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FOR CATEGORIES OF GENERALIZED LIE ALGEBRAS

by James Richard Andrew GRAY

Abstract

For an additive symmetric closed monoidal categomyith equal-
izers, supposé/ is a monoid defined with respect to the monoidal
structure. In this setting we can defind.i@ algebrawith respect to
M and the monoidal structure. For the categoig/(/, C) of Lie al-
gebras we show that the functor SplExt X) : Lie(M,C) — Setis
representable by constructing a representation.

Pour une cagorie additive syrtrique monidale ferngée C avec
égalisateurs, soifi/ un mondde cefini par rapporta la structure
monddale. Dans ce contexte nous pouvorgfimdr une algebre
de Lie par rapporta M et a la structure moridale. Pour la
cagégorieLie (M, C) d’algebres de Lie nous montrons que le foncteur
SplExt—, X) : Lie(M,C) — Setest repesentable en construisant
une repésentation.

Introduction

We recall that for a Lie algebr& over a commutative ring?, a mapf :
X — X is called a derivation oX if f is linear and, for alk- andy in X,
flzy) = f(z)y + =f(y). The set DefX) of all derivations onX can be
made into a Lie algebra with Lie multiplicatiofy = f o g — g o f and all

Mathematics Subject Classificatiob8A22, 18A99, 18D10, 18D15, 18D35, 18EO05,

17B55, 17B40.
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other operations defined pointwise. A diagram
P
X—~A=—=¢

wherek is the kernel ofh andps = 1 is called a split extension @¥ with
kernel X. Any morphism between split extensions, that is, a diagram

Xt

i

x s EG

where the top and bottom rows are split extensions, @ne- &', p = p'f

and fs = ¢, is invertible since the split short five lemma holds for Lie al-
gebras. We define an equivalence relation on the set of split extensions of
G with kernel X, by requiring that extensions are equivalent if and only if
there is a morphism between them. The functor SgIEXX) : Liep — Set

is defined on an object as the set of equivalence classes of split extensions
of G with kernel X and on a morphisng : G’ — G by pulling back. A
well-known classical result can be stated as: the functor SPEX) is
representable with Dek() the object of the representation, that is, there is

a natural isomorphism SplExt, X)) = Lieg(—, Der(X)). This result can

be extended to any category of internal Lie algebras defined in a cartesian
closed category (see Theorem 5.2 in [1]). We will generalize this result in a
different direction, namely to suitably define Lie algebras over a mombid

in an additive symmetric monoidal closed category. Introducing this concept
requires some auxiliary observations:

Recall that a commutative monoid in a symmetric monoidal cateory,
I,a,p, A\ o) is an objectM together with two morphisms

w:MeM— M, n:%4— M
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such that the diagrams

M e (Mo M) o (M®M)® M
im i’@l
MoM——sM~—"—MeoM
M® M
n®1 1®u

IOM—MOM~-—M®®I
\iu/
A 14
M

are commutative. Let us recall thatwhgh @, I, a, p, A\, 0) = (Ab, ®,Z, v,

p, A, o) is the usual symmetric monoidal category of abelian groups, a com-
mutative monoid in it is the same as a commutative ring. In this case the
morphismyu : M ® M — M corresponds, via the universal property of
the tensor product, to a mag x M — M, call it multiplication, which is
bilinear (distributive with respect to the addition of the abelian gradp

The morphismy; : Z — M is determined by picking an elemeatin M,

the image of 1. Furthermore, the commutativity of the first diagram means
that multiplication is associative and commutative, while the commutativity
of the second means thamakesu the identity element oi\/.

For an ordinary Lie algebrd over a commutative ring/, the scalar multi-
plication M x X — X and the Lie multiplicationX x X — X are bilinear
maps, and so by the universal property of the tensor produkibithey can
be described as morphisms M ® X — X andb: X ® X — X respec-
tively. The commutativity of the diagrams

Mo MeX)—~(MeM)®X

i1®a \Lll@l

M®X M®X
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a co(l®o
(M®X)®X Mo (X ex) 2 x o MeX)

iml im &m

X©X M® X X®X
\ ia/
X

XX —2>X®X X® (X ®X) 2. ¥ o (X @ X)

lb/ lo l1®b

X X b X®X
state that

(mn)a = m(nz), (ma)y =m(zy) = a(my), wy=—yz,

x(yz) + z(zy) + y(zx) =0

for all m,n € M and for allx,y, 2 € X. These identities correspond to
the axioms of a Lie algebra except that we have replaced the axiom 0

(x € X), with the axiomzy = —yx (z,y € X). Assuming the axiom
xx = 0, the well known argument

ry=zrx+zy+tyr+yy—yr=(x+y)(r+y) —yr=—yx

shows that we have actually replaced an axiom with a formally weaker one.
Assuming the axiomy = —yx, the argument

2zr=zxzrx+zrx=xx—xx =0

shows that when 2 has a multiplicative inverse)Mfy the two axioms are
equivalent. When\/ is a field this corresponds to saying thétis not of
characteristic 2. Since the axiom: = 0 has a repeated variable in it, it is
not possible to express it as the commutativity of a diagram involving tensor
products. Therefore, in order to define a Lie algebra in an abstract symmetric
monoidal categoryC, ®, I, a, p, A, o) we introduce an additional structure
onC. The structure we choose in this paper consists of a catéydunctors

U,V : C — D, and a natural transformation: U — V(— ® —), satisfying
suitable conditions (see Section 1). In Section 1 we define a generalized Lie
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algebra following the above as motivation. In Section 2 we define in this
new setting the generalized Lie algebra of derivations and show, in Section
3, that the functor of split extensions from the category of these generalized
Lie algebras to the category of sets is representable. We conclude Section 3
by remarking that the functor of split extensions of crossed modules of these
generalized Lie algebras is representable.

1 Algebraic structures in monoidal categories

In this section we introduce the needed algebraic structures to define a gen-
eralized Lie algebra and construct in this context the functor which in the
classical case takes associative algebras to Lie algebras. Throughout this
paper we will assume that:

1. C = (C,®,I,a, A, p,o) is an additive symmetric monoidal category
with all finite limits; in addition we assume it to be monoidal closed,
although in this section we only use the fact that the tensor is distribu-
tive with respect to finite products;

2. M,pu:M®M — M,n:I— M)isacommutative monoid i;
3. Dis a category in which hom-sets are abelian groups;

4. Composition of morphisms i is distributive on the right with re-
spect to addition of morphisms, that is, for any morphiging: B —
C andh : A — B we have(f + g)h = fh + gh;

5. U andV are functors fronC to D andV restricted to hom-sets is an
abelian group homomorphism;

6. ¢ is a natural transformation frobi to V' (— ® —) such that:

Condition 1.1. For anyC € C the diagram

Ue - v(C e 0)

I

V(C®C)

commutes.
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Example 1.2. (C,®,I,a,\, p,0) = (Ab,®,7Z,a, p, \, o) is the the usual
symmetric monoidal category of abelian groups= ab is the category with
objects all abelian groups and morphisms all maps between their underlying
sets,U = V : Ab — abis the inclusion functor, and is defined by (c) =

c® cforall C'in Ab andcin C. This example explains the main purpose of
introducingD, U, V, andd: the axiomzz = 0 mentioned in the Introduction
can now be expressed categoricallyla®)ix = 0, whereb : X @ X — X

Is a multiplication morphism on an objegt (as in the Introduction).

We recall: (i) anM-action is a pain X, a), where X is an object inC
anda : M ® X — X is a morphism irC, such that the diagrams

M® (M X) o MeM)®X  Ie9X>MeX
il@a la@l \\La
M®X— X L MeX X

commute; (if) a magma defined with respect to the monoidal structesn
a pair(X,b), whereX is an object inC andb : X ® X — X is a morphism
in C.

Definition 1.3. Atriple (X,a: M ® X — X, b: X ® X — X) is said to be
an M-magma if(X, a) is an M-action for the monoid\/. For A/-magmas
(X,a,b) and (X', a’, V'), @ morphismf : X — X’ in C is an M-magma
morphism if the diagrams

MoX -2 e x Xox 2% x g x
| | I g
f f

X

X/

X' X

commute; that is,f must be a morphism of magmas and a morphism of
M-actions at the same time. The categoryMéfmagmas will be denoted
M-Mag;.

For anM-magma( X, a, b) consider the following condition:
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Condition 1.4. (a) The diagram

M® (X ®X) o (M®X)®X
il@b la@l
M® X —~ X b X@X

commutes;

(b) The diagram

Mo (X o X)) | xe(M o X)
il@b ll@a
MeX——sX<" XX

commutes.

Let M-Mag; be the full subcategory a¥/-Mag, with objects all M -
magmas satisfying Conditions 1.4(a) and 1.4(b). LEtMag, be the full
subcategory of\/-Mag; with objects all( X, a,b), in which the pair( X, b)
is a semigroup, that is, the diagram

X ®(X®X) o (X®X)®X
i1®b \Lb@l
XoX—r s x<—" XoX

commutes. In the situation of Example 1.2 the categavfeMag; and M-
Mag, are the categories of non-associative and associafivgebras re-
spectively.

For a magma.X, b) we are also going to use the following conditions:
Condition 1.5. V(b)dx = 0.
Condition 1.6. (a) b(1 + o) = 0 (anticommutativity);

(b) b(1 ®b)(1 + ocax + caoar) = 0 (Jacobi identity).
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Remark 1.7.WhenC =D,V =1,U = (—® —) andd = 1+ o, Condition
1.6(a) becomes an instance of Condition 1.5.

LetLie (M, 0) be the full subcategory af/-Mag; with objects all( X, a, b),
in which the magma.X, b) satisfies Conditions 1.5, 1.6(a) and 1.6(b). In the
situation of Example 1.2, as in fact mentioned in the Introduction, Condi-
tions 1.5, 1.6(a) and 1.6(b) correspond to the identities

zx =0, ry +yx =0, z(yz) + z(zy) + y(zx) =0

respectively, and recalling that the categdfyMag; is the category of non-
associative algebras we see that the categieri/\/, §) is the category of Lie
algebras over the commutative rifg.

Remark 1.8.If D = C, U = V = 1¢ and ¢ is the zero morphism, then
Condition 1.5 is trivially satisfied by any magn, v). If in addition, as in
Example 1.2(C,®,I,a, A\, p,0) = (Ab,®,Z, a, A, p, o) is the usual sym-
metric monoidal category of abelian groups, the catedde( M, d) has as
objects Lie algebras, except that the axiom= 0 has been replaced by the
axiomzy = —yz.

If (X,a: Rx X — X,b: X x X — X)is an associative algebra over
aring R and if we definé : X x X — X as

6(I7y> = b(x7y) - b(y,SE)

forall z,y € X, then the triplg X, a, b) is a Lie algebra defined with respect
to the ringR. This correspondence of associative algebras and Lie algebras
is functorial and can been extended to our setting.

Theorem 1.9.1f (X,a,b) € M-Mag,, then(X,a,b(1 — o)) € Lie(M,9)
and the assignmenitX, a,b) —— (X, a,b(1 — o)) defines a functod. :
M-Mag, — Lie(M, §) which is identity on morphisms.

Proof. Leth = b(1— o). Itis clear tha( X, a, b) is an)M-magma. Condition
1.4(a) holds for( X, a, b) since

a(1®b) = a(1® (Bl —-0))=a(l®b) —a(l1®b)(1®0)
= ba®l)a—->bl®a)oa(l®o)(l®o)
b(1-0)(a® L)a=bla® 1),
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where the third equality follows by Conditions 1.4(a) and 1.4(b) f6ra, b).

Similarly, it can easily be seen that Condition 1.4(b) holds(féra, b). To

show that the Jacobi identity, Condition 1.6(b), holds(f&t a, b), consider
the equation:

b1

1+ o0a+ocaoca)

b)(
= (1-0)(1®b)(l-1®0)(l+oca+caca)
= b(1b)(1-1®0)—c(12Db)(1 —1®0))(1+oca+ caca)
= b1 20)WY +b(1®boa® +b(1 @ b)oaca®
—b(1@b)(1®a)® —b(1 ® b)(1® o)oa® —b(1®b)(1®o)oaca®
—b(b@1)o® —bb @ 1)aV —b(b @ 1)aca®
+0(b@ 1) (c®@1)e® +b(b®1)(0 ® 1)a'® + b(b® 1)(0 @ 1)aca™
= 0,

where composites labelled with the same superscript are equal. For, we only
need to observe thatl ®b) = b(b®1)a since(X, b) is a semigroup, and use
that directly for (1) and (2), or together withraca = o for (3), or together

with o(1®0) = (c®1)aca for (4), or together withv(1®0)oa = (c®1)o

for (5), or together withv(1 ® o)oaoca = (o ® 1)o for (6). From Condition

1.1 and the definition of it follows that Conditions 1.5 and 1.6(a) hold for
(X,b). For a morphism

(X, a,b) —L= (X, ', V)
lett’ = /(1 — o). By calculating

Vfef) = Vl-o)(fef)
= V(fef-alf®f))
= V(fef-(f®fo)
= V(fefl-o)
= fb(1-0)

= /b,

we see thaf is a morphism irLie (M, ). O
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2 Construction of derivations

In this section we construct, for an objdct, a, b) in Lie(M, §), the object
Der(X), which will be shown in Section 3 to be the representing object for
the functor SplEXt—, X) : Lie(M, §) — Set

Recall that, for a Lie algebr& over a commutative ring/, the Lie algebra
of derivations, DefX'), can be constructed as follows. For abelian gradps
and B, let Hom A, B) be the abelian group of homomorphisms frehio
B. Defining multiplication by composition and scalar multiplication point-
wise, it is easily seen that Hqu, X) satisfies the axioms of a ring as well
as those of arl/-module and, moreover has scalar multiplication with the
property
m(hy o hg) = (mhy) o hy
for all m € M andhy, h, € Hom(X, X). The abelian groug’(X) of M-
module morphisms fronX to X can be constructed as the equalizer of the
diagram
h
Hom(X, X) —= Hom(M x X, X)

f2

wheref; and f, are defined by
fi(h)(m,z) =mh(z),  fo(h)(m,z) = h(mzx)

for all h € Hom(X, X), m € M andz € X. Itis easily seen thalb/(X) is
closed under the operations defined for Hom.X') and has the property

m(h1 e} hg) = hl o) (mhg)

forallm € M andh;,hy € E(X), i.e. E(X) is an associativé/-algebra.
As described before, any associativealgebraZ(X) becomes a Lie alge-
bra with Lie multiplication defined by

hlhgzhlohg—hzohl

forall hy, hy € E(L). Finally, the Lie algebra of derivations DX ), can be
constructed as the equalizer of the diagram

E(X) === Hom(X x X, X)

g2¢
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wheree : E(X) — Hom(X, X) is the equalizer of; and f,, andg; andg,
are defined by

g1(h)(x1,x2) = h(z129), g2(h)(z1,x9) = h(x1)x + 21h(22)

for all h € Hom(X, X) andz,,z, € L. Der(X) can be seen to be closed
under the operations defined fB_X') and hence is a Lie algebra.

We show that this construction extends to our general context. We begin
by showing that for X, a,b) € Lie(M, §) the internal hom-objeck* can

be given a semigroup structure as well as\ddfmagma structure that satis-
fies Condition 1.4(a). We then construct the semigréygX ) as a regular
sub-M/-magma of the internal hom-obje&tX and show that it satisfies Con-
dition 1.4(b). We then apply the functér: AM/-Mag, — Lie(M, ) to E(X)

and construct DéIX) as a regular subobject éf £(X)).

For each objecB in C, we will denote the chosen right adjoint to the func-
tor — ® B by —# and denote the chosen counit of the associated adjunction
by €®. For functorsF : X — A andG : A — X, where( is the right
adjoint of 7, given a morphisnk : FX — A, the corresponding morphism

X — GA will be called the right adjunct ok (as in [6]). Similarly, given

a morphismyg : X — GA, the corresponding morphisiX — A will be
called the left adjunct of. That is, forg : A — C&, the left adjunct of; is
Blgo1): Ao B — C.

For a pair(X,ax : M ® X — X) whereM = (M, u,n) is a monoid inC
as above, consider the following condition, which is part of the definition of
an action for a monoid:

Condition 2.1. The diagram

19X 2L Mex

\ /A

Proposition 2.2.1f (X, ax) satisfies Condition 2.1 anddfyx : M ® X* —
X is the right adjunct ofix (1 ® ex)a™ : (M ® X¥)® X — X then
(XX, axx) satisfies Condition 2.1.

commutes.
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Proof. In the diagram

(n®1)®1

(IeX* )X (MeXX )X
a1 a1
[0(X¥2X) 2 Ma(XX0X)
18 [3 il@e%
A n®1
o\ 10X - MeX
\\ @‘ A Ay X ®1

N X
€X

XXX

[1]commutes since is a natural transformatiofZ commutes as an immedi-

ate consequence of the axioms of a monoidal cate@ecgmmutes since

is a bifunctor{4] commutes since is a natural transformatioffj commutes

by definition ofayx : M ® X* — X%, [6) commutes by assumption on
(X,ax). ThatisA®1 = (axx ®1)(n®1)®1) = (axx(n®1))®1, which

tells us that the left adjuncts of the morphimsiyx (n®1) : I X¥ — XX

are equal to each other. Therefore these two morphisms are equal to each
other themselves, as desired. H

For asextupléP, Q, X,u: PRQ - Q,p: PX - X, ¢: QX —
X)) we consider the following condition:

Condition 2.3. The diagram

P®(Q®X) = (PRQ)® X

il@q lu@l

PoX—r sx<~21 QoX

commutes.

Lemma 2.4. Suppose P, Q, X,u : PR Q — Q,p: P X — X, q:
Q®X — X) satisfies Condition 2.3/ : P X* — XX is the right adjunct
ofp(l@eX)a™: (P X¥)® X — X andq : Q@ X* — XX is the right
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adjunct of¢g(1 ® e¥)a™t : (Q ® X¥) @ X — X then(P,Q, XX, u,p',¢)
satisfies Condition 2.3.

Proof. In the diagram

(PR(QeXY))0X _— (PRQ)RX¥)2X
a~! 1] a~!
Po((Q2X¥)2X )22 Po(Qa(XX@X)) . (PRQ)D(XXRX)

1@(1eex) (5 }%
2 1@l [ P2(QeX) —2= (PRQ)2X 3]

(1ed)®1 1®q u®l (u®1)®1

Po(X¥eX) 2 pex @ et @

p
a1 X T QX o QR(X*®X)

X 9] a~!

(PeX¥)2X —22 - xXgx el (QeX¥)2X

[I] commutes by the axioms of a monoidal categ@yi3] and[5] commute
sincea is natural transformatior] and[9] commute from the definition of

q'; 8] commutes by the definition of ; [7) commutes since is a bifunctor;

[6l commutes by assumption an p and¢ (Condition 2.3). That is(¢’ ®
Duel)e)(axl) =@ e1)((1®d) 1), or, equivalently(q (u ®
Ha)®1 = (p(1 ®¢)) ®1— which means that the left adjuncts of the
morphisme/(1® ¢'), ¢ (u®1)a : P® (Q ® X*) — X* are equal to each
other. Therefore these two morphisms are equal to each other themselves, as
desired. O

Proposition 2.5. Let (X, ay) be anM-action and, letayx : M ® X* —
XX andbyx : X*¥ @ XX — XX be the right adjuncts af(1 ® ex)a™! :
M X¥)oX - XandeX (1 @ eX)a™! : (XX X)X — X
respectively. The(X*, axx) is an M-action, (XX, byx) is a semigroup,
and Condition 1.4(a) is satisfied.
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Proof. Itis clear that sincé X, ax) is anM-action, the sextupleM, M, X,

i, ax,ay) satisfies Condition 2.3. From Lemma 2.4 it follows thaf, M,

XX nu,axx,axx) satisfies Condition 2.3. This together with Proposition
2.2 applied to(X, ax) shows that( XX axx) is an M-action. From the
definition of by x we see thatX*, XX X byx,ex, ex) satisfies Condition
2.3 and by Lemma 2.4X*, XX XX byx,byx,bxx) satisfies Condition
2.3 and thereforéX*, by x) is a semigroup. From the definition of x the
sextuple(M, XX, X, axx,ax,ex) satisfies Condition 2.3 and by Lemma
2.4 the sextuplé M, XX XX ayx,axx,byxx) satisfies Condition 2.3 and
therefore( X~ axx, bxx) satisfies Condition 1.4(a). ]

Let f; : XX — XM®X andf, : XX — XX pe the right adjuncts of
A(l1®ayx): X¥®(M®X) — X andax(l1 ® ¥)oa(l®o) : XX ®
(M ® X) — X respectively, and let : E£(X) — X~ be the equalizer of,
and f5.

Proposition 2.6. For the object EX) there exist unique morphismsg ) :
E(X)® E(X) — E(X) andagx) : M ® E(X) — E(X) for whiche
becomes ai/-magma morphism an@ (X ), ag(x), be(x)) is in M-Mags.

Proof. In the diagram

E(X)® E(X) 2% xX g XX

|
bex) | bxxl
v . f1
E(X) XX X]V[@X
A 2
Ap(X) | aXXT

|
M® BE(X) 2 o xX

it can be seen, by considering the left adjunctg;0f x (e®e) and foby x (e®

e) and the left adjuncts of,axx (1 ® e) and fiaxx (1 ® e), that the arrows
bxx(e ® e) andaxx (1 ® e) equalizef, and f, and so, by the universal
property of the equalizer, there exist unique arrows; yy andap x) mak-

ing the diagram commute. The left adjuncts of the morphismsgx)(1 ®
be(x)) andebpx)(1 ® apx))oa(l ® o) can been seen to be equal and
sincee is a monomorphism this shows th@f' (X ), ag(X),bg(X)) satis-

fies Condition 1.4(b). On the other hand, according to our construction of
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axx andbyx, the monomorphism becomes aid/-magma morphism from

(E(X),ap(X),bp(X))to(X*, axx,bxx), whichimpliesthat £(X), ax(X),
bp(X)) satisfies Condition 1.4(a) and th@@'(X),bg(X)) is a semigroup.

This completes the proof. O

By Theorem 1.9 we have tha( E(X), bg(x), apx)) = (E(X), bpx) =
bex)(1 — 0),agx)) is inLie(M, ). For(X,ax,bx) € Lie(M,0) let g, :
X¥* — XXX pe the right adjunct of¥ (1 @ bx) : X¥ @ (X ® X) — X,
let go : X¥ — XX®X be the right adjunct of the sum of the morphisms
bx(ex @ 1)a: XX¥ @ (X ®X) — X andbx(1 ® eX)oa(l ® o) : XX @
(X® X)— X,andletd : D(X) — E(X) be the equalizer af;e andge.
Proposition 2.7. For the objectD(.X') there exist unique morphismgx) :
D(X)®D(X) — D(X)andapx) : M®D(X) — D(X) for whichd is an
M-magma morphism froitD (X)), ap(x), bp(x)) t0 L(E(X), ag(X), bg(X))
and (D(X), ap(x); bD(X)) isin Lle(M, (5)

Proof. In the diagram

D(X)® D(X) 2% B(X) ® B(X)
|
| (1-0)
|
| bp(x) E(X)® B(X) 2% xX g xX
|
! be(x) lbxx
v d g1
D(X) B(X) —— e xX T xXex
A g2
ap(x) | ap(X) GXXT

|
M®D(X)—21 > M@ B(X) %> M o XX

it can be seen, by considering the left adjunctgbf x (e®e)(1—0)(d®d)
andg,bxx(e®e)(1—o)(d®d) and the left adjuncts afiaxx (1 ®e)(1®d)
andgsaxx(1®e)(1® d), that the morphismsyx (e ® e)(1 — o)(d® d) and
axx(1®e)(1®d) equalizeg; andg, and so, by the universal property of the
equalizerd, there exist unique arrows, x) andap(x) making the diagram
commute. Sinceé is a monomorphism we see thd (X ), ap(x), bp(x)) iS

in Lie(M,0).

We now define the object DeX) of a derivation ofX = (X, ax,bx) as
Der(X) = D(X) = (D(X), ap(X),bp(X)).
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3 Representability of split extension functor for
the category Lie(M, ¢)

In this section we show that the functor SplExt X') can be defined for
the categonyLie(M/, ) and prove that it is representable by showing that
Der(X) = D(X) is the representing object.

To define the functor SplEkt, X) it is sufficient to show that the split
short five lemma holds fokie (M, §) and that the categoryie (M, §) has
pullbacks of all split epimorphisms along arbitrary morphisms.

It is easily seen that the categdrie (M, 0) is pointed and finitely com-
plete. SinceC is additive the split short five lemma holds@hand since the
forgetful functoriv : Lie(M, §) — C preserves limits and reflects isomor-
phisms, the split short five lemma holds alsd.ia (M, §).

Consider the diagram
X

k
I i

X A— T G
K
wheref is a morphism (hence an isomorphlsm) of split extensiohgsn)/,
9), andl and!’ are the uniquél/-action morphisms withk! = 1, — sp and
Kl =14 — §'p'; we shall writeA = (A, a,b) and A’ = (A’,d’, V). Since
k" is a monomorphismandl’'f = (14 — s'p")f = f —s'p'f=f — fsp=
f(14 — sp) = fkl = k'l we havel’ f = [; therefore

(s@k)=Ufbs@k) =V (f@ f)s®@k) =V @K).

Consequently, if we defink : G — X* as the right adjunct of the compos-
ite [b(s ® k), we see thah depends only on the isomorphism class of the
split extensions.
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In the diagram

G XREX
: AN N N V
| ¢ %
I 4> XX
I \K\
v 92
D(X) Y XOX

where the solid arrows are defined as before, it can be seen, by considering
the left adjuncts off;» and f,h and the left adjuncts aof;» andg,h, thath
equalizesf; and f, as well asg; andg,, and so by the universal properties

of the equalizerg andd, there exist arrows and j making the diagram
commute.

Proposition 3.1. The morphismj : G — D(X) is a morphism irLie (M, §).
Proof. Consider the diagrams
1®h

MeG MOD(X) — o> MoX™

1®j
lac \LQD(X) J{axx

\T//
h®h
GeG D(X)@D(X) — = X X0 X~
llg
ba bp(x) XXoxX
s
& i D(X) ed X
\\—J/

whereG = (G, ag, be). Considering the left adjuncts ok x (1®h) andhag
(in the first diagram), and considering the left adjuncts,ef (1 — o) (h® h)

-178 -



GRAY - REPRESENTABILITY OF THE SPLIT EXTENSION FUNCTOR;;;

andhbg (in the second diagram), the diagram formed by the outer arrows
can be seen to commute. Therefore, sine&dd are monomorphisms and

the right hand square in each diagram commutes, the left hand squares also
commute. O

For each” in Lie ()M, ), using the above construction we define the map
76 : SPIEX{G, X) — Lie(M,)(G,Der(X)) as follows:

p .
([ X > A==G]) =]
Proposition 3.2. The maps form a natural transformation.
Proof. Let A = (A,a,b) and A’ = (A’,d’, V') be objects irLie(M, ) and
let f : G’ — G be any morphism iie (M, §), such that in the diagram

v P’
X—A—=

k' s’
P, b
l p

X=T——=A—/({d
k S

(A’ f',p") is the pullback off andp in Lie(M, ), [ and!’ are the unique
M-action morphisms witlkl = 1, — sp andk’l’ = 1, — s'p/, and the top
and bottom rows excludingand!’ are split extensions. Lét' be the right
adjunct ofl't/ (s’ ® k') andj’ be the unique morphism withi;’ = /’, that is,

/ ! v ./
(X S~ —=ac]) =]

Sincelb(s @ k)(f @ 1) = Ib(sf @ k) = Ib(f's' @ f'K) = LfV/ (s @ k') =
I't'(s' ® k') andh andh’ are the right adjuncts db(s ® k) andl't/ (s’ @ k')
respectively, it follows that f = h'. Therefore we havedjf = hf = h' =
edj’ and sinceed is monomorphism we conclude that = 5/ and that the
diagram

SPIEX(G, X) —<— Lie(M, §)(G, Der(X))

lSpIExl(f,X) lLie(M,é)(f,Der(X))

SPIEX{(, X) —%*~ Lie (M, 6)(G', Der( X))

commutes. O

-179 -



GRAY - REPRESENTABILITY OF THE SPLIT EXTENSION FUNCTOR;;;

Theorem 3.3.The functoiSplExt —, X) : Lie(M, §) — Setis representable
with representatiorir, Der(X)).

Proof. We show that the natural transformation SplExt —, X') — Lie (M,
9)(—,Der(X)) is a natural isomorphism. For an arraw: G — Der(X)
in Lie(M,0) letr : G ® X — X be the left adjunct okdz, and let
X x,G=(X®G,a,b), where

a=tax(l®m)+ ac(l @)
and
b= Ll(bX(’/Tl ® 7T1) + T(’/TQ ® 71'1)(1 - 0)) + Lgbg(ﬂz X ’/TQ),

in obvious notation. It can been seen that<, G is in Lie(M, §) and that
the diagram
XX %, G—=@

is a split extension ihie (M, 0). Let7g : Lie(M, 0)(G, Der(X)) — SplIEX{G,
X) be the map defined as follows:

Ta(z) = [X*>X>4G = el

It can be seen that; = 7! and hencér, Der(X)) is a representation of
SpIEX{(—, X). O

Remark 3.4. Since the categorZat(Lie(),¢)) of internal categories in
Lie (M, 0) can be presented dse (M, ¢") for suitable M’ and o’ (it essen-
tially follows from the results of [5]), by Theorem 3.3 the func8plExt
Cat(Lie(M, d)) — Setis representable.
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REPRES ENTATION OF METRIC JETS
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Abstract
Guided by the heuristic example of the tangential T f, of a map f diffe-
rentiable at @ which can be canonically represented by the unique continuous
affine map it contains, we extend, in this article, into a specific metric context,
this property of representation of a metric jet. This yields a lot of relevant
examples of such representations.

L’application affine continue qui est tangente, en un point a fixé, & une
application f différentiable en ce point, peut étre trés naturellement consi-
dérée comme un représentant de la tangentielle T'f, de f en a. Cet exemple
sera notre guide heuristique pour trouver un context métrique spécifique dans
lequel cette propriété de représentation d’un jet métrique soit possible. Au
passage, on fournit de nombreux exemples pertinents de telles représentations.

Key words : differential calculus, Gateaux differentials, fractal maps, jets, metric
spaces, categories

AMS classification : 58C25, 58C20, 28A80, 58A20, 54E35, 18D20

INTRODUCTION

This article is the sequel of a paper published in TAC [6] ; most of the
proofs of the statements given here can be found in the second chapter
of a paper published in arXiv [5].

We recall that maps f,g : M — M’ (where M,M' are metric
spaces) are tangent at a (not isolated in M), what we denote f =, g, if
fla) = g(a) and limgz, ., % = 0; a metric jet (in short, a jet)
is an equivalence class for this relation <., restricted to the set of the
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