
Résumé. On montred’abord comment le typed’égalit é (”extensionnelle” ou
” intensionnelle”) dulambdacalcul avec typesinductifset récursion influence
les constructions universelles dans certaines catégories basées sur ce calcul
(l’ universalit é faible est reli ée à l’ égalit é intensionnelle). Ensuite on établit
un lien entre universalit é faible et réversibilit é conditionnelle dansla théorie
ducalcul réversible.
Abstract. First we consider how the type of equality (extensional or inten-
sional) in lambdacalculuswith inductive types and recursion influences uni-
versal constructions in certain categories based on this calculus (weak uni-
versality is connected with intensional equality) . Then we establish the link
between weak universality and conditional reversibility in the theory of re-
versible computations.
Keywords. Weak Universality in Categories; Extensional and Intensional
Equality in TypeTheory; Conditionnally Reversible Computations.
Mathematics Subject Classification (2010). 03B15; 03D75; 03D80;
18A15;18A40.

1. In troduction

Mathematical models based on category theory are often used in computer
science [1], but the approaches to categories in category theory and in com-
puter science are very different. Researchers in “mainstream” category the-
ory usually seek higher levels of abstraction and universality, while in com-
puter science categories are used (if at all) as a source of more or less con-
crete models and constructions with the main objective to provide a viable
proof-of-concept for particular architectural solutions with respect to their
consistency, completeness and other important properties. Even in case of a
highly general and abstract categorical notion of monad, mostly concreteas-

 CAHIERS DE TOPOLOGIE ET Vol. LIV-4 (2013)

GEOMETRIE DIFFERENTIELLE CATEGORIQUES

by Sergey BARANOV and Sergei SOLOVIEV

EQUALITY IN LAMBDA CALCULUS. WEAK UNIVERSALITY

IN CATEGORY THEORY AND REVERSIBLE COMPUTATIONS

- 264 -

pectsof thisnotion areexploited, for example, in programming (theHaskell
language), compilation (MLj), and development of (implementable) categor-
ical abstract machines (cf. [2], [4]).

One point where this difference of approaches may be seen very clearly,
is the role played by computational aspects of equality. In category theory
theequality of objectsandmorphismsisincluded indefinitionsof categories,
but seldom any attention ispaid to thecomputational aspectsof thisequality.
If computational aspectsof equality are taken into account, it isdone in con-
nection with general questions of decidability/undecidability. In computer
science their conceptual (and practical) importance is much greater.

There is, for example, an opposition between so called intensional and
extensional equalities. Two functions are extensionally equal if they always
produce equal outputs for equal inputs. Functions in computer science are
usually represented by some syntactical expressions (programs). In differ-
encefrom extensional equality, intensional equality isdefined w.r.t. acertain
system of conversionsof theseexpressions (syntactic transformationscorre-
sponding to certain basic identities).

Intensional equality plays in computer science much greater role than
in “mainstream” mathematics based on classical logic. One would be not
mistaken to say that verification of equality via syntactic transformations of
programsand syntactic expressions is theprincipal method used for equality
check in computer science. An obvious reason is that in general verifica-
tion of extensional equality on a (potentially) infinitedomain is indecidable.
Even on a finite domain the complexity of this check may be overwhelm-
ing. Another source of difficulties concerning extensional equality is that
the “static” equality check isonly aspecial case. Dynamic equality check is
in practice more common, e.g. the elements of datatypes may be generated
dynamically by some process. In categories used in computer science the
datatypes often play the role of objects. The importance of equality on ob-
jects and morphisms for various categorical constructions needs no further
argument.

One of our main observations is that many standard universal construc-
tions of category theory become weakly universal when considered in cate-
gories with intensional equality used in computer science. We explore this
fact in context of on-going research in computer scienceconcerning, for ex-
ample, the notion of canonical elements of inductive types [20] (one may

BARANOV & SOLOVIEV - EQUALITY IN LAMBDA CALCULUS...

- 265 -

speak also about “concrete” and “abstract” elements), thethemeof reversible
computation [23] (where we introduce the notion of conditional reversibil-
ity), etc.

As a main “ illustration tool” we define several categorical structures on
simply typed lambda-calculus with inductive types and recursion operators
Tind (cf. [8, 9]). Al l havetypesasobjectsbut differ by thenotion of equality.
There is a well studied structure of free cartesian closed category on sim-
ply typed lambda-calculus with surjective pairing and terminal object with-
out inductive types [16]. We considered the calculus with inductive types
and recursion because it strengthensand makesmoreexplicit computational
aspects, and we think that categorical structures on Tind are of interest in
themselves when computational aspectsof category theory arestudied.

The simple opposition of the approaches of the “mainstream” category
theory and computer science does not, of course, give a complete picture
of contemporary research in the domain. This is why, to complete this in-
troduction, we have to outline the place of this paper with respect to recent
research in categorical logic and type theory.

One of the first works where the relationship of extensional and inten-
sional equality in type theory (including important categorical models) has
been studied in depth was the habilitation thesis of Thomas Streicher [29].
The work of Streicher contains many profound results, but its main motiva-
tion lies in semantics of type theory: “ In this thesis we will give semantic
proofsof inderivability for most of thesepropositionswhich arederivable in
extensional typetheory but haveresisted any attempt to derivethem formally
in ICST” (Intuitionistic ConstructiveSet Theory), [29], p.5.

The book by Bart Jacobs [13] on categorical logic and type theory also
ismostly devoted to categorical semantics: “Theemphasishere lieson cate-
gorical semantics.” [13], p.7.

The approach of this paper differs in that our interest lies in categorical
structures defined on various systems of logic and type theory considered
as a tool to study the phenomena that are more or less external to logic and
type theory as such. For example, in his previous work the second author
applied categorical structures defined on the systems of propositional logic
to study coherence in categories [26], isomorphism of types [25, 7, 27] etc.
In this paper we are interested in conditionally reversible computations as a
possibleapplication.

BARANOV & SOLOVIEV - EQUALITY IN LAMBDA CALCULUS...

- 266 -

From certain point of view, our approach may have some affinity with
the approach of “Homotopic Type Theory” , or HOTT [12]. This subject is
“hot” nowadays (slight pun intended). More seriously, we think that one of
themotivationsfor development of thistheory (independent of philosophical
argumentsfor theUnivalenceAxiom) liesin thefact that work with proof as-
sistants based on intensional type theory contains many unpleasant surpises
for the naive user, as a consequence of the difference between intensional
and extensional equalities (cf. [29]).

To our opinion, the Univalence Axiom may force the collapse of many
relevant mathematical structures (when isomorphic objects must be distin-
guished). It may be too strong, but it is not contradictory since there exist
interesting models [12]. Dueto itspower, theefficient work with intensional
equality in remaining structures may become possible, and the univalence
foundations program will probably produce new and efficent tools for proof
assistants.

2. Universal and Weakly UniversalConstructions

In this section we kept, for the history’s sake, the notation used by S. Mac
Lane.

Mac Lane [19], p.55, defines thenotion of auniversal arrow as follows.

Definition 2.1. If S : D → C is a functor and c is an object of C, then a
universal arrow fromc to S isa pair 〈r, u〉 consisting of an object r of D and
an arrow u : c → Sr of C, such that to every pair 〈d, f〉 with d an object
of D and f : c → Sd an arrow of C, there is a unique arrow f ′ : r → d of
D with Sf ′ ◦ u = f . In other words, every arrow f to S factors uniquely
through theuniversal arrow u, as in thecommutativediagram

c

||

²²

Sr

Sf ′

²²

u // r

f ′

²²

c
f

// Sd d

Equivalently (Mac Lane continues), u : c → Sr is universal from c to S
when the pair 〈r, u〉 is an initial object in the comma category (c ↓ S)... As
with any initial object, it follows that 〈r, u〉 is unique up to isomorphism in
(c ↓ S); in particular, theobject r of D is uniqueup to isomorphism in D.

BARANOV & SOLOVIEV - EQUALITY IN LAMBDA CALCULUS...

- 267 -

The dual concept of universal arrows from a functor S : D → C to an
object c ∈ C can be defined as well. It is used, for example, to define a
product in C ([19], p.58).

Let uselaboratethis in slightly moredetails. Recall that commacategory
(T ↓ S) of two functors T : E → C and S : D → C is the category whose
objectsare triples 〈e, d, f〉 with d ∈ Ob(D), e ∈ Ob(E) and f : Te → Sd ∈
Mor(C), and whose morphisms 〈e, d, f〉 → 〈e′, d′, f ′〉 are pairs 〈k, h〉 of
arrows, k : e → e′ ∈ Mor(E), h : d → d′ ∈ Mor(E) such that thediagram

(∗) Te)
Tk //

f

²²

Te

f ′

²²

Sd
Sh // Sd′

is commutative. The composite 〈k′, h′〉 ◦ 〈k, h〉 is 〈k′ ◦ k, h′ ◦ h〉 when de-
fined [19], p.46. Al l the cases considered above may be seen as the cases
of this definition with a particular choice of functors. For example (as Mac
Lane notices), in case of (c ↓ S) one may take the constant functor with
value c asT .

Notice that theequality of objects in (T ↓ S) is “heterogenous” :

• 〈e, d, f〉 = 〈e′, d′, f ′〉 iff e = e′ in E, d = d′ in D, and f = f ′ in C.

Theequality of morphismscomesfrom D and E: 〈k, h〉 = 〈k′, h′〉 iff k = k′

in E and h = h′ in D.

Remark 2.2. Still, other equality relations may be of use. Below we shall
consider, for example:

〈k, h〉 =w 〈k′, h′〉 : 〈e, d, f〉 → 〈e′, d′, f ′〉 iff Sh ◦ f = Sh′ ◦ f.

(Becauseof thecommutativity of thesquareabove, this isequivalent also to
f ′ ◦ Tk = f ′ ◦ Tk′.)

Obviously, if we take the relation =w instead of = we obtain a factor
category of (T ↓ S) that wewill denoteby (T ↓ S)∗.

Initiality of 〈r, u〉 above means that for any other object 〈r′, u′〉 there
exists a unique arrow f : r → r′ that makes (*) commutative. If we have

BARANOV & SOLOVIEV - EQUALITY IN LAMBDA CALCULUS...

- 268 -

another realization 〈r′, u′〉 of the universal arrow, then there exist unique
f : r → r′ and f ′ : r′ → r that must bemutually inverse isomorphisms.

In spite of its triviality, let us recall the proof of this fact, since we will
need in the end of this section to show exactly what the difference is in case
of weak universality. First, let us take 〈r, u〉 itself as 〈r′, u′〉. The identity
morphism 1r : r → r may be taken as f ′ in the definition, and because
of unicity it is the only f ′ possible. Now, if we take a different initial pair
〈r′, u′〉 then by definition we will have certain f ′ : r → r′ and f ′′ : r′ → r,
such that u = Sf ′′ ◦ (Sf ′ ◦ u) = S(f ′′ ◦ f ′) ◦ u. By unicity f ′′ ◦ f ′ = 1r. In
asimilar way, wederive that f ′ ◦ f ′′ = 1r′ and hencef ′ and f ′′ aremutually
inverse isomorphisms in D.

The definition of a weak universal arrow ([19], p.235) differs from the
definition of a universal arrow only in that f ′ in the diagram is not required
to be unique. As Mac Lane remarks, it is possible to modify all the various
types of universals, defining weak products, weak limits, weak coproducts
(requiring just existence rather than uniqueness in each case). There is no
moreunicity up to isomorphism, but it doesnot mean that instead of isomor-
phismswewill havearbitrary arrows. Someconditional reversibility will be
preserved.

In theproposition below weusethesamenotation as in thedefinition 2.1
above.

Proposition 2.3. Let the pair 〈r, u〉 be a weak universal arrow. Then r is
uniqueup to isomorphism in the factor category (c ↓ S)∗.

Proof.Without unicity condition, we still have the equalitiesu = S(f ′′ ◦
f ′)◦u and u′ = S(f ′ ◦f ′′)◦u′, and they correspond exactly to thedefinition
of isomorphism in thecategory (c ↓ S)∗.

Remark 2.4. The property that defines an isomorphism in (c ↓ S)∗ may be
seen as conditional reversibility (in this case, the reversibility that has the
composition with u as aprecondition, and “modulo” application of S).

Of course, similar proposition will hold also for dual case.

3. Thesystem Tind

The system of λ-calculus considered below is a subsystem of the simply
typed λ-calculuswith inductive types, considered in detail in [8, 9, 7, 27]. It

BARANOV & SOLOVIEV - EQUALITY IN LAMBDA CALCULUS...

- 269 -

ismorerestricted: weexcluded from thesyntax the“canonical” terminal ob-
ject and pairing. In [8, 9, 7, 27] therelationship of this “canonical” datawith
singletonsand pairing defined using inductivetypeconstruction isstudied in
presence of additional reductions. Here we want to use it only to illustrate
thegeneral principlesdiscussed above, and theseextradataarenot included.

Thesystem considered in [8, 9, 7, 27] wasitself obtained from thesystem
UTT of Z. Luo [18] by a series of simplifications. UTT is a dependent type
theory closely related to Martin-Löf type theory and Calculus of Construc-
tions. Our system wasobtained by a) retaining only non-dependent types, b)
exclusion of kinds, in particular thekind Type, typeuniverses, unpredicative
type Prop and all logical part of UTT. Al l machinery concering inductive
types that was retained iswell known. It isaparticular caseof moregeneral
definitions for dependent types that can be found in thebook of Z. Luo [18].
This is why below we do not give, for example, a self-contained definition
of recursion operators over inductive types in Tind.

Definition 3.1. Types are either atomic types or obtained by application of
typeconstructors.

Atomic types are elements of a finite or infinite set S = {α, β, . . .} of
typevariables.

Typeconstructors are:

• → for functional types, which constructsA → B for any typesA and
B

• Ind, defined as follows: let C be an infinite set of introduction opera-
tors (constructors of elements of inductive types), with C ∩ S = ∅. an
inductivetypewith n constructorsc1, . . . , cn ∈ C, each of themhaving
thearity ki (with 1 ≤ i ≤ n), has the form:

Ind(α){c1 : A1

1
→ . . . → Ak1

1
→ α | . . . | cn : A1

n → . . . → Akn

n → α},

Here, every A ≡ A1

i → . . . → Aki

i → α is an inductive schema, i.e.,
Aj

i is:

– either a type not containing α; (wecall this Aj
i a non-recursive

operator);

BARANOV & SOLOVIEV - EQUALITY IN LAMBDA CALCULUS...

- 270 -

– or a type of the formAj
i ≡ C1 → . . . → Cm → α, whereα does

not appear in any Cℓ∈1..m (such Aj
i are called strictly positive

operators).

Here→ associates to the right, i.e., C1 → C2 → ...α means (C1 →
(C2 → ...α)...); Ind(α) binds thevariableα.

Example 3.2. (The types Bool, Nat, functional space, and Tω, the type of
ω-trees, as inductive types.)

Bool =def Ind(α){T : α |F : α}
Nat =def Ind(α){0 : α | succ : α → α}
[A,B] =def Ind(α){fun : (A → B) → α}
Tω = Ind(α){0ω : α | succω : α → α | limω : (Nat → α) → α}.

Definition 3.3. Let V bean infiniteset of variablesV (withV∩S = V∩C =
∅). Theset of λ-terms is generated by the following grammar rules:

M ::= c |RecB→D |x | (λx : B · M) | (M M)

wherex ∈ V, c ∈ C, B and D are arbitraty types, and RecB→D denotes the
recursion operator fromB to D (for details, see [8, 9] , [18]).

WewriteM0M1...Mn instead of (...(M0M1)...Mn) to reducethenumber
of parentheses (associativity to the left). Al l terms and types are considered
up to α-conversion, i.e., renaming of bound variables. Context Γ is a set
of term variables with types x1 : A1, ..., xn : An (x1, ..., xn should be dis-
tinct). Γ, ∆ denotes union of the contexts Γ, ∆ (we assume that Γ, ∆ have
no common term variables).

Definition 3.4. Therearethefollowing typing axiomsand rulesfor theterms
defined above (A,B,D denotearbitrary types, Γ is an arbitrary context).

Axioms:

• Γ, x : A ⊢ x : A,;

• For each inductive type C = Ind(α){c1 : A1 | . . . | cn : An} and
1 ≤ i ≤ n

Γ ⊢ ci : Ai[C/α]

(e.g., if C = Nat, then Γ ⊢ 0 : Nat and Γ ⊢ succ : Nat → Nat);

BARANOV & SOLOVIEV - EQUALITY IN LAMBDA CALCULUS...

- 271 -

• For C as aboveand any typeD theaxiom 1:

Γ ⊢ RecC→D : ΥC(A1, D) → ... → ΥC(An, D) → C → D.

Typing rules.

Γ, x : A ⊢ M : B

Γ ⊢ (λx : A · M) : A → B
(λ)

Γ ⊢ M : A → B Γ ⊢ N : A

Γ ⊢ (M N) : B
(app)

The constant RecC→D is called the recursor from C to D. Notice that
applying it (using the rule app) to the terms M1 : ΥC(A1, D), ...,Mn :
ΥC(An, D) we define the function RecC→DM1...Mn : C → D. The fol-
lowing derived rule is often included:

Γ ⊢ Mi : ΥC(Ai, D) (1 ≤ i ≤ n)

Γ ⊢ (RecC→D M1 . . . Mn) : C → D
(elim)

Normalization and intensional equality. The terms of the system Tind

are considered up to equality generated by conversion relation. The α-
conversion (renaming of bound variables) was already mentioned. Other
conversionsare:2 (i) β-conversion (λx : A.M)N = [N/x]M ; (ii) η-conversion
λx : A.(Mx) = M (where x must not be free in M); (iii) and ι-conversion
for recursion. The ι-conversion corresponds to onestep in recursivecompu-
tation. For example, in caseof RecNat→Nat it is

• (RecNat→Natag)(0) →ι a,

• (RecNat→Natag)(succ x) →ι gx((RecNat→Natag)x).

1ΥC(A,D) are certain auxilliary types used to define recursion from C to D. They
correspond to the typesof functions that appear in standard recursiveequationsover C. For
example, if C = Nat, A1 = Nat (the type of constant 0), A2 = Nat → Nat (the type of
successor S) in the definition of Nat, then ΥNat(A1,D) = D,ΥNat(A2,D) = Nat →
D → D. In more general dependent type case a detailed description of these auxilliary
types may be found in [18], p.178.

2Weomit thecontexts and types of terms.

BARANOV & SOLOVIEV - EQUALITY IN LAMBDA CALCULUS...

- 272 -

T is confluent and strongly normalizing with respect to βηι-reductions
(directed conversions), i.e. every reduction sequence is finite and ends by
normal form which is unique up to α-conversion. Detailed description and
normalization theorems for Tind can be found in [8, 9]. Thus, the equiva-
lence relation on terms based on conversion (often called αβηι-equality) is
decidable.

Closed termsand canonical elements.
As usual, closed termsare terms that haveno freevariables. In Tind they

include such terms as succ(succ 0) : Nat, λx : Bool.x : Bool → Bool etc.
The terms that do not include variables at all, like succ(succ 0) are called
constant terms.

Lemma 3.5. Let C be an inductive type, and ⊢ M : C in Tind someclosed
term. If M is normal, then M has the form ciM

′ where ci is one of the
constructors (introduction operators) of C.

Proof. We use standard properties of normal forms in typed lambda-
calculus (cf [8, 9]) and proceed by induction on the length of M . Since
M has type C and C, being unductive type, does not contain →, M can-
not begin with λ. In this case M is necessarily an application of the form
M0M1...Mn where all terms M0, ...,Mn are normal closed terms, and M0

is not an application. M0 cannot be a variable (it would be free). It cannot
begin with λ (theterm M would benot normal). Two remaining possibilities
are that M0 isan inductive typeconstructor ci (then wearedone) or that M0

is a recursor. If it is a recursor, then it is a recursor from some inductive
type C ′ to C, and M1 should be of type C ′. M1 is closed normal term, and
by induction it begins by some constructor of C ′. In this case ι-reduction is
applicable to M and it is not normal.

Someinductivetypes, likeω-trees, haveconstructors that may takefunc-
tions as arguments, and this makes the precise (and useful) definition of
canonical elementsdifficult. When functional argumentsareexcluded (such
types are sometimes called 0-recursive [8, 9]), the lemma above permits to
identify the canonical elements with closed terms and to show that they are
thesameasconstant terms obtained by application of typeconstructors.

Definition 3.6. Let us call an inductive type 0-recursive, if it is defined ac-
cording to thedefintion 3.1 with additional restriction applied recursively:

BARANOV & SOLOVIEV - EQUALITY IN LAMBDA CALCULUS...

- 273 -

• in each inductive schemaA ≡ A1

i → . . . → Aki

i → α, Aj
i is either

a 0-recursive type (if it does not contain α freely) or α (without any
premiseCm).

Theorem 3.7. Let an inductive type C be 0-recursive, and ⊢ M : C in
Tind be someclosed term. If M is normal, then M is constant term built by
application using only constructors of 0-recursive inductive types.

Proof by induction on the length of M (using standard propertiesof nor-
mal terms). By lemma3.5 M has the form ciM1...Mn whereM1, ...,Mn are
closed terms whose number and types are defined by the inductive schema
corresponding to ci.

Let this schemabeA ≡ A1

i → . . . → Aki

i → α.
The type of ci is [C/α]A. Those Ai

j in A that do not contain α are not
changed (they are0-recursive) and those that areα are replaced by C. Thus,
the termsM1, ...,Mn areall closed termsof 0-recursive types, and inductive
hypothesis can beapplied.

Definition 3.8. Let C bea0-recursiveinductivetype. Weshall call itscanon-
ical elementstheterms⊢ M : C built by application using only constructors
of 0-recursive inductive types (including constructors without arguments,
like0 : Nat).

Example3.9. An inductive typeusually called product is defined as

A × B =def Ind(α){pair : A → (B → α)}

(cf. [8, 9], [18]). If we takeNat×Nat, then all normal closed termsof this
typewill beof theform pair(succ...(succ 0)...)(succ...(succ 0)...) (possibly
not thesamenumber of succ).

Remark 3.10. If wetakesometypethat isnot 0-recursive, say, Tω, thereare
closed terms of the form

lim((RecNat→Tω(succω0ω))(λx : Nat.λy : Tω.y)) : Tω

that contain not only constructors(introduction operators). Another example
is function space [A,B] = Ind(α){fun : (A → B) → α}. The type A →
B at the right is not 0-recursive. Now, if we take A = B there are closed
terms like fun(λx : A.x) that are not canonical elements in the above-
mentioned sense.

BARANOV & SOLOVIEV - EQUALITY IN LAMBDA CALCULUS...

- 274 -

Categor ical structures on Tind. For all variants of categorical structure
weshall consider, theobjectsof thecategory Tind aretypes, described above.
Equality of objects is syntactic identity3. The morphisms from A to B are
closed terms(i.e.,termsthat do not contain freeterm variables) of typeA →
B, i.e. ⊢ f : A → B should bederivable in Tind.

The categorical structures will differ only by equality (equivalence rela-
tion) on morphisms. Speaking about morphisms, we shall usually omit ⊢.
The composition of f : A → B and f ′ : B → C is defined as the (equiva-
lence class of) the term λx : A.(f ′(fx)), f ′ ◦ f =def λx : A.(f ′(fx)). The
identity isdefined as the (equivalenceclassof) idA =def λx : A.x : A → A.

Below we shall consider two main equivalence relations on morphisms.
If closed terms f : A → B are considered up to αβηι-equality, we shall
speak about Tind with intensional equality.

Another equivalence relation, that we shall call extensional equality, is
defined by the following condition. Let f, g : A → B. Weshall call f and g
extensionally equal iff ft =αβηι gt for every closed term t : A in Tind.

The axioms of category are trivially satisfied for Tind with both variants
of equality.

Remark 3.11. The intensional equality on Tind is decidable: indeed, to ver-
ify f =αβηι g the termsarereduced to normal form (Tind isstrongly normal-
izing [8, 9]) and then α-convertibility is trivially verified. To the contrary,
extensional equality is not: the use of recursors permits to represent, e.g.,
all primitive recursive functions f : Nat → Nat. Their equality on canon-
ical elements of Nat coincides with ordinary equality of functions, and for
primitive recursive functions it is not decidable [14].

Remark 3.12. In general, an extensional equality on terms of functional
typesf, g : A → B is defined by somecondition of the form:

• For all t of typeA satisfying certain condition ft =αβηι gt.

Theequality f =αβηι g impliesft =αβηι gt. Theextensional equality weare
considering is sometimes called extensional equality in closed term model.
Thus theextensional equality alwayscontains the intensional equality based
on αβηι.

3Technically it is more convenient to compare different kinds of equality only on mor-
phisms.

BARANOV & SOLOVIEV - EQUALITY IN LAMBDA CALCULUS...

- 275 -

Remark 3.13. If the type A in f : A → B is 0-recursive, then, according
to theorem 3.7, all closed terms t : A represent canonical elements, and
extensional equality we introduced corresponds to ordinary set-theoretical
equality of functions on thesetsof canonical elements.

By T 0

ind we shall denote the full subcategory of Tind whose objects are
0-recursive inductive types.

4. CaseStudies

4.1 Intensional and Extensional Equality in Tind

Let us consider two terms of Tind:

• f1 = S : Nat → Nat and

• f2 = RecNat→Nat(λy : Nat.succ)(succ 0) : Nat → Nat.

Each term is a morphism of Tind. Each term represents also a function on
the terms of typeNat defined by fi(t) =def fit.

Canonical elementsof Nat are0 and termssucc(...(succ 0)), and on any
canonical element n : Nat both f1 and f2 havethevaluesucc n. At thesame
time f1 and f2 are not intensionally equal: both are already in normal form
and thesenormal forms aredifferent.

We can define also a one side inverse to f1 with respect to intensional
equality, given by f ′

1
=def RecNat→Nat(λx : Nat.λy : Nat.x)0 (the value

of f ′
1

on succ n will ben, thevalueon 0 will be0). For thecomposition with
f1,

λx : Nat.((RecNat→Nat(λx : Nat.λy : Nat.x)0)(succ x)) →ι

λx : Nat.(λx : Nat.λy : Nat.x)x(succ x)) =β λx : Nat.x =def idNat.

If we compose f ′
1

with f2, applying the composition to canonical elements
wehave

f ′
1
(f20) =βηι 0, f ′

1
(f2(n)) =βηι f ′(succ n) =βηι n,

but thecomposition itself (Rec meansRecNat→Nat)

λx : Nat.((Rec(λx : Nat.λy : Nat.x)0)(Rec(λy : Nat.succ)(succ 0)x))

is normal (i.e.,does not admit any reduction) and so it is not equal to idNat.

BARANOV & SOLOVIEV - EQUALITY IN LAMBDA CALCULUS...

- 276 -

• It can be shown that f2 does not have left inverse w.r.t. intensional
equality at all.

Outline of a proof. Observe that the term f2x = (RecNat→Nat(λy :
Nat.succ)(succ 0))x is normal and has typeNat. Consider any com-
position f ′

2
◦ f2 = λx : Nat.(f ′

2
(f2x)) where f ′

2
also is normal. If

it would reduce to id, at least one reduction would be possible, and,
taking into account the form of the terms, this reduction could beonly
β-reduction, in particular f ′

2
must beof the form λy : Nat.f ′′

2
. Simple

caseanalysis shows that the term [f2x/y]f ′′
2

will not allow any further
reductions (will be normal). This term contains Rec and so cannot
represent id.

• Of course, both f1 and f2 have left inversesw.r.t. extensional equality.
This behaviour can be seen as a case of conditional reversibility: f2 is
reversibleat the left if thearguments arecanonical elements.

• More categorical view at this conditional reversibility would be that
some functor from the category Tind to the category of sets such that
the types become sets of their canonical elements is applied first (and
equality of morphismsin this“ target” category istheextensional equal-
ity of functions represented by λ-terms).

4.2 Weak Terminal Objects in Tind

An inductive type with one element may be defined in Tind as Ind(α){c :
α}. Al lowing some abuse of notation, we shall denote this type by {c}.
The constant c may be considered as (the name of) its unique element. The
related typing axiom isΓ ⊢ c : {c}. There are other such types, obtained by
changing c.

The definition of a terminal object ⊤ ∈ Tind as a universal construction
(in the strong sense) is equivalent to the condition that for every object A ∈
Tind there exists the unique f : A → ⊤. For a weak terminal object only
the existence is required. If we take any of the types {c}, for any A there is
λx : A.c : A → {c}, but other non-equivalent closed terms of the same type
may exist (for example, defined using recursors).

The recursor Rec{c}→A has the type A → {c} → A, i.e., the functions
from {c} to A are defined by application of Rec{c}→A to a : A, an obvious

BARANOV & SOLOVIEV - EQUALITY IN LAMBDA CALCULUS...

- 277 -

interpretation is that they are defined by their value on the unique element
c : {c}. Still, with respect to intensional equality Rec{c}→{c′}c′ : {c} → {c′}
is not equal to λx : {c}.c′ : {c} → {c′}. Moreover, with respect to this
equality the morphisms λx : {c}.c′ : {c} → {c′}, λx : {c′}.c : {c′} → {c},
Rec{c}→{c′}c′ : {c} → {c′}, Rec{c

′}→{c}c : {c′} → {c} are not mutually
inverse isomorphisms. For example, thecomposition of first two gives

λy : {c}.(λx : {c}.c′((λx : {c′}.c)y)) =βηι λy : {c}.c 6= λy : {c}.y =def id{c}.

The composition of second two is a normal term and so also is not equal to
id{c}. It is possible to show that with respect to intensional equality they are
not isomorphisms at all.

The same remark as in the end of the previous subsection can be added
concerning conditional reversibility.

4.3 Product as a Weakly Universal Construction

Let us take as an example the notion of product A × B of two objects A,B
of a category K. It can be defined using the notion of universal arrow from
diagonal functor ∆ : K → K × K (in functor category) to the functor F :
{1, 2} → K from discretecategory {1, 2} toK (withF (1) = A,F (2) = B).
The details can be found in [19], p.69. We shall skip them (only the fact
that this may be seen as a particular case of the notion of universal arrow
is important) and pass directly to more common equivalent definition using
projections.

The object A × B ∈ Ob(K) is called product of two objects A,B ∈
Ob(K) iff

• there exist the unique arrows p1 : A × B → A and p2 : A × B → B
(called projections) such that

• for every object C ∈ Ob(K) and two arrows f : C → A, g : C → B
there exists a unique arrow h : C → A × B that makes the following

BARANOV & SOLOVIEV - EQUALITY IN LAMBDA CALCULUS...

- 278 -

diagram commute:
A

(∗) C
h //

f

99tttttttttt

g

%%JJJJJJJJJJ
A × B

p1

OO

p2

²²

B

The arrow h is denoted 〈f, g〉. It is usually called product (or pair) of f, g,
and f, g are called its components. Universality (in the strong sense) of this
construction isreflected by thecondition of unicity of projectionsandh. One
of theconsequences is that A × B is uniqueup to isomorphism.

Let us consider now, how all this will work in Tind. Given two types
A,B, an inductive type usually called product of A,B (cf. [18]) is defined
as follows:

A × B =def Ind(α)(pair : A → (B → α)).

Its canonical elements are terms of the form (pair s)t where s : A and t :
B. There may be other elements that do not have the constructor pair at
their head. For example, if we admit open terms as elements of objects, the
variablex : A × B is anon-canonical element.

It turns out that in Tind with intensional equality A × B can not be con-
sidered asproduct in thesenseof strong universality.

As any inductive type, A × B in Tind comes equipped with recursion
operators. The recursion operator from A × B to D is a constant R :
(A → (B → D)) → (A × B → D). The corresponding ι-conversion
is (Rf)((pair t1)t2) = (ft1)t2 with f : A → (B → D), t1 : A, t2 : B. No-
tice that if s : A×B isnot of the form (pair t1)t2 then theconversion isnot
applicable. Let us denoteR1 and R2 the recursion operators from A × B to
A and B respectively. Projections are defined now as p1 = R1(λx : A.λy :
B.x) : A × B → A and p2 = R2(λx : A.λy : B.y) : A × B → B.

Given two terms f : C → A and g : C → B, h of the diagram (∗) may
be defined as h = 〈f, g〉 =def λz : C.(pair f(z))g(z). The diagram will be
commutative, but what about theunicity of h?

Let C = A × B and h : C → A × B be idA×B = λx : A × B.x. Let
f = p1 ◦ h = p1, g = p2 ◦ h = p2. The diagram (∗) will be commutative.

BARANOV & SOLOVIEV - EQUALITY IN LAMBDA CALCULUS...

- 279 -

Let us takeh′ = 〈p1, p2〉. Thediagram will becommutative, but h and h′ are
not equal w.r.t. the intensional equality in Tind.

Theproduct in Tind with intensional equality isonly weakly universal. It
is possible to define another product as A ×′ B =def Ind(α)(pair′ : A →
(B → α)) (theonly modification is thenameof theconstructor). The“prod-
ucts” A × B and A ×′ B will not be isomorphic in Tind with intensional
equality.

More precisely, let 〈f, g〉′ =def λz : C.((pair′f(z))g(z)). The “candi-
dates” to the roleof isomorphisms areobvious:

θ = 〈p1, p2〉
′ : A × B → A ×′ B, θ′ = 〈p′

1
, p′

2
〉 : A ×′ B → A × B,

but they are not mutually inverse w.r.t. intensional equality. Using the tech-
nique similar to that we used in 4.1, it is possible to show that there is no
isomorphism at all.

Remark 4.1. In fact, it is possible to consider the extensions of Tind that
include explicitly some product operator, and even add well-behaving re-
ductions like 〈p1 ◦ h, p2 ◦ h〉 = h but this will not completely solve the
problem, as the absence of unicity of product shows. To establish “equiv-
alence” of different product operators, it will benecessary to introducemore
reductions each timewhen onemoreproduct operator is added (cf. [8, 9]).

Remark 4.2. (Conditional inversibility.) Consider the following diagram:

C
h // A × B

θ //
A ×′ B

θ′
oo .

The morphisms θ and θ′ are not mutually inverse w.r.t. intensional equality,
but they are mutually inverse conditionally, in the following sense. If h =
〈f, g〉 for some f : C → A and g : C → B then (θ′ ◦ θ) ◦ h = h. (Cf. with
thedefintion of equality in thecategories (S ↓ T)∗.)

4.4 Product and Extensional Equality in T 0

ind.

Obviously, T 0

ind isclosed w.r.t. product defined asinductivetype. Noticethat
it isnot thesamewith functional space [A,B]. Below weconsider T 0

ind with
extensional equality.

BARANOV & SOLOVIEV - EQUALITY IN LAMBDA CALCULUS...

- 280 -

Theorem 4.3. In T 0

ind with extensional equality theproduct construction de-
scribed above is universal in ordinary sense.

Proof. Weneed toshow theunicity of h indiagram (∗) above. Noticethat
the typeA×B is0-recursive. Consider another morphism h′ : C → A×B
that makes the diagram commutative. Let us take any canonical element c :
C. Sincef, g, h, h′ are represented by closed terms, the terms fc, gc, hc, h′c
are closed as well, and theorem 3.7 can be applied. It follows immediately
that h′cpair a b for some canonical elementsa : A, b : B. Notice that hc =β

pair (fc) (gc). Application of p1 and p2 givesa = fc, b = gc and thush and
h′ areextensionnally equal.

Corollary 4.4. The category T 0

ind with extensional equality and product ×
defined as above is cartesian. Product is unique up to extensional isomor-
phism in Tind.

5. Discussion, Applications and Perspectives

The simple cases studied above may easily give an impression of “ toy ex-
amples” . To render them their due significance, we need to discuss them in
a broader context, consider possible applications and perspectives of future
research.

5.1 Discussion

The calculus Tind has been chosen because of relative simplicty of its de-
scription, but it has considerable computational power: the inductive types
of Tind together with the associated recursion operators are sufficient to de-
fineall functionals of finite type [10, 15, 30].

The definition of inductive types and recursion in Tind is a direct re-
striction to the simply typed case of the general definition used in powerful
dependent type theories (we used, similarly to [8, 9, 27] the restricted form
of the definitions from Z. Luo’s system UTT [18]. Luo’s UTT is not very
much different in this respect from Martin-Löf type theory or the Calculus
of Constructions used in Coq).

In the sense of metatheory, all inductive types of Tind are also definable
in UTT or in proof assistant Coq, but the category that contains these types
only is not definable internally.

BARANOV & SOLOVIEV - EQUALITY IN LAMBDA CALCULUS...

- 281 -

We did not include in Tind the types Prop, Prf , identity types etc. In
fact, we were not really interested in logical power of Tind, but only in its
computational properties.

In type theories with unductive types η-rules usually are understood in
generalized sense. E.g., in [18] it is explained how in UTT a logical η-
rule can be defined for an inductive type A defined by any finite sequence
of inductive schemata Θ1, ..., Θn and logical validity of η-rules is proved
(p.201)4.

It is well known, that in the presence of η-rules and identity types the
type-checking is indecidable (since conversion depends on inhabitance of
types, cf. [13]). To our opinion, this makes the type theory with these rules
and types useless as an underlying system for introduction of a categorical
structure, becauseeven thecomposability of morphismswill beundecidable
5.

Notice that if in thedependent typetheoriesmentioned abovetheη-rules
are not included at all, the situations similar to the situations considered in
our examples will beeasily reproduced.

Another reason why we did not include logical machinery in Tind is that
one of the main features of logical frameworks is that they permit to define
application-oriented type theories. These theories may include some (not
all) of thetypesthat may bedefined in thetheory (e.g., someinductivetypes,
some types such as Prop, Prf etc.), may contain, or not η-rules, and even
contain some additional user-defined conversions. The question, what kind
of categorical structure may exist on such a type theory (e.g. monoidal,
cartesian, cartesian closed etc.) is of great interest, but there is no general
theorem describing in advance all necessary properties of the underlying
system, in particular with respect to extensional and intensional equality. To
consider within thispaper not only computational, but also logical properties
of such intermediatesystems would beadistraction.

To makethisremark moreclear, let usconsider in moredetail someideas

4Another important class of rules is the class of filling-up rules. As Luo notices in [18],
p.201, “The logical η-rules express that every object is equal to a canonical object and the
filling-up rules express that the elimination operator covers all of the use of the inductive
data type.”

5The distinction has to be made between the existence of certain categorical models of
a logical system that may be useful for its semantics, and introduction of an application-
oriented categorical structureon thesystem itself that ismostly considered in thispaper.

BARANOV & SOLOVIEV - EQUALITY IN LAMBDA CALCULUS...

- 282 -

and results of [8, 9, 27] 6.
Theprincipal ideaexplored in theseworkswas that somereductions (in-

teresting from computational point of view) may be added in such a way
that strong normalization (SN) and Church-Rosser property (CR) will be
preserved. The system considered there was an extended version of Tind

described above, including canonical surjective pairing and terminal object
(below we shall call this system Tind as well). One may note, that a depen-
dent type system (Luo’s UTT) extended with these reductions was consid-
ered in the thesis (in french) of another ph.d. student of S. Soloviev, Lionel
Marie-Magdeleine [21] but there is no easily accessible publications of his
work.

Among new reductions studied therewas the reduction for isomorphism
of “copy” between inductive types. For every inductive type A in Tind and
its copy A′ that differs only by different choice of names of introduction
operators in its definition there exist canonical closed terms c : A → A′

and c′ : A′ → A (c and c′ are defined by recursion in Tind over A and
A′ respectively). The new reduction (called χ-reduction) was defined by
rewriting rules c′(ct) → t and c(c′t′) → t′. One may say, that χ-reduction
makes copy an intensional isomorphism.

Other reductionsincluded: η-reductionsfor productsdefinedasinductive
types; the reductions (similar to χ-reduction) that “make intensional” the
isomorphisms between products defined as inductive types and canonical
product defined by pairing; η-rules for finite types.

It was shown that Tind with these reductions is SN and CR. Of course
new examples that show the difference between extensional and intensional
equality similar toelementary examplesconsideredabovemay beconstructed
in theextendedsystem. Thefundamental differencebetweenextensional and
intensional equality cannot be cancelled by “ local” extensions of the notion
of intensional equality.

5.2 Applications

The importance of categorical models for computer science motivates also
the study of behaviour of extensional and intensional equality in these mod-

6 [9, 7, 27] are closely connected with ph.d. thesis of David Chemouil [8] (in French).
Second author was thesupervisor of his thesis.

BARANOV & SOLOVIEV - EQUALITY IN LAMBDA CALCULUS...

- 283 -

els. We would like to attract attention to reversible computations as a possi-
bledomain of applications. In particular, the link between weak universality
and conditional reversibility of computations may beexploited.

Reversible computations are actively studied since 1960es. Works on
reversible computations link together such distant domains of science as
logics, theory of algorithms, physics, thermodynamics and even biology,
cf. [3, 17, 23, 31]. In practice, though, most of the computations considered
asreversiblearereversibleonly in moreor lessidealized models. Sometimes
(but not always) thepre-conditions that makethesemodelsadequatemay be
clearly identified.

For example, theconditionsmay bepurely mathematical. They may also
concern the treatment of information (history of computations), thephysical
propertiesof asystem (quantum state) etc.. Mathematical conditionsmay be
concrete, e.g., expressed in terms of values of certain parameters, like non-
zero determinant of a matrix, or more abstract (expressed in general terms
characterizing the environment or the history of computations). Below we
take into account only theoretical aspects of reversible computations related
to mathematics and computer science.

From the categorical point of view, the reversible computations may be
considered as morphisms of somecategory that are isomorphisms, or some-
times have only one-side inverse. If these morphisms are to be treated by
computers, they should have some sort of termal representation, and this
means that arise theproblemsconcerning extensional and intensional equal-
ity. (Usually efficient treatment of isomorphisms by computers requires in-
tensional equality.)

In the literature on reversible computations the history of computations
is usually understood in the sense derived from Turing-machine protocols
(commonly used areTuring machineswith an additional history tape, cf. [3,
31]). So, pre-conditionsof reversibility formulated in termsof history would
require complete or partial preservation of history in this sense. From the
point of view of category theory, natural are pre-conditions expressed in
categorical terms, e.g. preliminary composition of a given morphism with
some other morphism, application of a functor etc. This understanding of
conditions of reversibility and that expressed in terms of ’history tape’ are
not mutually exclusive, but thecategorical view accentuatesother aspectsof
computation.

BARANOV & SOLOVIEV - EQUALITY IN LAMBDA CALCULUS...

- 284 -

Let us consider several examples.

• If take the composition θ ◦ h as in remark 4.2 of previous section, if
h =< f, g > then thereexists θ′ such that θ′ ◦ (θ ◦ h) = h (thepart of
computation represented by θ can be reversed).

• Let f : A → B be any morphism in T 0

ind, and assume that f is in-
versible on canonical elements of A and B, i.e.,there exists f ′ : B →
A such that for every canonical element a : A f ′(fa)) = a and for
every canonical element b : B f(f ′(b)) = b. Then by theorem 3.7 f is
inversible in the sense of extensional equality. From the point of view
of reversible computations, the condition of reversibility is that f is
applied to aclosed term.

• Thesamemay beexpressed more”diagrammatically” . Let usconsider
adiagram of the form

A0

f0

→ A1

f1

→ ...
fn−1

→ An
fn

→ A
f
→ B

in Tind, where A0, A and B are 0-recursive and f is inversible on
canonical elements. Intermediate types A1, ..., An may be arbitrary
typesof Tind. Then thereexistsf ′ such that (f ′ ◦ f) ◦ (fn ◦ ... ◦ f0)) =
fn ◦ ... ◦ f0.

• The following example comes from our study of graph rewriting. In
categorical graph rewriting [24] most often are used so called single
pushout (SPO) and doublepushout (DPO) approaches. Single(respec-
tively, double) pushout construction7 is used to define graph transfor-
mation rules. Working on generalization of SPO and DPO to the case
of attributed graphs [5, 22] we arrived to the situations where only
the existence of a weak pushout is guaranteed. Consider two weak

7We do not go into details here how the categories of graphs, equality of morphisms in
thesecategories etc. aredefined.

BARANOV & SOLOVIEV - EQUALITY IN LAMBDA CALCULUS...

- 285 -

pushouts generated by thesame”span” (f, g):

A
f

~~||
||

||
|| g

ÃÃ
BB

BB
BB

BB

B

f1

²²

f2

''PPPPPPPPPPPPPPP C

g2

²²

g1

wwnnnnnnnnnnnnnnn

D1

h //
D2

h′

oo

.

Because of weak universality h and h′ are not in general mutually
inverse isomorphisms, but at the same time weak universality means
commutativity of all diagrams above. For h and h′, in particular, it
means (h′ ◦ h) ◦ (f1 ◦ f) = f1 ◦ f and (h ◦ h′) ◦ (g2 ◦ g) = f1 ◦ g. This
can beseen as conditional reversibility.

Theseobservationsshow theinterest of applicationof diagrammaticmeth-
ods and category theory to the theory of reversible computations. At the
practical side, the use of graph rewriting techniques for treatment of dia-
grams may beadvised.

5.3 Perspectives

In thispaper weconsidered asmain applicationsof our analysisof weak uni-
versality the applications to the study of reversible computations. It would
benatural, if wewould look at theperspectives in thesamedirection.

As we have outlined above, weak universality is related to conditional
reversibility. Our motivating exampleswerecoming mostly from categorical
typetheory. Thesamemodelling language, categorical typetheory, suggests
that other forms of conditional reversibility would be interesting to study in
future.

Oneof such formscould becontext-dependent reversibility. Let usrecall
that the notion of retraction in λ-calculus, first defined in [6] (cf. also [28])
is context-dependent 8.

8Thetypeρ isaretract of typeτ if therearetermsC : ρ → τ and D : τ → ρ (witnesses)
such that D◦C =βη λxρ.x [28].Witnesstermsin thisdefinition may contain freevariables.
If acontext (a list of typed freevariables) is fixed, no witness may exist for somecontexts.

BARANOV & SOLOVIEV - EQUALITY IN LAMBDA CALCULUS...

- 286 -

Moregeneral question is themeaning of different kindsof equality when
reversibility of computations is studied. It seems that there is little inter-
action between research communities studying reversible computations in
connection with their physical (technical) realisation, computer architecture,
thermodynamics etc., and more theoretical aspects such as meaning of re-
versibility itself. What does change when we consider the notion of re-
versibility with respect to different kindsof equality? When extensional and
intensional equality areconsidered? When wemodify thenotion of equality
between terms (programs), introducing new conversions? All this seems to
bean important subject for futurestudy.

At more theoretical side, it would be interesting to explore thebehaviour
of categorical universal constructionswith respect todifferent typesof equal-
ity in morepowerful systemsof λ-calculus(with or without inductivetypes).

6. Conclusion

In purely mathematical approach to category theory varioustypesof equality
are treated indifferently, as part of definition of categorical structure, and no
special role is given to intensional equality.

We considered in this paper several examples of categories based on
Tind, a system of lambda-calculus with inductive types and recursion. The
aim was to underline the connection between the “strength” of categorical
universal constructions and equality of morphisms treated under the angle
of computational efficiency (decidable intensional equality and extensional
equality that is in general undecidable). The examples were rather elemen-
tary, but illustrated specific propertiesof categorieswith intensional equality
(typically, used in computer science) with respect to basic universal con-
structions.

We paid special attention to another domain of research interesting for
practical computing. So called “reversible computations” are actively stud-
ied nowadays. From categorical point of view, the reversible computations
may beconsidered asmorphismsof somecategory that areisomorphisms, or
sometimeshaveone-side inverse. Theequality of morphisms in thiscontext
is usually intensional.

The fact that in most cases there exist only weakly universal construc-
tions may be connected with the notion of conditional reversibility. Cat-

BARANOV & SOLOVIEV - EQUALITY IN LAMBDA CALCULUS...

- 287 -

egory theory and categorical logic (type theory, lambda calculus) suggest
new forms of reversibility conditions that were not considered before in the
study of reversible computations and are much lighter (and may be more
practical) than the conditions concerning the history of computation in the
styleof Turing machineprotocols.

References

[1] A. Asperti andG.Longo. Categories, typesandstructures- an introduc-
tion to category theory for theworking computer scientist. Foundations
of computing, MIT Press, 1991.

[2] M. S. Ager, O. Danvy, J. Midtgaard. A functional correspondence be-
tween monadic evaluators and abstract machines for languages with
computational effects.- Theoretical Computer Science, 342, 149-172,
2005.

[3] C.H. Bennett. Logical Reversibility of Computation. -IBM J.Res. De-
velop., 17, 525-532 (1973).

[4] N. Benton, J. Hughes, and E. Moggi. Monadsand effects. In G.Barthe,
P. Dybjer, L. Pinto, and J. Saraiva, eds., Applied Semantics Advanced
Lectures, LNCS, 2395, 42-122, Caminha, Portugal, September 2000.
Springer-Verlag.

[5] B. Boisvert, L. Féraud, and S. Soloviev. Typed lambda-terms in cat-
egorical attributed graph rewriting. TOOLS 2011, June 30th, 2011,
Zurich, Switzerland . Electronic Proceedings in Theoretical Computer
Science (2011).

[6] K.Bruce, G. Longo. Provable isomorphisms and domain equations in
modelsof typed languages. - Proc. 17th symposiumon Theory of Com-
puting, ACM, 263-272 (1985).

[7] D. Chemouil, S. Soloviev. Remarks on isomorphisms of simple induc-
tive types.- ENTCS, v. 85, Elsevier (2003).

[8] . D. Chemouil. Types inductifs, isomorphismes et récriture extension-
nelle. - Ph.D. Thesis, IRIT, University Toulouse-3, 2004.

BARANOV & SOLOVIEV - EQUALITY IN LAMBDA CALCULUS...

- 288 -

[9] D. Chemouil. Isomorphisms of simple inductive types through exten-
sional rewriting. Math. Structures in Computer Science, 15(5), 875-
917, 2005.

[10] K. Gödel. Über einebisher noch nicht benützteErweiterung desfiniten
Standpunktes. -Dialectica 12, 280-287.

[11] J.R. Hindley. Basic Simple Type Theory. Cambridge University Press
(2008).

[12] Homotopy Type Theory: Univalent Foundations of Mathematics. - In-
stitute for Advanced Study, Princeton (2013).

[13] B. Jacobs. Categorical Logic and Type Theory. -Studies in Logic and
theFoundations of Mathematics, 141 (1999).

[14] S. C. Kleene. Introduction to Metamathematics. - North-Holland PLC,
1952.

[15] G. Kreisel. Interpretation of analysis by means of constructive func-
tionals of finite type. - In: A. Heyting (ed.). Constructivity in Mathe-
matics, Amsterdam, North-Holland (1959), 101-128.

[16] J.Lambek, P.J.Scott. Introduction to Higher-Order Categorical Logic.-
Cambridge studies in advanced mathematics 7, Cambridge University
Press, 1988.

[17] R. Landauer. Irreversibility and heat generation in the computing
process.-IBM J. Res. Develop., 3, 183-191 (1961).

[18] Z. Luo. Computation and Reasoning. A Type Theory for Computer
Science. International Seriesof Monographson Computer Science11,
Oxford SciencePublications, Clarendon Press, Oxford, 1994.

[19] S. Mac Lane. Categories for the Working Mathematician, 2nd edition,
Graduate texts in mathematics, 5. Springer-Verlag, 1998.

[20] P. Martin-Löf. Intuitionistic typetheory. Notesby G.Sambin of aseries
of lectures given in Padua, June1980. Bibliopolis, 1984.

BARANOV & SOLOVIEV - EQUALITY IN LAMBDA CALCULUS...

- 289 -

[21] L. Marie-Magdeleine. - Sous-typage coercitif en présence de
réductions non-standards dans un système aux types dépendants. -
Ph.D. Thesis, University Toulouse-3, 2009.

[22] M. Rebout, L. Féraud, L. Marie-Magdeleine, and S. Soloviev. Com-
putations in Graph Rewriting: Inductive types and Pullbacks in DPO
Approach. In Szmuc, T., Szpyrka, M., and Zendulka, J., eds., CEE-
SET 2009, Krakow, Poland, October 2009, LNCS, 7054, 150 - 163.
Springer-Verlag (2011).

[23] M. Saeedi, I.L.Markov. Syntheisisand Optimization of ReversibleCir-
cuits. - A Survey. - arXiv: 1110.2574v1[cs.ET](12 Oct.2011).

[24] Rozenberg, G., ed. . Handbook of Graph Grammars and Computing
by Graph Transformations. - Volume 1: Foundations. World Scientific
(1997).

[25] S. Soloviev. The Category of Finite Sets and Cartesian Closed
Categories.- In: Theoretical applications of mathematical logic III,
vol.105 of “Zapiski Nauchnykh Seminarov LOMI, 174-194 (1981),
eng. transl.: Journal of Soviet Mathematics 22 (3), 1387-1400 (1983).

[26] S. Soloviev.Proof of a conjecture of S. Mac Lane.-Annals of Pure and
Applied Logic, 90, 1-3, p.101-162 (1997).

[27] S. Soloviev, D. Chemouil. Some Algebraic Structures in Lambda-
Calculus with Inductive Types. - In: Proc. Types 03, LNCS, v. 3085
(2004).

[28] C. Stirling. Proof Systems for Retracts in Simply Typed Lambda Cal-
culus. ICALP (2) 2013: 398-409.

[29] T. Streicher. Investigations Into Intensional Type Theory. Habilitation-
sschrift. München, November 1993.

[30] W. Tait. Intensional interpretation of functionals of finite type. I. - The
journal of symbolic logic 32, 198-212 (1967).

[31] P. Vitanyi. Time, Space and Energy in Reversible Computing. arXiv:
cs/0504088v1[cs.CC](20 apr. 2005).

BARANOV & SOLOVIEV - EQUALITY IN LAMBDA CALCULUS...

- 290 -

Sergey Baranov
SPIIRAS, Russian Academy of Sciences
14 liniya, 39
199178 St.Petersburg (Russia)
SNBaranov@gmail.com
Sergei Soloviev9

IRIT, UniversitéPaul Sabatier
118 RoutedeNarbonne
F-31062 Toulouse (France)
soloviev@irit.fr

BARANOV & SOLOVIEV - EQUALITY IN LAMBDA CALCULUS...

- 291 -

