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Résumé. Nous donnons une caractérisation de la condition « Smith is Huq »
pour une catégorie de Mal’tsev pointée C au moyen d’une propriété de la
fibration des points ¶C : PtpCqÑ C, à savoir : tout foncteur changement de
base h� : PtYpCqÑ PtXpCq reflète la commutation des sous-objets normaux.

Abstract. We give a characterisation of the “Smith is Huq” condition for a
pointed Mal’tsev category C by means of a property of the fibration of points
¶C : PtpCqÑ C, namely: any change of base functor h� : PtYpCqÑ PtXpCq
reflects commuting of normal subobjects.
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Introduction
It is well known that, given a group G and two subgroups H and K, they
commute inside G (i.e., we have h � k � k � h, @ph, kqP H � K) if and only if
the function H�K Ñ G : ph, kqÞÑ h �k is a group homomorphism. When H
and K are normal subgroups of G, and if RH and RK denote their associated
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equivalence relations on G, this is the case if and only if the equivalence
relations RH and RK centralise each other (see [22, 21, 11]), namely if and
only if the function RH �G RK Ñ G : pxRHyRKzqÞÑ x � y�1 � z is a group
homomorphism, where RH �G RK is defined by the following pullback:

RH �G RK

δH
0 ��

δK
1

,2 RK

dK
0 ��

lr

RH
dH

1

,2

LR

G

LR

lr

The commutation condition on subobjects is said to be à la Huq from [17],
while the commutation condition on equivalence relations is said to be à
la Smith from [22]. In the category Gp of groups, we just recalled that, in
the case of normal subobjects, the two types of commutation are equivalent.
This is the meaning of the “Smith is Huq” condition, which is far from being
true in general.

It turns out that the right environment for the conceptual notion of cent-
ralisation of equivalence relations is the context of Mal’tsev categories [13,
14]. It was first shown in [11, Proposition 3.2] that, in a pointed Mal’tsev
category, “Smith implies Huq”, namely that if two equivalence relations R
and S centralise each other (which we denote by rR, S s� 0), then neces-
sarily their associated normal subobjects commute. But the converse is not
true, as shown in [6, Proposition 6.1], from an example introduced by G. Ja-
nelidze in the pointed Mal’tsev category of digroups, namely sets endowed
with two group structures only coinciding on the unit element.

The first conceptual setting where the “Smith is Huq” condition (SH)
holds was pointed out in [11]: it is the context of of pointed strongly pro-
tomodular categories, of which the category Gp is an example. These are
pointed categories C such that any change of base functor with respect to
the fibration of points ¶C : PtpCqÑ C is normal, i.e., conservative and re-
flecting normal subobjects. Further observations on the condition (SH) have
been given in [19, 15, 16, 20].

So it is quite natural to ask for a characterisation of the (SH) condition,
and more precisely to ask it in terms of a property of the change of base
functors of the fibration ¶C. Here we give an answer in the pointed Mal’tsev
context: the property of reflection of commutation of normal subobjects. We
show moreover that when a variety SetT of algebras over a Mal’tsev theory T
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satisfies this last condition, so does the category TopT of topological models
of this theory, which implies that the category GppTopq of topological groups
satisfies (SH).

We then extend some results already known for strongly protomodular
categories [4] to the (SH) context. In particular, we show that, when they are
defined, the Huq commutator and the Smith commutator coincide.

1 Unital categories and Mal’tsev categories

1.1 Unital categories and Huq commutation
In this section, C will be a pointed category, i.e., a category with a zero
object 0. Let us recall from [3]:

Definition 1.1. Let C be a pointed category with finite products. Given two
objects A and B in C, consider the diagram

A
x1A,0y

,2 A � B
πAlr πB ,2 B.

x0,1By
lr

The category C is said to be unital if, for every pair of objects A, B P C, the
morphisms x1A, 0y and x0, 1By are jointly strongly epimorphic.

In any finitely complete category this is equivalent to saying that the
object A � B is the supremum of the two subobjects x1A, 0y and x0, 1By;
namely, any monomorphism j : J � A � B containing the two previous
ones:

J
��

j
��

A
x1A,0y

,2

7A

A � B
πAlr πB ,2 B.

]g

x0,1By
lr

is an isomorphism. From this last remark, it is clear that the category Mon
of monoids is unital. Unital categories give a setting where it is possible to
express a categorical notion of commutation à la Huq [5]:

Definition 1.2 (Commutation à la Huq). Let C be a unital category. Two
morphisms with the same codomain, f : X Ñ Z and g : Y Ñ Z, are said to
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cooperate (or to commute) if there exists a morphism ϕ : X � Y Ñ Z such
that both triangles in the following diagram commute:

X
x1X ,0y ,2

f �'

X � Y
ϕ

��

Y
x0,1Yylr

g
w�

Z.

The morphism ϕ is necessarily unique, because x1X, 0y and x0, 1Yy are jointly
epimorphic, and it is called the cooperator of f and g.

The uniqueness of the cooperator makes commutation a property, rather
than an additional structure on the category C.

1.2 Mal’tsev categories and Smith commutation
A Mal’tsev category is a category in which every reflexive relation is an
equivalence relation [13, 14]. The category Gp of groups is Mal’tsev. It is
shown in [3] that a finitely complete category C is Mal’tsev if and only if any
(necessarily pointed) fibre PtYpCq of the fibration of points ¶C : PtpCqÑ C

is unital. Here PtpCq is the category whose objects are the split epimorph-
isms in C and whose arrows are the commuting squares between such split
epimorphisms, and ¶C : PtpCqÑ C is the functor associating its codomain
with any split epimorphism.

In this context, an equivalence relation R on an object X, coinciding with
a reflexive relation on X, is just a subobject of the object pp0, s0q : X�X Õ X
in the fibre PtXpCq:

R ,2
xdR

0 ,d
R
1 y ,2

dR
0 �'

X � X

p0

��
X

sR
0

\g

s0

LR

Actually it is a normal subobject in this fibre since it is the normalisation
(i.e., the class of the initial object in the pointed fibre PtXpCq) of the follow-
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ing equivalence relation:

X � R
X�dR

0

,2

X�dR
1 ,2

pX

�&

X � X

p0

��

lr

X

x1X ,sR
0 y

[f

s0

LR

We call this normal subobject the local representation of the equivalence
relation R. Let us recall Proposition 3.4 of [6]:

Proposition 1.1 (Commutation à la Smith). Let C be a finitely complete
Mal’tsev category, and pR,Wq a pair of equivalence relations on an object X.
The equivalence relations R and W centralise each other in C if and only if
their (normal) local representations commute in the unital fibre PtXpCq.

Proof. In the unital fibre PtXpCq, the subobjects

xdR
1 , d

R
0 y : R� X � X and xdW

0 , d
W
1 y : W � X � X

commute if there is a cooperator R �X W Ñ X � X in the fibre; it is neces-
sarily of the form φpxRyWzq�p x, ppxRyWzqq, satisfying the two equations
ppxRxWyq� y and ppxRyWyq� x. The morphism p : R �X W Ñ X which,
satisfying these equations, characterises the property that the equivalence re-
lations R and W centralise each other in C, is nothing but what is called the
connector between R and W. (See [11] and also [21, 13, 14].) �

As usual, we denote this situation by rR,Ws� 0. It is worth noticing
that, by construction of the pullback R �X W:

R �X W
δR

0 ��

δW
1

,2 W
dW

0
��

σW
0lr

R
dR

1

,2

σH
0

LR

X

sW
0

LR

sR
0lr

(�)

the existence of the connector p does not depend on the possibly fibered
context, namely on the fact that R and W are possibly in a fibre PtYpCq.
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2 A characterisation of the “Smith is Huq” con-
dition (SH)

2.1 Reflections of commutation
Let us introduce the following conditions:

(C) any change of base functor with respect to the fibration of points re-
flects the commutation of normal subobjects;

(C̄) any change of base functor with respect to the fibration of points re-
flects the centralisation of equivalence relations.

Recall that a protomodular category is such that any change of base func-
tor with respect to the fibration of points reflects isomorphisms, and that any
protomodular category is Mal’tsev. So, any protomodular category is such
that any change of base functor with respect to the fibration of points reflects
the inclusion of subobjects and, accordingly, the inclusion of equivalence
relations.

Example 2.1. 1) According to Proposition 4.1 in [12], any locally algebra-
ically cartesian closed (lacc: i.e., such that any change of base functor with
respect to the fibration of points admits a right adjoint) protomodular cat-
egory is such that any change of base functor with respect to the fibration of
points reflects the commutation of subobjects, hence satisfies condition (C).
The categories Gp of groups, RLie of Lie R-algebras, and GppEq of internal
groups in a cartesian closed category E are examples of lacc protomodular
categories.

2) According to Proposition 5.10 in [8], any functorially action distinct-
ive protomodular category in the sense of [8] (again defined by a property
of the change of base functors with respect to the fibration of points which
we shall not detail here) is such that any change of base functor with respect
to the fibration of points preserves the centralisers of equivalence relations,
and, accordingly, satisfies condition (C̄).

Proposition 2.1. Let C be a finitely complete Mal’tsev category. Condi-
tions (C) and (C̄) are stable by slicing and coslicing, and consequently are
still valid in any fibre PtYpCq.
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Proof. It is clear that given any morphism h in C{Y or in Y{C as below:

X h ,2

f �$

X1

f 1y�

X h ,2 X1

Y Y
s1

9D

s

Zd

we have:

Pt f 1pC{Yq
h� ,2 Pt f pC{Yq Pts1pY{Cq

h� ,2 PtspY{Cq

PtX1pCq
h�

,2 PtXpCq PtX1pCq
h�

,2 PtXpCq

So the result is a consequence, on the one hand, of the fact that, as we re-
called above, the condition rR,Ws� 0 does not depend on the fibered con-
text and, on the other hand, of the fact that the normality of a subobject in
Pt f pC{Yq or PtspY{Cq is given by a pullback condition in C which, accord-
ingly, is still valid in PtXpCq. The same observation holds for the commuta-
tion condition. �

Unlike in the stricter context of protomodular categories, a normal sub-
object in a pointed Mal’tsev category could be the normalisation of several
equivalence relations; so the following, though it is not surprising, does de-
serve a proof:

Proposition 2.2. Let C be a finitely complete Mal’tsev category. Condi-
tion (C) implies condition (C̄).

Proof. Consider the following diagram in which R is an equivalence relation
on the object p f , sq in PtYpCq, the kernel pair of f is denoted by Rr f s and any
commutative square is a pullback:

R1 x̃ ,2

�� ��

iR1�'
R

�� ��

iR
�'

Rr f 1s
{�
{�

Rpxq
,2 Rr f s

|�
|�

X1 x ,2

;E

LR

f 1

��

X

<G

LR

f

��
Y 1

y
,2

s1

LR

Y

s

LR
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By Proposition 1.1, the inclusions iR : R � Rr f s and iR1 : R1� Rr f 1s are
normal subobjects in the fibres PtXpCq and PtX1pCq. In addition, since any
commutative square is a pullback, we have R1 � y�pRq, and also iR1 � x�piRq
in the following diagram:

R1 x̃ ,2

dR1
0

��

iR1�(
R

dR
0 ��

iR�'
Rr f 1s

z�

,2 Rr f s
|�

X1 x ,2

:E

LR

X

<F

LR

Now suppose we have another equivalence relation W on p f , sq in PtYpCq
with W 1 � y�pWq such that rW 1,R1s� 0 in PtY 1pCq. This last property is
equivalent to the commutation of the normal monomorphisms iW1 � x�piWq
and iR1 � x�piRq in the fibre PtX1pCq. Since the category C satisfies condi-
tion (C), the normal monomorphisms iW and iR commute in the fibre PtXpCq
which means that we have rW,Rs� 0 in PtYpCq. �

Even though the condition (C̄) may be weaker than (C), it is certainly not
automatically satisfied, as shows the following result.

Proposition 2.3. Let C be a finitely complete pointed regular Mal’tsev cat-
egory. Condition (C̄) implies that in C, all extensions with abelian kernel are
abelian extensions.

Proof. We first consider the case of split epimorphisms. Let p f , sq : X Õ Y
be an object in PtYpCq such that the kernel K of f is abelian, meaning that
the discrete equivalence relation ∆K on K centralises itself. Then by (C̄)
the kernel relation Rr f s of f —the relation associated to the kernel pair—
centralises itself, which means that the extension f is abelian.

If now g : Y Ñ Z is an extension with abelian kernel, i.e., a regular
epimorphism in C of which the kernel K is abelian, then the kernel pair
projection g0 : RrgsÑ Y is an abelian extension by the above. Hence also g
is abelian by [10, Proposition 4.1]. �

As a consequence, the counterexample from [6] in the category of di-
groups shows that a category may be semi-abelian without satisfying (C̄).
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2.2 The characterisation
We are now ready for the characterisation:

Theorem 2.1. Let C be a finitely complete pointed Mal’tsev category. The
condition (C) is equivalent to the “Smith is Huq” condition (SH).

Proof. The normalisation in C of an equivalence relation R on X is the image
by the change of base along the initial morphism αX : 1 � X of the normal
local representation in PtXpCq:

R ,2
xdR

0 ,d
R
1 y ,2

dR
0 �'

X � X

p0

��
X

sR
0

\g

s0

LR

So when C satisfies condition (C), we have rR,Ws� 0, i.e., the local rep-
resentations of R and W commute in PtXpCq as soon as their normalisations
commute in C.

Conversely, suppose that the condition (SH) holds. Let p f , sq : X Õ Y be
an object in PtYpCq and pR,Wq a pair of equivalence relations on it. Denote
by jR and jW their normalisations in PtYpCq:

IR
,2 jR ,2

πR
�$

X

f

��

IW
lrjWlr

πW
y�Y

σR
Zd

s

LR
σW

9D

Supposing that their images by some change of base functor y� commute
implies that their images j̃R and j̃W by α�Y—that is to say, the respective
kernels in the diagram below—commute in C:

KrπRs ,2
j̃R ,2 Kr f s

k f

��

KrπWslrj̃Wlr

X

Accordingly the two monomorphisms k f � j̃R and k f � j̃W do commute in C.
But k f � j̃R and k f � j̃W are the normalisations of R and W in C. Now, since C
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satisfies (SH), then we get rR,Ws� 0 in C and thus in PtYpCq, which implies
that their normalisations jR and jW in PtYpCq commute. �

Corollary 2.1. If C is a finitely complete Mal’tsev category which satis-
fies (C), then any fibre PtYpCq satisfies (SH). When, in addition, C is pointed,
if it satisfies (SH), then so does any fibre PtYpCq.

Proof. This is a straightforward consequence of the previous theorem and of
Proposition 2.1. �

2.3 Topological Mal’tsev models
Let T be a (finitary) Mal’tsev theory, SetT the corresponding variety of T-
algebras and TopT the category of topological T-algebras. Recall that TopT is
then a regular Mal’tsev category, see [18], whose regular epimorphisms are
the open surjective morphisms. It is clearly finitely complete and cocom-
plete. In this section we shall show that when the variety SetT satisfies con-
dition (C), so does TopT. In particular, this will imply the well-known fact
that the category GppTopq of topological groups (= TopT for T the theory of
groups) satisfies (SH).

To see this, let us first recall that the functor U : TopT Ñ SetT forgetting
the topological data is topological [23] and, consequently, left exact. Hence
it is cotopological [2, Proposition 7.3.6] and, consequently, right exact. This
implies that the functor U is faithful.

Lemma 2.1. Let T be a Mal’tsev theory and the following diagram a pull-
back of split epimorphisms in TopT:

P
φ1
��

φ
,2 X1

f 1
��

σlr

X
f
,2

σ1
LR

Y
s1
LR

slr

then P is endowed with the final topology with respect to the pair

UpPq UpX1q,
Upσqlr

UpXq
Upσ1q

LR
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namely, P is the T-algebra UpPq endowed with the finest topology making
UpPq a topological algebra and the pair pUpσq,Upσ1qq a pair of continuous
homomorphisms.

Proof. Since the functor U is cotopological, we can endow the T-algebra
UpPq with the final topology with respect to the pair in question. This defines
the object P̄ and the following lower diagram in TopT above the given pair:

P

P̄

Yd

X1
σ̄
lr

σ

ck

X
σ̄1

LRσ1

S[

By the universal property of the final topology, there exists a factorisation
ι : P̄ Ñ P making the diagram above commute. In other words, the topo-
logy P̄ on UpPq is finer than the topology P and ι � 1UpPq : P̄ Ñ P is con-
tinuous. This morphism is clearly a monomorphism in TopT. Now TopT is a
Mal’tsev category, the fibre PtYpTopTq is unital, and the pair pσ,σ1q is jointly
strongly epic, which implies that the monomorphism ι is an isomorphism,
and means that the topologies P and P̄ on UpPq coincide. �

Proposition 2.4. Let T be a Mal’tsev theory such that the variety SetT sat-
isfies condition (C). Then so does the category TopT.

Proof. Let us consider the following pair of normal monomorphisms in the
fibre PtYpTopTq:

IR
,2 jR ,2

πR
�$

X

f

��

IS
lrjSlr

πS
z�Y

σR
Zd

s

LR
σS

:D

and the following pullback in TopT:

X1

f 1
��

x ,2 X
f
��

Y 1

s1
LR

y
,2 Y

s

LR
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Suppose that y�p jRq and y�p jS q commute in the fibre PtY 1pTopTq; then this is
the case for their images by the functor U. Since SetT satisfies condition (C),
the images Up jRq and Up jS q commute in SetT. This means that there is a
T-homomorphism φ such that φ�UpsRq� Up jRq and φ�UpsS q� Up jS q in
the following diagram, where the whole quadrangle is the image by U of a
pullback of split epimorphisms in TopT:

UpIR �Y IS q

φ
��

UppRq

u~

UppS q

 )

UpIRq ,2
Up jRq ,2

UpπRq
 )

UpsRq

5>

UpXq

Up f q

��

UpIS qlrUp jS qlr

UpπS q
u~

UpsS q

`i

UpYq

UpσRq
`i

Upsq

LR
UpσS q

5>

This means that the “restrictions” φ�UpsRq and φ�UpsS q of the T-homo-
morphism φ to the “subobjects” UpIRq and UpIS q are the continuous T-
homomorphisms jR and jS . By the previous lemma, IR �Y IS is endowed
with the final topology with respect to the pair UpsRq and UpsS q, which im-
plies that the T-homomorphism φ is itself continuous: IR �Y IS Ñ X and
actually lies in TopT. This means precisely that jR and jS commute in the
fibre PtYpTopTq. �

3 Applications of the condition (SH)

In this section we shall extend some results known for strongly protomodular
categories to a context merely satisfying the condition (SH).

3.1 Discrete fibrations of reflexive graphs
First observe that in a finitely complete category E, any split epimorphism
p f , sq : X Õ Y is actually the domain of the kernel of a split epimorphism in
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the pointed fibre PtYpEq:

X ,2 x f ,1Xy,2

f
�'

Y � X
pY

��

Y� f ,2,2
Y � Ylr

Y�s
lr

pY

u�
Y

s
]g

s0

5?

and thus it produces the normal monomorphism x f , 1Xy in PtYpEq.
On the other hand, it is known from [14] that, in a Mal’tsev category C,

a reflexive graph is endowed with at most one structure of internal category,
and that any internal category is a groupoid. Let us recall (from [9]) another
proof of this result which sheds a new light on the nature of the uniqueness
of the groupoid structure. From any reflexive graph

Y1
d1

,2

d0 ,2
Y0s0lr

in C, we get two normal subobjects in PtY0pCq:

Y1
,2
xd0,1Y1y ,2

d0
�'

Y0 � Y1

pY0

��

Y1
lr

xd1,1Y1ylr

d1
w�Y0

s0
]g

x1Y0 ,s0y

LR
s0

7A

We can now assert the following:

Proposition 3.1. Let C be a finitely complete Mal’tsev category. The reflex-
ive graph in question is a groupoid if and only if these two normal subobjects
commute in PtY0pCq.

Proof. The two subobjects commute in PtY0pCq if and only if they have a co-
operator φ : Y1 �Y0 Y1 Ñ Y0 �Y1, i.e. a morphism satisfying φ�s0 �x d1, 1Y1y
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and φ�s1 �x d0, 1Y1y:

Y1 �Y0 Y1

φ

��

d2

w�

d0

�'

Y1
,2
xd0,1Y1y ,2

d0

�(

s1

7A

Y0 � Y1

pY0

��

Y1
lr

xd1,1Y1ylr

d1

v�

s0

]g

Y0

s0

^h

x1Y0 ,s0y

LR
s0

6@

where the whole quadrangle is a pullback in C. Hence the morphism φ is
a pair xd0�d2, d1y, where d1 : Y1 �Y0 Y1 Ñ Y1 is such that d1�s0 � 1Y1 and
d1�s1 � 1Y1 . Since the morphism d1 satisfies these two identities, it makes
the reflexive graph in question multiplicative in the sense of [14]. And,
according to Theorem 2.2 in [14], in a Mal’tsev category, any multiplicat-
ive reflexive graph is a groupoid. Conversely, the composition morphism
d1 : Y1 �Y0 Y1 Ñ Y1 of an internal category satisfies the previous two identit-
ies and produces the cooperator φ �x d0�d2, d1y. �

Now let us consider a morphism of reflexive graphs

X1

d0 ��
d1��

f1 ,2 Y1

d0 ��
d1��

X0 f0
,2

LR

Y0

LR

and recall the following result from [3, Proposition 14]:

Proposition 3.2. When C is a finitely complete Mal’tsev category, then,
given any morphism of reflexive graphs as above, the square indexed by 0
is a pullback if and only if the square indexed by 1 is a pullback. In such
a situation this morphism is said to be a discrete fibration between reflexive
graphs.

We can now extend a result already known in strongly protomodular cat-
egories, see [4, Consequence B, p. 216]:
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Proposition 3.3. Let C be a finitely complete Mal’tsev category satisfying
condition (C). Given any discrete fibration of reflexive graphs, the codo-
main reflexive graph Y1 is a groupoid as soon as so is the domain reflexive
graph X1.

Proof. Since C satisfies condition (C), it is enough to show that the images
under the change of base functor along f0 of the two normal monomorphisms
associated with the codomain reflexive graph Y1 do commute in the fibre
PtX0pCq. The two images in question are the following ones:

X1
,2 xd0, f1y ,2

d0
!*

X0 � Y1

pX0

��

X1
lrxd1, f1ylr

d1
t}X0

s0
aj

x1X0 , f1�s0y

LR
s0

4=

since the morphism of reflexive graphs is a discrete fibration. They do com-
mute in PtX0pCq, being given by the following composition in this fibre,
where the horizontal part commutes since the reflexive graph X1

X1
,2
xd0,1X1y ,2

xd0, f1y �'

X0 � X1

X0� f1

��

X1
lr

xd1,1X1ylr

xd1, f1yw�
X0 � Y1

is a groupoid. �

3.2 The condition (SH) and commutators
In this section we shall prove that, as expected, in the Mal’tsev context, un-
der (SH) the Smith and the Huq commutators in the sense of [6] do coincide.

3.2.1 The Huq commutator in a unital category

We shall suppose here that C is a unital category which is moreover fi-
nitely cocomplete. In this context, in [6] there was given a construction,
for any pair f : X Ñ Z, g : Y Ñ Z of morphisms with the same codomain, of
a morphism which universally makes them cooperate. Indeed consider the
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following diagram, where Qv f , gw is the colimit of the diagram made of the
plain arrows:

X
lX

u}
φ̄X
��

f

�'
X � Y

φ̄
,2 Qv f , gw Z

ψ̄
lr

Y
rY

ai
φ̄Y

LR

g

7A

Clearly the morphisms φ̄X and φ̄Y are completely determined by the pair
pφ̄, ψ̄q, and clearly the morphism φ̄ is the cooperator of the pair pψ̄� f , ψ̄�gq.
On the other hand, the strong epimorphism ψ̄measures how far the pair p f , gq
is from cooperating, and we have [6]:

Proposition 3.4. Suppose C finitely cocomplete and unital. Then ψ̄ is the
universal morphism which, by composition, makes the pair p f , gq cooperate.
The morphism ψ̄ is an isomorphism if and only if the pair p f , gq cooperates.

Since the morphism ψ̄ is a strong epimorphism, its distance from being
an isomorphism is its distance from being a monomorphism, which is exactly
measured by its kernel relation Rrψ̄s, whence the following definition:

Definition 3.1 (Huq commutator). Given any pair p f , gq of morphisms with
the same codomain in a finitely cocomplete unital category C, their Huq
commutator v f , gw is the kernel relation Rrψ̄s.

When the category C is moreover regular [1], i.e., such that the strong
epimorphisms are stable by pullback and any effective equivalence relation
(= kernel pair) admits a quotient, we can add some piece of information.
First, any morphism f : X Ñ Z has a canonical regular epi/mono factorisa-
tion X � f pXq� Z, and the morphism f pXq� Z is then called the image
of the morphism f . Secondly, two morphisms f and g cooperate if and only
if their images f pXq� Z and gpYq� Z do.

3.2.2 The Smith commutator in a Mal’tsev category

We shall suppose here that C is finitely complete and cocomplete, regular
Mal’tsev category. In a regular Mal’tsev category, given a regular epimorph-
ism f : X � Y , any equivalence relation R on X has a direct image f pRq

BOURN, MARTINS-FERREIRA & VAN DER LINDEN - SMITH IS HUQ...

- 178 -



along f on Y . It is given by the regular epi/mono factorisation of the morph-
ism

x f �d0, f �d1y : R� f pRq� Y � Y

Clearly in any regular category C, the relation f pRq is reflexive and symmet-
ric; when moreover C is Mal’tsev, f pRq is an equivalence relation.

Now let us recall the following results and definition from [6]: first con-
sider the following diagram, in which QrR, S s is the colimit of the plain
arrows:

R
lR

u}
φR
��

dR
0

�'
R �X S

φ
,2 QrR, S s X

ψ
lr

S
rS

ai

φS

LR

dS
1

7A

Notice that, here, in consideration of the pullback defining R �X S (diagram
(�)), the roles of the projections d0 and d1 have been interchanged. As in the
section above, the morphisms φR and φS are completely determined by the
pair pφ, ψq and the morphism ψ is a strong epimorphism (and thus a regular
epimorphism in our regular context). This morphism ψmeasures how far the
equivalence relations R and S are from centralising each other:

Proposition 3.5. Let C be a finitely complete and cocomplete, regular Mal’-
tsev category. The morphism ψ is the universal regular epimorphism which
makes the direct images ψpRq and ψpS q centralise each other (i.e. rR, S s�
0). The equivalence relations R and S centralise each other if and only if ψ
is an isomorphism.

Since the morphism ψ is a regular epi, its distance from being an iso-
morphism is its distance from being a monomorphism, which is exactly
measured by its kernel relation Rrψs. Accordingly, it is meaningful to in-
troduce the following definition:

Definition 3.2 (Smith commutator). Let C be a finitely complete and cocom-
plete, regular Mal’tsev category. Consider in C two equivalence relations
pdR

0 , d
R
1 q : R Ñ X and pdS

0 , d
S
1 q : S Ñ X on the same object X. The kernel

relation Rrψs of the morphism ψ is called the Smith commutator of R and S .
We shall use the classical notation rR, S s for this commutator.
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Example 3.1. If we suppose moreover that the category C is Barr exact [1]—
namely such that any equivalence relation is effective, i.e., the kernel relation
of some morphism—then, thanks to Theorem 3.9 in [21], the previous defi-
nition is equivalent to the definition of [21], and accordingly to the definition
of Smith [22] in the Mal’tsev-varietal context. On the other hand, one of the
advantages of this definition is that it extends the meaning and existence of
commutator from the exact Mal’tsev context to the regular Mal’tsev context,
enlarging the range of examples to the Mal’tsev quasi-varieties and to the
topological Mal’tsev models, as the category GppTopq of topological groups
for instance.

The example GppTopq is also interesting for the following reason. In
a Mal’tsev category C, given any pair pR, S q of equivalence relations on an
object X, we obtain rR, S s� 0 as soon as the intersection RXS is the discrete
equivalence relation ∆X. When the Mal’tsev C is not only regular, but also
exact (which means that any equivalence relation is effective, i.e., the kernel
relation of some morphism), this implies that we necessarily have rR, S s¤
R X S . Indeed, since C is exact, we may take the quotient q : X � Q of the
equivalence relation R X S ; then we see that qpRqX qpS q� ∆Q as in any
regular category. Accordingly, rqpRq, qpS qs� 0. When, in addition, C is
finitely cocomplete Mal’tsev, we have a factorisation ξ : QrR, S s � Q and
the inclusion rR, S s¤ R X S . The regular (but not exact) Mal’tsev category
GppTopq provides a setting in which this inclusion does not hold: see [7,
Proposition 5.3].

3.3 Commutators in the pointed Mal’tsev setting
From now on C will be a regular pointed Mal’tsev category. Recall from [6]
that, on the one hand, if f : X � Y is a regular epimorphism and R an equiva-
lence relation on X, then the normal subobject jp f pRqq associated with f pRq
is the direct image f p jpRqq along f of the normal subobject jpRq associated
with R. On the other hand, we get:

Proposition 3.6. Let C be a finitely complete and cocomplete, regular, poin-
ted Mal’tsev category. Then, given any pair pR, S q of equivalence relations
on an object X, there is a natural comparison ζ : Qv jpRq, jpS qwÑ QrR, S s,
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and consequently we have v jpRq, jpS qw¤r R, S s, namely an inclusion of the
Huq commutator into the Smith commutator.

Proof. Consider the morphism ψ : X � QrR, S s. We have rψpRq, ψpS qs� 0,
so that

vψp jpRqq, ψp jpS qqw�v jpψpRqq, jpψpS qqw� 0.

Hence the two morphisms ψ� jpRq and ψ� jpS q commute. Now thanks to
the universal property of the morphism ψ̄ : X � Qv jpRq, jpS qw, there is a
unique factorisation ζ : Qv jpRq, jpS qwÑ QrR, S s such that ζ�ψ̄ � ψ, and
thus an inclusion v jpRq, jpS qw¤r R, S s of the Huq commutator into the
Smith commutator. �

Exactly in the same way as for strongly protomodular categories [6], we
can now assert:

Theorem 3.1. Let C be a finitely complete and cocomplete, pointed and reg-
ular Mal’tsev category satisfying (SH). Then, given any pair pR, S q of equiv-
alence relations on an object X, the natural comparison ζ : Qv jpRq, jpS qwÑ
QrR, S s is an isomorphism, and consequently we have v jpRq, jpS qw�r R, S s,
namely the Smith and the Huq commutators coincide.

Proof. Consider the morphism ψ̄ : X � Qv jpRq, jpS qw. Then we get:

v jpψ̄pRqq, jpψ̄pS qqw�v ψ̄p jpRqq, ψ̄p jpS qw� 0

Now thanks to condition (SH), we have that rψ̄pRq, ψ̄pS qs� 0. Then the
universal property of the morphism ψ : X � QrR, S s produces a unique
factorisation θ : QrR, S sÑ Qv jpRq, jpS qw which is necessarily an inverse
of ζ (see Proposition 3.6), and thus an isomorphism rR, S s�v jpRq, jpS qw.
Hence the two notions of commutator coincide. �
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