
Résumé. Une catégorie avec tangente est une catégorie équipée d’un
endofoncteur ayant les propriétés abstraites du foncteur fibré tangent sur
la catégorie des variétés lisses. Parmi les exemples on trouve beaucoup de
contextes appropriés pour la géométrie différentielle: par exemple, certaines
variétés, les C∞-anneaux, et les modèles de la géométrie diffrentielle
synthétique induisent des catégories avec tangente. Rosicky a montré que
dans ce contexte abstrait on peut définir une loi de crochet de Lie pour les
champs de vecteurs correspondants. Cet auteur a aussi donné une preuve de
l’identité de Jacobi pour cette loi: toutefois sa preuve n’a jamais été publiée,
elle était assez complexe, et nécessitait d’hypothèses supplémentaires sur la
catégorie avec tangente.
Nous donnons ici une preuve beaucoup plus courte de l’identité de Jacobi
dans ce contexte, sans aucune hypothèse supplémentaire. En outre, les
techniques développées pour cette preuve, notamment l’utilisation d’un
calcul graphique, pourraient être utiles pour démontrer dautres résultats dans
les catégories avec tangente.

Abstract. A tangent category is a category equipped with an endofunctor
with abstract properties modelling those of the tangent bundle functor on the
category of smooth manifolds. Examples include many settings for differen-
tial geometry; for example, convenient manifolds, C∞-rings, and models of
synthetic differential geometry all give rise to tangent categories. Rosický
showed that in this abstract setting, one can define a Lie bracket operation for
the resulting vector fields. He also provided a proof of the Jacobi identity for
this bracket operation; however, his proof was unpublished, quite complex,
and made additional assumptions on the tangent category.
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We provide a much shorter proof of the Jacobi identity in this setting
that does not make any additional assumptions. Moreover, the techniques
developed for the proof, namely the use of a graphical calculus, may be of
use in proving other results for tangent categories.
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1. Introduction

Tangent categories, first developed by Rosický [8] provide an axiomatic de-
scription of the tangent bundle functor. Within this abstract framework, one
is interested in determining how many properties of the ordinary tangent
bundle for finite dimensional smooth manifolds hold. For example, one can
define vector fields for such an abstract tangent bundle, and Rosický showed
that one can define a Lie bracket for two such vector fields.

Unfortunately, however, the proof of an important identity for the Lie
bracket, namely the Jacobi identity

[x, [y, z]] + [z, [x, y]] + [y, [z, x]] = 0

proved elusive. Rosický did find a very long, intricate proof (approximately
80 pages); however, the proof also made additional assumptions on the tan-
gent category and was not published.

In this paper, we give a shorter proof of this key identity that does not
make any additional assumptions on the tangent category. Most of the work
involved in trying to prove the identity consists of calculations with many
applications of various functors and natural transformations. Our key sim-
plification is the use of a graphical calculus to handle these calculations. By
judicious use of this graphical calculus, we are able to manipulate the com-
plex sequence of terms in the Jacobi identity for tangent categories much
more easily and thus are able to perform the necessary calculations to re-
duce the expression to zero.

In addition to the simplification of the proof that this paper provides, we
also believe that the technique we employ in this proof (namely, the use of
graphical calculus) will greatly aid further calculations in tangent categories.
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2. Tangent categories and their Lie bracket

Rosický gave the original definition of tangent categories [8]; here, we pro-
vide a modified version of the axioms found in [2].

Throughout this paper we will be writing composition in diagrammatic
order, so that f followed by g is written as fg. An additive bundle over
an object M in a category X is a commutative monoid in the slice category
X/M , while an additive bundle morphism between two such objects is the
obvious notion of morphism of such objects.

Definition 2.1. For a category X, tangent structure T = (T, p, 0,+, `, c) on
X consists of the following data:

• (tangent functor) a functor T : X→ X with a natural transformation
p : T → I such that each pM : T (M) → M admits finite wide
pullbacks along itself which are preserved by each T n.

• (additive bundle) natural transformations + : T2 → T (where T2 is
the pullback of p over itself) and 0 : I → T making each pM : TM →
M an additive bundle;

• (vertical lift) a natural transformation ` : T → T 2 such that for each
M

(`M , 0M) : (p : TM →M,+, 0)→ (Tp : T 2M → TM, T (+), T (0))

is an additive bundle morphism;

• (canonical flip) a natural transformation c : T 2 → T 2 such that for
each M

(cM , 1) : (Tp : T 2M → TM, T (+), T (0))→ (p : T 2M → TM,+, 0)

is an additive bundle morphism;

• (coherence of ` and c) c2 = 1 (so c is a natural isomorphism), `c = `,
and the following diagrams commute:

T ` //

`
��

T 2

T (`)
��

T 2
`T
// T 3

T 3 T (c) //

cT
��

T 3 cT // T 3

T (c)
��

T 3

T (c)
// T 3

cT
// T 3

T 2

c
��

`T // T 3 T (c) // T 3

cT
��

T 2

T (`)
// T 3

COCKETT & CRUTTWELL - THE JACOBI IDENTITY FOR TANGENT CATEGORIES

- 303 -



• (universality of vertical lift) defining the “derived lift” v : T2M →
T 2M by v := 〈π0`, π10T 〉T (+), the following diagram is a pullback1:

T2(M)

π0p=π1p

��

v // T 2(M)

T (p)

��
M

0
// T (M)

A pair (X,T) is known as a tangent category.

Example 2.2. The category of finite dimensional smooth manifolds with
their usual tangent bundle forms a tangent category.

It is useful to look at how these axioms work in this particular example.
In particular, it is useful to see the local form of each of the above natural
transformations. Locally on U , TU ∼= Rn×U ; we shall represent an element
of this tangent bundle by the pair 〈v, x〉. Similarly T2U = Rn×Rn×U and
T 2U = Rn×Rn×Rn×U . The natural transformations above are given by
the following equations:

• projection: p(〈v, x〉) = x;

• addition: +(〈v1, v2, x〉) = 〈v1 + v2, x〉;

• canonical flip: c(〈d, v, w, x〉) = 〈d, w, v, x〉;

• vertical lift: `(〈v, x〉) = 〈v, 0, 0, x〉;

• derived lift: v(〈v1, v2, x〉) = 〈v1, 0, v2, x〉.

A global expression for the derived lift v is also given by

v(〈v1, v2, x〉) =
d

dt
|t=0(tv1 + v2)

(see [3], pg. 55). As we shall see, the universal property of this derived lift
v (that is, the final axiom for a tangent category) is essential for defining the
Lie bracket of two vector fields.

1In [2] this condition is given as the requirement that v is the equalizer of T (p) and
pp0: this followed the approach in [8]. However, we now believe that the condition is more
naturally expressed as a pullback.
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Example 2.3. In any model of synthetic differential geometry, the infinites-
imally linear objects form a tangent category, where TM = MD.

Another perspective on the tangent category axioms comes from seeing
where the axioms come from in this model:

• projection p : MD →M comes from applying M (−) to 0 : 1→ D;

• addition + : MD(2) →MD comes from the diagonal ∆ : D → D(2);

• the lift ` : MD → (MD)D ∼= MD×D comes from multiplication
D ×D → D;

• canonical flip c : MD×D → MD×D comes from the twist D × D →
D ×D.

Example 2.4. Convenient manifolds with the kinematic tangent bundle (see
[4] section 28) form a tangent category, with similar transformations as in
the category of finite dimensional smooth manifolds.

Example 2.5. Any Cartesian differential category [1] is a tangent category,
with T (A) = A× A and T (f) = 〈Df, π1f〉.

Example 2.6. A source of examples from [8] uses the fact that if (X,T) is
a tangent category then the functors from X to set which preserve both the
wide pullbacks of T n(p) and the pullback in the universality of the lift forms
a tangent category. The tangent functor is given by T ∗(F ) := TF . In fact,
this works for any category Y in place of set and functors X → Y which
preserve the required pullbacks. This source of examples includes C∞-rings
(see [7] chapter 1) and more generally the product preserving functors from
any Cartesian differential category.

Example 2.7. The category of functors from any category to a tangent cat-
egory Cat(C,X) inherits the tangent structure of X pointwise. Thus, for
example, the category of arrows in a tangent category X2 is again a tangent
category.

For more examples and theory of tangent categories, see [8] and [2].
We now turn to vector fields and their associated bracket in this abstract

setting.
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Definition 2.8. For M an object of a tangent category (X,T), a vector field
on M is a section of the projection pM : TM →M ; that is, a map x : M →
TM with xpM = 1.

For two vector fields x and y onM , we will write x+y for the expression
〈x, y〉+, and x− y for 〈x, y−〉+.

Now, for vector fields x and y on M , consider the following map:

xT (y)− yT (x)c : M → T 2M.

One can show (see [2], lemma 3.13) that T (p) of this expression gives 0, so
by the universality of the vertical lift, we get an associated unique map from
M to T2M , and then by composing with the first projection, an associated
unique map from M → TM , which we denote by [x, y].

Definition 2.9. For vector fields x and y on an object M in a tangent cate-
gory (X,T) (with negatives), their Lie bracket is [x, y] as defined above.

Note that we need negation in order to be able to define this bracket.
Accordingly, throughout the rest of the paper we assume we are working in
a tangent category which has negatives.

This abstract definition generalizes definitions in the existing models: for
the standard model, see [4], lemma 6.13; for synthetic differential geometry,
see [8], page 6.

It is not difficult to prove the following properties of the bracket operation
in this setting (see [2], theorem 3.17):

• [x, y] is again a vector field on M .

• [x1 + x2, y] = [x1, y] + [x2, y] and [x, y1 + y2] = [x, y1] + [x, y2].

• [x, y]− = [y, x].

The key property we are interested in, however, is the Jacobi identity:

[x, [y, z]] + [z, [x, y]] + [y, [z, x]] = 0.

This is crucial as without it one does not have a Lie bracket. As men-
tioned above, Rosický did not include a proof of this in his paper, but did
provide to us an approximately 80 page handwritten manuscript containing
a proof which assumed some additional pullbacks to be present in the tan-
gent category. The goal in this paper is to prove this result more efficiently
and without the use of additional limits.

COCKETT & CRUTTWELL - THE JACOBI IDENTITY FOR TANGENT CATEGORIES

- 306 -



3. Graphical language for tangent categories

The key to our simpler proof is the use of the graphical language of 2-
categories. Graphical languages for monoidal categories have been exten-
sively used (see [6] for an overview). The graphical language for a 2-
category (or bicategory) is similar, but involves using regions for objects.
Thus, in a 2-category, the objects are represented as regions, the arrows as
strings, and the 2-cells as boxes connecting those strings.

In particular, we will be using this graphical language for the 2-category
CAT of categories, functors, and natural transformations. Thus, in our di-
agrams, regions represent categories, wires represent functors, and boxes
represent natural transformations.

For the calculations we are interested in, most of the regions will be
the chosen tangent category X, while most of the wires will be the tangent
functor T . However, we will also use the terminal category 1, as we need
to handle vector fields. We can view an object M of X as a functor 1 → X,
and then a vector field x on M can be viewed as a natural transformation
M → MT . Thus, in this graphical language, the vector field x will be
represented by the diagram

x

where we have omitted the labelling of the regions and wires:

• the top and middle-right regions are the category X of the tangent cat-
egory;

• the bottom region is 1, the terminal category;

• the left and bottom right wires are the object M , viewed as a functor
1→ X;

• the top right wire is the functor T : X→ X.

In general in any calculation involving vector fields, the left-most and bottom
wires will always be M ; all other wires will be T .
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We will represent ` : T → T 2 by a splitting of wires, and c : T 2 → T 2

by a crossing of wires:

` : ◦ and c:

It is useful to view the coherence axioms for ` and c in this graphical form.
`c = ` is

◦ = ◦

The axiom T (c)cT (c) = cT (c)c is

=

`T (`) = `` is

◦
◦

= ◦
◦

and `T (c)c = cT (`) is

◦ =
◦

(Note that there is a similar version of this, c` = T (`)cT (c) simply by ap-
plying c and T (c) to both sides of the above equation).

Addition as directly defined is potentially problematic, as it involves a
pullback, which is not easily represented graphically. However, we can view
addition of vector fields in a different way: for vector fields x and y,

x+ y = xT (y)〈Tp, p〉+
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Moreover, the map µ1 := 〈Tp, p〉+ : T 2M → TM is a natural transfor-
mation2. Thus we have x + y = xT (y)µ1, and using ⊕ for the natural
transformation µ1, we can represent the addition of two vector fields x and
y by the diagram

x

y

⊕

µ1 has the following coherence with ` (the proof can be found in [2], propo-
sition 3.8):

⊕ ◦ =

◦

◦

⊕

⊕

Negation will be represented by a dot; see below for an example.
We also need ways to deal with the Lie bracket and its universal property.

Since the lift ` is monic ([2], lemma 2.13), one way is to post-compose the
bracket with `, giving the following equation:

[x, y]` = xT (y)T 2(x)T 3(y)− T (−)T (c)µ1T (µ1).

This is originally due to Rosický; a proof can be found in [2], lemma 3.16.
This equation is then given graphically as

[x, y] ◦ =

x

y

x

y

•

•

⊕

⊕

2In fact, it is the multiplication for a monad structure on T : see [2], section 3.2.
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In fact, since `c = ` and [x, y] = −[y, x], there are many variants of this
identity; we will return to this in the next section.

We also have the following result:

Lemma 3.1. For vector fields a and b

aT (b)T (`)`T (c)µ1 = bT (a)T (`)`T (c)µ1T (c).

Proof.

aT (b)T (`)`T (c)µ1

= aT (b)T (`)`T (c)〈T (p), p〉+

= 〈aT (b)T (`)`T (c)T (p), aT (b)T (`)`T (c)p〉+

= 〈aT (b)T (`)`T 2(p), aT (b)T (`)`pc〉+

= 〈aT (b)T (`p)`, aT (b)T (`)`pc〉+

= 〈aT (b)T (p0)`, aT (b)T (`)p0c〉+

= 〈aT (0)`, b`T (0)〉+

= 〈a`T 2(0), b`T (0)〉+

= 〈a`T 2(0), b`T (0)〉+ T (c)T (c)

= 〈a`T 2(0)T (c), b`T (0)T (c)〉+ T (c)

= 〈a`T (0), b`T 2(0)〉+ T (c)

= 〈b`T 2(0), a`T (0)〉+ T (c)(by symmetry)
= bT (a)T (`)`T (c)µ1T (c)

Graphically, this shows that “vector fields which are lifted to have a level
in common commute”:

x

y

◦

◦

⊕

=

y

⊕

x

◦

◦
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4. Proof of the Jacobi identity

This graphical calculus is very helpful when understanding how to manipu-
late complicated expressions, and helps suggests additional variants of iden-
tities. However, even it can get unwieldy when dealing with the large terms
in the Jacobi identity. Thus, it is helpful to represent the terms that occur in
the expansion of the Jacobi identity with a shorthand notation.

Typically, such terms consist of a sequence of vector fields, each of which
is connected to one of three possible levels by addition, or two levels by a
lift then a pair of additions. Thus, if a vector field a is connected to level i
by addition, we write that term as ai, and if that term is lifted then connected
to levels i and j by addition, we write it as aij . We will also additionally
simplify by writing the negation of a vector field a by ã. As an example, in
this notation the identity

[x, y] ◦ =

x

y

x

y

•

•

⊕

⊕

is written as
[x, y]12 = x̃1ỹ2x1y2.

This notation brings us closer to the notation used to prove the Jacobi identity
in models of synthetic differential geometry: see the proofs in [5] and [7].
Indeed, some of the results we establish below are inspired by some of the
calculations in those proofs.

Lemma 4.1. For vector fields a, x, y, z in a tangent category, we have the
following identities:

1. Bracket expansion:

[x, y]12 = x̃1ỹ2x1y2 = x1y2x̃1ỹ2 = y1x̃2ỹ1x2 = ỹ1x2y1x̃2

= x̃2ỹ1x2y1 = x2y1x̃2ỹ1 = y2x̃1ỹ2x1 = ỹ2x1y2x̃1.
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2. Two terms lifted to have a level in common commute:

x12y13 = y13x12 and x12y23 = y23x12.

3. Brackets commute with their constituents:

x1[x, y]12 = [x, y]12x1 and x2[x, y] = [x, y]x2

4. a12z3ã12z̃3 = z3ã12z̃3a12.

Proof. 1. As mentioned earlier, [2], lemma 3.16 proves the first equation.
The fact that `c = ` accounts for half of the forms. As ` − T (−) =
− − ` = ` we obtain the forms in which the negations have been
flipped from the top two wires to the bottom two wires or from the
outside wires to the inside wires. As [y, x]− = [x, y] we get the form
in which the order of vector fields is flipped and the negation moved
from top two to the inside (or outside) two wires.

2. The first version was established in lemma 3.1; the second version is
similar.

3. Using 1,
x1[x, y]12 = x1ỹ2x̃1y2x1 = [x, y]12x1.

The other identity is proved similarly.

4. We use 1 and the coherence of ` with ⊕:

a

z

ã

z̃

◦

◦

⊕

⊕
⊕

=

a

z

ã

z̃

⊕

⊕ ◦
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= [a,z] ◦

◦

=

z

ã

z̃

a

⊕

⊕
◦

=

z

ã

z̃

a

⊕

◦

◦

⊕

⊕

With these lemmas established, we can now give a relatively short proof
of the Jacobi identity in a tangent category.

Theorem 4.2. (Jacobi identity) For vector fields x, y, z in a tangent category
(X,T),

[x, [y, z]] + [z, [x, y]] + [y, [z, x]] = 0.

Proof. We will actually prove a variant of the standard identity, namely

[[x, y], z] + [[y, z], x] + [[z, x], y] = 0.

First, recall that x+ y can be represented as xT (y)µ1, so that the term above
can be written in the graphical language as

[[x, y], z]

[[y, z], x]

⊕

[[z, x], y]

⊕
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We then post-compose the term with ``. Using the coherence of ` with
⊕, we then get the term

[[x, y], z]123[[y, z], x]123[[z, x], y]123

We will now use the four parts of lemma 4.1 and negation to simplify the
above term. In the proof below, a line underneath a term indicates that it
is the term that will be modified next, the numerals indicate which part of
lemma 4.1 is being used, and neg. indicates the use of negation, either to
reduce a pair of terms or to add a pair of terms.

[[x, y], z]123 [[y, z], x]123 [[z, x], y]123

(1) = [x, y]12z3[y, x]12z̃3[y, z]23x1[z, y]23x̃1[x, z]13ỹ2[z, x]13y2

(2,3) = [x, y]12[x, z]13z3[y, x]12z̃3[y, z]23x1[z, y]23x̃1ỹ2[z, x]13y2

(1) = [x, y]12[x, z]13z3[y, x]12z̃3[y, z]23x1[z, y]23x̃1ỹ2x1z̃3x̃1z3y2

(neg.) = [x, y]12[x, z]13z3[y, x]12z̃3[y, z]23x1[z, y]23x̃1ỹ2x1y2ỹ2z̃3x̃1z3y2

(1) = [x, y]12[x, z]13z3[y, x]12z̃3[y, z]23x1[z, y]23[x, y]12ỹ2z̃3x̃1z3y2

(2,3) = [x, y]12[x, z]13z3[y, x]12z̃3[x, y]12[y, z]23x1[z, y]23ỹ2z̃3x̃1z3y2

(1) = [x, y]12[x, z]13z3[y, x]12z̃3[x, y]12[y, z]23x1z̃3ỹ2z3y2ỹ2z̃3x̃1z3y2

(neg.) = [x, y]12[x, z]13z3[y, x]12z̃3[x, y]12[y, z]23x1z̃3ỹ2x̃1z3y2

(2,3) = [y, z]23[x, y]12[x, z]13z3[y, x]12z̃3[x, y]12x1z̃3ỹ2x̃1z3y2

(4) = [y, z]23[x, y]12[x, z]13[y, x]12z̃3[x, y]12z3x1z̃3ỹ2x̃1z3y2

(neg.) = [y, z]23[x, y]12[x, z]13[y, x]12z̃3[x, y]12z3x1z̃3x̃1x1ỹ2x̃1z3y2

(1) = [y, z]23[x, y]12[x, z]13[y, x]12z̃3[x, y]12[z, x]13x1ỹ2x̃1z3y2

(2,3) = [y, z]23[x, y]12[x, z]13[z, x]13[y, x]12z̃3[x, y]12x1ỹ2x̃1z3y2

(neg.) = [y, z]23[x, y]12[y, x]12z̃3[x, y]12x1ỹ2x̃1z3y2

(neg.) = [y, z]23z̃3[x, y]12x1ỹ2x̃1z3y2

(neg.) = [y, z]23z̃3[x, y]12x1ỹ2x̃1y2ỹ2z3y2

(1) = [y, z]23z̃3[x, y]12[y, x]12ỹ2z3y2

(neg.) = [y, z]23z̃3ỹ2z3y2

(1) = [y, z]23[z, y]23

(neg.) = 0123
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Thus, since ` is monic ([2], lemma 2.13), we have

[[x, y], z] + [[y, z], x] + [[z, x], y] = 0.

as required.
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