
Résumé. Dans [1] Grothendieck développe la théorie des pro-objets

sur une catégorie C . La propriété fondamentale de la catégorie

Pro(C) des pro-objets est qu’il y a une immersion C
c−→ Pro(C) ,

Pro(C) est fermée par petites limites cofiltrées, et ces limites sont

libres dans le sens que pour une catégorie quelconque E fermée par

petites limites cofiltrées, la précomposition par c détermine une

équivalence des catégories Cat(Pro(C),E)+ ' Cat(C,E) (où ”+”

indique la sous-catégorie des foncteurs qui préservent les limites

cofiltrées). Dans cet article nous développons une théorie des

pro-objets en dimension 2. Étant donnée une 2-catégorie C , nous

construisons une 2-catégorie 2-Pro(C) , dont nous appelons les

objets 2-pro-objets. Nous montrons que 2-Pro(C) a toutes les

propriétés basiques attendues, correctement relativisées au contexte

2-catégorique, y compris la propriété universelle analogue à celle

mentionnée ci-dessus. Bien que nous ayons à notre disposition

les résultats de la théorie des catégories enrichies, notre théorie va

au-delà du cas des catégories enrichies sur Cat , car nous considérons

la notion non-stricte de pseudo-limite, qui est usuellement celle

d’intérêt pratique.

Abstract. In [1], Grothendieck develops the theory of pro-objects

over a category C . The fundamental property of the category

Pro(C) is that there is an embedding C
c−→ Pro(C) , the category

Pro(C) is closed under small cofiltered limits, and these limits are

free in the sense that for any category E closed under small cofiltered

limits, pre-composition with c determines an equivalence of

categories Cat(Pro(C), E)+ ' Cat(C, E) , (where the ” + ” indicates

the full subcategory of the functors preserving cofiltered limits).

In this paper we develop a 2-dimensional theory of pro-objects.

Given a 2-category C , we define the 2-category 2-Pro(C) whose
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objects we call 2-pro-objects. We prove that 2-Pro(C) has all the

expected basic properties adequately relativized to the 2-categorical

setting, including the universal property corresponding to the one

described above. We have at hand the results of Cat -enriched

category theory, but our theory goes beyond the Cat -enriched case

since we consider the non strict notion of pseudo-limit, which is

usually that of practical interest.
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Introduction. In this paper we develop a 2-dimensional theory of
pro-objects. Our motivation are intended applications in homotopy,
in particular strong shape theory. The Č ech nerve before passing
modulo homotopy determines a 2-pro-object which is not a pro-object,
leaving outside the actual theory of pro-objects. Also, the theory of
2-pro-objects reveals itself a very interest subject in its own right.

Given a 2-category C , we define the 2-category 2 -Pro(C) , whose
objects we call 2-pro-objects. A 2-pro-object is a 2-functor (or diagram)
indexed in a 2-cofiltered 2-category. Our theory goes beyond enriched
category theory because in the definition of morphisms, instead of strict
2-limits, we use the non strict notion of pseudo-limit, which is usually
that of practical interest. We prove that 2 -Pro(C) has all the expected
basic properties of the category of pro-objects, adequately relativized to
the 2-categorical setting.

Section 1 contains some background material on 2-categories.
Most of this is standard, but some results (for which we provide
proofs) do not appear to be in the literature. In particular we
prove that pseudolimits are computed pointwise in the 2-functor
2-categories Hom(C,D) and Homp(C,D) (definition 1.1.11), with
2-natural or pseudonatural transformations as arrows. This result,
although expected, needs nevertheless a proof. We recall from [8] the
construction of 2-filtered pseudocolimits of categories which is essential
for the computations in the 2-category of 2-pro-objects introduced
in section 2. Finally, we consider the notion of flexible functors
from [4] and state a useful characterization independent of the left
adjoint to the inclusion Hom(C,D) → Homp(C,D) (Proposition
1.3.2). With this characterization the pseudo Yoneda lemma just says
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that the representable 2-functors are flexible. It follows also that
the 2-functor associated to any 2-pro-object is flexible, and this has
important consequences for a Quillen model structure in the 2-category
of 2-pro-objects currently being developed by the authors in ongoing
research.

Section 2 contains the main results of this paper. In a first subsection
we define the 2-category of 2-pro-objects of a 2-category C and establish
the basic formula for the morphisms and 2-cells between 2-pro-objects in
terms of pseudo limits and pseudo colimits of the hom categories of C .
With this, inspired in the notion of an arrow representing a morphism
of pro-objects found in [3], in the next subsection we introduce the
notion of an arrow and a 2-cell in C representing an arrow and a 2- cell
in 2 -Pro(C) , and develop computational properties of 2-pro-objects
which are necessary in our proof that the 2-category 2 -Pro(C) is closed
under 2-cofiltered pseudo limits. In the third subsection we construct a
2-filtered category which serves as the index 2-category for the 2-filtered
pseudolimit of 2-pro-objects (Definition 2.3.1 and Theorem 2.3.3). This
is also inspired in a construction and proof for the same purpose found
in [3], but which in our 2-dimensional case reveals itself very complex
and difficult to manage effectively. We were forced to have recourse to
this complicated construction because the conceptual treatment of this
problem found in [1] does not apply in the 2-dimensional case. This
is so because a 2-functor is not the pseudocolimit of 2-representables
indexed by its 2-category of elements. Finally, in the last subsection we
prove the universal properties of 2 -Pro(C) (Theorem 2.4.6), in a way
which is novel even if applied to the classical theory of pro-objets.

1 Preliminaries on 2-categories

We distinguish between small and large sets. For us legitimate
categories are categories with small hom sets, also called locally small.
We freely consider without previous warning illegitimate categories with
large hom sets, for example the category of all (legitimate) categories, or
functor categories with large (legitimate) exponent. They are legitimate
as categories in some higher universe, or they can be considered as
convenient notational abbreviations for large collections of data. In
fact, questions of size play no overt role in this paper, except that
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we elect for simplicity to consider only small 2-pro-objects. We will
explicitly mention whether the categories are legitimate or small when
necessary. We reserve the notation Cat for the legitimate 2-category
of small categories, and we will denote CAT the illegitimate category
(or 2-category) of all legitimate categories in some arbitrary sufficiently
high universe.

Notation. 2-Categories will be denoted with the “mathcal” font
C, D, . . . , 2-functors with the capital “mathff” font, F , G , ... and
2-natural transformations, pseudonatural transformations and modifi-
cations with the greek alphabet. For objects in a 2-category, we will
use capital “mathff” font C, D, . . . , for arrows in a 2-category small
case letters in “mathff” font f, g, . . . , and for the 2-cells the greek
alphabet. However, when a 2-category is intended to be used as the
index 2-category of a 2-diagram, we will use small case letters i, j, . . .
to denote its objects, and small case letters u, v, . . . to denote its
arrows. Categories will be denoted with capital ”mathff” font.

We begin with some background material on 2-categories. Most of
this is standard, but some results (for which we provide proofs) do not
appear to be in the literature. We also set notation and terminology as
we will explicitly use in this paper.

1.1 Basic theory

Let Cat be the category of small categories. By a 2-category, we
mean a Cat enriched category. A 2-functor, a 2-fully-faithful 2-functor,
a 2-natural transformation and a 2-equivalence of 2-categories, are a
Cat -functor, a Cat -fully-faithful functor, a Cat -natural transformation
and a Cat -equivalence respectively.

In the sequel we will call 2-category an structure satisfying the
following descriptive definition free of the size restrictions implicit above.
Given a 2-category, as usual, we denote horizontal composition by
juxtaposition, and vertical composition by a ” ◦ ”.

1.1.1. 2-Category. A 2-category C consists on objects or 0-cells C ,
D ... , arrows or 1-cells f , g ... , and 2-cells α , β , ... .

C
f //
α⇓
g

// D
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The objects and the arrows form a category (called the underlying
category of C ), with composition (called ”horizontal”) denoted by
juxtaposition. For a fixed C and D , the arrows between them and the
2-cells between these arrows form a category C(C,D) under ”vertical”
composition, denoted by a ” ◦ ”. There is also an associative horizontal
composition between 2-cells denoted by juxtaposition, with units ididC .
The following is the basic 2-category diagram:

f // f′ //

⇓α ⇓α′

C
g // D

g′ // E

⇓β ⇓β′
h // h′ //

with the equations (β′β) ◦ (α′α) = (β′ ◦ α′)(β ◦ α), idf′idf = idf′f .

We consider juxtaposition more binding than ” ◦ ”, thus αβ ◦ γ
means (αβ)◦γ . We will abuse notation by writing f instead of idf for
morphisms f and C instead of idC for objects C .

1.1.2. Dual 2-Category. If C is a 2-category, we denote by Cop the
2-category with the same objects as C but with Cop(C,D) = C(D,C) ,
i.e. we reverse the 1-cells but not the 2-cells.

1.1.3. 2-functor. A 2-functor F : C −→ D between 2-categories is an
enriched functor over Cat . As such, sends objects to objects, arrows to
arrows and 2-cells to 2-cells, strictly preserving all the structure.

1.1.4. 2-fully-faithful. A 2-functor F : C −→ D is said to be
2-fully-faithful if ∀ C, D ∈ C , FC,D : C(C,D) −→ D(FC,FD) is an
isomorphism of categories.

1.1.5. Pseudonatural. A pseudonatural transformation C
F //
θ⇓
G

// D

between 2-functors consists in a family of morphisms {FC θC−→ GC}C∈C
and a family of invertible 2-cells {GfθC

θf=⇒ θDFf}C f−→D∈C
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FC
θC //

Ff

��

GC

Gf

��
⇓ θf

FD
θD

// GD

satisfying the following conditions:

PN0: ∀ C ∈ C , θidC = idθC
PN1: ∀ C

f−→ D
g−→ E , θgf = θgFf ◦ Gg θf .

PN2: ∀ C
f //
α⇓
g

// D , θg ◦ Gα θC = θDFα ◦ θf

1.1.6. 2-Natural. A 2-natural transformation θ between 2-functors is
a pseudonatural transformation such that θf = id ∀f ∈ C . Equivalently,
it is a Cat -enriched natural transformation, that is, a natural transfor-
mation between the functors determined by F and G , such that for each

2-cell C
f //
α⇓
g

// D , the equation GαθC = θDFα holds. �

1.1.7. Modification. Given 2-functors F and G from C to D , a

modification F
θ //
ρ⇓
η

// G between pseudonatural transformations is a

family {θC
ρC=⇒ ηC}C∈C of 2-cells of D such that:

∀ C f−→ D ∈ C, ρDFf ◦ θf = ηf ◦ GfρC.

As a particular case, we have modifications between 2-natural transfor-
mations, which are families of 2-cells as above satisfying ρDFf = GfρC .

1.1.8. 2-Equivalence. A 2-functor C F−→ D is said to be a

2-equivalence of 2-categories if there exists a 2-functor D G−→ C and

invertible 2-natural transformations FG
α

=⇒ idD and GF
β

=⇒ idC . G
is said to be a quasi-inverse of F , and it is determined up to invertible
2-natural transformations.
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1.1.9 Proposition. [11, 1.11] A 2-functor F : C −→ D is a
2-equivalence of 2-categories if and only if it is 2-fully-faithful and es-
sentially surjective on objects. �

1.1.10. It is well known that 2-categories, 2-functors and 2-natural
transformations form a 2-category (which actually underlies a
3-category) that we denote 2-CAT . Horizontal composition of
2-functors and vertical composition of 2-natural transformations are the
usual ones, and the horizontal composition of 2-natural transformations
is defined by:

Given C
F //
α⇓
G

// D
F′ //
α′⇓
G′

// E , (α′α)C = α′GC◦F′(αC) ( = G′(αC)◦α′FC ).

1.1.11 Definition. Given two 2-categories C and D , we consider two
2-categories defined as follows:

Hom(C,D) : 2-functors and 2-natural transformations.

Homp(C,D) : 2-functors and pseudonatural transformations.

In both cases the 2-cells are the modifications. To define composi-
tions we draw the basic 2-category diagram:

θ // θ′ //

⇓ρ ⇓ρ′

F
η // G

η′ // H

⇓ ε ⇓ ε′
µ // µ′ //

(θ′θ)C = θ′CθC

(ρ′ρ)C = ρ′CρC

(ε ◦ ρ)C = εC ◦ ρC

It is straightforward to check that these definitions determine a
2-category structure. �

1.1.12 Remark. [9, I,4.2.] Evaluation determines a quasifunctor

Homp(C,D)× C ev−→ D (in the sense of [9, I,4.1.], in particular, fix-
ing a variable, it is a 2-functor in the other). In the strict case Hom ,
evaluation is actually a 2-bifunctor. �

1.1.13 Remark. [9, I,4.2] Both constructions Hom and Homp

determine a bifunctor 2-CAT op × 2-CAT −→ 2-CAT . Given 2-functors
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C ′ H0−→ C and D H1−→ D′ , and F
θ //
ρ⇓
η

// G in Homε(C,D)(F,G) , the

definition Homε(H0,H1)(F
θ //
ρ⇓
η

// G) = H1FH0

H1θH0 //
H1ρH0⇓
H1ηH0

// H1GH0 deter-

mines a functor Homε(C,D)(F,G) −→ Homε(C ′,D′)(H1FH0,H1GH0) ,
and this assignation is bifunctorial in the variable (C,D) (here Homε

denotes either Hom or Homp ).

If C and D are 2-categories, the product 2-category C × D is
constructed in the usual way, and this together with the 2-category
Hom(C,D) determine a symmetric cartesian closed structure as follows
(see [11, chapter 2] or [9, I,2.3.]):

1.1.14 Proposition. The usual definitions determine an isomorphism
of 2-categories :

Hom(C, Hom(D, A))
∼=−→ Hom(C × D, A).

Composing with the symmetry C×D
∼=−→ D×C yields an isomorphism:

Hom(C, Hom(D, A))
∼=−→ Hom(D, Hom(C, A)). �

We use the following notation:

Notation: Let C be a 2-category, C ∈ C and D
f //
α⇓
g
// E ∈ C .

1. f∗ : C(C,D)
f∗−→ C(C,E) , f∗(h

β−→ h′) = (fh
fβ−→ fh′) .

2. f∗ : C(E,C)
f∗−→ C(D,C) , f∗(h

β−→ h′) = (hf
βf−→ h′f) .

3. α∗ : f∗
α∗=⇒ g∗ , (α∗)h = αh .

4. α∗ : f∗
α∗

=⇒ g∗ (α∗)h = hα .

5. C C(C,−)−→ Cat : C(C,−)(D
f //
α⇓
g
// E) = (C(C,D)

f∗ //
α∗⇓
g∗
// C(C,E)) .
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6. Cop C(−,C)−→ Cat : C(−,C)(D
f //
α⇓
g
// E) = (C(D,C)

f∗ //
α∗⇓
g∗
// C(E,C)) .

7. We will also denote by f∗ the 2-natural transformation from
C(E,−) to C(D,−) defined by (f∗)C = f∗ .

8. We will also denote by f∗ the 2-natural transformation from
C(−,D) to C(−,E) defined by (f∗)C = f∗ .

9. We will also denote by α∗ the modification from f∗ to g∗ defined
by (α∗)C = α∗ .

10. We will also denote by α∗ the modification from f∗ to g∗ defined
by (α∗)C = α∗ . �

1.1.15. Given a locally small 2-category C , the Yoneda 2-functors are
the following (note that each one is the other for the dual 2-category):

a. C y(−)

−→ Hom(C, Cat)op , yC = C(C,−) , yf = f∗ yα = α∗ .

b. C
y(−)−→ Hom(Cop, Cat) , yC = C(−,C) , yf = f∗ yα = α∗ .

Recall the Yoneda Lemma for enriched categories over Cat . We
consider explicitly only the case a. in 1.1.15.

1.1.16 Proposition (Yoneda lemma). Given a locally small
2-category C , a 2-functor F : C −→ Cat and an object C ∈ C , there is
an isomorphism of categories, natural in F .

Hom(C, Cat)(C(C,−),F)X h // XXXXXFCXXXXX

XXXXθ
ρ // ηXXXX � // XθC(idC)

(ρC)idC // ηC(idC)

Proof. The application h has an inverse

FCX, , ` // XHom(C, Cat)(C(C,−),F)

C
f // D � // XX`C

`f // `DXX

where (`C)D(f
α

=⇒ g) = Ff(C)
(Fα)C−→ Fg(C) and ((`f)D)f = Ff(f) .
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1.1.17 Corollary. The Yoneda 2-functors in 1.1.15 are 2-fully-faithful.
�

Beyond the theory of Cat -enriched categories, the lemma also holds
for pseudonatural transformations in the following way:

1.1.18 Proposition (Pseudo Yoneda lemma). Given a locally small
2-category C , a 2-functor F : C −→ Cat and an object C ∈ C , there is
an equivalence of categories, natural in F .

Homp(C, Cat)(C(C,−),F)X h̃ // XXXXXFCXXXXX

XXXθ
ρ // ηXXXXX � // XθC(idC)

(ρC)idC // ηC(idC)

Furthermore, the quasi-inverse ˜̀ is a section of h̃ , h̃ ˜̀= id .

Proof. h̃ and ˜̀ are defined as in 1.1.16, but now ˜̀ is only a section
quasi-inverse of h̃ . The details can be checked by the reader. One can
found a guide in [13] for the case of lax functors and bicategories. We
refer to the arguing and the notation there: In our case, the unit η is the
equality because F is a 2-functor, and the counit ε is an isomorphism
because α is pseudonatural and the unitor r is the equality.

1.1.19 Corollary. For any locally small 2-category C , and C ∈ C , the

inclusion Hom(C, Cat)(C(C,−),F)
i−→ Homp(C, Cat)(C(C,−),F) has a

retraction α , natural in F , α i = id , i α ∼= id , which determines an
equivalence of categories.

Proof. Note that i = ˜̀h , then define α = ` h̃ .

1.1.20 Corollary. The Yoneda 2-functors in 1.1.15 can be considered
as 2-functors landing in the Homp 2-functor categories. In this case,
they are pseudo-fully faithful (meaning that they determine equivalences
and not isomorphisms between the hom categories). �
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1.2 Weak limits and colimits

By weak we understand any of the several ways universal properties can
be relaxed in 2-categories. Note that pseudolimits and pseudocolimits
(already considered in [2]) require isomorphisms, and have many ad-
vantages over bilimits and bicolimits, which only require equivalences.
Their universal properties are both stronger and more convenient to use,
and they play the principal role in this paper. The defining universal
properties characterize bilimits up to equivalence and pseudolimits up
to isomorphism.

Notation We consider pseudocolimits Lim−→
i∈I

Fi , and bicolimits

biLim−−−→
i∈I

Fi , of covariant 2-functors, and its dual concepts, pseudolimits

Lim←−
i∈I

Fi , and bilimits biLim←−−−
i∈I

Fi , of contravariant 2-functors.

1.2.1 Definition. Let F : I −→ A be a 2-functor and A an object of
A . A pseudocone for F with vertex A is a pseudonatural transforma-
tion from F to the 2-functor which is constant at A , i.e. it consists in

a family of morphisms of A {Fi θi−→ A}i∈I and a family of invertible

2-cells of A {θi
θu=⇒ θjFu}i u−→j∈I satisfying the following equations:

PC0: θidi = idθi .

PC1: ∀ i u−→ j
v−→ k ∈ I , θvFu ◦ θu = θvu

PC2: ∀ i
u //
α⇓
v

// j ∈ I , θi = θjFα ◦ θu
A morphism of pseudocones between θ and η with the same vertex

is a modification, i.e. a family of 2-cells of A {θi
ρi

=⇒ ηi}i∈I satisfying
the following equation:

PCM: ηu ◦ ρi = ρjFu ◦ θu .

Pseudocones form a category PCA(F,A) = Homp(I,A)(F,A) fur-
nished with a pseudocone PCA(F,A) −→ A(Fi, A) , {θi}i∈I 7→ θi , for

the 2-functor Iop A(F(−),A)−→ CAT .

1.2.2 Remark.
Since Homp(I,A) is a 2-category, it follows:
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a. Pseudocones determine a 2-bifunctor Hom(I,A)op ×A PCA−→ CAT .

From Remark 1.1.13 it follows in particular:

b. A 2-functor A H−→ B induces a functor between the categories of

pseudocones PCA(F,A)
PCH−→ PCB(HF,HA) . �

1.2.3 Definition. The pseudocolimit in A of the 2-functor F is

the universal pseudocone, denoted {Fi λi−→ Lim−→
i∈I

Fi}i∈I , in the sense

that ∀ A ∈ A , pre-composition with the λi is an isomorphism of cate-

gories A(Lim−→
i∈I

Fi,A)
λ∗−→ PCA(F,A). Equivalently, there is an isomor-

phism of categories A(Lim−→
i∈I

Fi,A)
∼=−→ Lim←−

i∈Iop
A(Fi,A) commuting with the

pseudocones. Remark that there is also an isomorphism of categories

PCA(F,A)
∼=−→ Lim←−

i∈Iop
A(Fi,A)

Requiring λ∗ to be an equivalence (which implies that also the
other two isomorphisms above are equivalences) defines the notion of
bicolimit. Clearly, pseudocolimits are bicolimits.

We omit the explicit consideration of the dual concepts. �

It is well known that in the strict 2-functor 2-categories the strict lim-
its and colimits are performed pointwise (if they exists in the codomain
category). Here we establish this fact for the pseudo limits and pseudo-
colimits in both the strict and the pseudo 2-functor 2-categories. Abus-
ing notation we can say that the formula (Lim−→

i∈I
Fi)(C) = Lim−→

i∈I
Fi(C)

holds in both 2-categories. The verification of this is straightforward
but requires some care.

1.2.4 Proposition. Let I F−→ A , i 7→ Fi be a 2-functor where A is

either Hom(C,D) or Homp(C,D) . For each C ∈ C let FiC
λCi−→ LC be

a pseudocolimit pseudocone in D for the 2 functor I F−→ A ev(−,C)−→ D
(where ev is evaluation, see 1.1.12). Then LC is 2-functorial in C in

such a way that λCi becomes 2-natural and Fi
λi−→ L is a pseudocolimit

pseudocone in A in both cases. By duality the same assertion holds for
pseudolimits.
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Proof. Given C
f //
α⇓
g

// D in C , evaluation determines a 2-cell in

Hom(I,D) FC
Ff //

Fα⇓
Fg

// FD = ev(F( - ),C
f //
α⇓
g

// D) . (note that

(FC)i = FiC , and similarly for f , g and α ). Then, for each X ∈ D ,
it follows (from Remark 1.2.2 a.) that precomposing with this 2-cell de-
termines a 2-cell (clearly 2-natural in the variable X ) in the right leg of
the diagram below. Since the rows are isomorphisms, there is a unique
2-cell (also natural in the variable X ) in the left leg which makes the
diagram commutative.

D(LD,X)
(λD)∗

∼=
//

⇒
�� ��

PCD(FD,X)

⇒
�� ��

D(LC,X)
(λC)∗

∼=
// PCD(FC,X)

Then, by the Yoneda lemma 1.1.17, the left leg is given by precomposing

with a unique 2-cell in D , that we denote LC
Lf //

Lα⇓
Lg

// LD . It is clear

by uniqueness that this determines a 2-functor C L−→ D .
Putting X = LD in the upper left corner and tracing the identity

down the diagram yields the following commutative diagram of pseudo-
cones in D :

FiC
λCi //

Fif

��

Fiα
⇒

��

Fig

��

LC

Lf

��

Lα
⇒

��

Lg

��
FiD

λDi // LD

This shows that L is furnished with a pseudocone for F and that the
λi are 2-natural. It only remains to check the universal property:

Let C G−→ D be a 2-functor, consider the 2-functor A ev(−,C)−→ D .
We have the following diagram, where the right leg is given by
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Remark 1.2.2 b.:

A(L,G) λ∗ //

ev(−,C)
��

PCA(F,G)

PCev(−,C)

��
D(LC,GC)

(λC)∗

∼=
// PCD(FC,GC)

We prove now that the upper row is an isomorphism. Given Fi

θi //
ρi⇓
ηi
// G

in PCA(F,G) , it follows there exists a unique LC
θ̃C //
ρ̃C⇓
η̃C

// GC in

D(LC,GC) such that ρ̃CλCi = ρiC . It is necessary to show that this 2-

cell actually lives in A . This has to be checked for any C
f //
α⇓
g
// D

in C . In both cases it can be done considering the isomorphism

D(LC,GD)
(λC)∗

∼=
// PCD(FC,GD).

We precise now what we do consider as preservation properties of a
2-functor. We do it in the case of pseudolimits and bilimits, but the same

clearly applies to pseudocolimits and bicolimits. Let Iop X−→ C H−→ A
be any 2-functors.

1.2.5 Definition. We say that H preserves a pseudolimit (resp.

bilimit) pseudocone L
πi−→ Xi in C , if HL

Hπi−→ HXi is a pseudolimit
(resp. bilimit) pseudocone in A . Equivalently, if the (usual) compari-
son arrow is an isomorphism (resp. an equivalence) in A .

Note that by the very definition, the 2-representable 2-functors pre-
serve pseudolimits and bilimits. Also, from proposition 1.2.4 it follows:

1.2.6 Proposition. The Yoneda 2-functors in 1.1.15 preserve
pseudolimits. �

Recall that small pseudolimits and pseudocolimits of locally small
categories exist and are locally small, as well that the 2-category
Cat of small categories has all small pseudolimits and pseudocolimits
(see for example [4], [12]).
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1.2.7. We refer to the explicit construction of pseudolimits of category
valued 2-functors, which is similar to the construction of pseudolimits
of category-valued functors in [2, Exposé VI 6.], see full details in [5].

It is also key to our work the explicit construction of 2-filtered
pseudocolimits of category valued 2-functors developed in [8]. We recall
this now.

1.2.8 Definition (Kennison, [10]). Let C be a 2-category. C is said
to be 2-filtered if the following axioms are satisfied:

F0. Given two objects C , D ∈ C , there exists an object E ∈ C and
arrows C→ E , D→ E .

F1. Given two arrows C
f //

g
// D , there exists an arrow D

h−→ E

and an invertible 2-cell α : hf ∼= hg .

F2. Given two 2-cells C
//

α⇓ β⇓ // D there exists an arrow D
h−→ E

such that hα = hβ .

The dual notion of 2-cofiltered 2-category is given by the duals of axioms
F0, F1 and F2.

1.2.9. Construction LL (Dubuc-Street [8]) Let I be a 2-filtered
2-category and F : I → Cat a 2-functor. We define a category L(F) in
two steps as follows:

First step ([8, Definition 1.5]):
Objects: (C, i) with C ∈ Fi
Premorphisms: A premorphism between (C, i) and (D, j) is a triple

(u, f, v) where i
u−→ k , j

v−→ k in I and F(u)(C)
f−→ F(v)(D) in

Fk .
Homotopies: An homotopy between two premorphisms (u1, f1, v1)

and (u2, f2, v2) is a quadruple (w1, w2, α, β) where k1
w1−→ k , k2

w2−→ k

are 1-cells of I and w1v1
α−→ w2v2 , w1u1

β−→ w2u2 are invertible
2-cells of I such that the following diagram commutes in Fk :

F(w1)F(u1)(C) = F(w1u1)(C)
F(β)C //

F(w1)(f1)
��

F(w2u2)(C) = F(w2)F(u2)(C)

F(w2)(f2)
��

F(w1)F(v1)(D) = F(w1v1)(D)
F(α)D

// F(w2v2)(D) = F(w2)F(v2)(D)
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We say that two premorphisms f1, f2 are equivalent if there is an
homotopy between them. In that case, we write f1 ∼ f2 .

Equivalence is indeed an equivalence relation, and premorphisms can
be (non uniquely) composed. Up to equivalence, composition is inde-
pendent of the choice of representatives and of the choice of the compo-
sition between them. Since associativity holds and identities exist, the
following actually does define a category:

Second step ([8, Definition 1.13]):
Objects: (C, i) with C ∈ Fi .
Morphisms: equivalence classes of premorphisms.
Composition: defined by composing representative premorphisms.

1.2.10 Proposition. [8, Theorem 1.19] Let I be a 2-filtered 2-category,

F : I → Cat a 2-functor, i
u−→ j in I and C

f−→ D ∈ Fi . The

following formulas define a pseudocone F
λ

=⇒ L(F) :

λi(C) = (C, i) λi(f) = [i, f, i] (λu)C = [u,Fu(C), j]

which is a pseudocolimit for the 2-functor F . �

1.3 Further results.

A. Joyal pointed to us the notion of flexible functors, related with
some of our results on pseudo colimits of representable 2-functors. We
recall now this notion since it bears some significance for the concept
of 2-pro-object developed in this paper. Any 2-pro-object determines a
2-functor which is flexible, and some of our results find their right place
stated in the context of flexible 2-functors.

Warning: In this subsection 2-categories are assumed to be locally
small, except the illegitimate constructions Hom and Homp .

The inclusion Hom(C, Cat) i−→ Homp(C, Cat) has a left adjoint
(−)′ a i , we refer the reader to [4]. The 2-natural counit of this ad-

junction F′
εF=⇒ F is an equivalence in Homp(C, Cat) , with a section

given by the pseudonatural unit F
ηF=⇒ F′ , εFηF = idF , ηFεF ∼= idF′ ,

[4, Proposition 4.1.]
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1.3.1 Definition. [4, Proposition 4.2] A 2-functor C F−→ Cat is flexible

if the counit F′
εF=⇒ F has a 2-natural section F

λ
=⇒ F′ , εFλ = idF ,

λεF ∼= idF′ , which determines an equivalence in Hom(C, Cat) .

We state now a useful characterization of flexible 2-functors F in-
dependent of the left adjoint (−)′ , the proof will appear elsewhere [6].

1.3.2 Proposition. A 2-functor C F−→ Cat is flexible ⇐⇒ for all

2-functors G , the inclusion Hom(C, Cat)(F,G)
iG−→ Homp(C, Cat)(F,G)

has a retraction αG natural in G , αGiG = id , iGαG
∼= id , which deter-

mines an equivalence of categories. �

Let Hom(C, Cat)f and Homp(C, Cat)f be the subcategories whose
objects are the flexible 2-functors. We have the following corollaries:

1.3.3 Corollary. The 2-categories Hom(C, Cat)f and Homp(C, Cat)f
are pseudoequivalent in the sense they have the same objects and retract
equivalent hom categories. �

We mention that following the usual lines (based in the axiom of
choice) in the proof of 1.1.9, it can be seen that the inclusion 2-functor
Hom(C, Cat)f −→ Homp(C, Cat)f has the identity (on objects) as a re-
traction quasi-inverse pseudofunctor, with the equality as the invertible
pseudonatural transformation F

=−→ F in Homp(C, Cat)f .
An important property of flexible 2-functors, false in general, is the

following:

1.3.4 Corollary. Let θ : G ⇒ F ∈ Hom(C, Cat)f be such that θC :
GC → FC is an equivalence of categories for each C ∈ C . Then, θ is
an equivalence in Hom(C, Cat)f .

Proof. It is easy to check that there is a pseudonatural transforma-
tion η′ : F⇒ G such that θη′ ∼= F and η′θ ∼= G in Homp(F,F) and
Homp(G,G) respectively. Now, by 1.3.2, there is a 2-natural transfor-
mation η : F ⇒ G such that η ∼= η′ in Homp(F,G) . Then, θη ∼= F
and ηθ ∼= G in Hom(F,F) and Hom(G,G) respectively and so θ is an
equivalence in Hom(C, Cat) .

1.3.5 Proposition. Small pseudocolimits of flexible 2-functors are
flexible.
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Proof. Let F = Lim−→
j∈I

Fj , where each Fj is flexible, and let G be any

other 2-functor. Set A = Hom(C, Cat) and Ap = Homp(C, Cat) . Then:

A(F,G) ∼= Lim←−
j∈I
A(Fj, G)

i−→ Lim←−
j∈I
Ap(Fj, G) ∼= Ap(F,G).

The two isomorphisms are given by definition 1.2.3. The arrow i is
the pseudolimit of the equivalences with retraction quasi-inverses corre-
sponding to each Fj . It is not difficult to check that i is also such an
equivalence.

It follows also from 1.3.2 that the pseudo-Yoneda lemma (1.1.18,
1.1.19) says that the representable 2-functors are flexible, so we have:

1.3.6 Corollary. Small pseudocolimits of representable 2-functors are
flexible. �

Note that 1.3.5 and 1.3.6 hold for any pseudocolimit that may exist.

2 2-Pro-objects

Warning: In this section 2-categories are assumed to be locally small,
except illegitimate constructions as Hom , Homp or 2-CAT .

The main results of this paper are in this section. In the first sub-
section we define the 2-category of 2-pro-objects of a 2-category C
and establish the basic formula for the morphisms and 2-cells of this
2-category. Then in the next subsection we develop the notion of a 2-cell
in C representing a 2-cell in 2-Pro(C) , inspired in the 1-dimensional
notion of an arrow representing a morphism of pro-objects found in [3].
We use this in the third subsection to construct the 2 -filtered category
which serves as the index 2-category for the 2-filtered pseudolimit of
2-pro-objects. This is also inspired in a construction for the same pur-
pose found in [3]. We were forced to have recourse to this complicated
construction because the conceptual treatment of this problem found in
[1] does not apply in the 2-category case. This is so because a 2-functor
is not the pseudocolimit of 2-representables indexed by its 2-category of
elements. Finally, in the last subsection we prove the universal proper-
ties of 2-Pro(C) .
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2.1 Definition of the 2-category of 2-pro-objects

In this subsection we define the 2-category of 2-pro-objects of a fixed
2-category and prove its basic properties. A 2-pro-object over a
2-category C will be a small 2-cofiltered diagram in C and it will be
the pseudolimit of it’s own diagram in the 2-category 2-Pro(C) .

2.1.1 Definition. Let C be a 2-category. We define the 2-category of
2-pro-objects of C , which we denote by 2 -Pro(C) , as follows:

1. Its objects are the 2-functors Iop X−→ C , X = (Xi, Xu, Xα)i, u, α∈I ,
with I a small 2-filtered 2-category. Often we are going to abuse
the notation by saying X = (Xi)i∈I .

2. If X = (Xi)i∈I and Y = (Yj)j∈J are two 2-pro-objects,

2-Pro(C)(X,Y) = Hom(C, Cat)op(Lim←−
i∈Iop

C(Xi,−), Lim←−
j∈J op

C(Yj,−))

= Hom(C, Cat)(Lim−→
j∈J
C(Yj,−), Lim−→

i∈I
C(Xi,−))

The compositions are given by the corresponding compositions in
the 2-category Hom(C, Cat)op so it is easy to check that 2 -Pro(C) is
indeed a 2-category.

2.1.2 Proposition. By definition there is a 2-fully-faithful 2-functor

2-Pro(C) L−→ Hom(C, Cat)op . Thus, there is a contravariant

2-equivalence of 2-categories 2 -Pro(C) L−→ Hom(C, Cat)opfc , where
Hom(C, Cat)fc stands for the full subcategory of Hom(C, Cat) whose
objects are those 2-functors which are small 2-filtered pseudocolimits
of representable 2-functors. However, it is important to note that this
equivalence is not injective on objects. �

From Corollary 1.3.6 it follows:

2.1.3 Proposition. For any 2-pro-object X , the corresponding
2-functor LX is flexible. �
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2.1.4 Remark. If we use pseudonatural transformations to define mor-
phisms of 2-pro-objects we obtain a 2-category 2 -Prop(C) , which any-
way, by 2.1.3, results pseudoequivalent (see 1.3.3) to 2 -Pro(C) , with
the same objects and retract equivalent hom categories. We think our
choice of morphisms, which is much more convenient to use, will prove
to be the good one for the applications.

Next we establish the basic formula which is essential in many
computations in the 2 -category 2 -Pro(C) :

2.1.5 Proposition. There is an isomorphism of categories:

(2.1.5) 2-Pro(C)(X,Y) ∼= Lim←−
j∈J op

Lim−→
i∈I
C(Xi,Yj)

Proof.

2-Pro(C)(X,Y) = Hom(C, Cat)(Lim−→
j∈J
C(Yj,−), Lim−→

i∈I
C(Xi,−)) ∼=

Lim←−
j∈J op

Hom(C, Cat)(C(Yj,−), Lim−→
i∈I
C(Xi,−)) ∼= Lim←−

j∈J op

Lim−→
i∈I
C(Xi,Yj)

The first isomorphism is due to 1.2.3 and the second one to 1.1.16.

2.1.6 Corollary. The 2-category 2-Pro(C) is locally small.

2.1.7 Corollary. There is a canonical 2-fully-faithful 2-functor
C c−→ 2 -Pro(C) which sends an object of C into the corresponding
2-pro-object with index 2-category {∗} . Since this 2-functor is also
injective on objects, we can identify C with a 2-full subcategory of
2-Pro(C) . �

Where there is no risk of confusion, we will omit to indicate notation-
ally this identification. By the very definition of 2-Pro(C) it follows:

2.1.8 Proposition. If X = (Xi)i∈I is any 2-pro-object of C , then
X = Lim←−

i∈Iop
Xi in 2 -Pro(C) . X is equipped with projections, for each

i ∈ I , X
πi−→ Xi , and a pseudocone structure, for each i

u−→ j ∈ I ,
invertible 2 -cells πi

πu=⇒ Xu πj .

DESCOTTE & DUBUC - A THEORY OF 2-PRO-OBJECTS

- 21 -



Under the isomorphism 2-Pro(C)(X, Xi) ∼= Lim−→
k∈I
C(Xk, Xi) (2.1.5),

the projections X
πi−→ Xi correspond to the object (idXi

, i) in construc-
tion 1.2.9. �

Note that from this proposition it follows:

2.1.9 Remark. Given any two pro-objects X, Z ∈ 2-Pro(C) , there

is an isomorphism of categories 2-Pro(C)(Z, X)
∼=−→ PC2-Pro(C)(Z, cX) ,

where PC2-Pro(C) is the category of pseudocones for the 2-functor cX
with vertex Z .

It is important to note that when Lim←−
i∈Iop

Xi exists in C , this pseu-

dolimit would not be isomorphic to X in 2 -Pro(C) . In general, the
functor c does not preserve 2-cofiltered pseudolimits, in fact, it will
preserve them only when C is already a category of 2 -pro-objects, in
which case c is an equivalence.

2.2 Lemmas to compute with 2-pro-objects.

2.2.1 Definition.
1. Let X

f−→ Y be an arrow in 2 -Pro(C) . We say that a pair

(r, ϕ) represents f , if ϕ is an invertible 2 -cell πj f
ϕ

=⇒ r πi . That is,
if we have the following diagram in 2 -Pro(C) :

X f //

πi

��

Y

πj

��
⇓∼= ϕ

Xi r
// Yj

2. Let X
f //
α⇓
g

// Y and Xi

r //
θ⇓
s
// Yj be 2-cells in 2 -Pro(C)
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and C as in the following diagram:

X
f //
α⇓
g

//

πi

��

Y

πj

��
Xi

r //
θ⇓
s

// Yj

We say that (θ, r, ϕ, s, ψ) represents α if (r, ϕ) represents f , (s, ψ)
represents g , and the following diagram commutes in 2 -Pro(C) :

πjf
ϕ

∼=
+3

πjα

��

rπi

θπi

��
πjg ∼=

ψ +3 sπi

i.e. θπi ◦ ϕ = ψ ◦ πjα

That is, θπi = πjα ”modulo” a pair of invertible 2-cells ϕ, ψ .

Clearly, if α is invertible, then so is θ .

2.2.2 Proposition. Let X = (Xi)i∈I and Y = (Yj)j∈J be any two
objects in 2 -Pro(C) :

1. Let X
f−→ Y , then, for any j ∈ J there is an i ∈ I and

Xi
r−→ Yj in C , such that (r, id) represents f .

2. Let X
f //
α⇓
g

// Y , then, for any j ∈ J there is an i ∈ I ,

Xi

r //
θ⇓
s
// Yj in C , and appropriate invertible 2-cells ϕ and ψ such

that (θ, r, ϕ, s, ψ) represents α .

Proof. Consider X

πj f //
πjα⇓
πjg

// Yj and use formula 2.1.5 plus the construc-

tions of pseudolimits and 2-filtered pseudocolimits, 1.2.7, 1.2.9.
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2.2.3 Lemma. Let X = (Xi)i∈I ∈ 2-Pro(C) , let Xi
r−→ C ,

Xj
s−→ C ∈ C , and let X

rπi //
α⇓
sπj

// C ∈ 2 -Pro(C) . Then, ∃ i
u ** k

j v
55 and

Xk

rXu //
θ⇓
sXv

// C such that:

X
πi //

πk ��

Xi

r

��

Xk
Xu

66
πu⇓

Xv ��
⇓ θ

Xj s
// C

=

X
πk

{{

πi //

πj

��

Xi

r

��

Xk

Xv ##

⇐
πv ⇓ α

Xj s
// C

r πi
rπu
∼=
+3

α

��

r Xuπk

θπk
��

sπj
sπv
∼=
+3 sXvπk

i.e. θπk ◦ rπu = sπv ◦ α

Clearly, if α is invertible, then so is θ .

Proof. By formula 2.1.5 and the construction of 2-filtered pseudocol-

imits (1.2.9), α corresponds to a (r, i)
[u,θ,v]−→ (s, j) ∈ Lim−→

i∈I
C(Xi,C) . So,

∃ i
u ** k

j v
55 and Xk

rXu //
θ⇓
sXv

// C such that θπk ◦ rπu = sπv ◦α , as we wanted

to prove.

The following is an immediate consequence of [8, Lemma 2.2.]

2.2.4 Remark. If i = j , then one can choose u = v . �

2.2.5 Lemma. Let X = (Xi)i∈I ∈ 2 -Pro(C) and Xi

f //
θ⇓ θ′⇓

g
// C ∈ C

be such that θπi = θ′πi in 2 -Pro(C) . Then ∃ i u−→ i′ such that
θXu = θ′Xu .

Proof. It follows from 2.1.5 and [8, Lemma 1.20.]

DESCOTTE & DUBUC - A THEORY OF 2-PRO-OBJECTS

- 24 -



2.2.6 Lemma. Let X
f //
α⇓
g

// Y in 2 -Pro(C) and Xi

r //
θ⇓ θ′⇓

s
// Yj in

C such that (θ, r, ϕ, s, ψ) and (θ′, r, ϕ, s, ψ) both represents α . Then,

there exists i
u−→ i′ ∈ I such that θXu = θ′Xu .

Proof. Since both (θ, r, ϕ, s, ψ) and (θ′, r, ϕ, s, ψ) represents α , and
ϕ, ψ are invertible, it follows that θπi = θ′πi . Then, by 2.2.5, there
exists i

u−→ i′ ∈ I such that θXu = θ′Xu .

2.2.7 Lemma. Let X
f //
α⇓
g

// Y ∈ 2 -Pro(C) , (r, ϕ) representing f ,

Xi
r−→ Yj and (s, ψ) representing g , Xi′

s−→ Yj . Then, ∃ i
u ** k

i′ v
44 and

Xk

rXu //
θ⇓
sXv

// Yj such that (θ, rXu, rπu ◦ ϕ, sXv, sπv ◦ ψ) represents α .

Clearly, if α is invertible, then so is θ .

Proof. In lemma 2.2.3 , take C = Yj , and α = ψ ◦ πjα ◦ ϕ−1 . Then,

∃ i
u ** k

i′ v
44 and Xk

rXu //
θ⇓
sXv

// Yj such that θπk ◦ rπu ◦ ϕ = sπv ◦ ψ ◦ πjα ,
rπi

rπu +3 rXuπk θπk
%-

πjf

ϕ 3;

πjα

$,
sXvπk

πjg
ψ +3 sπi′

sπv 19

It is not difficult to check that (θ, rXu, rπu ◦ ϕ, sXv, sπv ◦ ψ)
represents α .

From remark 2.2.4 we have:

2.2.8 Remark. If i = i′ , then one can choose u = v . �

2.3 2-cofiltered pseudolimits in 2-Pro(C) .

Let J be a small 2-filtered 2-category and J op X−→ 2-Pro(C) a

2-functor, Xj = (Xji )i∈Ij , Iopj
Xj

−→ C . Recall (2.1.8) that for each
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j in J , Xj is equipped with a pseudolimit pseudocone {πji }i∈Ij ,
{πju}i u−→i′∈Ij for the 2-functor Xj .

We are going to construct a 2-pro-object which is going to be the
pseudolimit of X in 2-Pro(C) . First we construct its index category

2.3.1 Definition. Let KX be the 2-category consisting on:

1. 0-cells of KX : (i, j) , where j ∈ J , i ∈ Ij .

2. 1-cells of KX : (i, j)
(a,r,ϕ)−→ (i′, j′) , where j

a→ j′ ∈ J , Xj
′

i′
r→ Xji

are such that (r, ϕ) represents Xa .

3. 2-cells of KX : (a, r, ϕ)
(α,θ)
=⇒ (b, s, ψ) , where a

α
=⇒ b ∈ J and

(θ, r, ϕ, s, ψ) represents Xα .

The 2-category structure is given as follows:

(i, j)

(a,r,ϕ) //
⇓(α,θ)
(b,s,ψ) //
⇓(β,η)
(c,t,φ) //

(i′, j′)

(a′,r′,ϕ′) //
⇓(α′,θ′)
(b′,s′,ψ′) //
⇓(β′,η′)
(c′,t′,φ′) //

(i′′, j′′)

1. (a′, r′, ϕ′)(a, r, ϕ) = (a′a, rr′, rϕ′ ◦ ϕXa′)

2. (α′, θ′)(α, θ) = (α′α, θθ′)

3. (β, η) ◦ (α, θ) = (β ◦ α, η ◦ θ)

One can easily check that the structure so defined is indeed a 2-category,
which is clearly small.

2.3.2 Proposition. The 2-category KX is 2-filtered.

Proof. F0. Let (i, j) , (i′, j′) ∈ KX . Since J is 2-filtered, ∃
j a))

j′′
j′ b

55 .

By 2.2.2, ∃ Xj
′′

i1

r1−→ Xji and Xj
′′

i2

r2−→ Xj
′

i′ such that (r1, id) represents
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Xa and (r2, id) represents Xb . Since Ij′′ is 2-filtered, ∃ i1
u ** i′′

i2 v
44 . Then,

we have the following situation in KX which proves F0 .:

(i, j) (a, r1X
j′′
u , r1π

j′′
u )
,,

(i′′, j′′)

(i′, j′) (b, r2X
j′′
v , r2π

j′′
v )

22

F1. Let (i, j)
(a,r,ϕ)//

(b,s,ψ)
// (i
′, j′) ∈ KX . Since J is 2-filtered,

∃ j′
c−→ j′′ and an invertible 2-cell ca

α
=⇒ cb . By 2.2.2,

∃ Xj
′′

k

t−→ Xj
′

i′ such that (t, id) represents Xc . Then (rt, ϕXc) rep-
resents Xca and (st, ψXc) represents Xcb , so, by 2.2.7, there ex-

ists k
w−→ i′′ ∈ Ij′′ and an invertible 2-cell rtXj

′′
w

θ
=⇒ stXj

′′
w such

that (θ, rtXj
′′
w , rtπw ◦ ϕXc, stXj

′′
w , stπw ◦ ψXc) represents Xα . Then

we have an invertible 2-cell in KX (i, j)

(c,tXj′′
w ,tπw)(a,r,ϕ) //

(c,tXj′′
w ,tπw)(b,s,ψ)

//⇓ (α, θ) (i′′, j′′)

which proves F1 .

F2. Let (i, j)

(a,r,ϕ) //

(b,s,ψ)
//⇓ (α, θ) ⇓ (α′, θ′) (i′, j′) ∈ KX . Since J is

2-filtered, ∃ j′
c−→ j′′ ∈ J such that cα = cα′ . Also, by

2.2.2, ∃ Xj
′′

k

t−→ Xj
′

i′ such that (t, id) represents Xc . Then, it is
easy to check that (t, t, id, t, id) represents Xc and therefore we have
that (θt, rt, ϕXc, st, ψXc) and (θ′t, rt, ϕXc, st, ψXc) both represent Xcα .

Then, by 2.2.6, ∃ k w−→ i′′ ∈ Ij′′ such that θtXj
′′
w = θ′tXj

′′
w , so

(c, tXj
′′
w , tπw)(α, θ) = (c, tXj

′′
w , tπw)(α′, θ′) , which proves F2 .

2.3.3 Theorem. Let X̃ be the 2-pro-object KopX
X̃−→ C defined by

X̃(i,j) = Xji , X̃(a,r,ϕ) = r , and X̃(α,θ) = θ . Then the following equation
holds in 2 -Pro(C) :

X̃ = Lim←−
j∈J op

Xj
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Proof. Let Z ∈ 2-Pro(C) , and {Z hj−→ Xj}j∈J , {hj
ha=⇒ Xahj′}j a−→j′∈J

be a pseudocone for X with vertex Z (1.2.1). Given

(i, j)
(a,r,ϕ)−→ (i′, j′) ∈ KX , check that the definitions h(i,j) = πji hj and

h(a,r,ϕ) = ϕhj′ ◦ πji ha determine a pseudocone for cX̃ with vertex Z .
It is straightforward to check that this extends to a functor, that we
denote p (for the isomorphism below see 2.1.9):

PC2-Pro(C)(Z,X)
p−→ PC2-Pro(C)(Z, cX̃) ∼= 2-Pro(C)(Z, X̃)

The theorem follows if p is an isomorphism. In the sequel we prove
that, in fact, p is an isomorphism. Let Z ∈ 2-Pro(C) , and

{h(i,j)
h(a,r,ϕ)
=⇒ X̃(a,r,ϕ)h(i′,j′) = r h(i,j)}

(i,j)
(a,r,ϕ)−→ (i′,j′)∈KX

, {Z
h(i,j)−→ Xji}(i,j)∈KX

be a pseudocone for cX̃ with vertex Z (1.2.1).

1. p is bijective on objects :

Check that for each j ∈ J , {Z
h(i,j)−→ Xji}i∈Ij together with

{hu = h(j,Xj
u,π

j
u)

: h(i,j) =⇒ Xjuh(i′,j′)}i u−→i′∈Ij is a pseudocone for Xj .

Then, since Xj
πj
i−→ Xji is a pseudolimit pseudocone, it follows that

there exists a unique Z
hj−→ Xj such that

(2.3.4) ∀i ∈ Ij πji hj = h(i,j) and ∀ i
u−→ i′ ∈ Ij πjuhj = hu.

It only remains to define the 2-cells of the pseudocone structure. That

is, for each j
a−→ j′ ∈ J , we need invertible 2-cells hj

ha=⇒ hj′X
a , such

that {hj}j∈J together with {ha}j a−→j′∈J form a pseudocone for X with
vertex Z .

Consider the pseudocone {Xj
πj
i−→ Xji}i∈Ij . Then the composites

πji hj , πjiX
ahj′ , determine two pseudocones {Z

πj
i hj //

πj
iX

ahj′

// X
j
i}i∈Ij for Xj

with vertex Z .
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Claim 1 Let (r, ϕ) and (s, ψ) be two pairs representing Xa as
follows:

Xj
′ Xa

//

πj′
i′ ��

Xj

πj
i

��
⇓∼= ϕ

Xj
′

i′ r
// Xji

Xj
′ Xa

//

πj′
i′′ ��

Xj

πj
i

��
⇓∼= ψ

Xj
′

i′′ s
// Xji

Then, ϕ−1hj′ ◦ h(a,r,ϕ) = ψ−1hj′ ◦ h(a,s,ψ) (proof below).

Claim 2 For each i ∈ Ij , let (r, ϕ) be a pair representing Xa , and
set ρi = ϕ−1hj′ ◦ h(a,r,ϕ) . Then, {ρi}i∈Ij determines an isomorphism of

pseudocones {Z
πj
i hj //
ρi⇓

πj
iX

ahj′

// X
j
i}i∈Ij (proof below).

Since Xj
πj
i−→ Xji is a pseudolimit pseudocone, the functor

2 -Pro(C)(Z,Xj) (πj)∗−→ PC2-Pro(C)(Z,X
j) is an isomorphism of categories.

Then, from Claim 2 it follows that there are invertible 2-cells

Z

hj //
ha⇓
Xahj′

// X
j ∈ 2 -Pro(C) such that ρi = πji ha ∀ i ∈ Ij . It can be

checked that in fact {Z hj−→ Xj}j∈J with {hj
ha=⇒ hj′X

a}
j

a−→j′∈J is a
pseudocone over X .

2. p is full and faithful :

Let {Z
πj
i hj //

ρ(i,j)⇓

πj
imj

// X
j
i}(i,j)∈KX

be a morphism of pseudocones for X̃ . It

is easy to check that for each j ∈ J , {Z
πj
i hj //

ρ(i,j)⇓

πj
imj

// X
j
i}i∈Ij is a morphism

of pseudocones for Xj . Then arguing as above, there exists a unique

morphism Z

hj //
ρj⇓
mj

// X
j ∈ 2 -Pro(C) such that ∀ i ∈ Ij , πji ρj = ρ(i,j) .

It can be checked that {ρj}j∈J is a morphism of pseudocones. This
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proves the assertion.

Proof of Claim 1. First assume that i′ = i′′ and (r, ϕ) , (s, ψ) are

related by a 2-cell (i, j)

(a,r,ϕ) //
(a,θ)⇓
(a,s,ψ)

// (i
′, j′) in KX . Then:

(ψ−1hj′) ◦ (h(a,s,ψ)) = (ψ−1hj′) ◦ (θh(i′,j′)) ◦ h(a,rϕ) = (ϕ−1hj′) ◦ (h(a,r,ϕ)),

the first equality by the pseudocone axiom PC2 (Definition 1.2.1), and
the second because θ represents id (the identity of Xa ).

The general case reduces to this one as follows:

We have

(i′, j′)

(i, j)

(a,r,ϕ) 44

(a,s,ψ)
**
(i′′, j′)

. Take
i′ u

)) k
i′′ v

55 in Ij . This yields a

particular instance of lemma 2.2.7:

Xj
′

Xa
//

id⇓
Xa

//

πk

��

Xj

πi

��

Xj
′

k

rXj′
u //

sXj′
v

// X
j
i

with (rXj
′
u , (rπ

j′
u ) ◦ ϕ) and (sXj

′
v , (sπ

j′
v ) ◦ ψ) both representing Xa .

It follows there exists k
w→ k′ and Xj

′

k′

rXj′
u Xj′

w //
θ⇓

sXj′
v Xj′

w

// X
j
i such that

(θ, rXj
′
uX

j′
w , rXj

′
u π

j′
w ◦ rπj

′
u ◦ ϕ, sXj

′
v X

j′
w , sXj

′
v π

j′
w ◦ sπj

′
v ◦ ψ) represents

id (the identity of Xa ).
Considering (rXj

′
uX

j′
w , rX

j′
u π

j′
w ◦ rπj

′
u ◦ϕ) and (sXj

′
v X

j′
w , sX

j′
v π

j′
w ◦ sπj

′
v ◦ ψ)

both representing Xa , we have a situation that corresponds to the pre-
vious case. Thus:

(ϕ−1h−1j′ ◦ r(πj
′
u )−1 ◦ rXj′u (πj

′
w )−1)hj′ ◦ rh(j′,Xj′

u Xj′
w ,X

j′
u π

j′
w )
◦ h(a,r,ϕ) =

= (ψ−1h−1j′ ◦ s(πj
′
v )−1 ◦ sXj′v (πj

′
w )−1)hj′ ◦ sh(j′,Xj′

v Xj′
w ,X

j′
v π

j′
w )
◦ h(a,s,ψ) .
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From 2.3.4, it follows that (r(πj
′
u )−1 ◦ rXj′u (πj

′
w )−1)hj′ ◦ rh(j′,Xj′

u Xj′
w ,X

j′
u π

j′
w )

and (s(πj
′
v )−1 ◦ sXj

′
v (πj

′
w )−1)hj′ ◦ sh

(j′,Xj′
v Xj′

w ,X
j′
v π

j′
w )

are identities. So

ϕ−1hj′ ◦ h(a,r,ϕ) = ψ−1hj′ ◦ h(a,s,ψ) as we wanted to prove.

Proof of Claim 2. Given any i
u−→ k ∈ Ij , we have to check the

PCM equation in 1.2.1. Given the pair (s, ψ) used to define ρk , it
is possible to choose a pair (r, ϕ) to define ρi in such a way that the
equation holds. This arguing is justified by Claim 1.

2.3.5 Corollary. 2 -Pro(C) is closed under small 2-cofiltered
pseudolimits. Considering the equivalence in 2.1.2, it follows that the in-
clusion Hom(C, Cat)fc ⊂ Hom(C, Cat) is closed under small 2-filtered
pseudocolimits �

2.4 Universal property of 2-Pro(C)
In this subsection we prove for 2-pro-objects the universal property
established for pro-objects in [1, Ex. I, Prop. 8.7.3.]. Consider

the 2-functor C c−→ 2 -Pro(C) of Corollary 2.1.7 and a 2-pro-object

X = (Xi)i∈I . Given a 2-functor C F−→ E into a 2-category closed
under small 2-cofiltered pseudolimits, we can naively extend F into a

2-cofiltered pseudolimit preserving 2-functor 2-Pro(C) F̂−→ E by defin-

ing F̂X = Lim←−
i∈I

FXi . This is just part of a 2-equivalence of 2-categories

that we develop with the necessary precision in this subsection. First
the universal property should be wholly established for E = Cat , and
only afterwards can be lifted to any 2-category E closed under small
2-cofiltered pseudolimits.

2.4.1 Lemma. Let C be a 2-category and F : C −→ Cat a 2-functor.

Then, there exists a 2-functor F̂ : 2-Pro(C) −→ Cat that preserves

small 2-cofiltered pseudolimits, and an isomorphism F̂c
∼=−→ F in

Hom(C, Cat) .

Proof. Let X = (Xi)i∈I ∈ 2-Pro(C) be a 2-pro-object. Define:
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F̂X = (Hom(C, Cat)(−,F) ◦L)X = Hom(C, Cat)(Lim−→
i∈I
C(Xi,−),F)

∼=−→
∼=−→ Lim←−

i∈I
Hom(C, Cat)(C(Xi,−),F)

∼=−→ Lim←−
i∈I

FXi.

Where L is the 2-functor of 2.1.2, the first isomorphism is by def-
inition of pseudocolimit 1.2.3, and the second is the Yoneda isomor-
phism 1.1.16. Since it is a 2-equivalence, the 2-functor L preserves any
pseudocolimit. Then by Corollary 2.3.5 it follows that the composite
Hom(C, Cat)(−,F) ◦ L preserves small 2-cofiltered pseudolimits

2.4.2 Theorem. Let C be any 2-category. Then, pre-composition with
C c−→ 2-Pro(C) is a 2-equivalence of 2-categories:

Hom(2-Pro(C), Cat)+ c∗ // XXHom(C, Cat)XX

(where Hom(2-Pro(C), Cat)+ stands for the full subcategory whose ob-
jects are those 2-functors that preserve small 2-cofiltered pseudolimits).

Proof. We check that the 2-functor c∗ is essentially surjective on objects
and 2-fully-faithful:

Essentially surjective on objects : It follows from lemma 2.4.1.
2-fully-faithful : We check that if F and G are 2-functors from

2-Pro(C) to Cat that preserve small 2-cofiltered pseudolimits, then

(2.4.3) Hom(2-Pro(C), Cat)+(F,G)
c∗−→ Hom(C, Cat)(Fc,Gc)

is an isomorphism of categories.

Let Fc
θc //
µ⇓
ηc

// Gc ∈ Hom(C, Cat)(Fc,Gc) . It can be easily checked

that the composites {FX Fπi−→ FXi

θXi //
µXi⇓
ηXi

// GXi}i∈I determine two pseu-

docones for GX together with a morphism of pseudocones. Since G pre-

serves small 2-cofiltered pseudolimits, post-composing with GX
Gπi−→ GXi

is an isomorphism of categories Cat(FX,GX)
(Gπ)∗−→ PCCat(FX,GX) . It

follows there exists a unique 2-cell in Cat , FX

θ′X //
µ′X⇓

η′X

// GX , such that
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Gπiθ
′
X = θXi

Fπi , Gπiη
′
X = ηXi

Fπi , and Gπiµ
′
X = µXi

Fπi , ∀i ∈ I . It is
not difficult to check that θ′X , η′X are in fact 2-natural on X , and that
µ′X is a modification. Clearly θ′c = θ , η′c = η , and µ′c = µ . Thus
2.4.3 is an isomorphism of categories.

2.4.4 Lemma. Let C be a 2-category, E a 2-category closed under
small 2-cofiltered pseudolimits and F : C −→ E a 2-functor. Then, there

exists a 2-functor F̂ : 2-Pro(C) −→ E that preserves small 2-cofiltered

pseudolimits, and an isomorphism F̂c
∼=−→ F in Hom(C, E) .

Proof. If X = (Xi)i∈I ∈ 2-Pro(C) , define F̂X = Lim←−
i∈Iop

FXi . We will

prove that this is the object function part of a 2-functor, and that this
2-functor has the rest of the properties asserted in the proposition.

Consider the composition y(−) F : C F−→ E
y(−)−→ Hom(Eop, Cat) ,

where y(−) is the Yoneda 2-functor (1.1.15). Under the isomorphism
1.1.14 this corresponds to a 2-functor Eop −→ Hom(C, Cat) . Compos-

ing this 2-functor with a quasi-inverse (̂−) for the 2-equivalence in 2.4.2,
we obtain a 2-functor Eop −→ Hom(2-Pro(C), Cat)+ , which in turn cor-

responds to a 2-functor 2-Pro(C) F̃−→ Hom(Eop, Cat) . The 2-functor

F̃ preserves small 2-cofiltered pseudolimits because they are computed
pointwise in Hom(Eop, Cat) (1.2.4). Chasing the isomorphisms shows
that we have the following diagram:

(2.4.5)

F̃c
∼=−→ y(−)F,

C c //

F

��

2-Pro(C)

F̃

��
⇓∼=

E y(−)

//Hom(Eop, Cat)

Consider the following chain of isomorphisms (the first and the third

because F̃ and y(−) preserve pseudolimits (1.2.6), and the middle one
given by 2.4.5):

F̃X = F̃Lim←−
i∈I

Xi
∼=−→ Lim←−

i∈I
F̃cXi

∼=−→ Lim←−
i∈I

y(−)FXi
∼=←− y(−)Lim←−

i∈I
FXi.

This shows that F̃X is in the essential image of y(−) . Since y(−) is

2-fully faithful (1.1.17), it follows there is a factorization y(−)F̂
∼=−→ F̃ ,
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given by a 2-functor 2-Pro(C) F̂−→ E . Clearly F̂ preserves small

2-cofiltered pseudolimits. We have y(−)F̂c
∼=−→ F̃c

∼=−→ y(−)F̂. Finally,

the fully faithfulness of y(−) provides an isomorphism y(−)F̂
∼=−→ F .

This finishes the proof.

Exactly the same proof of theorem 2.4.2 applies with an arbitrary
2-category E in place of Cat , and we have:

2.4.6 Theorem. Let C be any 2-category, and E a 2-category closed
under small 2-cofiltered pseudolimits. Then, pre-composition with
C c−→ 2-Pro(C) is a 2-equivalence of 2-categories:

Hom(2-Pro(C), E)+
c∗ // XXHom(C, E)XX

Where Hom(2-Pro(C), E)+ stands for the full subcategory whose objects
are those 2-functors that preserve small 2-cofiltered pseudolimits. �

From theorem 2.4.6 it follows automatically the pseudo-functoriality
of the assignment of the 2-category 2-Pro(C) to each 2-category C , and
in such a way that c becomes a pseudonatural transformation. But we
can do better:

If we put E = 2-Pro(D) in 2.4.6 it follows there is a 2-functor
(post-composing with c followed by a quasi-inverse in 2.4.6)

(2.4.7) Hom(C,D)
(̂−) // XXHom(2-Pro(C), 2-Pro(D))+XX,

and for each 2-functor C F−→ D , a diagram:

(2.4.8) 2-Pro(C) F̂ // 2-Pro(D)

⇓∼=

C
F

//

c

OO

D

c

OO

Given any 2-pro-object X ∈ 2-Pro(C) , set 2-Pro(F)(X) = F̂X . It is
straightforward to check that this determines a 2-functor

2-Pro(C) 2-Pro(F) // 2-Pro(D)

DESCOTTE & DUBUC - A THEORY OF 2-PRO-OBJECTS

- 34 -



making diagram 2.4.8 commutative. It follows we have an isomorphism

F̂X
∼=−→ 2-Pro(F)(X) 2-natural in X . This shows that the 2-functor

2-Pro(F) preserves small 2-cofiltered pseudolimits because F̂ does.
Also, it follows that 2-Pro(F) determines a 2-functor as in 2.4.7. In
conclusion, denoting now by 2-CAT the 2-category of locally small
2-categories (see 1.1.10) we have:

2.4.9 Theorem. The definition 2-Pro(F)(X) = F̂X determines a
2-functor

2-Pro(-) : 2-CAT −→ 2-CAT+
in such a way that c becomes a 2-natural transformation (where
2-CAT+ is the full sub 2-category of locally small 2-categories closed
under small 2-cofiltered pseudo limits and small pseudolimit preserving
2-functors). �
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Catégoriques, Tome 47 number 2 (2006), 83-106.

[9] Gray J. W., Formal category theory: adjointness for 2-categories,
Springer Lecture Notes in Mathematics 391 (1974).

[10] Kennison J., The fundamental localic groupoid of a topos, J. Pure
Appl. Alg. 77 (1992).

[11] Kelly G. M., Basic concepts of enriched category theory, London
Mathematical Society Lecture Note Series 64, Cambridge Univ.
Press, New York (1982).

[12] Kelly G. M., Elementary observations on 2-Categorical limits, Bull.
Austral. Math. Soc. Vol. 39 (1989)

[13] http://ncatlab.org/nlab/show/lax+natural+transformations
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