by letting the diverging junctions be (only) of class  C1.  This example
will be further analysed in 2.3(c).

Let us consider here a more basic space of this kind, the standard deviation  Vk,
of class  Ck  (0 ! k < "),  in the euclidean plane
(2) Vk  =  {(x, y) # R2  |  (x ! 0,  y = 0)   or   (x $ 0,  y = xk+1)},

x

y

x

y

V V0 3

Take a curve  c: R  Vk  that crosses the singularity  (0, 0)
(3) c(t)  =  (x(t), 0)   or   (x(t), xk+1(t)), for   t ! 0   or   t $ 0,

where  x: R  R  is a strictly increasing C"-function that annihilates at 0. It is easy
to see that  c: R  R2  is always of class  Ck;  moreover the right (k+1)-derivative
of  a  at  0  is the vector
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(Dk
+

+1c)(0)  =  (x(k+1)(0), (k+1)! (x'(0))k+1)  #  R2,

so that  c  is of class  Ck+1  if and only if  x'(0) = 0,  and then  c'(0) = 0.  In other
words, the class  Ck  of the singularity of  Vk  can be determined as the highest class
of paths that go through the singularity without stopping.

In Section 1 we begin by considering a euclidean space  X  as a topological
subspace of some standard euclidean space  Rm;  we define a Ck-path  a: I  X,  in
the usual way (1.2). For  k > 0,  a  is said to be Ck-regular if it is constant or  a'(t) #
Rm  never vanishes on  I.  More generally, for a continuous path  a,  we introduce a
'penalty' for each stop or breaking of Ck-smoothness, counted by an (extended)
integral Ck-weight  wk(a) # N % {"},  so that a path  a  is Ck-regular if and only if
wk(a) ! 1;  the precise definition of the weight can be found in 1.3. This also defines
a Ck-weight  wk: &1(X)  N % {"}  on the fundamental groupoid of the euclidean
space  X  (1.6).

In the next section we analyse  X  at the basic level of the existence of paths, by a
sequence of tolerance relations (reflexive and symmetric) on the set  X  itself,
indexed by an extended natural number  k = 0, 1,..., "
(4) x !k y      '      (x  and  y  are connected by a Ck-regular path in  X).

For  k = 0,  this is the equivalence relation of path-connectedness and gives the
classical quotient set  &0(X) = |X|/!0.   More generally, we have a structure
Rk&0(X) = (X, !k),  consisting of a set equipped with a tolerance relation, which is
better analysed in a reduced form  red(Rk&0(X))  (2.2).

For instance, in  Vk,  the origin  (0, 0)  is in relation  !"  with any other point, but
the points  (– 1, 0)  and  (1, 1)  are only in relation  !h  for  h ! k.  For every  h > k,
the set  red(Rh&0(X))  consists of three equivalence classes:  {(0, 0)},  the left open
arm  [( 1, 0)]  and the right open arm  [(1, 0)];  the first is in relation with the other
two, that are unrelated.

In Section 3 we consider the initial and terminal k-jets of a Ck-path in a euclidean
space  X,  and define the effective k-jets at a point. Then, in Section 4, we extend the
fundamental groupoid  &1(X)  of the space (and its fundamental groups), introduc-
ing the fundamental Ck-regular semicategory  Rk&1(X)  of  X  (see 4.4): its vertices
are the 'regular' k-jets of  X,  its arrows are classes  [a]: j  j'  of Ck-regular paths;
the homotopy relation used to define an arrow works at fixed initial and terminal k-
jets. (A semicategory is the obvious generalisation of a category, without assumption
of identities.)

In Section 5, we study the fundamental C1-regular semicategory  R1&1(X),  and
compare it with the fundamental groupoid  &1(T*X)  of the space of non-zero
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tangent vectors, isomorphic to the fundamental groupoid  &1(UTX)  of the space of
unit tangent vectors of  X.  We prove that this comparison is an isomorphism when
X  is a C1-embedded manifold of dimension $ 2  (Theorem 5.4). Thus, the funda-
mental monoid  R1(1(R2, j)  is isomorphic to the group of integers, by the winding
number of a regular path, and expresses the possible 'shapes' of a planar loop
realised with a smooth elastic wire. We also give examples where the comparison is
not full (cf. 5.5).

We end with a more detailed study of tolerance sets, in Section 6.
This subject can be developed, working with 'convenient smooth structures', like

C"-rings, Frölicher spaces, Chen spaces, diffeological spaces or other objects of
synthetic differential geometry (cf. [MR, Fr, Ch, So, BH, Ko]). Smooth and directed
algebraic topology [G3] can also be combined, to study 'directed smooth spaces'.

With respect to the existing literature about 'smooth paths' and 'smooth
homotopy groups', our goals and results are completely different from those of
Cherenack [Ck], or Caetano and Picken [CP], or Schreiber and Waldorf [SW1,
SW2], where paths are allowed to stop or even required to be locally constant at the
end-points. Such approaches have a smooth concatenation based on points (instead
of jets), but do not distinguish what we want to explore. A recent paper by Sati,
Schreiber and Stasheff [SSS] has applications of smooth cohomology to theoretical
physics.

Jets of differentiable functions were introduced by C. Ehresmann, as equivalence
classes of functions [E1, E2]. The notion of a tolerance set was introduced by E.C.
Zeeman [Ze], in connection with mathematical models of the brain; the original name
is 'tolerance space'. The interest of semicategories in category theory is recent: see
[MBB].

1. Euclidean spaces and regular maps

We consider 'euclidean spaces' and maps of class  Ck  between them, where  k !
"  is an extended natural number, i.e.  k # )N = N%{"}.  The standard interval is  I
= [0, 1].  The usual concatenation of consecutive paths is written as  a*b.

1.1. Euclidean spaces. A euclidean space will be just a topological subspace  X  of
some standard euclidean space  Rm.  (The standard euclidean spaces are viewed as
naturally embedded, identifying  Rm  with  Rm×{0} * Rm+1;  their union is a vector
space of countable dimension, that can be equipped with the finest topology making
the inclusions of all  Rm  continuous.)

GRANDIS - SINGULARITIES AND REGULAR PATHS

- 48 -



Let us fix some examples, for future use.
(a) Any real Ck-manifold  M  can be Ck-embedded in a suitable  Rm,  and any
subspace of  M  can be viewed as a subspace of  Rm.
(b) The standard Ck-deviation  Vk,  the standard Ck-crossing  Xk  and the stan-
dard Ck-switch  Yk  will be the following subspaces of the real plane (for  k # N):

(1) Vk  =  {(x, y) # R2  |  (x ! 0,  y = 0)   or   (x $ 0,  y = xk+1)},
(2) Xk  =  {(x, y) # R2  |  y = 0   or   y = xk+1},

(3) Yk  =  {(x, y) # R2  |  y = 0   or   (x $ 0,  y = xk+1)},

   
y

   
y

   
y

V0 X0 Y0

   x    x    x
x x x

(c) We choose a lemniscate  E0  as the standard figure-eight curve of class C0.
More generally, we denote by  Ek  a standard figure-eight curve of class Ck; it can
be constructed in  R2  from the bounded Ck-crossing  Xk + B2,  linking smoothly
its left arms together and its right ones as well.  (B2  denotes the standard compact
disc of  R2.)
(d) We write  Fk  the standard spectacles of class Ck,  that can be described as two
smooth simple loops meeting at a point, with a contact of order  k  (precisely, i.e. not
higher). Actually, the name of 'spectacles' is only appropriate for  k  odd, when there
is a simple model in the plane, given by the union of two algebraic closed curves
(4) Fk  =  {(x, y) # R2  |  (x ± 1)k+1 + yk+1 = 1}  *  R2,

  y F1

x

For  k  even,  Fk  can be constructed in  R3,  starting from the bounded Ck-
crossing  Xk + B2  and smoothly linking together its arms on  y = 0,  and the other
arms (on  y = xk+1)  as well.  F0  can also be realised as two circles in  R3,  which
meet in (only) one point, with different tangent lines.
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It is easy to see that the even case has no model in the plane. Indeed, two smooth
simple loops  c, c'  in the plane which meet at a point  p,  with a contact of even order
k,  must 'cross each other' at the meeting point (see below). Now, the complement of
c  in the plane has two connected components; if  c, c'  have no other meeting point,
the complement of  p  in  c'  should stay in both components, which is absurd.

(If the loops  c, c'  have different tangent lines at  p - only possible when  k = 0 -
they necessarily cross each other. Otherwise, in suitable cartesian coordinates, these
curves can be locally represented around  p  as the graphs of two smooth functions
f, g: R  R  with  f(0) = g(0) = p.  Then the Taylor polynomial of degree  k+1  of
h = f – g,  at 0, is a monomial of odd degree; therefore  h(x)  changes of sign around
the origin, and again our curves must cross each other.)

1.2. Smooth cubes. Smooth maps between euclidean spaces will be tested over
smooth cubes. An n-cube of  X * Rm  is a continuous mapping
(1) a: In  X,
that will be viewed as a mapping  In  Rm  (with image in  X)  whenever useful.

This cube is said to be of class Ck,  or a Ck-cube, if it has a Ck-extension
U Rm  over some open neighbourhood of  In  in  Rn  (or, equivalently, over  Rn);
notice that this extension is not required to stay in  X.  For  t # In,  and a multi-index
i = (i1,..., im)  #  Nm  of  height  |i| = i1 +... + im,  the partial derivative of the
component  aj: In  R  is well defined (using any Ck-extension)
(2) (,|i|aj / ,ti)(t)  =  (,|i|aj / ,t i

11... ,t i
nn)(t).

Equivalently, a Ck-cube can be defined as a mapping  a: In  X * Rm  that has
continuous partial derivatives up to order  k  in the interior of  In,  so that all such
real functions have a continuous extension to  In.  The equivalence can be proved
using adequate extension theorems; for instance, Whitney's theorems as stated in
Malgrange [Ma], Chapter 1.

1.3. Smooth weights and regular paths. Let  a: I  X  be a continuous mapping
with values in a euclidean space. It will also be called a C0-path, or a C0-regular
path.

Let now  k # )N  be positive. We let  Stk(a) * I  be the (possibly infinite) set of
Ck-stops of the path  a  (including every breaking of Ck-smoothness):
(1) {0, 1} % {t # ]0, 1[  |  either  a  is not Ck near  t,  or it is and  a'(t) = 0},

where near  t  means on a convenient neighbourhood of  t.
Then, we introduce a Ck-weight  wk(a) # )N,  which - loosely speaking - counts
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each breaking of Ck-smoothness and each stop. Namely:
-  wk(a) = "  if  a  is not piecewise  Ck;
-  otherwise,  wk(a) = (# of connected components of  Stk(a)) – 1.

We say that the path  a  is  Ck-regular if  wk(a) ! 1.  This condition includes two
cases:

-  wk(a) = 0  means that  a  is constant,
-  wk(a) = 1  means that  a  is of class Ck on  I  and  Stk(a)  has precisely two
connected components, those of 0 and 1; in other words the Ck-stops of  a  reduce to
two disjoint closed intervals, possibly degenerate:  Stk(a) = [0, t0] % [t1, 1],  where  a
is constant.

Any further unit in  wk(a)  means an internal Ck-stop point or an additional non-
degenerate stop-interval. In brief, a constant path costs nothing; otherwise, there is
a fixed cost of  1/2  at departure and arrival, and a fixed cost of  1  at each Ck-stop
(independently of duration).

Notice that (always for  k > 0)  a path of class  Ck  is Ck-regular if and only if it
is C1-regular (i.e. it does not stop). Notice also that
(2) wk(a*b)  !  wk(a) + wk(b),

since there are two cases:

-  wk(a) + wk(b) = wk(a*b) + 1  if  c = a*b  is  Ck at a neighbourhood of  t = 1/2
and  c'(1/2) - 0,

-  wk(a) + wk(b) = wk(a*b),  otherwise.

1.4. Smooth maps. As an elementary way of introducing 'smooth spaces with
singularities', let us introduce the category  CkEuc  of subspaces of all the standard
euclidean spaces  Rm,  with Ck-maps  f: X  Y  between them; by this we mean a
continuous mapping  f  that takes, by composition, the Ch-cubes of  X  into Ch-
cubes of  Y,  for all  h ! k.  Thus
(1)  C"Euc  *  CkEuc  *  Ck'Euc  *  C0Euc (0 ! k' ! k ! ").

This definition agrees with the usual one when  X  and  Y  are Ck-manifolds. (Let
us also recall that, by Boman's theorem [Bo], a map  f: X  Y  between C"-
manifolds is  C"  if and only if it preserves C"-paths.)

A Ck-map  In  Y  is the same as a Ck-cube (according to the previous
definition, 1.2). For general euclidean spaces  (X * Rn,  Y * Rm)  we get a broader
and (perhaps) better definition than by asking that  f  can be extended to a Ck-map

GRANDIS - SINGULARITIES AND REGULAR PATHS

- 51 -



U  Rm  over some open neighbourhood of  X  in  Rn.  For instance, if  X * R2

is the union of three distinct (oriented) lines  ri  through the origin, a C1-map  f:
X  R  (as defined above) needs only to be separately  C1  on each line, whereas
the other condition would also impose a relation on the directional derivatives  ,f/,ri
at the origin.

We also notice that cubes can test smoothness in a 'finer' way than maps defined
on euclidean open sets. For instance, if  X = V0,  a C1-map  c: R  X  with  c(0) =
(0, 0)  must have  c'(0) = 0  and would test C1-smoothness of functions defined over
X  in a less effective way than paths  a: I  X  with initial or terminal point at the
origin.

1.5. Pathwise regular maps. Let  f: X  Y  be a mapping between euclidean
spaces. To say that it is pathwise C0-regular will just mean that it is continuous.

For  k > 0,  we say that  f  is pathwise Ck-regular if it is a Ck-map and preserves,
by composition, the C1-regular paths. Then, it also preserves by composition the
Ch-regular paths, for all  h ! k.  If  X  and  Y  are Ck-embedded Ck-manifolds, a Ck-
map is pathwise regular if and only if it is an immersion, i.e. the linear mapping  Txf:
TxX  TfxY  is injective, for every  x # X.

These maps define the subcategory  CkReg * CkEuc  of euclidean spaces and
pathwise Ck-regular maps

(1) C0Reg  =  C0Euc, CkReg  =  C1Reg + CkEuc (k > 0),
C"Reg  *  CkReg  *  Ck'Reg  *  C0Reg = C0Euc (0 ! k' ! k ! ").

Notice that  CkReg  lacks products, for  k > 0;  indeed, a cartesian projection  pi:
R2  R  is not immersion, and takes a regular, circular path to a path with stops.

1.6. The weighted fundamental groupoid. For a euclidean space  X  and an
extended integer  k > 0,  the fundamental groupoid  &1(X)  has a Ck-weight inherited
from that of paths
(1) wk: &1(X)  )N, wk[a]  =  min {wk(b)  |  b # [a]}.

Plainly, the identity at a point has Ck-weight 0; moreover, by1.3.2, a composed
arrow  [a] + [b] = [a*b]  gives:

(2) wk([a] + [b])  !  wk[a] + wk[b].

If  f: X  Y  is a pathwise Ck-regular map (1.5) between euclidean spaces

(3) wk(fa)  =  wk(a), wk[fa]  !  wk[a].
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2. Regular 0-homotopy

A euclidean space  X  is now equipped with an extended sequence of k-regular
0-homotopy objects  Rk&0(X).  These are sets equipped with a tolerance relation,
called Ck-regular connectedness.

2.1. Tolerance sets. A tolerance set  X  will be a set equipped with a tolerance
relation  x!y,  reflexive and symmetric. A tolerance morphism  f: X  Y  is a
mapping between such sets which preserves the tolerance relation.

The category  Tol  of tolerance sets and morphisms is complete and cocomplete,
with limits and colimits created by the forgetful functor  U: Tol  Set.  It will be
analysed more deeply in the last section.

A tolerance set  X  has an associated equivalence relation

(1) x  y   '   (.z # X,   z ! x  '  z ! y),

and we say that  X  (or its tolerance relation) is reduced if (1) is the identity relation.
The quotient  X/ ,  equipped with the induced relation  / ! 0  (denoted by the

same symbol)
(2) red(X)  =  X/ ,

/ ! 0 ' (1x # /,   1y # 0,   x ! y) ' (.x # /,   .y # 0,   x ! y),
will be called the reduced tolerance set associated to  X.

Indeed, it is easy to see that the induced relation  / ! 0  on  red(X)  is necessarily
reduced:  /  0  implies  / = 0.  (Let  [x]  [y];  from   z ! x  it follows that  [z] !
[x];  then  [z] ! [y]  and  z ! y;  the symmetric argument gives  x  y.)

If  X  is transitive, i.e. its tolerance relation is an equivalence, then the associated
equivalence relation coincides with  !,  and the quotient  red(X)  =  X/   'is a mere set'
(in the sense that its induced tolerance relation is the identity).

The tolerance set  red(X)  is an effective description of  X,  which reduces its
redundancy. However, this reduction is not functorial, and should be used with care:
indeed, a tolerance morphism  f: X  Y  need not preserve the associated
equivalence relation. (This is trivially true when  X  is transitive.)

2.2. Tolerance relations of regular connectedness. In the euclidean space  X,
every extended natural number  k ! "  defines a tolerance relation, called Ck-regular
connectedness in  X
(1) x !k y   '   (x  and  y  are connected by a Ck-regular path in  X).

This relation is preserved by pathwise Ck-regular maps. Generally, it is not

GRANDIS - SINGULARITIES AND REGULAR PATHS

- 53 -



transitive (for  k > 0);  but it is for a Ck-embedded Ck-manifold. Obviously,  x !k y
implies  x !h y,  for  h ! k  in  )N.

By definition, the k-regular 0-homotopy object of  X  will be the tolerance set:
(2) Rk&0(X)  =  (X, !k) (k # )N).

We have thus an (extended) sequence of functors  Rk&0: CkReg  Tol,  with
values in the category of tolerance sets and tolerance maps. In particular, the
tolerance set  R0&0(X) = (X, !0)  is transitive and its reduction yields the usual set
&0(X)  of path-components of  X

(3) &0(X)  =  red(R0&0(X)).

We will often use the reduced tolerance set  red(Rk&0(X))  to describe  Rk&0(X),
even though this quotient cannot be made into a functor on  CkReg,  for   k > 0.

2.3. Examples. (a) For the standard deviation  X = Vk  (1.1.1),  !h  is the chaotic
relation (that links all pairs of points) when  h ! k.  For  h > k,  we have  x !h y  if
and only if  x  and  y  both belong to the left closed arm or the right closed arm of
Vk;  these 'arms' meet at the origin, which is in relation  !"  with any other point.

Thus, for  h > k,  red(Rh&0(Vk))  has three elements, corresponding to the
singularity and the two open arms  /, 0  of  Vk;  the singularity is !h-related to the
other two elements, which are not related
(1) 0  =  [(0, 0)], /  =  [(–1, 0)], 0  =  [(1, 1)],
(2) 0 !h /, 0 !h 0 (h > k).

The euclidean sets  Xk  and  Yk  (1.1.2-3) yield similar results.

(b) For the Ck-figure eight  Ek  (1.1(c)), the set  red(Rh&0(Ek))  has one element,
for all  h.

The space  Fk  (1.1(d)) gives a different result. The set  red(Rh&0(Fk))  has three
elements as soon as  h > k  (and just one for  h ! k).  These elements are the
singularity at the origin and two 'punctured circles'  /, 0  (i.e. circles without a point);
the tolerance relation of  red(Rk&0(Fk))  is described as above, in (2).
(c) Let us come back to the railway example, in figure (1) of the Introduction, where
the route  p', p, q, q"  is assumed to be - precisely - of class  C1  at  p  and  q.  Then:
-  the space is path-connected, and all pair of points are in relation  !0;
-  p'  and  q',  p"  and  q",  q'  and  p"  are not in relation  !1;
-  no point of the upper line is in relation  !2  with any point of the lower line.

More precisely, the tolerance set  red(R1&0(X))  consists of five equivalence
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classes, with the tolerance relation expressed by the following (non oriented) graph

[p'] [p"]

(3)  [r]   

[q'] [q"]

For  k > 1,  Rk&0(X)  is transitive, and  red(Rk&0(X))  has three unrelated
classes:  [p], [q], [r].

2.4. Remarks. A path in the euclidean space  X  is C"-regular if and only if it is Ck-
regular, for all  k < ".  But the relation  a !" b  is strictly stronger than the
conjunction of the relations  a !k b,  for  k < ";  in other words, two points can be
linked by suitable (different) paths of any possible Ck-class with  k < ",  without
being linked by a regular C"-path.

For instance this happens in the euclidean space union of all deviations  Vk
(1.1.1)
(1) X  =  %k#N  Vk  *  R2,

where  (– 1, 0) !k (1, 1)  if and only if  k < ".

3. Jets and paths

After a brief review of formal series, and their k-truncated versions, we consider
the initial and terminal k-jets of a Ck-path in a euclidean space  X,  and define the
effective k-jets at a point. Of course, jets can also be defined as equivalence classes
of smooth functions, as in the original definition of C. Ehresmann [E1, E2].

3.1. Formal series and truncated polynomials. We begin by recalling the
formalism of k-jets, as formal series, for  k = ",  or truncated series (i.e. truncated
polynomials) for  k < ".

Formal series  S = 2 ai3i  in one variable  3,  with coefficients in the real field,
form a well-known R-algebra  A" = R[[3]].  They have a composition law (cf.
Cartan [Ca])
(1) S˚T  =  2i aiTi (S = 2i ai3i,   T = 2j bj3j),

provided the initial term  b0  of  T  is zero, so that the sum  2i aiTi  makes sense.
(Indeed, the order  4(Ti),  defined as the degree of the lowest non null coefficient of
Ti,  is  i.4(T) $ i;  consequently, each coefficient of  S˚T  is computed by a finite sum
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of terms  aibj1...bjk.)
Notice that  S˚0 = a0  is the initial term of  S,  that is also written as  S(0).  The

algebraic properties of the composition law can be seen in [Ca].
For  k < ",  the algebra of k-truncated series (or k-truncated polynomials)

(2) Ak  =  R[[3]] / (3k+1)  =  R[3] / (3k+1) ,

has an induced composition law  [S]˚[T] = [S˚T]  (when  T(0) = 0).
A class  [S] = 2i!k ai[3]i  will also be written as  2i!k ai3i,  by abuse of notation.

Operations in  Ak  are thus performed as with polynomials in an algebraic element  3
such that  3k+1 = 0:  one omits all the terms of degree  > k  ('the higher-order
infinitesimals'), that come out of operations like product or composition of
polynomials.

There are obvious truncation epimorphisms

(3) trkk': Ak  Ak' (0 ! k' ! k ! "),

ending with  A0 = R.  We will refer to  Ak  as the algebra of k-truncated series in
one variable, also when  k = "  (and truncation is trivial).

We view  Ak  as the fibre bundle of k-jets of the real line
(4) TkR  =  Ak, p: TkR  R,   p(S)  =  S(0).

Of course, it is a trivial bundle, and can be identified with the product of the line
and its fibre at  0,  the subalgebra  Tk0R  of k-truncated series with  S(0) = 0

(5) R × Tk0R  =  TkR, (x, S)    x + S.

Each fibre  {x} × Tk0R  is a real vector space at fixed  x,  with the operations of
Tk0R:

(6) (x + S) + (x + T)  =  x + S + T, 5.(x + S)  =  x + 5S.

Composition is everywhere defined on the fibre  Tk0R.  It can be extended, as in
(1), letting:

(7) (x + S)˚T  =  x + S˚T.

3.2. Series in many variables. More generally, we will use formal series in the
variables  31,..., 3m
(1) S  =  2i ai3i, i  =  (i1,..., im)  #  Nm,       3i  =  3 i

1
1 6 ... 6 3 i

m
m,

and their R-algebra  Am" = R[[31,..., 3m]].
Now, there is a composition  S˚T,  where  T  is a family of formal series  T1,...,
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Tm   with initial term zero, on the same  n  variables, say  71,..., 7n

(2) S  =  2i ai3i  #  R[[31,..., 3m]], T  =  (T1,..., Tm)  #  (R[[71,..., 7n]])m,
S˚T  =  2i aiTi, Ti  =  Ti

1
1 6 ... 6 T i

m
m.

Again, the sum in  S˚T  makes sense because

4(Ti)  =  i14(T1) + ... + im4(T1)  $  i1 + ... + im  =  |i|.

The k-truncated version

(3) Amk  =  R[[31,..., 3m]] / Ik ( =  R[31,..., 3m] / Jk,  for  k < "),

annihilates the ideal  Ik  (or  Jk)  of all series (or polynomials) whose order is  > k,
that is generated by the monomials  3i = 3 i

1
1 6 ... 6 3 i

m
m  with  |i| = k+1.  Of course,

I" = (0).
Again, we will refer to  Amk  as the algebra of  k-truncated series in  m  variables,

even for  k = ".

3.3. Jets of functions. Let  Ank  be the algebra of k-truncated series in  n  variables
71,..., 7n  (3.2), with  k ! ".  For a Ck-mapping  f: U  V  between open euclidean
spaces of dimensions  n, m,  we define the k-jet of  f  at a point  x # U
(1) (jkf)(x)  #  (Ank)m, ((jkf)(x))i  #  Ank (i = 1, ... m),

((jkf)(x))i  =  2s!k  (s!)–1 Dsfi(x)• 7s,
Dsfi(x)  =  ( ,sfi/,xh

11...,xh
nn )|h|=s, 7s  =  (7h

11,..., 7h
nn)|h|=s,

where  •  is the scalar product of vectors indexed on all the n-tuples  h = (h1,..., hn)
with a fixed sum  s = |h| = h1 + ... + hn.

For instance, for  f: R2  R,  and leaving the variable  x # R2  understood,  j2f
yields the Taylor formula of  f,  of order 2, in the form:

j2f  =  f + 71.,f/,x1 + 72.,f/,x2

+ 1/2(72
1.,2f/,x2

1 + 27172.,2f/,x1,x2 + 72
2.,2f/,x2

2).
The jet of a composition can be expressed in a useful compact form, using the

composition of formal series. Namely, if  f: U  V  and  g: V  W  are Ck-
mappings between open euclidean spaces, so is gf  and:

(2) jk(gf)(x)  =  ((jkg)(f(x))°((jkf)(x) – f(x)).

Notice that  (jkf)(x) – f(x)  is a (possibly truncated) formal series with initial term
0, so that the composition makes sense. Concretely, we must replace the variable  3 =
(31,..., 3m)  of the jet  (jkg)(f(x))  with the increment of  jkf.

Thus, for  k = 2  and in one variable, the second term of (2) is a 2-truncated
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polynomial whose coefficients are (indeed) the derivatives at  x  of the composed
function  gf,  up to the second:

(gf(x) + g'f(x).3 + g"f(x).32)°(f'(x).7 + f"(x).72)

=  gf(x) + g'f(x).f'(x).7 + (g'f(x).f"(x) + g"f(x).f'2(x)).72.

We shall apply this formula also when  f  or  g  are Ck-cubes, taking into account
the fact that they have Ck-extensions to open subsets containing their domain.

3.4. Initial and terminal jets of a path. Let us fix a euclidean space  X * Rm

and an extended natural number  k ! ".
Take a Ck-path  a: I  X * Rm  with  a(0) = x  and  a(1) = x'.  Its initial k-jet (at

t = 0)  has components in the trivial fibre bundle  TkR = R × Tk0R  (3.1)
(1) ((jka)(0))i  =  2h!k  (h!)–1 (a(h)(0))i . 3h   #  TkR  =  R × Tk0R (i = 1, ... m).

It gives an element of the trivial fibre bundle  TkRm = Rm × Tk0Rm

(2) ,–
ka  =  (jka)(0)  =  x + 20<h!k  (h!)–1 a(h)(0).3h  #  {x} × Tk0Rm,

that will also be written in the form  x + (vka)(0).
Similarly, we have a terminal k-jet (at  t = 1)

(3) ,+
ka  =  (jka)(1)  =  x' + (vka)(1)

=  x' + 20<h!k  (h!)–1 a(h)(1) . 3h   #  {x'} × Tk0Rm.
Initial and terminal jets determine each others. Indeed, let  b: I  X  denote the

reversed path of  a,  namely  b(t) = a(1 – t);  then the initial k-jet of  a  and the
terminal k-jet of  b

(4) ,–
ka  =  (jka)(0), ,+

kb  =  (jkb)(1)  =  8k((jka)(0)),

are linked by the involution  8k  which changes sign to the derivatives of odd degree

(5) 8k: TkRm    TkRm, 8k(2h!k ah3h)  =  2h!k (– 1)h ah3h.

3.5. Effective and virtual jets. We want now to define the set  ExTkX  of effective
k-jets of  X  at  x,  as a subset of the vector space  {x} × Tk0Rm.

In the same hypotheses as above (3.4), any initial k-jet of a Ck-path  a: I  X *
Rm  with  a(0) = x  will be called a lower-effective k-jet of  X  at  x.  Their set will be
written as
(1) E–

xTkX  *  {x} × Tk0Rm.

The set of terminal k-jets of all paths ending at  x  will be written as

GRANDIS - SINGULARITIES AND REGULAR PATHS

- 58 -



(2) E+
xTkX  =  8k(E–

xTkX),

(cf. 3.4.4) and called the set of upper-effective k-jets of  X  at  x.  Finally, we write

(3) BxTkX  =  E–
xTkX + E+

xTkX, ExTkX  =  E–
xTkX % E+

xTkX,

the sets of bilateral and effective k-jets of  X  at  x.  (The term 'effective' can be left
understood.)

We will see (in 3.7) that the bilateral jets are precisely those that can be obtained
as jets  (jka)(t)  (of Ck-paths of  X),  at an internal point  t #  ]0, 1[.  As a
consequence, the effective jets are those that can be obtained at some  t # I.

There are inclusions
(4) BxTkX  *  E9x TkX  *  ExTkX  *  {x} × Tk0Rm      (9 = ±).

Letting  x  vary, we get five 'fibred sets' on  X

(5) BTkX  *  E9TkX  *  ETkX  *  TkRm      (9 = ±).

For  k = 0,  we just have:  BT0X = ET0X = X * Rm.
For  k = 1,  the vector subspace spanned by  E–

xT1X  (or  E+
xT1X)  in the real

vector space of tangent vectors  {x} × Rm  will be written as  WxT1X  and called the
vector space of virtual tangent vectors of  X  at  x.  Notice that their collection
WT1X  is not a fibre bundle, generally: the vector spaces  WxT1X  can have variable
dimension, as is easy to see in the examples of 1.1.

The  subset  E9x T1X  inherits a multiplication by real scalars  5 $ 0,  and will be
viewed as a union of semilinear subspaces (semimodules on the semiring of weakly
positive real numbers). Indeed, if  u: I  I  is any C"-function whose "-jet at  0  is
53,  the initial 1-jet of the reparametrised path  au  is

(6) j1(au)(0)  =  ((j1a)(0)°((j1u)(0))  =  a(0) + 5.(v1a)(0).

The sets  BxT1X  and  ExT1X  (of bilateral and effective tangent vectors) inherit
thus, from the vector space  WxT1X,  a multiplication by real scalars, and will be
viewed as unions of linear subspaces of  WxT1X.

Because of these multiplications, the following topological spaces
(7) BT1X  *  E9T1X  *  ET1X  *  WT1X  *  X × Rm     (9 = ±),

admit  X × {0}  as a deformation retract, and are homotopically equivalent to  X.  We
also write  TX  for  ET1X,  the fibred set of (effective) tangent vectors.

Finally, we write  E*TkX  the set of the regular k-jets of  X
(8) E*TkX  *  ETkX  *  TkRm,
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i.e. the effective k-jets of  X  with a non-zero term of degree 1. These are also
characterised below, in 3.7.

3.6. Theorem and Definition (Smooth concatenation of paths). Let  a, b: I  X
be two Ck-consecutive Ck-paths, which means that

(1) ,+
ka  =  ,–

kb,

i.e.  a(h)(1) = b(h)(0),  for all  h ! k.  Then there is a smoothly concatenated Ck-path

(2) a + b: I  X,
(jk(a + b))(0)  =  (jka)(0), (jk(a + b))(1)  =  (jkb)(1),
(a + b)(t)  =  a(:(t))   or   b(:(t – 1/2)), for   0 ! t ! 1/2   or   1/2 ! t ! 1.

We are using a concatenating C"-function  : # C"(R, R),  chosen once for all
and satisfying

(3) (j":)(0)  =  3, (j":)(1/4)  =  1/2 + 3,
(j":)(1/2)  =  1 + 3, :'(t)  >  0.

Moreover, if  a  and  b  are Ck-regular, so is the concatenated path.

Note. The function  :  restricts to a strictly increasing diffeomorphism  [0, 1/2]  I,
and replaces here the function  2t  used for the usual concatenation  a*b  (that is
homotopic to the former, with fixed endpoints). As an advantage, it has jet  2t + 3
(instead of  2t + 23)  at the endpoints  (t = 0, 1/2),  and leaves unchanged the initial
jet  of  a  and the terminal jet of  b.  The similar condition at  t = 1/4  will be useful
for associativity (in the proof of Theorem 4.3.)

Proof. The existence of a smooth function  :  as above is obvious (or see Lemma
4.5, at the end of the next section).

Now,  a + b  is of class  Ck,  because so is the 'pasting' of  a, b  at  1/2.  It suffices
to apply the formula 3.3.2 for the jet of a composite (at the left and at the right of
1/2)

jk
–(a + b)(1/2)  =  jk(a:)(1/2)  =  (jka)(:(1/2))°((jk:)(1/2)) – :(1/2))

=  (jka)(1)°(3)  =  (jka)(1),
jk
+(a + b)(1/2)  =  jk(b:(3 – 1/2))(1/2)  =  ((jkb)(:(0))°((jk:)(0)))°(3 – 1/2)

=  (jkb)(0)°(3)  =  (jkb)(0).
Similarly,  a + b  satisfies the initial and terminal conditions stated in (2).
Suppose now that  a  and  b  are  Ck-regular, with  k > 0.  Then  a  and  b  never

stop, and so does the concatenated path; indeed,  (a + b)'(3)  is computed by one of
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the following formulas, and does not vanish at any  3 # I
a'(:(3)).:'(3), b'(:(3 – 1/2)).:'(3 – 1/2).

3.7. Corollary. For a euclidean space  X  and  k $ 0:
(a) the bilateral k-jets of  X  are precisely those that can be obtained as jets  (jka)(t0)
at an internal point  t0 # ]0, 1[,  for some Ck-path  a  of  X;

(b) the effective k-jets of  X  are precisely those that can be obtained as jets  (jka)(t0)
at some point  t0 # [0, 1],  for some Ck-path  a  of  X;

(c) the regular k-jets of  X  are precisely those that can be obtained as jets  (jka)(t0)
at some point  t0 # [0, 1],  for some Ck-regular path  a  of  X.

Proof. Point (a) is obvious, using concatenation and smooth reparametrisation; then,
(b) follows immediately. For (c), let  a  be a Ck-path of  X , and suppose that  j =
(jka)(t0)  has a non-zero term of degree 1.  Then  a  satisfies the same property on a
suitable neighbourhood of  t0  in  I;  and we can restrict  a  to a suitable subinterval,
and reparametrise it, so to obtain a Ck-regular path  b  which has the same k-jet at
some point. 

4. Fundamental smooth semicategories

After defining  Rk&0(X)  in Section 2, we now want to analyse the fundamental
groupoid  &1(X)  of a euclidean space  X.  For  k > 0,  we use Ck-regular paths to
get a fundamental Ck-regular semicategory  Rk&1(X):  its vertices are the regular k-
jets of  X  (3.5), and the homotopy relation used to define an arrow  [a]: j  j'
works at fixed initial and terminal k-jets.

4.1. Graphs of smooth paths.  X  is always a euclidean space. We now define its
graph of Ck-paths  CkPX,  and the subgraph of Ck-regular paths  RkPX * CkPX.

For  k = 0,  R0PX = C0PX = PX  is just the graph of paths of  X,  with vertices
the points of  X  and arrows  a: x  x'  the paths of  X,  from  x  to  x'.  It is a
reflexive graph with composition; the latter is associative up to homotopy with fixed
endpoints, and the quotient modulo this equivalence relation is the fundamental
groupoid  &1(X)  of the topological space  X.

For  k > 0,  the vertices of  CkPX  are the elements of  ETkX,  i.e. the effective k-
jets of  X.  An arrow  a: j  j'  is a Ck-path of  X  with the given initial and terminal
jets
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(1) ,–
ka  =  (jka)(0)  =  j, ,+

ka  =  (jka)(1)  =  j'.

But we are more interested in the subgraph of Ck-regular paths  RkPX * CkPX.
Its vertices are the elements of  E*TkX,  i.e. the regular k-jets of  X  (with a non-zero
term of degree 1, cf. 3.5 and 3.7). An arrow  a: j  j',  between two such jets  j, j' #
E*TkX,  is a regular Ck-path of  X  between the given end-jets.

The graph  RkPX  has the composition described above (Theorem 3.6), that we
prove now to be associative up to the appropriate notion of homotopy.

4.2. Regular homotopy. Let two Ck-regular paths  a, b: I  X * Rm  be given.  A
Ck-regular homotopy with fixed end jets, from  a  to  b,  will be a Ck-cube  ;: I2 
X  (1.2) such that the Ck-paths  ;t = ;(–, t): I  X  are regular and satisfy the
following conditions
(i) ;0  =  a,     ;1  =  b,
(ii) (jk;t)(0)  and  (jk;t)(1)  are independent of  t # I ( fixed end jets).

In the presence of (i), condition (ii) can be equivalently expressed as

(ii') (jk;t)(s)  =  (jka)(s)  =  (jkb)(s), for  t # I  and  s = 0, 1.

The picture below represents the case  k = 1,  where the initial and terminal jets
are (bound) vectors  j0, j1;  the homotopy  ;  is constant on the vertical edges of  I2

a

b

;

j0

a

b
j1

(1)

s

t

If such a 'distinguished' homotopy exists, we write  a k b.  It is an equivalence
relation for Ck-regular paths of  X,  because - plainly - these homotopies can be
vertically reversed and pasted, and include the degenerate homotopy of a Ck-regular
path:  0a(s, t) = a(s).

Of course,  a 0 b  is the ordinary relation of homotopy with fixed end-points.
Moreover
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(2) a k b    <    a k' b (k' ! k).

4.3. Theorem. In the graph of Ck-regular paths  RkPX,  the equivalence relation  k
agrees with concatenation and induces an associative operation on the quotient. This
equivalence relation is preserved by pathwise Ck-regular maps.

Proof. (a) First we prove that, given four Ck-regular paths  a, b, c, d,  if
a,  b: j'  j, c,  d: j  j", a k b, c k d

then  a + b k c + d.
Let  ;  and  =   be our distinguished homotopies, that we want to paste

horizontally. Since  ;(1, t) = a(1) = b(1)  is constant, each partial derivative of a
component  ;i  annihilates at  I×{1},  unless it only concerns derivation with respect
to the first variable; the same holds for  =  at  I×{0};  the relevant derivatives form
the jet

(jk;t)(1)  =  j  =  (jk=t)(0).

Therefore we can concatenate  ;  and  =  (horizontally), and obtain an (obviously)
'distinguished'  homotopy; therefore  a + b k c + d.

(b) We prove now that, for three consecutive Ck-regular paths  a, b, c

(a + b) + c  k  a + (b + c).

Recall that the diffeomorphism  :: [0, 1/2]  [0, 1]  that defines concatenation
(3.6) was chosen to satisfy

(1) :[0, 1/4]  =  [0, 1/2], :[1/4, 1/2]  =  [1/2, 1],

so that the two ternary composites are computed as

 a::(t) for   t # [0, 1/4],
(2) (a + b) + c  = b:(:(t) – 1/2)) for   t # [1/4, 1/2],

c:(t – 1/2) for   t # [1/2, 1],
 a:(t) for   t # [0, 1/2],

(3) a + (b + c)  = b::(t – 1/2) for   t # [1/2, 3/4],
c:(:(t – 1/2) – 1/2) for   t # [3/4, 1].

This can be re-written using the Moore concatenation  <abc>  over  [0, 3]  and
two C"-functions  5, µ: I  [0, 3]  (reparametrisations)

 a(t) for   t # [0, 1],
(4) <abc>(t)  = b(t – 1) for   t # [1, 2],

c(t – 2) for   t # [2, 3],
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(5) (a + b) + c  =  <abc>°5, a + (b + c)  =  <abc>°µ,

 ::(t) for   t # [0, 1/4],
5(t)  = 1 + :(:(t) – 1/2)) for   t # [1/4, 1/2],

2 + :(t – 1/2) for   t # [1/2, 1],
 :(t) for   t # [0, 1/2],

µ(t)  = 1 + ::(t – 1/2) for   t # [1/2, 3/4],
2 + :(:(t – 1/2) – 1/2) for   t # [3/4, 1].

Now, the function  5  is  C",  because at each pasting point  t = 1/4  or  1/2  we get
(j"5)(t) = t + 3  (using the composition of jets and the hypotheses 3.6.3 on the jets
of  :  at these points).  Similarly,  µ  is  C",  and so is the affine homotopy  /
(6) /: I2  R, /(s, t)  =  (1 – t).5(s) + t.µ(s),

with  /0 = /(–, 0) = 5  and  /1 = /(–, 1) = µ.  Its end-jets are fixed (independent of  t)

(jk/t)(0)  =  (1 – t).jk5(0) + t.jkµ(0)  =  (1 – t).3 + t.3  =  3,
(jk/t)(1)  =  (1 – t).jk5(1) + t.jkµ(1)  =  (1 – t).(3 + 3) + t.(3 + 3)  =  3 + 3.

At fixed  t,   /t = /(–, t)  is an affine combination of  5, µ;  since these are strictly
increasing, so is  /t.  Therefore  /: I2  R  is a Ck-regular homotopy from  5  to  µ,
and  <abc>°/  is a regular homotopy from  (a + b) + c  to  a + (b + c).

(c) Let  f: X  Y  be a pathwise Ck-regular map: by definition, it preserves Ck-
regular paths and cubes. Let now  ;: I2  X  be a Ck-regular homotopy satisfying
the conditions (i), (ii) of 4.2. Then  f;: I2  Y  is a Ck-regular cube, with  (f;)0 =
f;0 = fa  and  (f;)1 = fb.  It has fixed end-jets, by applying the composition formula
3.3.2,  for  s = 0, 1

jk(f;t)(s)  =  ((jkf)(;t(s))°((jk;t)(s) – ;(s)),

where  ;t(s) = a(s)  and  (jk;t)(s) = (jka)(s)  are both independent of  t.

4.4. The fundamental Ck-regular semicategory. For a euclidean space  X,  we
will write
(1) Rk&1(X)  =  RkPX / k,

the quotient of the graph  RkPX  (4.1) modulo the equivalence relation  k  (4.2),
with the induced, associative concatenation.

Rk&1(X)  will be called the fundamental Ck-regular semicategory of  X;  where
a semicategory is the obvious generalisation of a category, without assuming the
existence of identities (cf. [MBB]).
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We have thus defined a functor
(2) Rk&1: CkReg  sCat,

with values in the category of small semicategories and semifunctors between them
(preserving composition).

For any regular k-jet  j # E*TkX,  there is a semigroup
(3) Rk(1(X, j)  =  Rk&1(X)(j, j).

Some computations of such semicategories and semigroups will be given in the
next section.

If  k' ! k,  let  U: CkReg * Ck'Reg  be the inclusion (1.5). There are natural
transformations
(4) trkk': Rk&1  (Rk'&1)˚U: CkReg  sCat (k $ k'),

whose component on the euclidean space  X  is the obvious functor

(5) trkk'(X): Rk&1(X)  Rk'&1(X), j  trkk'(j),

that operates on k-jets by truncation (3.1.3), and on equivalence classes of path by
'inclusion' (taking 4.2.1 into account).

4.5. Lemma. Let  (an), (bn)  be two sequences of real numbers  (n $ 0).  Then there
is a C"-function  f: R  R  whose sequences of derivatives at 0 and 1 are the
given ones. Moreover:
(a) if  a0, b0 > 0,  one can choose  f  so that  f(t) > 0  over  R;
(b) if  a0 < b0  and  a1, b1 > 0,  one can choose  f  so that  f'(t) > 0  over  R.
Proof. By a well-known Borel's Lemma, there exist two C"-functions  g, h: R  R
whose sequences of derivatives at 0 and 1 are, respectively, the given sequences.
Take a smooth 'bell' function  >: R  R  vanishing outside ]– ?, ?[  (? < 1/3)  and
satisfying

>(0)  =  1, >(n)(0)  =  0, >(t)  $  0 (n > 0,   t # R),

then  f(t) = >(t).g(t) + >(t – 1).h(t)  satisfies our conditions.
In case (a), take  f(t)  =  c + >(t).(g(t) – c) + >(t–1).(h(t) – c),  after choosing a

positive  c < a0, b0  and  ?  sufficiently small so that  g(t),  h(t+1) $ c  in  ]– ?, ?[.
In case (b), first consider the shifted sequences  (an+1), (bn+1)  starting at   a1, b1

> 0,  and let  u  be a positive solution for them, as in the previous case. Now, the
function

f(t)  =  a0 + U(t), U(t)  =  @ t0 u,
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is a solution, provided that  u  is constructed so that the positive number  U(1)
coincides with  b0 – a0 > 0.  This can always be done, either modifying  >  (to make
U(1)  smaller) or adding to  u  a third bell-function with support contained in  [?, 1 –
?]  (to make  U(1)  bigger).

5. Comparison with the fundamental groupoid of tangent versors

We study in more detail the semicategory  R1&1(X)  of a euclidean space  X,
and compare it with the fundamental groupoid  &1(T*X)  of the space of non-zero
(effective) tangent vectors, isomorphic to the fundamental groupoid  &1(UTX)  of
the space of unit tangent vectors of  X.  Under convenient hypotheses, this compari-
son is an isomorphism (Theorem 5.4).

5.1. The comparison. Let  X * Rm  be a euclidean space. Consider the obvious
embedding
(1) R1PX  C0P(T*X), a    â  =  (a, a'),

of the graph of regular C1-paths into the graph of paths of the subspace of non-zero
(effective) tangent vectors:

(2) T*X  *  TX  =  ET1X, T*X  =  TX + (X × (Rm \ {0}).

Plainly, this embedding is the identity on vertices and consistent with
concatenation. It is also consistent with the appropriate notions of homotopy: if  a

1 b  in  R1PX  (4.2), the C1-regular homotopy  ;: I2  X  consists of a family of
regular C1-paths  ;t = ;(–, t): I  X  (t # I),  and can be lifted to a homotopy of
paths in  T*X,  with fixed endpoints

(3) ;̂: I2  T*X, ;̂(s, t)  =  ;̂t(s)  =  (;(t, s), ,;/,s(t, s)),
;̂(0, –)  =  â, ;̂(1, –)  =  b̂,

;̂(s, t)  =  ;̂t(s)  =  (j1;t)(s) (independent of  t # I,  for  s = 0, 1).

Therefore, there is a canonical comparison semifunctor, that is the identity on the
objects, the (bound) vectors of  T*X

(4) u: R1&1(X)  &1(T*X), [a]    [â]  =  [(a, a')].

(Let us recall, from 3.5.7, that  TX  X  cannot give here a 'good' comparison.)
Now, the subspace  UTX * T*X  of unit tangent vectors is a strong deformation
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retract of  T*X.  We identify their fundamental groupoids, by the canonical
isomorphism
(5) &1(UTX)    &1(T*X),

induced by the embedding  UTX * T*X  and its retraction  p: T*X  UTX  (the
normalisation of non-zero vectors).

The comparison  u  need not be full (cf. 5.5). But we prove that it is an
isomorphism when  X  is a C1-embedded manifold of dimension $ 2 (Theorem 5.4,
after the following two lemmas).

5.2. Lemma. Let  f: S  G  be a semifunctor from a semicategory to a groupoid.
Then  f  is full and faithful if and only if the following conditions hold:

(a) for every object  x  of  S,  f  restricts to an isomorphism of semigroups  S(x, x)
 G(f(x), f(x))  (which is thus an isomorphism of groups);

(b) for every pair of objects  x, y  in  S  such that  f(x), f(y)  are connected in  G,
there is some arrow  a: x  y  in  S.

Moreover, if all this holds true,  S  is a groupoid and  f  is actually a functor.

Proof. The necessity of these conditions is obvious, as well as the last remark.
Conversely, let us suppose they hold and fix a pair of objects  x, y  of objects of  S.
Composition in  S  and  G  is written in additive notation.

If  f(x), f(y)  are connected in  G,  there is some arrow  a: x  y  in  S.  Since  G
is a groupoid, all the arrows of  G(f(x), f(y))  can be expressed as  g = h + f(a),  for
some endomap  h # G(f(x), f(x)).  Applying (a), we have that  g = f(b)  for some  b:
x  y  in  S.  Therefore,  f  is full.

Suppose now that  a, b: x  y  in  S  are identified by  f,  and choose some  a': y
 x  such that  f(a') = – f(a).  Then  f(b + a') = f(a + a') = 0fx  and  b + a' = a + a' =

0x,  by (a);  similarly,  a' + b = a' + a = 0y,  and finally  a = b.

5.3. Lemma. For  X = Rm  and  m $ 2,  the canonical comparison semifunctor

(1) u: R1&1(X)  &1(T*X), [a]    [â]  =  [(a, a')],

(cf. 5.1.4) is an isomorphism of groupoids. These are codiscrete for  m > 2.
For  m = 2,  we have a connected groupoid whose groups of endoarrows are

infinite cyclic

(2) R1&1(X)(j, j)    &1(T*X)(j, j)    &1(S1)(j0, j0)    Z.

Proof. For  m > 2,
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&1(UTX)  =  &1(Rm × Sm–1)  =  &1(Sm–1),
is a codiscrete groupoid, i.e. between any two vertices there is precisely one arrow.
The same is obviously true of  R1&1(X),  since any two C1-regular paths  j  j'
can be deformed one into the other  (R3  has 'sufficient room' to do that).

We now take  X = R2  and apply the previous lemma. Its condition (b) is
obviously satisfied: for any two vectors  j, j'  # T*R2  there exists a C1-regular path
a  that gives an arrow  [a]: j  j'  in  R1&1(X).  We are left with considering the
endoarrows of the semicategories in (1).

The space  X = R2  will be given the usual orientation, by its embedding in  R3

(with normal versor  (0, 0, 1)).
If  j0  is the versor of the vector  j # T*X,  the canonical isomorphism

(3) w:  &1(T*X)(j, j)  &1(UTX)(j0, j0) = &1(R2 × S1)(j0, j0)  Z,

is computed as a winding number

(4) w[a]  =  w(a2),

where  a = (a1, a2)  and  a2: I  R2 \ {0}.  It gives a winding-number homomor-
phism (of semigroups)

(5) w: R1&1(X)(j, j)  Z, [a]    w(a'),

and it suffices to prove that this homomorphism is an isomorphism.
In fact, the semigroup  R1&1(X)(j, j)  is generated by two classes  [a], [b]  with

winding number  1  and  – 1,  respectively. This proves that  w  is surjective.
But these two classes commute:  [a] + [b] = [b] + [a]  (with winding number 0),

as is shown by the following sequence of pictures

Moreover,  [b] + [a] + [b] = [a]  (and, symmetrically,  [a] + [b] + [a] = [b]),  as
proved by:
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It follows that, for  n > 0:
[b] + n[a] + [b]  =  (n – 1)[a] + [b] + [a] + [b]  =  n[a],

and every class is equivalent to  n[a],  or  n[b],  or  0j = [a] + [b] = [b] + [a]  (n > 0).
Therefore, the homomorphism  w  is bijective (and an isomorphism of groups).

5.4. Theorem (Versors in a manifold). Let  X * Rm  be a C1-embedded manifold of
dimension $ 2. Then  R1&1(X)  is a groupoid, and the canonical comparison
semifunctor (5.1.4)

(1) u: R1&1(X)  &1(T*X), [a]    [â]  =  [(a, a')],

is an isomorphism of groupoids.

Proof. Again, since  f  is the identity on the objects, it is sufficient to prove that the
canonical semifunctor (1) is full and faithful. (But Lemma 5.2 would be of no real
help here.)
(a) To prove that  u  is full, let us fix two vectors  j, j'  # T*X  and a path  b: j  j'
in the graph  P(T*X),  with projection  a: x  x'  in the graph  PX;  notice that  a  is
just a continuous map  I  X.

For  s # ]0, 1],  we write  bs: j  b(s)  the restriction of  b  to the interval  [0, s],
reparametrised on  I,  namely  bs(t) = b(st)  for  0 ! t ! 1.  Then we let

(2) A  =  {s # ]0, 1]  |  [bs]  #  u(R1&1(X)(j, b(s))},

and we have to prove that  1 # A.
First, the set  A  is not empty, because there exists a neighbourhood  U  of  x  in

X  that is C1-diffeomorphic to a space  Rn  of dimension $ 2;  if  s  is sufficiently
small,  bs  is a path in  T*U,  and  u: R1&1(U)  &1(T*U)  is full (and faithful), by
Lemma 5.3.

Let  s0 = supA ! 1,  and let us prove that  s0 # A.  Choose a neighbourhood  U
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of  x0 = a(s0)  with the same property as above, and some  s1 # A  such that  a(s1) #
U.  Then  bs1  ends at a vector  j1 = bs1(1) = b(s1) #  T*U  and  [bs1]  #
u(R1&1(X)(j, j1).  But  b  stays in  T*U  on some interval  [s1, s2]  with  s2 $ s0,  and
this restriction can be replaced with a C1-regular path in  U,  which can then be
pasted to the one we already had on  [0, s1],  showing that  s2 # A,  and a fortiori  s0
# A.

Moreover,  s0 = 1,  otherwise in the previous argument we could take  s2 > s0,
and conclude  s2 # A,  a contradiction.
(b) Finally, to prove that  f  is faithful, let us take two paths  a, b: j  j'  in the graph
R1PX,  such that  u[a] = u[b]  in  &1(T*X).  This means that there exists a homo-
topy  ;: I2  T*X  such that

(i) ;(–, 0)  =  (a, a'),     ;(–, 1)  =  (b, b'),
(ii) (j1;(–, t))(0)  =  (a(0), a'(0))  =  (b(0), b'(0)),  for all  t # I,
(iii) (j1;(–, t))(1)  =  (a(1), a'(1))  =  (b(1), b'(1)),  for all  t # I.

Notice that the intermediate paths  ;3 = ;(t, –): I  T*X,  between  ;0 = (a, a')
and  ;1 = (b, b'),  have a projection on  X  which need not even be of class C1.  We
let  A  be the set of   s # ]0, 1]  such that

-  there exists a homotopy  ;: I2  T*X  with fixed end jets, whose projection  p;:
I2  X  restricts to a C1-regular homotopy  as  bs,

where, without reparametrisation,  as  and  bs  are the restrictions of  a, b  to  [0, s].
Again, it is sufficient to prove that  1 # A.  The proof is similar to the previous

one, and we only write down its beginning. The set  A  is not empty, because there
exists a neighbourhood  U  of  x = a(0) = b(0)  in  X  that is C1-diffeomorphic to a
space  Rn  of dimension $ 2;  if  s  is sufficiently small,  the paths  as  and  bs  are in
T*U,  and one can modify  ;  so that the restriction  (p;)s: [0, s] × I  X  is a C1-
regular homotopy.

5.5. The circle and other curves. In dimension 1, this comparison need not be full,
even for a manifold, namely the circle  S1 * R2.

Let us fix the versor  j = (1, 0) + (0, 1).3  of  UTS1 * TR2.  Then
(1) R1(1(S1, j)  =  N*,

is the additive semigroup of positive integers, properly contained in

(2) (1(UTS1, j)  =  (1(S1 × S0, j)  =  Z.

One can start from the standard path that turns around the circle  n  times (with  5
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= 2n()

(3) an(t)  =  (cos(5t), sin(5t)), t # I.

This has end-jets  (j1a)(0) = (j1a)(1) = (1, 0) + (0, 5).3.  Therefore, it is sufficient
to reparametrise it as  an;,  by a diffeomorphism  ;: R  R  with

;(0)  =  0, ;(1)  =  1, ;'(t)  >  0  (t # R), ;'(0)  =  ;'(1)  =  1/5.

It is not difficult to prove that  Rk(1(S1, j) = N*  holds for all  k $ 1  and  j #
TkS1,  provided - obviously - that the coefficient of  j  of degree 1 is not null.

The spaces  Ek, Fk  (1.1)  also give free semigroups  Rk(1(–, j),  which is easy to
compute.

5.6. The sphere. By theorem 5.4
(1) R1(1(S2, j)  =  (1(VS2, j).

This fundamental group can be easily computed with the van Kampen Theorem:
(1(UTS2, j) = Z2.  But it is also easy to see directly that  R1(1(S2, j) = Z2, since the
stereographic embedding  f: R2  S2  induces a surjective homomorphism of
semigroups (hence of groups)

(2) f*: R1(1(R2, j)  R1(1(S2, j),

which identifies the generator  [a]  with its opposite  [b]  (in the notation of the proof
of Lemma 5.3).

6. Tolerance relations

We end with a more complete study of sets equipped with a tolerance relation,
and their category.

6.1. Limits and colimits. Recall that a tolerance set  X  is a set equipped with a
tolerance relation  x!y,  reflexive and symmetric. A tolerance morphism  f: X  Y
is a mapping between such sets which preserves the tolerance relation.

The category  Tol  of tolerance sets and morphisms is complete and cocomplete,
with limits and colimits created by the forgetful functor  U: Tol  Set.  In
particular, we have the following basic cases:
(a) the product  & Xi  is the product of the underlying sets, with  (xi)!(yi)  if and
only if, for all indices  i,  xi ! yi  in Xi;
(b) the equaliser of  f, g: X  Y  is the equaliser  E = {x # X | fx = gx}  in  Set,
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with the restricted tolerance relation;
(c) the sum  2 Xi  is the sum of the underlying sets, with  x!y  if and only if this
holds in one subset  Xi;
(d) the coequaliser of  f, g: X  Y  is the coequaliser  E' = Y/R  in  Set  (R  is the
equivalence relation of  Y  generated by  fx  gx,  for  x # X),  equipped with the
finest tolerance relation making the projection  Y  Y/R  a tolerance map; in other
words,  [x]![y]  if and only if  x'!y'  for some  x' # [x]  and  y' # [y].

The following example will be referred to as the test-case:  X  is the union of the
three coordinate planes of  R3,  and  x!y  means that  x  and  y  are equal or lie in
one such plane.

6.2. Tensor product and Hom. Our category  Tol  has a monoidal closed
structure, with tensor product  X Y  given by the cartesian product of the
underlying sets, equipped with a tolerance which is finer than the cartesian one:
(1) (x, y) ! (x', y') if (x!x'  and  y = y')  or  (x = x'  and  y!y').

The identity is the terminal object   = {*},  which acts under the tensor product
as under product.

The internal hom-functor
(2) Hom: Tolop  Tol    Tol,

is obtained by equipping the set  Tol(X, Y)  with the pointwise tolerance relation:

(3) f!g ' (for all  x # X,  fx ! gx  in Y).

Now, it is trivial to verify that the exponential law in  Set  restricts to an
isomorphism:

(4) Hom(X Y, Z)  Hom(X, Hom(Y, Z)),      f    (x  f(x, – )).

A tolerance category  A  will be a category enriched over the monoidal closed
category  Tol.  This simply means that  A  is equipped with a binary relation  !
between parallel maps, which is reflexive, symmetric and consistent with
composition in the following weak sense

(5) if  g!g'  then  hgf ! hg'f (whenever the composition makes sense).

A  will be said to be a cartesian tolerance category if the following stronger
condition holds

(6) if  f!f'  and  g!g'  then   gf ! g'f',

corresponding to enrichment with respect to the cartesian structure of  Tol.
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For instance,  Tol  itself is a tolerance category, but not a cartesian one. On the
other hand, any cohesive category [G1, G2] satisfies the cartesian condition: for
instance, the category of sets and partial mappings, where  f!f'  means that the partial
mappings  f,  f': X  Y  coincide on the elements of  X  on which they are both
defined.

6.3. Club-structures. An equivalence relation over a set  X  can be equivalently
assigned by means of a partition. Extending this well-known fact, a tolerance relation
!  over  X  can be equivalently assigned by means of a club-structure, i.e. a set  A *
PX,  whose elements will be called clubs of  X  (in the test-case 6.1, the clubs are the
three coordinate planes).

Clubs must satisfy the following axioms:
(a) A  is a covering of  X  (every point lies in a club);
(b) if  A * X,  and every pair  a, a' # A  lies in a common club, then  A  is
contained in a club;
(c) if  A * B  are clubs, then  A = B.

No club can be empty (unless  X = Ø).  Moreover, if  A # A,  x # X  and every
a #  A  lies in a club containing  x,  then  x #  A  (because  A%{x}  must be
contained in some club, which has to coincide with  A).  More generally:

(d)  if  A * B * X,  A  is a club and all pairs of points of  B  lie in a common club,
then  A = B.

  The bijective correspondence between our two notions is given by:

(1) (X, !)  (X, A),   the clubs being the maximal subsets of  X  which are
pairwise !-linked,
(2) (X, A)  (X, !),   where  x!y   if and only if   x, y  belong to a common club.

First, note that (1) is well defined by Zorn's lemma: every pairwise !-linked
subset of  X  is contained in a maximal one. Now, it is obvious to verify that  (X, !)

 (X, A)  (X, !')  produces a tolerance relation !' that coincides with !. On the
other hand, consider the procedure  (X, A)  (X, !)  (X, A ');  if  A # A,  A is
pairwise!-linked and therefore is contained in some maximal !-linked subset  A' #
A',  which has to coincide with  A  by (d). Conversely, if   A' # A ',  then  A'  is
(maximal) !-linked and contained in some club  A #A  (because of (b)); this also is
!-linked, by definition of !, whence it coincides with  A'.

In this correspondence, a map  f: X  Y  of club-sets is obviously a mapping of
sets taking each club of  X  into some club of  Y.
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6.4. The associated equivalence relation. A tolerance set  X  usually contains a
great redundancy, which can be cut out (as we have already seen in 2.1), much in the
same way as in the procedure turning a preordered set into the associated ordered
set.

For every point  x # X,  the star of  x  will be
(1) st(x)  =  {z # X  |  x ! z}  =  union of the clubs containing  x.

The equivalence relation associated to the link !  is produced by the mapping  st:
X  PX

(2) x  y '   st(x)  =  st(y),
'   for every  z # X,   z!x  z!y,
'   the clubs containing  x  coincide with the ones containing  y.

The quotient set  red(X) = X/   corresponds thus, bijectively, to the set of stars
of  X,  but should not be confused with the latter; the stars of  X  form a partition if
and only if the link of  X  is an equivalence relation, in which case clubs and stars
coincide. The set  red(X)  has an induced tolerance relation

(3) [x] ! [y]   '   x!y (independently of the choice of representatives),

that determines the one of  X  and is reduced, in the sense that its associated
equivalence relation is the identity (cf. 2.1). Let us recall that the procedure of
reduction is not functorial: a tolerance map  f: X  Y  need not preserve the
equivalence relation associated to the tolerance relation.

In the test-case, the star of the origin is  X  itself; the star of each other point of
an axis is the union of its two coordinate planes; the star of each other point is its
coordinate plane. There are 7 equivalence classes: the origin  [0],  the three axes
without the origin  [ei],  the three coordinate planes without their axes  [ei + ej]  (i -
j).

6.5. The associated preorder. A tolerance set  X  has also an associated preorder

(1) x  y '   st(x) A st(y),
'   for every  z # X,   z!y    z!x,
'   x  belongs to each club containing  y.

It determines the associated equivalence relation  x  y  (as  x  y  and  y  x).
Thus, the quotient  red(X) = X/   is an ordered set (anti-isomorphic to the ordered
set of stars)

(2) [x] ! [y] if st(x) A st(y).
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We say that  x  is a maximal element of  X  if  st(x)  is a club, if and only if  x
belongs to a unique club, if and only if  (y!x!z  y!z),  if and only if  x  is maximal
in the associated preorder. In our test-case,  [0] < [ei] < [ei+ej];  the maximal
elements of  X  are all the points which do not lie on some axis.

On the other hand, each preordered set  (X, )  has an associated tolerance
(3) x ! y if x, y  have a common upper bound  z  (x  z,  y  z).

We say that a tolerance set  (X, !)  is of preorder type if these two procedures
yield back the original tolerance relation; or equivalently if the link !  satisfies

(4) if  x!y  then there exists some  z  whose star is contained in  st(x)+st(y).

In fact, the converse implication always hold (if  st(z) * st(x)+st(y),  then  z!x,
whence  x # st(z) * st(y)).

Our test case is of preorder type, whereas the tolerance  |x – y| < 1 in  R  is not;
its clubs are the open intervals of length 1,  while  st(x) = ]x – 1, x + 1[.

6.6. Pointed tolerance relations. A pointed tolerance set is a pointed set  X = (X,
0X)  equipped with a tolerance relation such that  x ! 0X,  for all  x # X.

Equivalently, all the clubs of  X  contain the base point. A morphism has to
respect both structures. This defines the category  Tol•  of  pointed tolerance sets
(or pointed club-sets). Again, it is complete and cocomplete and has a canonical
monoidal closed structure.
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