
Résumé Nous proposons un nouveau contexte, beaucoup plus général, pour

l’étude des graphes diviseurs de zéro/ annulateurs d’idéaux, où les sommets

des graphes ne sont pas des éléments/idéaux dún anneau commutatif, mais

éléments dún ensemble ordonné abstrait (qui imite le treillis des idéaux), muni

d’une loi binaire (qui imite le produit d’idéaux). On considère aussi le niveau

intermédiaire des congruences des structures algébriques qui admettent une

”bonne” théorie des commutateurs.

Abstract. We propose a new, widely generalized context for the study

of the zero-divisor/annihilating-ideal graphs, where the vertices of graphs

are not elements/ideals of a commutative ring, but elements of an abstract

ordered set (imitating the lattice of ideals), equipped with a binary opera-

tion (imitating products of ideals). The intermediate level of congruences

of any algebraic structure admitting a ’good’ theory of commutators is also

considered.

introduction

Given a commutative ring R, one can form a graph whose vertices are

(some) elements of R and edges are pairs (x, y) with xy = 0 in R. Or, one

can replace elements with ideals of R and do the same, that is, define edges as

pairs (A,B) with AB = {0}. The study of these so-called zero-divisor graphs

and annihilating-ideal graphs were initiated by I. Beck [4] and M. Behboodi

and Z. Rakeei [5] respectively, and then continued by various authors (see

Section 2 for precise definitions and some references).
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Since the product of two ideals of a commutative ring is nothing but their

commutator in the sense of universal algebra (see Section 3 for details), it is

natural to:

• replace ideals of a commutative ring with congruences of any algebraic

structure that admits a good notion of commutator; ”good” might have dif-

ferent meanings (see e.g. R. Freese and R. McKenzie [7] for different notions

of a commutator), and the properties we actually need to hold are listed in

Section 3;

• replace the property AB = {0} above with the property [α, β] = 0,

where α and β are congruences on a given algebraic structure, [α, β] their

commutator, and 0 now denotes the equality relation (since it is the smallest

congruence) on that given algebraic structure.

Although this replacement is itself a wide generalization, it immediately sug-

gests a further wide generalization, where congruences on a given algebra are

replaced with elements of an abstract lattice, or even just an ordered set,

equipped with a binary operation. The condition that operation should be

required to satisfy should then imitate the properties of commutators (as in

our Section 3).

This two-step generalization in the study of annihilation graphs (we say ”an-

nihilation” instead of ”annihilating-”) is the author’s PhD Thesis’ theme,

under supervision of Professor G. Janelidze, who suggested it. The results,

to be considered as the first results of this project, are given in Section 5 of

the present paper. Our proofs closely follow the ring case, suggesting that

the purpose of the paper is first of all to provide a strong motivation for

the whole project. The most surprising fact here is that the binary operation

involved is not required to be associative, unlike the ring multiplication; this is

important since the commutator operation is almost never associative, except

the commutative ring case.
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The paper is organized as follows: in Section 1 we recall standard definitions

of graph theory that will be used below; Sections 2 and 3 are devoted to

annihilating-ideal graphs and commutators respectively: we recall what we

need and give some references; in Section 4 we introduce our new context of

commutator posets, commutator lattices, and their annihilation graphs; as

already mentioned, the main results are formulated and proved in Section 5 -

in fact it is two results put together in Theorem 5.1.

Note also that, as suggested by the context considered in [1], we consider a

’relative version’ of annihilation, where ab = 0 is replaced with ab ≤ c with a

fixed c.

1. Graphs

By a graph we will mean a pair G = (G0, G1), in which G0 is a set and G1

a binary irreflexive symmetric relation on G0; the elements of G0 and of G1

will be called vertices and edges of G, respectively.

For a natural number n, a path of length n in a graph G is an (n + 1)-tuple

(x0, ..., xn) of distinct vertices of G, such that (xi−1, xi) is an edge of G, for

each i ∈ {1, ..., n}.

A path (x0, ..., xn) is also called a path from x0 to xn.

The distance d(x, y) between vertices x and y of a graph G is defined as follows:

• d(x, y) = 0, if x = y;

• d(x, y) = n, if n is the smallest non-zero natural number for which there

exists a path of length n from x to y.

• d(x, y) = ∞, if x ̸= y and there is no path from x to y.
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Accordingly, the distance between x and y is said to be finite if either x = y

or there exists a path from x to y, and infinite otherwise.

A graph G is said to be connected, if, for every two distinct vertices x and y

of G, there exists a path from x to y, or, equivalently, the distance d(x, y) is

finite. Note that, according to this definition, the empty graph is connected

in contradiction with the categorical (and topological) notion of connectedness.

The diameter diam(G) of a graph G is defined as the largest distance between

its vertices.

For a natural n ≥ 3, a cycle of length n in a graph G is an (n + 1)-tuple

(x0, ..., xn) of vertices of G that are distinct except x0 = xn, and such that

(xi−1, xi) is an edge of G, for each i ∈ {1, ..., n}.

The girth gr(G) of a graph G is defined as follows:

• if G has a cycle, then gr(G) is the smallest number n such that G has a

cycle of length n.

• if G has no cycle, then gr(G) = ∞.

It is well known and easy to show that if G has a cycle, then

gr(G) ≤ 2 diam(G) + 1; (1.1)

however, in the contexts we shall consider, better inequalities are obtained (see

Theorems 2.1 and 5.1; Theorem 2.1 is a generalization, from [1], of a result in

[5]).
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2. The annihilating-ideal graph of a commutative ring with respect

to an ideal

The annihilating-ideal graph AG(R) of a commutative ring R (with 1), intro-

duced by M. Behboodi and Z. Rakeei [5], is defined as follows:

• the vertices of AG(R) are all non-zero ideals of R with non-zero annihi-

lators;

• a pair (A,B) of distinct vertices of AG(R) is an edge of AG(R) if and

only if AB = {0}.

This definition is a natural ideal versus elements version of the construction

earlier introduced by D. F. Anderson and P. S. Livingston [2], which itself is a

modified version of the construction first studied by I. Beck [4]. On the other

hand, one can fix an ideal I in R and consider the graph AGI(R), called the

annihilating-ideal graph of R with respect to the ideal I in [1], in which:

• the vertices of AGI(R) are all ideals A of R not contained in I and having

an ideal A′ not containing in I with AA′ containing in I;

• a pair (A,B) of distinct vertices of AGI(R) is an edge of AGI(R) if and

only if AB ⊆ I.

According to this definition, AG(R) = AG{0}(R).

Let us recall:

Theorem 2.1. (Theorem 3.3 in [1])

(a) The graph AGI(R) is connected and diam(AGI(R)) ≤ 3.

(b) If AGI(R) contains a cycle, then gr(AGI(R)) ≤ 4.

Similar inequalities were known before for the graph considered in [2]: see

Theorem 2.3 in [2], Theorem 2.3 in [6], assertion (1.4) in [14], and Theorem
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2.2 in [3] for various versions. They were also known for I = {0}, that is, for
the graph AG(R) (see Theorem 2.1 in [5]).

3. Commutators

The familiar group-theoretic notion of a commutator has been generalized

to various contexts of universal algebra and category theory. The universal-

algebraic references to commutators usually begin with J. D. H. Smith [16],

and then mention various further generalizations of Smith’s definition (see e.g.

[7] and references therein, although there are many more recent ones). The

categorical notions of commutators of subobjects and of internal equivalence

relations first appear in S. A. Huq’s papers (see [8]), and in M. C. Pedicchio’s

papers (see [15]), respectively.

As formulated in [9] (based on the approach of [12]), the commutator [α, β]

of two congruences α and β on an algebra A in a Mal’tsev (=congruence

permutable) variety C with a Mal’tsev term p can be defined as the smallest

congruence γ on A such that the map

{(x, y, z) ∈ A3|(x, y) ∈ α& (y, z) ∈ β} → A/γ (3.1)

sending (x, y, z) to the γ-class of p(x, y, z), is a homomorphism of algebras

(that is, a morphism in C ).

As also mentioned in [9], this commutator has the following properties:

[α, β] ≤ α∧β (3.2)

[α, β] = [β, α], (3.3)

[α, β∨γ] = [α, β]∨[α, γ] (3.4)

where ∧ and ∨ are the meet and the join in the lattice of congruences on

a given algebra A. It is well known that these properties also hold in various

more general contexts, in particular for commutators in a congruence modular

varieties (see e.g. [7]) and in an exact Mal’tsev category with coequalizers
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(see [15]).

When the ground variety C is semi-abelian in the sense of G. Janelidze, L.

Marki, and W. Tholen [10] (and in some more general contexts, earlier studied

by A. Ursini; see e.g. in [11] and references on Ursini’s papers there), for each

algebra A in C, there is a lattice isomorphism

Con(A) ≈ NSub(A) (3.5)

between the lattice Con(A) of congruences on A and the lattice NSub(A) of

normal subalgebras of A, under which congruences correspond to their ’0-

classes’. This immediately allows us to define commutators in semi-abelian

varieties using (3.1) as above, even though the so defined commutator will not

necessarily coincide with the Huq commutator (see [13] for the clarification of

their relationship). Accordingly, for normal subalgebras H and K of A and

the corresponding congruences α and β on A, we shall write [H,K]Smith for

the normal subalgebra of A corresponding to [α, β].

Note also that, the so-defined [H,K]Smith is at the same time a special case

of the commutator introduced by A. Ursini in [17], as shown in that paper.

Let us recall the simplest examples:

Example 3.1.

(a) if C is the variety of groups, then normal subalgebras of A in C are

the same as normal subgroups of A, and, for two normal subgroups

H and K of A, [H,K]Smith is the ordinary commutator of H and K.

That is,

[H,K]Smith = the subgroup of A generated by all hkh−1k−1 with

h ∈ H and k ∈ K.

(b) if C is the variety of commutative rings (here and below rings are

not required to have an identity element), then normal subalgebras
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of A in C are the same as ideals of A, and, for two idealsH andK of A,

[H,K]Smith = HK,

the product of H and K.

(c) if C is the variety of rings (not necessarily commutative), then normal

subalgebras of A in C are the same as ideals of A, and, for two ideals

H and K of A,

[H,K]Smith = HK +KH,

the product of H and K.

4. Commutator lattices and their graphs

As suggested by commutator theory, we introduce

Definition 4.1. (a) A commutator lattice is a (bounded) lattice L equipped

with a binary operation [−,−], also written as [x, y] = xy, and satisfying the

conditions similar to (3.2)-(3.4), that is, satisfying

xy ≤ x, (4.1)

xy = yx (4.2)

x(y ∨ z) = (xy) ∨ (xz) (4.3)

for all x, y, z in L.

(b) More generally, a commutator poset is a poset (=ordered set) L equipped

with a binary operation [−,−], also written as [x, y] = xy, and satisfying (4.1),

(4.2), and

x ≤ y ⇒ xz ≤ yz, (4.4)

for all x, y, z in L.
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Our obvious examples of interest of a commutator lattice are:

Example 4.2.

(a) For an algebra A in a Mal’tsev variety C, the lattice Con(A) of congru-

ences on A, equipped with the commutator operation defined as in the

previous section, is a commutator lattice. The same is obviously true

in all those contexts where commutators satisfy properties (3.2)-(3.4),

including the context of congruence modular varieties considered in [7].

(b) For an algebra A in a semi-abelian variety C, the lattice NSub(A)

of normal subalgebras of A, equipped with the commutator operation

[−,−]Smith defined as in the previous section, is a commutator lattice.

In particular, this is the case for the varieties considered in Example

3.1 with the commutators described there.

Let us mention two other obvious examples:

Example 4.3. An arbitrary lattice L becomes a commutator lattice if we put

either

(a) xy = x ∧ y for all x, y ∈ L, provided L is distributive, or

(b) xy = 0 for all x, y ∈ L.

As suggested by commutator theory, we might call these two kinds of commu-

tator lattices arithmetical and abelian, respectively.

The definition of annihilating-ideal graph AGI(R) of a ring R with respect

to an ideal I immediately extends to the context of a commutator lattice as

follows:

Definition 4.4. For an element c in a commutator poset L we define the

annihilation graph of L with respect to c as the graph AGc(L), in which:
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the vertices of AGc(L) are all elements x of L not less-or-equal than c and

having an element y in L not less-or-equal than c with xy ≤ c. A pair (x, y)

of distinct vertices of AGc(L) is an edge of AGc(L) if and only if xy ≤ c.

We shall also write AG(L) = AG0(L), and call this graph the annihilation

graph of L.

In particular we have

AGI(R) = AGI(L) andAG(R) = AG(L), (4.5)

where AGI(R) and AG(R) are as in Section 2, while L is the commutator

lattice of ideals of R with the commutator operation as in Example 3.1(b).

5. The ring-theoretic results extend to the context of commutator

posets

The purpose of this section is to extend Theorem 2.1 to the context of com-

mutator posets, that is, to prove the following:

Theorem 5.1. Let L be a commutator poset and c an element in L. Then:

(a) The graph AGc(L) is connected and diam(AGc(L)) ≤ 3.

(b) If AGc(L) contains a cycle, then gr(AGc(L)) ≤ 4.

Proof. (a): We have to show that, for every two distinct vertices a and b of

the graph AGc(L) with ab � c, either there exists a vertex x of AGc(L) with

(a ̸= x ̸= b and)

ax, xb ≤ c, (5.1)

or there exist distinct vertices x and y of AGc(L) with (a ̸= x ̸= b, a ̸= y ̸= b,

and)
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(b): Suppose AGc(L) contains a cycle (x0, ..., xn) of length n (hence, in

particular, x0 = xn). Since we only need to show that there exists a cycle of

length ≤ 4 in AGc(L), we can assume, without loss of generality, that n ≥ 5,

and that the cycle (x0, ..., xn) has the minimal length. Using this minimality,

we observe:

= v together with

uv ≤ c would imply that x = u and y = v satisfy (5.2). Therefore we can

also assume uv � c. However, under these assumptions x = uv satisfies (5.1).

Indeed, ax = a(uv) ≤ au ≤ c, and similarly xb ≤ c.

Case 4: a2 � c and b2 � c. Now we first choose vertices u and v of AGc(L)

with (a

̸=

au, vb ≤ c. (5.3)

̸

Case 1: a2 ≤ c and b2 ≤ c. In this case x = ab satisfies (5.1). Indeed,

ax = a(ab) ≤ a2 ≤ c, and similarly xb ≤ c;

v. But u

b, a

̸

Case 2: a2 ≤ c and b2 � c. Here we first choose t to be any vertex of

AGc(L) with tb ≤ c, which is possible by definition of AGc(L), and continue

depending on the satisfaction of the inequality at ≤ c. If at ≤ c, then x = t

satisfies (5.1). Indeed, ax = a(at) ≤ a2 ≤ c while xb = (at)b ≤ tb ≤ c.

̸=

Our arguments will depend on the satisfaction of the inequalities a2 ≤ c and

b2 ≤ c, and therefore we have to consider four cases:

Case 3: a2 � c and b2 ≤ c - is trivially similar.

̸= v

which is possible by definition of AGc(L). Next, if u = v, then x = u = v

satisfies (5.1). Therefore we can assume u

b, and)

ax, xy, yb ≤ c. (5.2)

- 143 -
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• x0x3 � c. Indeed, if x0x3 ≤ c, then the sequence obtained from (x0, ..., xn)

by removing x1 and x2 would a cycle in AGc(L);

• x0x3 ̸= x1. Indeed, x0x3 = x1 would imply x1 ≤ x0 and then

x1xn−1 ≤ x0xn−1 = xnxn−1 ≤ c, making the sequence obtained from

(x0, ..., xn) by removing x0 a cycle in AGc(L);

• x0x3 ̸= x2, which can be proved similarly to x0x3 ̸= x1;

Now, under our assumptions, we can prove that AGc(L) has a cycle of length

3: specifically, so is (x1, x0x3, x2, x1). Indeed:

since x0x3 ≤ c and x0x3 ≤ x0, x0x3 is a vertex of AGc(L); we already know

that x1, x0x3, and x2 are all distinct from each other;

• x1(x0x3) ≤ x1x0 ≤ c;

• (x0x3)x2 ≤ x3x2 ≤ c;

• x2x1 ≤ c. �

Remark 5.2. There are simple counter-examples showing that gr(AGc(L)) ≤ 3

is not always true, even if there are cycles of length ≥ 5. For instance, if R

is an integral domain that is not a field, then, obviously, gr(AG(R × R)) = 4

(where AG(...) is as in [5]; see Section 2). In this well-known case all cycles in

AG(R×R) have even number of elements, and, for every n-tuple (A1, · · · , An)

of distinct ideals in R, the sequence

(A0 × {0}, {0} ×A0, A1 × {0}, {0} ×A1, · · · , An−1 × {0}, {0} ×An−1, An ×
{0}, {0} ×An),

where n ≥ 2 and A0 = An, is a cycle of length 2n in AG(R×R).
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