
Abstract

For an additive symmetric closed monoidal categoryCwith equal-
izers, supposeM is a monoid defined with respect to the monoidal
structure. In this setting we can define aLie algebrawith respect to
M and the monoidal structure. For the categoryLie(M,C) of Lie al-
gebras we show that the functor SplExt(−, X) : Lie(M,C) → Set is
representable by constructing a representation.

Pour une cat́egorie additive syḿetrique monöıdale ferḿeeC avec
égalisateurs, soitM un monöıde d́efini par rapportà la structure
monöıdale. Dans ce contexte nous pouvons définir une algèbre
de Lie par rapport à M et à la structure monoı̈dale. Pour la
cat́egorieLie(M,C) d’algèbres de Lie nous montrons que le foncteur
SplExt(−, X) : Lie(M,C) → Set est repŕesentable en construisant
une repŕesentation.

Introduction

We recall that for a Lie algebraX over a commutative ringR, a mapf :
X → X is called a derivation ofX if f is linear and, for allx andy in X,
f(xy) = f(x)y + xf(y). The set Der(X) of all derivations onX can be
made into a Lie algebra with Lie multiplicationfg = f ◦ g − g ◦ f and all
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other operations defined pointwise. A diagram

X
k // A

p //
G

s
oo

wherek is the kernel ofp andps = 1G is called a split extension ofG with
kernelX. Any morphism between split extensions, that is, a diagram

X
k // A

p //

f
²²

G
s

oo

X
k′ // A′

p′ //
G

s′
oo

where the top and bottom rows are split extensions, andfk = k′, p = p′f
andfs = s′, is invertible since the split short five lemma holds for Lie al-
gebras. We define an equivalence relation on the set of split extensions of
G with kernelX, by requiring that extensions are equivalent if and only if
there is a morphism between them. The functor SplExt(−, X) : LieR → Set
is defined on an objectG as the set of equivalence classes of split extensions
of G with kernelX and on a morphismg : G′ → G by pulling back. A
well-known classical result can be stated as: the functor SplExt(−, X) is
representable with Der(X) the object of the representation, that is, there is
a natural isomorphism SplExt(−, X) ∼= LieR(−, Der(X)). This result can
be extended to any category of internal Lie algebras defined in a cartesian
closed category (see Theorem 5.2 in [1]). We will generalize this result in a
different direction, namely to suitably define Lie algebras over a monoidM
in an additive symmetric monoidal closed category. Introducing this concept
requires some auxiliary observations:

Recall that a commutative monoid in a symmetric monoidal category(C,⊗,
I, α, ρ, λ, σ) is an objectM together with two morphisms

µ : M ⊗M → M, η : Z→ M
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such that the diagrams

M ⊗ (M ⊗M) α //

1⊗µ

²²

(M ⊗M)⊗M

µ⊗1

²²
M ⊗M

µ //

σ

²²

M M ⊗M
µoo

M ⊗M

µ

77pppppppppppp

I ⊗M
η⊗1 //

λ &&LLLLLLLLLLL M ⊗M

µ

²²

M ⊗ I
1⊗µoo

ρ
xxrrrrrrrrrrr

M

are commutative. Let us recall that when(C,⊗, I, α, ρ, λ, σ) = (Ab,⊗,Z, α,
ρ, λ, σ) is the usual symmetric monoidal category of abelian groups, a com-
mutative monoid in it is the same as a commutative ring. In this case the
morphismµ : M ⊗ M → M corresponds, via the universal property of
the tensor product, to a mapM ×M → M , call it multiplication, which is
bilinear (distributive with respect to the addition of the abelian groupM ).
The morphismη : Z → M is determined by picking an elementu in M ,
the image of 1. Furthermore, the commutativity of the first diagram means
that multiplication is associative and commutative, while the commutativity
of the second means thatη makesu the identity element ofM .

For an ordinary Lie algebraX over a commutative ringM , the scalar multi-
plicationM ×X → X and the Lie multiplicationX ×X → X are bilinear
maps, and so by the universal property of the tensor product inAb they can
be described as morphismsa : M ⊗X → X andb : X ⊗X → X respec-
tively. The commutativity of the diagrams

M ⊗ (M ⊗X) α //

1⊗a

²²

(M ⊗M)⊗X

µ⊗1

²²
M ⊗X

a

))SSSSSSSSSSSSSSSSS M ⊗X

a

²²
X
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(M ⊗X)⊗X

a⊗1

²²

M ⊗ (X ⊗X)αoo σα(1⊗σ) //

1⊗b

²²

X ⊗ (M ⊗X)

1⊗a

²²
X ⊗X

b

**UUUUUUUUUUUUUUUUUUUUU M ⊗X

a

²²

X ⊗X
b

ttiiiiiiiiiiiiiiiiiiiii

X

X ⊗X
σ //

b

²²

X ⊗X

−b
xxqqqqqqqqqqqq

X ⊗ (X ⊗X)
1+σα+σασα //

0

²²

X ⊗ (X ⊗X)

1⊗b

²²
X X X ⊗X

boo

state that

(mn)x = m(nx), (mx)y = m(xy) = x(my), xy = −yx,

x(yz) + z(xy) + y(zx) = 0

for all m,n ∈ M and for allx, y, z ∈ X. These identities correspond to
the axioms of a Lie algebra except that we have replaced the axiomxx = 0
(x ∈ X), with the axiomxy = −yx (x, y ∈ X). Assuming the axiom
xx = 0, the well known argument

xy = xx + xy + yx + yy − yx = (x + y)(x + y)− yx = −yx

shows that we have actually replaced an axiom with a formally weaker one.
Assuming the axiomxy = −yx, the argument

2xx = xx + xx = xx− xx = 0

shows that when 2 has a multiplicative inverse inM , the two axioms are
equivalent. WhenM is a field this corresponds to saying thatM is not of
characteristic 2. Since the axiomxx = 0 has a repeated variable in it, it is
not possible to express it as the commutativity of a diagram involving tensor
products. Therefore, in order to define a Lie algebra in an abstract symmetric
monoidal category(C,⊗, I, α, ρ, λ, σ) we introduce an additional structure
onC. The structure we choose in this paper consists of a categoryD, functors
U, V : C→ D, and a natural transformationδ : U → V (−⊗−), satisfying
suitable conditions (see Section 1). In Section 1 we define a generalized Lie
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algebra following the above as motivation. In Section 2 we define in this
new setting the generalized Lie algebra of derivations and show, in Section
3, that the functor of split extensions from the category of these generalized
Lie algebras to the category of sets is representable. We conclude Section 3
by remarking that the functor of split extensions of crossed modules of these
generalized Lie algebras is representable.

1 Algebraic structures in monoidal categories

In this section we introduce the needed algebraic structures to define a gen-
eralized Lie algebra and construct in this context the functor which in the
classical case takes associative algebras to Lie algebras. Throughout this
paper we will assume that:

1. C = (C,⊗, I, α, λ, ρ, σ) is an additive symmetric monoidal category
with all finite limits; in addition we assume it to be monoidal closed,
although in this section we only use the fact that the tensor is distribu-
tive with respect to finite products;

2. (M, µ : M ⊗M → M, η : I → M) is a commutative monoid inC;

3. D is a category in which hom-sets are abelian groups;

4. Composition of morphisms inD is distributive on the right with re-
spect to addition of morphisms, that is, for any morphismsf, g : B →
C andh : A → B we have(f + g)h = fh + gh;

5. U andV are functors fromC to D andV restricted to hom-sets is an
abelian group homomorphism;

6. δ is a natural transformation fromU to V (−⊗−) such that:

Condition 1.1. For anyC ∈ C the diagram

UC
δC //

δC %%JJJJJJJJJJ V (C ⊗ C)

V σ
²²

V (C ⊗ C)

commutes.
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Example 1.2. (C,⊗, I, α, λ, ρ, σ) = (Ab,⊗,Z, α, ρ, λ, σ) is the the usual
symmetric monoidal category of abelian groups,D = ab is the category with
objects all abelian groups and morphisms all maps between their underlying
sets,U = V : Ab → ab is the inclusion functor, andδ is defined byδC(c) =
c⊗ c for all C in Ab andc in C. This example explains the main purpose of
introducingD, U , V , andδ: the axiomxx = 0 mentioned in the Introduction
can now be expressed categorically asV (b)δX = 0, whereb : X ⊗X → X
is a multiplication morphism on an objectX (as in the Introduction).

We recall: (i) anM -action is a pair(X, a), whereX is an object inC
anda : M ⊗X → X is a morphism inC, such that the diagrams

M ⊗ (M ⊗X)

1⊗a
²²

α // (M ⊗M)⊗X

a⊗1
²²

I ⊗X
η⊗1 //

λ
%%KKKKKKKKKKK M ⊗X

a

²²
M ⊗X

a // X M ⊗X
aoo X

commute; (ii) a magma defined with respect to the monoidal structure inC is
a pair(X, b), whereX is an object inC andb : X ⊗X → X is a morphism
in C.

Definition 1.3. A triple (X, a : M ⊗X → X, b : X⊗X → X) is said to be
an M -magma if(X, a) is anM -action for the monoidM . For M -magmas
(X, a, b) and (X ′, a′, b′), a morphismf : X → X ′ in C is an M -magma
morphism if the diagrams

M ⊗X
1⊗f //

a

²²

M ⊗X ′

a′
²²

X ⊗X
f⊗f //

b
²²

X ′ ⊗X ′

b′
²²

X
f // X ′ X

f // X ′

commute; that is,f must be a morphism of magmas and a morphism of
M -actions at the same time. The category ofM -magmas will be denoted
M -Mag0.

For anM -magma(X, a, b) consider the following condition:
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Condition 1.4. (a) The diagram

M ⊗ (X ⊗X) α //

1⊗b

²²

(M ⊗X)⊗X

a⊗1

²²
M ⊗X

a // X X ⊗X
boo

commutes;

(b) The diagram

M ⊗ (X ⊗X)
σα(1⊗σ) //

1⊗b

²²

X⊗(M ⊗X)

1⊗a

²²
M ⊗X

a // X X ⊗X
boo

commutes.

Let M -Mag1 be the full subcategory ofM -Mag0 with objects allM -
magmas satisfying Conditions 1.4(a) and 1.4(b). LetM -Mag2 be the full
subcategory ofM -Mag1 with objects all(X, a, b), in which the pair(X, b)
is a semigroup, that is, the diagram

X ⊗ (X ⊗X) α //

1⊗b

²²

(X ⊗X)⊗X

b⊗1

²²
X ⊗X

b // X X ⊗X
boo

commutes. In the situation of Example 1.2 the categoriesM -Mag1 andM -
Mag2 are the categories of non-associative and associativeM -algebras re-
spectively.

For a magma(X, b) we are also going to use the following conditions:

Condition 1.5. V (b)δX = 0.

Condition 1.6. (a) b(1 + σ) = 0 (anticommutativity);

(b) b(1⊗ b)(1 + σα + σασα) = 0 (Jacobi identity).
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Remark 1.7. WhenC = D, V = 1, U = (−⊗−) andδ = 1+σ, Condition
1.6(a) becomes an instance of Condition 1.5.

LetLie(M, δ) be the full subcategory ofM -Mag1 with objects all(X, a, b),
in which the magma(X, b) satisfies Conditions 1.5, 1.6(a) and 1.6(b). In the
situation of Example 1.2, as in fact mentioned in the Introduction, Condi-
tions 1.5, 1.6(a) and 1.6(b) correspond to the identities

xx = 0, xy + yx = 0, x(yz) + z(xy) + y(zx) = 0

respectively, and recalling that the categoryM -Mag1 is the category of non-
associative algebras we see that the categoryLie(M, δ) is the category of Lie
algebras over the commutative ringM .

Remark 1.8. If D = C, U = V = 1C and δC is the zero morphism, then
Condition 1.5 is trivially satisfied by any magma(X, b). If in addition, as in
Example 1.2,(C,⊗, I, α, λ, ρ, σ) = (Ab,⊗,Z, α, λ, ρ, σ) is the usual sym-
metric monoidal category of abelian groups, the categoryLie(M, δ) has as
objects Lie algebras, except that the axiomxx = 0 has been replaced by the
axiomxy = −yx.

If (X, a : R ×X → X, b : X ×X → X) is an associative algebra over
a ringR and if we definẽb : X ×X → X as

b̃(x, y) = b(x, y)− b(y, x)

for all x, y ∈ X, then the triple(X, a, b̃) is a Lie algebra defined with respect
to the ringR. This correspondence of associative algebras and Lie algebras
is functorial and can been extended to our setting.

Theorem 1.9. If (X, a, b) ∈ M -Mag2, then(X, a, b(1 − σ)) ∈ Lie(M, δ)
and the assignment(X, a, b) Â // (X, a, b(1 − σ)) defines a functorL :
M -Mag2 → Lie(M, δ) which is identity on morphisms.

Proof. Let b̃ = b(1−σ). It is clear that(X, a, b̃) is anM -magma. Condition
1.4(a) holds for(X, a, b̃) since

a(1⊗ b̃) = a(1⊗ (b(1− σ))) = a(1⊗ b)− a(1⊗ b)(1⊗ σ)

= b(a⊗ 1)α− b(1⊗ a)σα(1⊗ σ)(1⊗ σ)

= b(1− σ)(a⊗ 1)α = b̃(a⊗ 1)α,
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where the third equality follows by Conditions 1.4(a) and 1.4(b) for(X, a, b).
Similarly, it can easily be seen that Condition 1.4(b) holds for(X, a, b̃). To
show that the Jacobi identity, Condition 1.6(b), holds for(X, a, b̃), consider
the equation:

b̃(1⊗ b̃)(1 + σα + σασα)

= b(1− σ)(1⊗ b)(1− 1⊗ σ)(1 + σα + σασα)

= b((1⊗ b)(1− 1⊗ σ)− σ(1⊗ b)(1− 1⊗ σ))(1 + σα + σασα)

= b(1⊗ b)(1) + b(1⊗ b)σα(2) + b(1⊗ b)σασα(3)

−b(1⊗ b)(1⊗ σ)(4) − b(1⊗ b)(1⊗ σ)σα(5) − b(1⊗ b)(1⊗ σ)σασα(6)

−b(b⊗ 1)σ(3) − b(b⊗ 1)α(1) − b(b⊗ 1)ασα(2)

+b(b⊗ 1)(σ ⊗ 1)σ(5) + b(b⊗ 1)(σ ⊗ 1)α(6) + b(b⊗ 1)(σ ⊗ 1)ασα(4)

= 0,

where composites labelled with the same superscript are equal. For, we only
need to observe thatb(1⊗b) = b(b⊗1)α since(X, b) is a semigroup, and use
that directly for (1) and (2), or together withασασα = σ for (3), or together
with α(1⊗σ) = (σ⊗1)ασα for (4), or together withα(1⊗σ)σα = (σ⊗1)σ
for (5), or together withα(1⊗ σ)σασα = (σ⊗ 1)σ for (6). From Condition
1.1 and the definition of̃b it follows that Conditions 1.5 and 1.6(a) hold for
(X, b̃). For a morphism

(X, a, b)
f // (X ′, a′, b′)

let b̃′ = b′(1− σ). By calculating

b̃′(f ⊗ f) = b′(1− σ)(f ⊗ f)

= b′(f ⊗ f − σ(f ⊗ f))

= b′(f ⊗ f − (f ⊗ f)σ)

= b′(f ⊗ f)(1− σ)

= fb(1− σ)

= f b̃,

we see thatf is a morphism inLie(M, δ).
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2 Construction of derivations

In this section we construct, for an object(X, a, b) in Lie(M, δ), the object
Der(X), which will be shown in Section 3 to be the representing object for
the functor SplExt(−, X) : Lie(M, δ) → Set.

Recall that, for a Lie algebraX over a commutative ringM , the Lie algebra
of derivations, Der(X), can be constructed as follows. For abelian groupsA
andB, let Hom(A,B) be the abelian group of homomorphisms fromA to
B. Defining multiplication by composition and scalar multiplication point-
wise, it is easily seen that Hom(X, X) satisfies the axioms of a ring as well
as those of anM -module and, moreover has scalar multiplication with the
property

m(h1 ◦ h2) = (mh1) ◦ h2

for all m ∈ M andh1, h2 ∈ Hom(X, X). The abelian groupE(X) of M -
module morphisms fromX to X can be constructed as the equalizer of the
diagram

Hom(X,X)
f1 //

f2

// Hom(M ×X,X)

wheref1 andf2 are defined by

f1(h)(m,x) = mh(x), f2(h)(m, x) = h(mx)

for all h ∈ Hom(X,X), m ∈ M andx ∈ X. It is easily seen thatE(X) is
closed under the operations defined for Hom(X,X) and has the property

m(h1 ◦ h2) = h1 ◦ (mh2)

for all m ∈ M andh1, h2 ∈ E(X), i.e.E(X) is an associativeM -algebra.
As described before, any associativeM -algebraE(X) becomes a Lie alge-
bra with Lie multiplication defined by

h1h2 = h1 ◦ h2 − h2 ◦ h1

for all h1, h2 ∈ E(L). Finally, the Lie algebra of derivations Der(X), can be
constructed as the equalizer of the diagram

E(X)
g1e //
g2e

// Hom(X ×X,X)
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wheree : E(X) → Hom(X,X) is the equalizer off1 andf2, andg1 andg2

are defined by

g1(h)(x1, x2) = h(x1x2), g2(h)(x1, x2) = h(x1)x2 + x1h(x2)

for all h ∈ Hom(X,X) andx1, x2 ∈ L. Der(X) can be seen to be closed
under the operations defined forE(X) and hence is a Lie algebra.

We show that this construction extends to our general context. We begin
by showing that for(X, a, b) ∈ Lie(M, δ) the internal hom-objectXX can
be given a semigroup structure as well as anM -magma structure that satis-
fies Condition 1.4(a). We then construct the semigroupE(X) as a regular
sub-M -magma of the internal hom-objectXX and show that it satisfies Con-
dition 1.4(b). We then apply the functorL : M -Mag2 → Lie(M, δ) toE(X)
and construct Der(X) as a regular subobject ofL(E(X)).

For each objectB in C, we will denote the chosen right adjoint to the func-
tor−⊗ B by−B and denote the chosen counit of the associated adjunction
by εB. For functorsF : X → A andG : A → X, whereG is the right
adjoint ofF , given a morphismh : FX → A, the corresponding morphism
X → GA will be called the right adjunct ofh (as in [6]). Similarly, given
a morphismg : X → GA, the corresponding morphismFX → A will be
called the left adjunct ofg. That is, forg : A → CB, the left adjunct ofg is
εB
C(g ⊗ 1) : A⊗B → C.

For a pair(X, aX : M ⊗X → X) whereM = (M, µ, η) is a monoid inC
as above, consider the following condition, which is part of the definition of
an action for a monoid:

Condition 2.1. The diagram

I⊗X
η⊗1 //

λ
½½5

55
55

5 M⊗X

aX
¤¤§§

§§
§§

§

X

commutes.

Proposition 2.2. If (X, aX) satisfies Condition 2.1 and ifaXX : M⊗XX →
XX is the right adjunct ofaX(1 ⊗ εX

X)α−1 : (M ⊗ XX) ⊗ X → X then
(XX , aXX ) satisfies Condition 2.1.
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Proof. In the diagram

(I⊗XX)⊗X
(η⊗1)⊗1 //

α−1 ''PPPPPPPPPPPP

λ⊗1

ÀÀ

1

2

(M⊗XX)⊗X

α−1vvmmmmmmmmmmmm

a
XX⊗1

vv

I⊗(XX⊗X)
η⊗1 //

1⊗εX
X

²²
λ

½½

3

4

M⊗(XX⊗X)

1⊗εX
X

²²

5

I⊗X
η⊗1 //

λ
²²

6
M⊗X

aX

vvlllllllllllllll

X

XX⊗X

εX
X

OO

1 commutes sinceα is a natural transformation;2 commutes as an immedi-
ate consequence of the axioms of a monoidal category;3 commutes since⊗
is a bifunctor;4 commutes sinceλ is a natural transformation;5 commutes
by definition ofaXX : M ⊗ XX → XX ; 6 commutes by assumption on
(X, aX). That is,λ⊗1 = (aXX ⊗1)((η⊗1)⊗1) = (aXX (η⊗1))⊗1, which
tells us that the left adjuncts of the morphimsλ, aXX (η⊗1) : I⊗XX → XX

are equal to each other. Therefore these two morphisms are equal to each
other themselves, as desired.

For a sextuple(P, Q,X, u : P ⊗Q → Q, p : P ⊗X → X, q : Q⊗X →
X) we consider the following condition:

Condition 2.3. The diagram

P ⊗ (Q⊗X) α //

1⊗q

²²

(P ⊗Q)⊗X

u⊗1

²²
P ⊗X

p // X Q⊗X
qoo

commutes.

Lemma 2.4. Suppose(P,Q, X, u : P ⊗ Q → Q, p : P ⊗ X → X, q :
Q⊗X → X) satisfies Condition 2.3,p′ : P⊗XX → XX is the right adjunct
of p(1⊗ εX

X)α−1 : (P ⊗XX)⊗X → X andq′ : Q⊗XX → XX is the right
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adjunct ofq(1 ⊗ εX
X)α−1 : (Q ⊗ XX) ⊗ X → X then(P, Q, XX , u, p′, q′)

satisfies Condition 2.3.

Proof. In the diagram

(P⊗(Q⊗XX))⊗X
α⊗1 //

(1⊗q′)⊗1

ºº

α−1

²²
1

2

((P⊗Q)⊗XX)⊗X

(u⊗1)⊗1

¨¨

α−1

²²

3

P⊗((Q⊗XX)⊗X)
1⊗α−1

//

1⊗(q′⊗1)

²²

4

P⊗(Q⊗(XX⊗X))

1⊗(1⊗εX
X)

²²

α
//

5

(P⊗Q)⊗(XX⊗X)

u⊗1

²²

1⊗εX
Xwwooooooooooo

P⊗(Q⊗X)

1⊗q

²²

α //

6

(P⊗Q)⊗X

u⊗1

²²

7P⊗(XX⊗X)
1⊗εX

X //

8

P⊗X

p

²²
X

9

Q⊗Xq
oo Q⊗(XX⊗X)

1⊗εX
Xoo

(P⊗XX)⊗X
p′⊗1 //

α−1

OO

XX⊗X

εX
X

OO

(Q⊗XX)⊗X
q′⊗1oo

α−1

OO

1 commutes by the axioms of a monoidal category;2 , 3 and 5 commute
sinceα is natural transformation;4 and 9 commute from the definition of
q′; 8 commutes by the definition ofp′; 7 commutes since⊗ is a bifunctor;
6 commutes by assumption onu, p andq (Condition 2.3). That is,(q′ ⊗
1)((u ⊗ 1) ⊗ 1)(α ⊗ 1) = (p′ ⊗ 1)((1 ⊗ q′) ⊗ 1), or, equivalently,(q′(u ⊗
1)α) ⊗ 1 = (p′(1 ⊗ q′)) ⊗ 1 – which means that the left adjuncts of the
morphismsp′(1⊗ q′), q′(u⊗ 1)α : P ⊗ (Q⊗XX) → XX are equal to each
other. Therefore these two morphisms are equal to each other themselves, as
desired.

Proposition 2.5. Let (X, aX) be anM -action and, letaXX : M ⊗ XX →
XX andbXX : XX ⊗ XX → XX be the right adjuncts ofa(1 ⊗ εX

X)α−1 :
(M ⊗ XX) ⊗ X → X and εX

X(1 ⊗ εX
X)α−1 : (XX ⊗ XX) ⊗ X → X

respectively. Then(XX , aXX ) is anM -action, (XX , bXX ) is a semigroup,
and Condition 1.4(a) is satisfied.
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Proof. It is clear that since(X, aX) is anM -action, the sextuple(M,M,X,
µ, aX , aX) satisfies Condition 2.3. From Lemma 2.4 it follows that(M, M,
XX , µ, aXX , aXX ) satisfies Condition 2.3. This together with Proposition
2.2 applied to(X, aX) shows that(XX , aXX ) is an M -action. From the
definition ofbXX we see that(XX , XX , X, bXX , εX

X , εX
X) satisfies Condition

2.3 and by Lemma 2.4(XX , XX , XX , bXX , bXX , bXX ) satisfies Condition
2.3 and therefore(XX , bXX ) is a semigroup. From the definition ofaXX the
sextuple(M, XX , X, aXX , aX , εX

X) satisfies Condition 2.3 and by Lemma
2.4 the sextuple(M, XX , XX , aXX , aXX , bXX ) satisfies Condition 2.3 and
therefore(XX , aXX , bXX ) satisfies Condition 1.4(a).

Let f1 : XX → XM⊗X andf2 : XX → XM⊗X be the right adjuncts of
εX
X(1 ⊗ aX) : XX ⊗ (M ⊗ X) → X andaX(1 ⊗ εX

X)σα(1 ⊗ σ) : XX ⊗
(M ⊗X) → X respectively, and lete : E(X) → XX be the equalizer off1

andf2.

Proposition 2.6. For the object E(X) there exist unique morphismsbE(X) :
E(X) ⊗ E(X) → E(X) and aE(X) : M ⊗ E(X) → E(X) for which e
becomes anM -magma morphism and(E(X), aE(X), bE(X)) is in M -Mag2.

Proof. In the diagram

E(X)⊗ E(X)
e⊗e //

bE(X)

²²Â
Â
Â XX ⊗XX

b
XX

²²
E(X) e // XX

f1 //

f2

// XM⊗X

M ⊗ E(X)
1⊗e //

aE(X)

OOÂ
Â
Â

M ⊗XX

a
XX

OO

it can be seen, by considering the left adjuncts off1bXX (e⊗e) andf2bXX (e⊗
e) and the left adjuncts off1aXX (1 ⊗ e) andf1aXX (1 ⊗ e), that the arrows
bXX (e ⊗ e) and aXX (1 ⊗ e) equalizef1 and f2 and so, by the universal
property of the equalizere, there exist unique arrowsbE(X) andaE(X) mak-
ing the diagram commute. The left adjuncts of the morphismseaE(X)(1 ⊗
bE(X)) and ebE(X)(1 ⊗ aE(X))σα(1 ⊗ σ) can been seen to be equal and
sincee is a monomorphism this shows that(E(X), aE(X), bE(X)) satis-
fies Condition 1.4(b). On the other hand, according to our construction of
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aXX andbXX , the monomorphisme becomes anM -magma morphism from
(E(X), aE(X), bE(X)) to (XX , aXX , bXX ), which implies that(E(X), aE(X),
bE(X)) satisfies Condition 1.4(a) and that(E(X), bE(X)) is a semigroup.
This completes the proof.

By Theorem 1.9 we have thatL(E(X), bE(X), aE(X)) = (E(X), b̃E(X) =
bE(X)(1 − σ), aE(X)) is in Lie(M, δ). For (X, aX , bX) ∈ Lie(M, δ) let g1 :
XX → XX⊗X be the right adjunct ofεX

X(1 ⊗ bX) : XX ⊗ (X ⊗X) → X,
let g2 : XX → XX⊗X be the right adjunct of the sum of the morphisms
bX(εX

X ⊗ 1)α : XX ⊗ (X ⊗ X) → X andbX(1 ⊗ εX
X)σα(1 ⊗ σ) : XX ⊗

(X ⊗X) → X, and letd : D(X) → E(X) be the equalizer ofg1e andg2e.

Proposition 2.7. For the objectD(X) there exist unique morphismsbD(X) :
D(X)⊗D(X) → D(X) andaD(X) : M⊗D(X) → D(X) for whichd is an
M -magma morphism from(D(X), aD(X), bD(X)) toL(E(X), aE(X), bE(X))
and(D(X), aD(X), bD(X)) is in Lie(M, δ).

Proof. In the diagram

D(X)⊗D(X)
d⊗d //

bD(X)

²²Â
Â
Â
Â
Â
Â
Â

E(X)⊗ E(X)

(1−σ)
²²

E(X)⊗ E(X)
e⊗e //

bE(X)

²²

XX ⊗XX

b
XX

²²
D(X) d // E(X) e // XX

g1 //

g2

// XX⊗X

M ⊗D(X)

aD(X)

OOÂ
Â
Â

1⊗d // M ⊗ E(X)
1⊗e //

aE(X)

OO

M ⊗XX

a
XX

OO

it can be seen, by considering the left adjuncts ofg1bXX (e⊗e)(1−σ)(d⊗d)
andg2bXX (e⊗e)(1−σ)(d⊗d) and the left adjuncts ofg1aXX (1⊗e)(1⊗d)
andg2aXX (1⊗ e)(1⊗ d), that the morphismsbXX (e⊗ e)(1− σ)(d⊗ d) and
aXX (1⊗e)(1⊗d) equalizeg1 andg2 and so, by the universal property of the
equalizerd, there exist unique arrowsbD(X) andaD(X) making the diagram
commute. Sinced is a monomorphism we see that(D(X), aD(X), bD(X)) is
in Lie(M, δ).

We now define the object Der(X) of a derivation ofX = (X, aX , bX) as
Der(X) = D(X) = (D(X), aD(X), bD(X)).
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3 Representability of split extension functor for
the category Lie(M, δ)

In this section we show that the functor SplExt(−, X) can be defined for
the categoryLie(M, δ) and prove that it is representable by showing that
Der(X) = D(X) is the representing object.

To define the functor SplExt(−, X) it is sufficient to show that the split
short five lemma holds forLie(M, δ) and that the categoryLie(M, δ) has
pullbacks of all split epimorphisms along arbitrary morphisms.

It is easily seen that the categoryLie(M, δ) is pointed and finitely com-
plete. SinceC is additive the split short five lemma holds inC and since the
forgetful functorW : Lie(M, δ) → C preserves limits and reflects isomor-
phisms, the split short five lemma holds also inLie(M, δ).

Consider the diagram

X
k

// A

f
²²

loo p //
G

s
oo

X
k′

// A′l′oo p′ //
G

s′
oo

wheref is a morphism (hence an isomorphism) of split extensions inLie(M,
δ), andl andl′ are the uniqueM -action morphisms withkl = 1A − sp and
k′l′ = 1A′ − s′p′; we shall writeA = (A, a, b) andA′ = (A′, a′, b′). Since
k′ is a monomorphism andk′l′f = (1A′ − s′p′)f = f − s′p′f = f − fsp =
f(1A − sp) = fkl = k′l we havel′f = l; therefore

lb(s⊗ k) = l′fb(s⊗ k) = l′b′(f ⊗ f)(s⊗ k) = l′b′(s′ ⊗ k′).

Consequently, if we defineh : G → XX as the right adjunct of the compos-
ite lb(s ⊗ k), we see thath depends only on the isomorphism class of the
split extensions.
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In the diagram

G
h

))SSSSSSSSSSSSSSSSSSSS

i $$I
I

I
I

I

j

²²Â
Â
Â
Â
Â
Â
Â XR⊗X

E(X) e
// XX

f1

;;vvvvvvvvv f2

;;vvvvvvvvv

g1

##GGGGGGGGG

g2
##GGGGGGGGG

D(X)

d
::vvvvvvvvv

XX⊗X

where the solid arrows are defined as before, it can be seen, by considering
the left adjuncts off1h andf2h and the left adjuncts ofg1h andg2h, thath
equalizesf1 andf2 as well asg1 andg2, and so by the universal properties
of the equalizerse andd, there exist arrowsi and j making the diagram
commute.

Proposition 3.1. The morphismj : G → D(X) is a morphism inLie(M, δ).

Proof. Consider the diagrams

M⊗G
1⊗j

//

1⊗h

++

aG

²²

M⊗D(X)
1⊗ed

//

aD(X)

²²

M⊗XX

a
XX

²²
G

j //

h

44D(X) ed // XX

G⊗G
j⊗j

//

h⊗h

++

bG

²²

D(X)⊗D(X)
ed⊗ed

//

bD(X)

²²

XX⊗XX

1−σ

²²
XX⊗XX

b
XX

²²
G

j //

h

44D(X) ed // XX

whereG = (G, aG, bG). Considering the left adjuncts ofaXX (1⊗h) andhaG

(in the first diagram), and considering the left adjuncts ofbXX (1−σ)(h⊗h)
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andhbG (in the second diagram), the diagram formed by the outer arrows
can be seen to commute. Therefore, sincee andd are monomorphisms and
the right hand square in each diagram commutes, the left hand squares also
commute.

For eachG in Lie(M, δ), using the above construction we define the map
τG : SplExt(G,X) → Lie(M, δ)(G, Der(X)) as follows:

τG([ X
k // A

p //
G

s
oo ]) = j.

Proposition 3.2. The mapsτG form a natural transformation.

Proof. Let A = (A, a, b) andA′ = (A′, a′, b′) be objects inLie(M, δ) and
let f : G′ → G be any morphism inLie(M, δ), such that in the diagram

X

1X

²²

k′
// A′

f ′
²²

l′oo p′ //
G′

s′
oo

f

²²
X

k
// A

loo p //
G

s
oo

(A′, f ′, p′) is the pullback off andp in Lie(M, δ), l and l′ are the unique
M -action morphisms withkl = 1A − sp andk′l′ = 1′A − s′p′, and the top
and bottom rows excludingl andl′ are split extensions. Leth′ be the right
adjunct ofl′b′(s′⊗ k′) andj′ be the unique morphism withedj′ = h′, that is,

τ ′G([ X
k′ // A′

p′ //
G′

s′
oo ]) = j′.

Sincelb(s ⊗ k)(f ⊗ 1) = lb(sf ⊗ k) = lb(f ′s′ ⊗ f ′k′) = lfb′(s′ ⊗ k′) =
l′b′(s′ ⊗ k′) andh andh′ are the right adjuncts oflb(s⊗ k) andl′b′(s′ ⊗ k′)
respectively, it follows thathf = h′. Therefore we haveedjf = hf = h′ =
edj′ and sinceed is monomorphism we conclude thatjf = j′ and that the
diagram

SplExt(G,X)
τG //

SplExt(f,X)
²²

Lie(M, δ)(G, Der(X))

Lie(M,δ)(f,Der(X))
²²

SplExt(G′, X)
τG′ // Lie(M, δ)(G′, Der(X))

commutes.
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Theorem 3.3.The functorSplExt(−, X) : Lie(M, δ) → Setis representable
with representation(τ, Der(X)).

Proof. We show that the natural transformationτ : SplExt(−, X) → Lie(M,
δ)(−, Der(X)) is a natural isomorphism. For an arrowz : G → Der(X)
in Lie(M, δ) let r : G ⊗ X → X be the left adjunct ofedz, and let
X oz G = (X ⊕G, a, b), where

a = ι1aX(1⊗ π1) + ι2aG(1⊗ π2)

and

b = ι1(bX(π1 ⊗ π1) + r(π2 ⊗ π1)(1− σ)) + ι2bG(π2 ⊗ π2),

in obvious notation. It can been seen thatX oz G is in Lie(M, δ) and that
the diagram

X
ι1 // X or G

π2 //
G

ι2
oo

is a split extension inLie(M, δ). Let τ̂G : Lie(M, δ)(G, Der(X)) → SplExt(G,
X) be the map defined as follows:

τ̂G(z) = [ X
ι1 // X or G

π2 //
G

ι2
oo ]

It can be seen that̂τG = τG
−1 and hence(τ, Der(X)) is a representation of

SpltExt(−, X).

Remark 3.4. Since the categoryCat(Lie(M, δ)) of internal categories in
Lie(M, δ) can be presented asLie(M ′, δ′) for suitableM ′ andδ′ (it essen-
tially follows from the results of [5]), by Theorem 3.3 the functorSplExt:
Cat(Lie(M, δ)) → Set is representable.
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We dedicate this article to Francis Borceux

Abstract
Guided by the heuristic example of the tangential Tfa of a map f diffe-

rentiable at a which can be canonically represented by the unique continuous
affine map it contains, we extend, in this article, into a specific metric context,
this property of representation of a metric jet. This yields a lot of relevant
examples of such representations.

L’application affine continue qui est tangente, en un point a fixé, ï£¡ une
application f différentiable en ce point, peut être très naturellement consi-
dérée comme un représentant de la tangentielle Tfa de f en a. Cet exemple
sera notre guide heuristique pour trouver un context métrique spécifique dans
lequel cette propriété de représentation d’un jet métrique soit possible. Au
passage, on fournit de nombreux exemples pertinents de telles représentations.

Key words : differential calculus, Gateaux differentials, fractal maps, jets, metric
spaces, categories

AMS classification : 58C25, 58C20, 28A80, 58A20, 54E35, 18D20

INTRODUCTION

This article is the sequel of a paper published in TAC [6] ; most of the
proofs of the statements given here can be found in the second chapter
of a paper published in arXiv [5].

We recall that maps f, g : M −→ M ′ (where M ,M ′ are metric
spaces) are tangent at a (not isolated in M), what we denote f �≺a g, if
f(a) = g(a) and lima6=x→a

d(f(x),g(x))
d(x,a)

= 0 ; a metric jet (in short, a jet)
is an equivalence class for this relation �≺a, restricted to the set of the
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