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Abstract. First we consder how the type of equdity (extensond or inten-
siond) in lambdacalculuswith indudive types and recursion influences uni-
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versality is connected with intensond equdity). Then we establish the link
between weak universadlity and conditiond reversibility in the theory of re-
versible computdions,
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1. Introduction

Mathematical models based on category theory are often used in computer
science [1], but the approaches to categories in category theory and in com-
puter science are very different. Researchersin “mainstream” category the-
ory usually seek higher levels of abstraction and universality, while in com-
puter science categories are used (if at all) as a source of more or less con-
crete models and constructions with the main objective to provide a viable
proof-of-concept for particular architectural solutions with respect to their
consistency, completeness and other important properties. Even in case of a
highly general and abstract categorical notion of monad, mostly concrete as-
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pects of this notion are exploited, for example, in programming (the Hakell
language), compilation (ML ), and devel opment of (implementable) categor-
ical abstract machines (cf. [2], [4]).

One point where this difference of approaches may be seen very clearly,
is the role played by computational aspects of equality. In category theory
the equality of objectsand morphismsisincluded in definitions of categories,
but seldom any attention is paid to the computational aspects of this equality.
If computational aspects of equality are taken into account, it is donein con-
nection with general questions of decidability/undecidability. In computer
science their conceptual (and practical) importance is much greater.

There is, for example, an opposition between so called intensional and
extensional equalities. Two functions are extensionally equal if they always
produce equal outputs for equal inputs. Functions in computer science are
usually represented by some syntactical expressions (programs). In differ-
ence from extensional equality, intensional equality isdefined w.r.t. acertain
system of conversions of these expressions (syntactic transformations corre-
sponding to certain basic identities).

Intensional equality plays in computer science much greater role than
in “mainstream” mathematics based on classical logic. One would be not
mistaken to say that verification of equality via syntactic transformations of
programs and syntactic expressions s the principal method used for equality
check in computer science. An obvious reason is that in genera verifica
tion of extensional equality on a (potentially) infinite domain is indecidable.
Even on a finite domain the complexity of this check may be overwhelm-
ing. Another source of difficulties concerning extensional equality is that
the “static” equality check is only a special case. Dynamic equality check is
In practice more common, e.g. the elements of datatypes may be generated
dynamically by some process. In categories used in computer science the
datatypes often play the role of objects. The importance of equality on ob-
jects and morphisms for various categorical constructions needs no further
argument.

One of our main observations is that many standard universal construc-
tions of category theory become we&kly universal when considered in cate-
gories with intensional equality used in computer science. We explore this
fact in context of on-going research in computer science concerning, for ex-
ample, the notion of canonical elements of inductive types [20] (one may
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speak also about “concrete” and “abstract” elements), thetheme of reversible
computation [23] (where we introduce the notion of conditional reversibil-
ity), etc.

As amain “illustration tool” we define several categorical structures on
simply typed lambda-cal culus with inductive types and recursion operators
Tina (cf. [8,9]). All have types as objects but differ by the notion of equality.
There is a well studied structure of free cartesian closed category on sim-
ply typed lambda-calculus with surjective pairing and terminal object with-
out inductive types [16]. We considered the calculus with inductive types
and recursion because it strengthens and makes more explicit computational
aspects, and we think that categorical structures on T;,,,; are of interest in
themselves when computational aspects of category theory are studied.

The simple opposition of the approaches of the “mainstream” category
theory and computer science does not, of course, give a complete picture
of contemporary research in the domain. This is why, to complete this in-
troduction, we have to outline the place of this paper with respect to recent
research in categorical logic and type theory.

One of the first works where the relationship of extensional and inten-
sional equality in type theory (including important categorical models) has
been studied in depth was the habilitation thesis of Thomas Streicher [29].
The work of Streicher contains many profound results, but its main motiva
tion lies in semantics of type theory: “In this thesis we will give semantic
proofs of inderivability for most of these propositions which are derivablein
extensional type theory but have resisted any attempt to derive them formally
inICST” (Intuitionistic Constructive Set Theory), [29], p.5.

The book by Bart Jacobs [13] on categorical logic and type theory also
Ismostly devoted to categorical semantics. “The emphasis here lies on cate-
gorical semantics” [13], p.7.

The approach of this paper differsin that our interest lies in categorical
structures defined on various systems of logic and type theory considered
as atool to study the phenomenathat are more or less external to logic and
type theory as such. For example, in his previous work the second author
applied categorical structures defined on the systems of propositional logic
to study coherence in categories [26], isomorphism of types [25, 7, 27] etc.
In this paper we are interested in conditionally reversible computations as a
possible application.
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From certain point of view, our approach may have some affinity with
the approach of “Homotopic Type Theory”, or HOTT [12]. This subject is
“hot” nowadays (slight pun intended). More seriously, we think that one of
the motivationsfor development of thistheory (independent of philosophical
argumentsfor the Univalence Axiom) liesin the fact that work with proof as-
sistants based on intensional type theory contains many unpleasant surpises
for the naive user, as a consequence of the difference between intensional
and extensional equalities (cf. [29]).

To our opinion, the Univalence Axiom may force the collapse of many
relevant mathematical structures (when isomorphic objects must be distin-
guished). It may be too strong, but it is not contradictory since there exist
interesting models[12]. Dueto its power, the efficient work with intensional
equality in remaining structures may become possible, and the univalence
foundations program will probably produce new and efficent todls for proof
assistants.

2. Universaland Weakly Universal Constructions

In this section we kept, for the history’s sake, the notation used by S. Mac
Lane.
Mac Lane [19], p.55, defines the notion of a universal arrow as follows.

Definition 2.1. If S : D — C isafunctor and c is an object of C, then a
universal arrow fromcto S isapair (r, u) consisting of an object r of D and
anarrow u : ¢ — Sr of C, such that to every pair (d, f) with d an object
of Dand f : ¢ — Sd an arrow of C, thereisa unique arrow f" : r — d of
D with Sf" o u = f. In other words, every arrow f to S factors uniquely
through the universal arrow «, asin the commuative diagram

c— Sr r
J| le/ lf’
c—lvsa 4

Equivalently (Mac Lane continues), u : ¢ — Srisuniversal fromcto S
when the pair (r, u) isan initial object in the comma category (¢ | 5)... As
with any initial object, it follows that (r, «) is unique up to isomarphismin
(c | S); in particular, the object r of D isunique up to isomorphismin D.
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The dual concept of universal arrows from afunctor S : D — C'to an
object ¢ € C can be defined as well. It is used, for example, to define a
product in C' ([19], p.58).

Let uselaborate thisin slightly more details. Recall that commacategory
(T"] S) of twofunctorsT : E — C'and S : D — (' isthe category whose
objectsaretriples (e, d, f) withd € Ob(D),e € Ob(E)and f : Te — Sd €
Mor(C), and whose morphisms (e, d, f) — (¢/,d, f') are pairs (k,h) of
arrows, k: e — ¢ € Mor(E), h:d — d € Mor(FE) such that the diagram

(x) Te) BN N

b

Sd—" S

is commutative. The composite (k', 1) o (k, h) is (k' o k,h' o h) when de-
fined [19], p.46. All the cases considered above may be seen as the cases
of this definition with a particular choice of functors. For example (as Mac
Lane notices), in case of (¢ | S) one may take the constant functor with
valuecasT.

Notice that the equality of objectsin (7" | S) is“heterogenous’:

o (e,d, fy=(,d, f)iffe=¢iInE,d=d inD,and f = f'inC.

The equality of morphismscomesfrom D and E: (k,h) = (K', 1) iff k =k’
inEandh =1h"inD.

Remark 2.2. Still, other equality relations may be of use. Below we shall
consider, for example:

(k,h) =y (K' 1) {e,d, [y — (', d, ') iff Sho f=Sh'of.
(Because of the commutativity of the square above, thisis equivalent also to
f'oTk = f'oTk.)

Obvioudly, if we take the relation =, instead of = we obtain a factor
category of (7" | S) that we will denoteby (7" | S)*.

Initiality of (r,u) above means that for any other object (r’',u') there
exists a unique arrow f : r — 1’ that makes (*) commutative. If we have
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another realization (r’,u’) of the universal arrow, then there exist unique
f:r—r"and f': " — r that must be mutually inverse isomorphisms.

In spite of its trividity, let us recall the proof of this fact, since we will
need in the end of this section to show exactly what the differenceisin case
of wedak universality. First, let us take (r, ) itself as (', u'). The identity
morphism 1, : » — r may be taken as f’ in the definition, and because
of unicity it isthe only f’ possible. Now, if we take a different initial pair
(r’', ') then by definition we will have certain f' : r — " and [ : ' — r,
suchthat u = Sf” o (Sf' ou) = S(f" o f') ou. By unicity f”o f'=1,.1In
asimilar way, we derivethat /' o f” = 1, and hence f’ and f” are mutually
inverseisomorphismsin D.

The definition of a weak universal arrow ( [19], p.235) differs from the
definition of a universal arrow only in that f” in the diagram is not required
to be unique. As Mac Lane remarks, it is possible to modify all the various
types of universals, defining weak products, week limits, weak coproducts
(requiring just existence rather than uniqueness in each case). There is no
more unicity up to isomorphism, but it does not mean that instead of isomor-
phismswe will have arbitrary arrows. Some conditional reversibility will be
preserved.

In the proposition below we use the same notation asin the definition 2.1
above.

Proposition 2.3. Let the pair (r,u) be a weak universal arrow. Then r is
unique up to isomarphismin the factor category (¢ | S)*.

Proof.Without unicity condition, we still have the equalitiesu = S(f” o
fouandu = S(f' o f")ou, andthey correspond exactly to the definition
of isomorphism in the category (¢ | S)*.

Remark 2.4. The property that defines an isomorphismin (¢ | S)* may be
seen as conditional reversibility (in this case, the reversibility that has the
composition with « as a precondition, and “modulo” application of S).

Of course, similar proposition will hold also for dual case.

3. Thesystan T},,4

The system of A-calculus considered below is a subsystem of the ssimply
typed A-calculus with inductive types, considered in detail in[8, 9, 7, 27]. It
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iIsmorerestricted: we excluded from the syntax the “canonical” terminal ob-
ject and pairing. In[8, 9, 7, 27] the relationship of this“canonical” datawith
singletons and pairing defined using inductive type construction is studied in
presence of additional reductions. Here we want to use it only to illustrate
the general principles discussed above, and these extradata are not included.

Thesystem consideredin[8, 9, 7, 27] wasitself obtained from the system
UTT of Z. Luo [18] by a series of ssimplifications. UTT is a dependent type
theory closely related to Martin-Lof type theory and Cdculus of Construc-
tions. Our system was obtained by a) retaining only non-dependent types, b)
exclusion of kinds, in particular the kind T'ype, type universes, unpredicative
type Prop and al logica part of UTT. All machinery concering inductive
types that was retained is well known. It is a particular case of more general
definitions for dependent types that can be found in the book of Z. Luo [18].
This is why below we do not give, for example, a self-contained definition
of recursion operators over inductive typesin T;,,,.

Definition 3.1. Types are either atomic types or obtained by application of
type constructors.

Atomic types are elemens of a finite or infinite set S = {«, 3,...} of
type variables.

Type constructors are:

e — for functional types, which constructs A — B for any types A and
B

e [nd, defined as follows: let C be an infinite set of introduction opera-
tors (constructors of elements of inductive types), withC NS = (. an
inductive type with n constructorscy, ..., ¢, € C, each of them having
the arity £; (with 1 < i < n), hasthe form:

[nd(oz){cl:A%H...ﬁAlflea‘ |cn:Ai—>...—>Afl”—>@}’

Here, every A = Al — ... — A% — o isaninductive schema, i.e,
Alis

— ether a type not containing «; (wecall this A{ a non-recursive
operator);
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— or atype of theformA{f =C, — ... — Cy — «a,where o does
not appear in any Cyeq. ., (sSuch A’ are called strictly positive
operators).

Here — associates to theright, i.e, C; — Cy — ...a mears (C; —
(Cy — ...)...); Ind(«) binds the variable a.

Example 3.2. (The types Bool, Nat, functional space, and 7, the type of
w-trees, asinductive types.)

Bool =g4e; Ind(a){T : | F': a}

Nat =4 Ind(a){0 : a|succ: a — a}

[A, B] =g4ef Ind(a){fun: (A — B) — a}

T, = Ind(a){0, : | succ, : @« — a|lim, : (Nat — a) — a}.

Definition 3.3. Let V bean infinite set of variables )V (with VNS = VNC =
(). The set of \-termsis generated by the following gramma rules:

M = c|Rec® P |z |(\x: B-M)| (M M)

wherex € V, ¢ € C, B and D are arbitraty types, and Rec?~" denotes the
recursion operator from B to D (for details, see[8, 9], [18]).

Wewrite My M, ...M,, instead of (...(MyM)...M,,) to reduce the number
of parentheses (associativity to the left). All terms and types are considered
up to a-conversion, i.e, renaming of bound variables. Context I' is a set
of term variables with types z; : Ay, ...,z, : A, (x4, ..., z, should be dis-
tinct). I', A denotes union of the contexts I', A (we assume that I", A have
no common term variables).

Definition 3.4. Therearethefollowing typing axiomsand rulesfor theterms
defined above (A, B, D denote arbitrary types, I isan arbitrary context).
Axioms:

e[ z:AFx: A,

e For each inductive type C' = Ind(a){c; : Ai]...|c, @ A} and
1< <n
T'Fe o AC/a]

(eg.,ifC = Nat,thenT' -0 : Nat and I' F succ : Nat — Nat);
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e For C asabove and any type D the axiom *:

I'F Rec® P : Yo(A, D) — ... = Ye(A,, D) — C — D.

Typing rules.
I'x:AFM:B
I'F(\z:A-M):A—> B
'-M:A— B FI—N:A( )
TF(MN):B \GPP

(A)

The constant Rec®—" is called the recursor from C to D. Notice that
applying it (using the rule app) to the terms M; : Yo (Aq, D), ..., M,
Yo (A, D) we define the function Rec®~PM,...M,, : C — D. The fol-
lowing derived ruleis often included:

T'H M :Yo(A, D) (1<i<n),
't (RecC=P M, ... M,):C — D"

elim)

Normalization and intensional equality. The terms of the system 7,4
are considered up to equality generated by conversion relation. The a-
conversion (renaming of bound variables) was already mentioned. Other
conversionsare:? (i) B-conversion (\z : A.M)N = [N/x|M; (ii) n-conversion
Az @ A (Mzx) = M (where x must not be freein M); (iii) and «-conversion
for recursion. The (-conversion corresponds to one step in recursive compu-
tation. For example, in case of RecVN@—Nat it is

° (RecNataNatag)a)) —, a,

o (RecNa=Natqg)(succr) —, gr((RecN®—Natgg)x).

Y (A, D) are certain auxilliary types used to define recursion from C to D. They
correspond to the types of functions that appear in standard recursive equations over C'. For
example, if C = Nat, A; = Nat (the type of constant 0), A; = Nat — Nat (the type of
successor S) in the definition of Nat, then T o (A1, D) = D, YN (A2, D) = Nat —
D — D. In more general dependent type case a detailed description of these auxilliary
types may be found in [18], p.178.

2We omit the contexts and types of terms.
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T is confluent and strongly normalizing with respect to 3r:-reductions
(directed conversions), i.e. every reduction sequence is finite and ends by
normal form which is unique up to a-conversion. Detailed description and
normalization theorems for 7;,, can be found in [8, 9]. Thus, the equiva-
lence relation on terms based on conversion (often called a8n-equality) is
decidable.

Closed terms and canonical elements.

As usual, closed terms are terms that have no free variables. In Tj,,, they
include such terms as succ(succ0) : Nat, Az : Bool.x : Bool — Bool €tc.
The terms that do not include variables at al, like succ(succ0) are called
constant terms.

Lemma 3.5. Let C be an inductive type, and = M : C'in T}, someclosed
term. If M is normd, then M has the form ¢; M’ where ¢; is one of the
constructors (introduction operators) of C.

Proof. We use standard properties of normal forms in typed lambda-
calculus (cf [8, 9]) and proceed by induction on the length of M. Since
M has type C' and C, being unductive type, does not contain —, M can-
not begin with \. In this case M is necessarily an application of the form
MoM,...M,, where al terms M, ..., M,, are normal closed terms, and M,
is not an application. M, cannot be a variable (it would be free). It cannot
begin with A (theterm M would be not normal). Two remaining possibilities
are that M, isan inductive type constructor ¢; (then we are done) or that M,
Isarecursor. If it is arecursor, then it is a recursor from some inductive
type C' to C', and M; should be of type C’. M, is closed normal term, and
by induction it begins by some constructor of C”. In this case (-reduction is
applicableto M and it isnot normal.

Someinductive types, like w-trees, have constructors that may take func-
tions as arguments, and this makes the precise (and useful) definition of
canonical elements difficult. When functional arguments are excluded (such
types are sometimes called 0-recursive [8, 9]), the lemma above permits to
identify the canonical elements with closed terms and to show that they are
the same as constant terms obtained by application of type constructors.

Definition 3.6. Let us call an inductive type O-recursive, if it is defined ac-
cording to the defintion 3.1 with additional restriction applied recursively:
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e ineach inductive schema 4 = A! — ... — A% — o, A? iseither
a O-recursive type (if it does not contain « freely) or « (without any
premise C.,).

Theorem 3.7. Let an inductive type C' be O-recursive, and - M : C in
T;.q be someclosed term. If M isnormd, then M is constant term built by
application using only constructors of 0-recursive inductive types.

Proof by induction on the length of M (using standard properties of nor-
mal terms). By lemma 3.5 M hastheform ¢; M;...M,, where My, ..., M,, are
closed terms whose number and types are defined by the inductive schema
corresponding to c;.

Let thisschemabe A = A! — ... — AF — q,

The type of ¢; is [C'/a]A. Those A’ in A that do not contain « are not
changed (they are 0-recursive) and those that are « are replaced by C. Thus,
theterms M, ..., M,, are al closed terms of O-recursive types, and inductive
hypothesis can be applied.

Definition 3.8. Let C bea0-recursiveinductivetype. We shall call itscanon-
ical elemensthetermst M : C built by application using only constructors
of 0-recursive inductive types (including constructors without argumens,
like O : Nat).

Example 3.9. An inductive type usually called product is defined as
A X B =45 Ind(a){pair : A — (B — a)}

(cf.[8,9], [18]). If wetake Nat x Nat, then al normal closed terms of this
type will be of the form pair(succ...(succ0)...)(suce...(succ0)...) (possibly
not the same number of succ).

Remark 3.10. If wetake sometypethat isnot O-recursive, say, 7., there are
closed terms of the form

lim((Rec™N™ =" (succ,0,))(Ax : Nat.\y : T,.y)) : T,

that contain not only constructors (introduction operators). Another example
is function space [A, B] = Ind(a){fun : (A — B) — a}. Thetype A —
B at the right is not 0-recursive. Now, if we take A = B there are closed
terms like fun(Ax : A.x) that are not canonical elements in the above-
mentioned sense.
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Categorical structureson T;,,. For all variants of categorical structure
we shall consider, the objects of the category 7,4 aretypes, described above.
Equality of objects is syntactic identity®. The morphisms from A to B are
closed terms (i.e.,termsthat do not contain free term variables) of type A —
B,i.e - f: A — B shouldbederivablein T;,,.

The categorical structures will differ only by equality (equivalence rela-
tion) on morphisms. Speaking about morphisms, we shall usually omit .
The compositionof f : A — B and f' : B — C isdefined as the (equiva-
lence class of) theterm Az : A.(f'(fx)), f' o f =aey Az : A.(f'(fx)). The
identity is defined as the (equivalence class of) idy =gep Az : Az : A — A.

Below we shall consider two main equivalence relations on morphisms,
If closedterms f : A — B are considered up to an-equality, we shall
speak about T;,,; with intensional equality.

Another equivalence relation, that we shall call extensional equality, is
defined by the following condition. Let f, g : A — B. Weshall call f and g
extensionally equal iff ft =3, gt for every closedterm¢ : Ain T, .

The axioms of category are trivialy satisfied for 7;,, with both variants
of equality.

Remark 3.11. Theintensional equality on T}, is decidable: indeed, to ver-
ify f =as, g theterms are reduced to normal form (7;,,, is strongly normal-
izing [8, 9]) and then a-convertibility is trivially verified. To the contrary,
extensional equality is not: the use of recursors permits to represent, e.g.,
all primitive recursive functions f : Nat — Nat. Their equality on canon-
ical elements of Nat coincides with ordinary equality of functions, and for
primitive recursive functions it is not decidable [14].

Remark 3.12. In general, an extensional equality on terms of functional
types f, g : A — B isdefined by some condition of the form:

e For all t of type A satisfying certain condition ft =,3,, gt.

Theequality f =.3, gimplies ft =3, gt. Theextensional equality weare
considering is sometimes called extensional equality in closed term model.
Thus the extensional equality always contains the intensional equality based
on afne.

3Technically it is more convenient to compare different kinds of equality only on mor-
phisms.
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Remark 3.13. If thetype Ain f : A — B is 0-recursive, then, according
to theorem 3.7, all closed terms ¢ : A represent canonical elements, and
extensiona equality we introduced corresponds to ordinary set-theoretical
equality of functions on the sets of canonical elements.

By T , we shall denote the full subcategory of 7},, whose objects are
0-recursive inductive types.

4. CaseStudies

4.1 Intensional and Extensional Equality in T;,,4

L et us consider two terms of T,,4:
e f1=95:Nat — Nat and

o fo = RecN=Nat(\y : Nat.succ)(succ0) : Nat — Nat.

Each term is a morphism of T},,. Each term represents also a function on
the terms of type Nat defined by f;(t) =aer fit.

Canonical elementsof Nat are 0 and terms succ(...(succ0)), and on any
canonica element n : Nat both f; and f5 havethevalue succn. At the same
time f; and f, are not intensionally equal: both are aready in normal form
and these normal forms are different.

We can define also a one side inverse to f; with respect to intensional
equality, given by f] =4e; RecVN=Not(\x : Nat.\y : Nat.z)0 (the value
of f] on succn will ben, the value on 0 will be 0). For the composition with

i,
Az 0 Nat.((RecN =N (\x - Nat.\y : Nat.z)0)(succx)) —,

Az Nat.(Az : Nat.\y : Nat.x)z(succx)) =g A\x : Nat.x =gef idyat-

If we compose f; with f5, applying the composition to canonical elements
we have

fi(f20) =3y, 0, fi(f2(n)) =gy ['(suCC) =830 1,
but the composition itself (Rec means RecNet—Nat)
Az @ Nat.((Rec(Ax : Nat.\y : Nat.x)0)(Rec(\y : Nat.succ)(succ0)z))

isnormal (i.e.,des not admit any reduction) and so it is not equal to id ;.
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e It can be shown that f, does not have left inverse w.r.t. intensiona
equality at all.

Outline of a proof. Observe that the term for = (RecNat=Nat()\y -
Nat.succ)(succ0))z isnormal and has type Nat. Consider any com-
position f5 o fo = Az : Nat.(f5(fox)) where f} dso is normal. If
it would reduce to id, at least one reduction would be possible, and,
taking into account the form of the terms, this reduction could be only
B-reduction, in particular f; must be of theform Ay : Nat.f). Simple
case analysis shows that the term [ fox/y] f5 will not allow any further
reductions (will be normal). This term contains Rec and so cannot
represent id.

e Of course, both f; and f, have left inverses w.r.t. extensional equality.
This behaviour can be seen as a case of conditional reversibility: f, is
reversible at the left if the arguments are canonical elements.

e More categorical view at this conditional reversibility would be that
some functor from the category T;,,, to the category of sets such that
the types become sets of their canonical elementsis applied first (and
equality of morphismsinthis“target” category isthe extensional equal-
ity of functions represented by A-terms).

4.2 Weak Terminal Objectsin T},4

An inductive type with one element may be defined in T;,,4 as Ind(a){c :
«}. Allowing some abuse of notation, we shall denote this type by {c}.
The constant ¢ may be considered as (the name of) its unigue element. The
related typing axiomisI' - ¢ : {c¢}. There are other such types, obtained by
changing c.

The definition of aterminal object T € T;,, as auniversa construction
(in the strong sense) is equivalent to the condition that for every object A €
T;nq there exists the unique f : A — T. For awed& terminal object only
the existence is required. If we take any of the types {c}, for any A thereis
Az A.c: A — {c}, but other non-equivalent closed terms of the same type
may exist (for example, defined using recursors).

The recursor Rect®/—4 hasthetype A — {c} — A, i.e.,the functions
from {c} to A are defined by application of Rec{®~4 toa : A, an obvious
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interpretation is that they are defined by their value on the unique element
c: {c}. Still, with respect to intensional equality Rect?t—{}¢ : {c} — {¢'}
isnot equal to Az : {c}.cd : {¢} — {c}. Moreover, with respect to this
equality the morphisms Az : {c}.c’ : {¢} — {}, \x : {d}.c: {d} — {c},
Reclad={Ye - {e} — {c}, Recl¥Y~{cke : {¢} — {c} are not mutually
inverse isomorphisms. For example, the composition of first two gives

Ay {ch (A {chd Az {}.0)y)) =pn Ay = {c}.c # Ny {c}y =qey idigy.

The composition of second two is anormal term and so also is not equal to
idycy. Itispossible to show that with respect to intensional equality they are
not isomorphisms at all.

The same remark as in the end of the previous subsection can be added
concerning conditional reversibility.

4.3 Product asa Weakly Universal Construction

Let us take as an example the notion of product A x B of two objects A, B
of acategory K. It can be defined using the notion of universal arrow from
diagonal functor A : K — K x K (in functor category) to the functor F :
{1,2} — K fromdiscretecategory {1,2} to K (with F'(1) = A, F'(2) = B).
The details can be found in [19], p.69. We shall skip them (only the fact
that this may be seen as a particular case of the notion of universal arrow
is important) and pass directly to more common equivalent definition using
projections.

The object A x B € Ob(K) is called product of two objects A, B €
Ob(K) iff

e there exist theuniquearrowsp, : Ax B — Aandp, : Ax B — B
(called projections) such that

o for every object C' € Ob(K) andtwoarrows f : C — A,g: C — B
there existsaunique arrow h : C' — A x B that makes the following
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diagram commuite:

The arrow h is denoted (f, g). It isusually called product (or pair) of f, g,
and f, g are called its components. Universality (in the strong sense) of this
construction isreflected by the condition of unicity of projectionsand ~. One
of the consequencesisthat A x B isunique up to isomorphism.

Let us consider now, how al this will work in 7T;,,. Given two types
A, B, an inductive type usually called product of A, B (cf. [18]) is defined
asfollows:

A X B =4 Ind(a)(pair : A — (B — a)).

Its canonical elements are terms of the form (pair s)t where s : A and ¢ :
B. There may be other elements that do not have the constructor pair at
their head. For example, if we admit open terms as elements of objects, the
variable x : A x B isanon-canonical element.

It turns out that in 7}, with intensional equality A x B can not be con-
sidered as product in the sense of strong universality.

As any inductive type, A x B in T}, comes equipped with recursion
operators. The recursion operator from A x B to D is a constant R :
(A — (B — D)) - (Ax B — D). The corresponding ¢-conversion
is(Rf)((pairty)ty) = (ft1)ta with f : A — (B — D), t; : Aty : B. No-
ticethatif s : A x B isnot of theform (pair t;)t, then the conversion is not
applicable. Let us denote R; and R, the recursion operatorsfrom A x B to
A and B respectively. Projections are defined now asp; = Ry(A\x @ A \y :
Bx): Ax B— Aandp, = Ry(Ax : ANy : B.y): Ax B — B.

Giventwoterms f : C — Aand g : C — B, h of the diagram () may
bedefined ash = (f, g) =aer Az : C.(pair f(z))g(z). The diagram will be
commutative, but what about the unicity of h?

LetC =AxBandh:(C — Ax Bbeidsxg = v : A x B.x. Let
f=pioh=p,g=0p20h = py. Thediagram () will be commutative.
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Let ustake h’ = (p1, p2). The diagram will be commutative, but » and 1’ are
not equal w.r.t. the intensional equality in 7;,,,.

The product in T},, with intensional equality isonly weakly universal. It
is possible to define another product as A x’ B =45 Ind(a)(pair’ : A —
(B — «)) (the only modification isthe name of the constructor). The “prod-
ucts’ A x B and A x’ B will not be isomorphic in T;,; with intensional
equality.

More precisely, let (f, g)" =aer Az @ C.((pair’' f(2))g(z)). The *candi-
dates’ to the role of isomorphisms are obvious:

0= (p,p) :Ax B— Ax"B, 0 ={p,p,): Ax'B— Ax B,

but they are not mutually inverse w.r.t. intensional equality. Using the tech-
nigue similar to that we used in 4.1, it is possible to show that there is no
isomorphism at all.

Remark 4.1. In fact, it is possible to consider the extensions of T}, that
include explicitly some product operator, and even add well-behaving re-
ductions like (p; o h,ps o h) = h but this will not completely solve the
problem, as the absence of unicity of product shows. To establish “equiv-
alence” of different product operators, it will be necessary to introduce more
reductions each time when one more product operator is added (cf. [8, 9]).

Remark 4.2. (Conditional inversibility.) Consider the following diagram:

c—%AxB éA x"B .
0/
The morphisms # and 8" are not mutually inverse w.r.t. intensional equality,
but they are mutually inverse conditionally, in the following sense. If h =
(f,g)forsome f: C — Aandg: C — Bthen (6" o0)oh = h. (Cf. with
the defintion of equality in the categories (S | T')*.)

4.4 Product and Extensional Equality in 77,

Obvioudly, T? , isclosed w.r.t. product defined asinductive type. Notice that
it is not the same with functional space [A, B]. Below we consider 77 , with
extensional equality.
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Theorem 4.3. In T} , with extensional equality the product construction de-
scribed above is universal in ordinary sense.

Proof. We need to show the unicity of % in diagram (x) above. Noticethat
thetype A x B is0-recursive. Consider another morphismb’ : C' — A x B
that makes the diagram commutative. Let us take any canonical element c¢ :
C. Since f, g, h, h/ are represented by closed terms, theterms f¢, gc, he, W ¢
are closed as well, and theorem 3.7 can be applied. It follows immediately
that h'cpair a b for some canonical elementsa : A, b : B. Notice that he =3
pair (fe) (ge). Application of p; and p, givesa = fe, b = ge and thus h and
h' are extensionnally equal.

Corollary 4.4. The category T? , with extensional equality and product x
defined as above is cartesian. Product is unique up to extensional isomar-
phismin T;,,4.

5. Discussbn, Applications and Per spectives

The simple cases studied above may easily give an impression of “toy ex-
amples’. To render them their due significance, we need to discuss them in
a broader context, consider possible applications and perspectives of future
research.

5.1 Discussion

The calculus T}, has been chosen because of relative simplicty of its de-
scription, but it has considerable computational power. the inductive types
of T;,, together with the associated recursion operators are sufficient to de-
fine al functionals of finite type [10, 15, 30].

The definition of inductive types and recursion in T;,, is a direct re-
striction to the simply typed case of the genera definition used in powerful
dependent type theories (we used, similarly to [8, 9, 27] the restricted form
of the definitions from Z. Luo’s system UTT [18]. Luo’'s UTT is not very
much different in this respect from Martin-Lof type theory or the Cdculus
of Constructions used in Coq).

In the sense of metatheory, all inductive types of T;,; are aso definable
in UTT or in proof assistant Coqg, but the category that contains these types
only is not definable internally.
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We did not include in T;,,; the types Prop, Prf, identity types etc. In
fact, we were not redlly interested in logical power of T},4, but only in its
computational properties.

In type theories with unductive types n-rules usually are understood in
generdlized sense. E.g., in [18] it is explained how in UTT a logical 7-
rule can be defined for an inductive type A defined by any finite sequence
of inductive schemata O, ..., ©,, and logical validity of »-rules is proved
(p.201)%.

It is well known, that in the presence of »n-rules and identity types the
type-checking is indecidable (since conversion depends on inhabitance of
types, cf. [13]). To our opinion, this makes the type theory with these rules
and types useless as an underlying system for introduction of a categorical
structure, because even the composability of morphismswill be undecidable
5

Notice that if in the dependent type theories mentioned above the n-rules
are not included at all, the situations similar to the situations considered in
our examples will be easily reproduced.

Another reason why we did not include logical machinery in T;,,, is that
one of the main features of logical frameworks is that they permit to define
application-oriented type theories. These theories may include some (not
all) of thetypesthat may be defined in the theory (e.g., someinductive types,
some types such as Prop, Prf etc.), may contain, or not n-rules, and even
contain some additional user-defined conversions. The question, what kind
of categorical structure may exist on such a type theory (e.g. monoidal,
cartesian, cartesian closed etc.) is of great interest, but there is no general
theorem describing in advance all necessary properties of the underlying
system, in particular with respect to extensional and intensional equality. To
consider within this paper not only computational, but also logical properties
of such intermediate systems would be a distraction.

To makethisremark more clear, let us consider in more detail someideas

4Another important class of rulesis the class of filling-up rules. As Luo noticesin [18],
p.201, “The logical n-rules express that every object is equal to a canonical object and the
filling-up rules express that the elimination operator covers all of the use of the inductive
data type”

5The distinction has to be made between the existence of certain categorical models of
alogica system that may be useful for its semantics, and introduction of an application-
oriented categorical structure on the system itself that is mostly considered in this paper.
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and results of [8, 9, 27] S.

The principal ideaexplored in these works was that some reductions (in-
teresting from computational point of view) may be added in such a way
that strong normalization (SN) and Church-Rosser property (CR) will be
preserved. The system considered there was an extended version of 7;,4
described above, including canonical surjective pairing and terminal object
(below we shall call this system T;,,; as well). One may note, that a depen-
dent type system (Luo’'s UTT) extended with these reductions was consid-
ered in the thesis (in french) of another ph.d. student of S. Soloviev, Lionel
Marie-Magdeleine [21] but there is no easily accessible publications of his
work.

Among new reductions studied there was the reduction for isomorphism
of “copy” between inductive types. For every inductive type A in T}, and
its copy A’ that differs only by different choice of names of introduction
operators in its definition there exist canonical closed termsc : A — A’
and ¢ : A — A (c and ¢ are defined by recursion in T;,;, over A and
A’ respectively). The new reduction (called y-reduction) was defined by
rewriting rules ¢(ct) — ¢ and ¢(c't') — t’. One may say, that y-reduction
makes copy an intensional isomorphism.

Other reductionsincluded: n-reductionsfor products defined asinductive
types; the reductions (similar to y-reduction) that “make intensiona” the
isomorphisms between products defined as inductive types and canonical
product defined by pairing; n-rules for finite types.

It was shown that T},,; with these reductionsis SN and C' R. Of course
new examples that show the difference between extensional and intensional
equality similar to elementary examples considered above may be constructed
inthe extended system. The fundamental difference between extensional and
intensional equality cannot be cancelled by “local” extensions of the notion
of intensional equality.

5.2 Applications

The importance of categorical models for computer science motivates also
the study of behaviour of extensional and intensional equality in these mod-

619, 7, 27] are closely connected with ph.d. thesis of David Chemouil [8] (in French).
Second author was the supervisor of histhesis.
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els. We would like to attract attention to reversible computations as a possi-
ble domain of applications. In particular, the link between wegk universality
and conditional reversibility of computations may be exploited.

Reversible computations are actively studied since 1960es. Works on
reversible computations link together such distant domains of science as
logics, theory of algorithms, physics, thermodynamics and even biology,
cf. [3, 17, 23, 31]. In practice, though, most of the computations considered
asreversible arereversible only in more or lessidealized models. Sometimes
(but not always) the pre-conditions that make these models adequate may be
clearly identified.

For exampl e, the conditions may be purely mathematical. They may also
concern the treatment of information (history of computations), the physical
properties of a system (quantum state) etc.. Mathematical conditions may be
concrete, e.g., expressed in terms of values of certain parameters, like non-
zero determinant of a matrix, or more abstract (expressed in general terms
characterizing the environment or the history of computations). Below we
take into account only theoretical aspects of reversible computations related
to mathematics and computer science.

From the categorical point of view, the reversible computations may be
considered as morphisms of some category that are isomorphisms, or some-
times have only one-side inverse. If these morphisms are to be treated by
computers, they should have some sort of termal representation, and this
means that arise the problems concerning extensional and intensional equal-
ity. (Usually efficient treatment of isomorphisms by computers requires in-
tensional equality.)

In the literature on reversible computations the history of computations
Is usually understood in the sense derived from Turing-machine protocols
(commonly used are Turing machines with an additional history tape, cf. [3,
31]). So, pre-conditions of reversibility formulated in terms of history would
require complete or partial preservation of history in this sense. From the
point of view of category theory, natural are pre-conditions expressed in
categorical terms, e.g. preliminary composition of a given morphism with
some other morphism, application of a functor etc. This understanding of
conditions of reversibility and that expressed in terms of ’history tape’ are
not mutually exclusive, but the categorical view accentuates other aspects of
computation.
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Let us consider several examples.

e If take the composition # o h asin remark 4.2 of previous section, if
h =< f,g > then thereexists ¢’ such that ¢’ o (6 o h) = h (the part of
computation represented by 6 can be reversed).

e Let f : A — B beany morphismin 77 ,, and assume that f isin-
versible on canonical elementsof A and B, i.e.,thereexists f' : B —
A such that for every canonical element a : A f'(fa)) = a and for
every canonical element b : B f(f'(b)) = b. Then by theorem 3.7 f is
inversible in the sense of extensional equality. From the point of view
of reversible computations, the condition of reversibility is that f is

applied to a closed term.

e Thesame may be expressed more” diagrammatically”. Let usconsider
adiagram of the form

AgBoa D Iia Ivalp

in T;,q, Where Ag, A and B are O-recursive and f is inversible on
canonical elements. Intermediate types Ay, ..., A, may be arbitrary
types of 7},,4. Then there exists f’ suchthat (f' o f)o (f,o...0 fy)) =

fn ©...0 fO-

e The following example comes from our study of graph rewriting. In
categorical graph rewriting [24] most often are used so called single
pushout (SPO) and doubl e pushout (DPO) approaches. Single (respec-
tively, double) pushout construction’ is used to define graph transfor-
mation rules. Working on generalization of SPO and DPO to the case
of attributed graphs [5, 22] we arrived to the situations where only
the existence of a wea&k pushout is guaranteed. Consider two weak

"We do not go into details here how the categories of graphs, equality of morphismsin
these categories etc. are defined.
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pushouts generated by the same " span” (f, g):

B/AXC .

Because of week universality h and A’ are not in general mutually
inverse isomorphisms, but at the same time weé& universality means
commutativity of all diagrams above. For h and #/, in particular, it
means (W' oh)o (fiof) = fiofand(hoh’)o(geog) = fiog. This
can be seen as conditional reversibility.

These observations show theinterest of application of diagrammatic meth-
ods and category theory to the theory of reversible computations. At the
practical side, the use of graph rewriting techniques for treatment of dia-
grams may be advised.

5.3 Perspectives

In this paper we considered as main applications of our analysis of wegk uni-
versality the applications to the study of reversible computations. It would
be natural, if we would look at the perspectives in the same direction.

As we have outlined above, wed& universality is related to conditional
reversibility. Our motivating examples were coming mostly from categorical
type theory. The same modelling language, categorical type theory, suggests
that other forms of conditional reversibility would be interesting to study in
future.

One of such forms could be context-dependent reversibility. Let usrecall
that the notion of retraction in A-calculus, first defined in [6] (cf. also [28])
is context-dependent 8.

8Thetype p isaretract of type 7 if thereareterms C : p — rand D : 7 — p (Witnesses)
suchthat DoC' =g, Az”.x [28].Witnesstermsin this definition may contain free variables.
If acontext (alist of typed free variables) is fixed, no witness may exist for some contexts.
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More general question isthe meaning of different kinds of equality when
reversibility of computations is studied. It seems that there is little inter-
action between research communities studying reversible computations in
connection with their physical (technical) realisation, computer architecture,
thermodynamics etc., and more theoretical aspects such as meaning of re-
versibility itself. What does change when we consider the notion of re-
versibility with respect to different kinds of equality? When extensional and
intensional equality are considered? When we modify the notion of equality
between terms (programs), introducing new conversions? All this seems to
be an important subject for future study.

At more theoretical side, it would be interesting to explore the behaviour
of categorical universal constructionswith respect to different types of equal-
ity in more powerful systems of \-calculus (with or without inductive types).

6. Conclusion

In purely mathematical approach to category theory varioustypes of equality
are treated indifferently, as part of definition of categorical structure, and no
special roleis given to intensional equality.

We considered in this paper severa examples of categories based on
T;na, @ System of lambda-calculus with inductive types and recursion. The
aim was to underline the connection between the “strength” of categorical
universal constructions and equality of morphisms treated under the angle
of computational efficiency (decidable intensional equality and extensional
equality that isin genera undecidable). The examples were rather elemen-
tary, but illustrated specific properties of categories with intensional equality
(typically, used in computer science) with respect to basic universal con-
structions.

We paid specia attention to another domain of research interesting for
practical computing. So called “reversible computations” are actively stud-
ied nowadays. From categorical point of view, the reversible computations
may be considered as morphisms of some category that areisomorphisms, or
sometimes have one-side inverse. The equality of morphismsin this context
iIsusualy intensional.

The fact that in most cases there exist only wegly universal construc-
tions may be connected with the notion of conditional reversibility. Ca-
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egory theory and categorical logic (type theory, lambda calculus) suggest
new forms of reversibility conditions that were not considered before in the
study of reversible computations and are much lighter (and may be more
practical) than the conditions concerning the history of computation in the
style of Turing machine protocols.
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