THE COHERENT CATEGORY OF INVERSE SYSTEMS

by Luciano STRAMACCIA

Résumé. Pour toute catégorie de modèles C enrichie dans la catégorie des groupoïdes Gpd, on définit une nouvelle catégorie $\text{Pro} \ C$, dont les objets sont les systèmes inverses dans C; elle est isomorphe à la catégorie d'homotopie de Steenrod $\text{Ho}(\text{Pro} \ C)$, et à la catégorie de pro-homotopie cohérente définie par Lisica et Mardešić lorsque C est la catégorie des espaces topologiques.

Abstract. For every model category C enriched over the category Gpd of groupoids a new category $\text{Pro} \ C$ is defined, with objects the inverse systems in C, which is isomorphic to the Steenrod homotopy category $\text{Ho}(\text{Pro} \ C)$ and to the coherent pro-homotopy category defined by Lisica and Mardešić when C is the category of topological spaces.

Keywords. inverse system, groupoid enriched category, pseudo-natural transformation, model category, category of fractions.

Mathematics Subject Classification (2010). 55U35, 55P55, 18D20, 18E35

1. Introduction

Inverse systems have been widely used in Mathematics, especially in Topology. Grothendieck (see[11]) was the first to give a good categorical definition for the category $\text{Pro} \ C$ of inverse systems in a given category C. The need for a homotopy theory of $\text{Pro} \ C$ was recognized in [1], however, the homotopy category defined there was not satisfactory for a number of reasons. Many authors were then concerned with the task of defining a Quillen model structure on $\text{Pro} \ C$, assuming C had one, in order to obtain a well behaved homotopy category. The so called Steenrod homotopy category $\text{Ho} (\text{Pro} \ C)$ was defined by Porter in [19] (see also [20]). In the last years further work on the subject has been done notably by Isaksen, see for instance [13], [14] and the very recent paper by Descotte and Dubuc [7].
There are at hand essentially two ways to look at \(\text{Ho(Pro } C \text{)} \). The first one is due to Edwards-Hastings [8], who define it by localizing \(\text{Pro } C \) at the class of level equivalences so that in this case the morphisms are quite ugly to handle. The second one is due to Cathey-Segal [6]: given inverse systems \(\mathcal{X}, \mathcal{Y} \) in \(C \), they consider suitable fibrant replacements \(\hat{\mathcal{X}}, \hat{\mathcal{Y}} \) for them obtaining that \(\text{Ho(Pro } C \text{)}(\mathcal{X}, \mathcal{Y}) \simeq [\hat{\mathcal{X}}, \hat{\mathcal{Y}}] \), where the right member denotes the set of homotopy classes with respect to the relation generated by extending to \(\text{Pro } C \) a cylinder functor given on \(C \). In this case morphisms are easy to manage while the constructions of the fibrant replacements is not trivial at all, see, e.g., [8], 3.2.3 and [6], 4.2. Our aim in this paper is to construct a category with objects the inverse systems in \(C \) having the advantages of both the points of view above.

When speaking of the category \(C \) we really have in mind the category \(\text{Top} \) of topological spaces however the construction we give works for an arbitrary ge-category \(C \), that is a category enriched over groupoids, endowed with a suitable model structure. In a previous paper [22] this author has defined the ge-category \(\text{IInv } C \) with objects the inverse systems in \(C \), coherent maps between them and modifications of such coherent maps. The homotopy category of \(\text{IInv } C \), denoted by \(\text{Pro } C \), was used in order to redefine the strong shape category of compact metric spaces. The main result of this paper consists in showing that \(\text{Pro } C \) is isomorphic to the Steenrod homotopy category \(\text{Ho}(\text{ProTop}) \) as defined in [8] and then to the coherent pro-homotopy category \(\text{CH(Top)} \) as defined by Lisica and Mardešić, see [17].

2. Background

A groupoid is a small category whose morphisms are all invertible. \(\text{Gpd} \) denotes the category of groupoids and their functors.

\(\text{Gpd} \) is a complete and cocomplete category, in particular it is a symmetric, monoidal closed category, with tensor product the usual product of categories and unit object the groupoid having only one object and one morphism. \(\text{Gpd} \) is then suitable for enriching other categories: a category \(C \) is enriched over \(\text{Gpd} \) (hereafter called a ge-category) if every hom-set \(\text{Hom}(X, Y) \) is the set of objects of a groupoid \(\text{Hom}(X, Y) \) and the compo-
inition is a functor

\[\text{Hom}(X, Y) \times \text{Hom}(Y, Z) \rightarrow \text{Hom}(X, Z), \]

for all \(X, Y, Z \in C \). A ge-category \(C \) has objects (0-cells), maps (1-cells) and homotopies (2-cells) between them, so that it is nothing but a 2-category whose 2-cells are all invertible. As for notations, we will write

\[\alpha : f \Rightarrow g : X \rightarrow Y \]

to mean that \(\alpha \) is a homotopy connecting the maps \(f, g : X \rightarrow Y \). A map \(f : X \rightarrow Y \) in \(C \) is called a homotopy equivalence if there exists another map \(g : Y \rightarrow X \) and homotopies \(g \circ f \Rightarrow 1_X, f \circ g \Rightarrow 1_Y \). Homotopies in \(C \) can be composed in two ways: vertically \((\beta \cdot \alpha) \) and horizontally \((\gamma * \alpha) \). We denote, e.g., by \(f \) both the map and the identity homotopy \(1_f : f \Rightarrow f \).

The relation to be homotopic for maps in \(C \) is a compositive equivalence relation on each \(\text{Hom}(X, Y) \). The quotient category \(h(C) \) is called the homotopy category of the ge-category \(C \). It can also be obtained by formally inverting the class \(W \) of all the homotopy equivalences in \(C : C[W^{-1}] \cong h(C) \), [22]. A 2-functor \(F : B \rightarrow C \) of ge-categories lifts naturally to a functor \(hF : h(B) \rightarrow h(C) \) which acts on objects as \(F \) does.

Example 2.1.

(a) The category Top of topological spaces and continuous maps is a ge-category. Given two spaces \(X, Y \), the continuous maps between them and the tracks (= relative homotopy classes of homotopies) \([5]\) connecting such maps determine a groupoid.

(b) Gpd itself is a ge-category: the homotopies are the natural isomorphisms of functors. A functor of groupoids is a homotopy equivalence iff it is an equivalence of categories.

(c) Every ordinary category can be thought of as a ge-category having only identity homotopies.
3. The ge-category of diagrams.

Let C be a fixed ge-category and let A be a small, ordinary category, also considered as a ge-category. Let us denote by $[A, C]$ the ge-category of diagrams in C of type A, that is (2)-functors $F : A \to C$. The maps here are the (2)-natural transformations of diagrams, while a homotopy is a modification of natural transformations [15].

3.1. Recall that, for diagrams $F, G : A \to C$, a pseudo-natural transformation (called a psd-transformation, for short) $\tau : F \to G$ consists of

- maps $\tau_x : F(x) \to G(x)$ in C, for all $x \in A$, together with
- homotopies $\tau_u : G(u)\tau_x \Rightarrow \tau_y F(u)$ in C, for all $u : x \to y$ in A, in such a way that $\tau_{1x} = 1_{\tau_x}$ and $\tau_{uv} = [\tau_u * F(u)] \cdot [G(g) * \tau_y]$, for composable maps $x \xrightarrow{u} y \xrightarrow{v} z$, as in

\[
\begin{array}{c}
F(x) \xrightarrow{\tau_x} G(x) \\
F(y) \xrightarrow{\tau_y} G(y) \\
F(z) \xrightarrow{\tau_z} G(z)
\end{array}
\]

Moreover, for a homotopy $\alpha : u \Rightarrow u' : x \to y$, one has

$\tau_u \cdot [G(\alpha) * \tau_x] = [\tau_y * F(\alpha)] \cdot \tau_{u'}$

as in

\[
\begin{array}{c}
F(x) \xrightarrow{\tau_x} G(x) \\
F(y) \xrightarrow{\tau_y} G(y) \\
F(z) \xrightarrow{\tau_z} G(z)
\end{array}
\]

3.2. Given psd-transformations $\sigma, \tau : F \to G$ a homotopy (modification) $\theta : \sigma \Rightarrow \tau$ consists of homotopies $\theta_x : \sigma_x \Rightarrow \tau_x$, for $x \in A$, such that, given
$u : x \to y$, then

$$\tau_u \cdot [G(u) \ast \theta_x] = [\theta_y \ast F(u)] \cdot \sigma_u,$$

as in

\[
\begin{array}{ccc}
F(x) & \xrightarrow{\sigma_x} & G(x) \\
\downarrow \tau_u & & \downarrow \omega_u \\
F(y) & \xrightarrow{\tau_y} & G(y)
\end{array}
\quad \begin{array}{ccc}
F(x) & \xrightarrow{\sigma_x} & G(x) \\
\downarrow \tau_u & & \downarrow \omega_u \\
F(y) & \xrightarrow{\tau_y} & G(y)
\end{array}
\]

3.3. A natural transformation or psd-transformation $\tau : F \to G$ of diagrams is called a *level equivalence* when, for each $x \in A$, the map $\tau_x : F(x) \to G(x)$ is a homotopy equivalence in C.

3.4. Diagrams, psd-transformations and their homotopies define the ge-category $[A, C]$. Since every natural transformation of diagrams is a psd-transformation, it follows that $[A, C]$ is a ge-subcategory of $[A, C]$. The inclusion 2-functor $J : [A, C] \to [A, C]$ has a left 2-adjoint ([4], [10]) usually denoted $(-)' : [A, C] \to [A, C], \ F \mapsto F'$.

F' is called the *flexible* or cofibrant replacement of the diagram F. The unit p of the 2-adjunction is levelwise given by pseudo-natural transformations $p_r : F \to F'$, while the components of the counit q are natural transformations $q_r : F' \to F$. It follows from the general theory of 2-monads ([3], §4) that the pseudo-natural transformations p_r and the natural transformations q_r form an adjoint equivalence. In particular, one has $q_r p_r = 1_r$ and there are homotopies $\theta_r : p_r q_r \Rightarrow 1_r$ providing the counit of the adjoint equivalence.

3.5. In [10], 3.2.3, it is shown that, for each diagram F, $q_r : F' \to F$ is a levelwise trivial fibration in the projective model structure on $[A, C]$, for C a model category. In particular q_r is a level homotopy equivalence in C.

- 151 -
3.6. A diagram $F : A \to C$ is flexible when $q_F : F' \to F$ is a surjective equivalence in $[A, C]$ (see [4], and [16], 5.13). It follows from ([4], Theorem 4.7), that every psd-transformation $F \to G$, with F a flexible diagram, is homotopic to a unique natural transformation.

Given 2-categories C and D, it is not true in general that a pseudo-natural transformation $\tau : F \to G : C \to D$ is always homotopic to a 2-natural transformation. A nice counterexample for this fact can be found in [21].

In general, a level equivalence is not a homotopy equivalence in $[A, C]$ (see e.g. [8], 2.5). However the following is known.

Proposition 3.7. Let A, C be ge-categories. A level equivalence $\tau : F \to G : A \to C$ in $[A, C]$ becomes a homotopy equivalence in $[A, C]$.

Proof. Assume that each τ_x is a homotopy equivalence with homotopy inverse $\sigma_x : G(x) \to F(x)$ and homotopies $\eta_x : \sigma_x \tau_x \Rightarrow 1_{F(x)}$. For $f : x \to y$ in C define $\sigma_f : F(f) \sigma_{F(x)} \Rightarrow \sigma_{F(y)} G(f)$ so that the homotopy represented by the following diagram is the identity homotopy at $F(f)$:

\[
\begin{array}{ccc}
F(x) & \xrightarrow{\tau_x} & G(x) \\
\downarrow F(f) & & \downarrow G(f) \\
F(y) & \xrightarrow{\tau_y} & G(y)
\end{array}
\]

That is $1_{F(f)} = [\theta_y * F(f)] \cdot [\sigma_y * \tau_f] \cdot [\sigma_f * \tau_x] \cdot [F(f) * \theta_x^{-1}]$. From which it follows $\sigma_f = [\sigma_y * \tau_f]^{-1} \cdot [\theta_y * F(f)]^{-1} \cdot [F(f) * \theta_x^{-1}]^{-1} \cdot \sigma_y$. The converse is clear.

4. The ge-category of Inverse Systems.

4.1. An inverse system in a ge-category C is a diagram $X : \Lambda^{op} \to C$, with (Λ, \leq) a cofinite, strongly directed set. We often write explicitly $X = (X_\lambda, x_{\lambda\lambda'}, \Lambda)$, where $X(\lambda) = X_\lambda$ and $X(\lambda \leq \lambda') = x_{\lambda\lambda'} : X_\lambda \to X_{\lambda'}$, [8], [18].
If \(f : M \to \Lambda \) is an increasing map of directed sets, then there is an inverse system \(X_f = Xf^{\text{op}} : M^{\text{op}} \to C \), given by \(X_f = (X_f(\mu), x_f(\mu) f(\mu'), M) \). Here \(M = (M, \leq) \) and \(f \) is considered as a functor.

4.2. Let \(X = (X_\lambda, x_{\lambda\lambda'}, \Lambda) \) and \(Y = (Y_\mu, y_{\mu\mu'}, M) \) be inverse systems in \(C \).

A map of systems \(\xi = (f, f_\mu) : X \to Y \) consists of
- an increasing map \(f : M \to \Lambda \),
- a natural transformation \((f_\mu) : X_f \to Y_f \).

If \(Z = (Z_\nu, r_{\nu\nu'}, N) \) is another inverse system and \(g = (g, g_\nu) : Y \to Z \) is another map of systems, the composition \(g \xi : X \to Z \) is the map \((fg, g_\nu f(g(\nu)) \), while the identity map on \(X \) is given by \((1_\Lambda, 1_{X_\lambda}) \).

Let \(f = (f, f_\mu) : X \to Y \) be a map of systems and let \(F : M \to \Lambda \) be an increasing map such that \(f \leq F \), that is \(f(\mu) \leq F(\mu) \), for all \(\mu \in M \).

The shift of \(f \) by \(F \) is the map of systems \(\xi F = (F, f_\mu) : X \to Y \), where \(f_\mu = \xi F f(\mu) \).

4.3. Given two maps of systems \(\xi, \xi' : X \to Y \), a homotopy \(\chi : \xi \Rightarrow \xi' \) consists of an increasing map \(F : \Lambda \to M \), \(F \geq f, f' \), and of a usual modification of natural transformations \(\chi : (\xi F) \Rightarrow (\xi' F) \).

Two maps of systems \(\xi, \xi' : X \to Y \) are said to be congruent if they admit a common shift. Congruences of maps of systems are trivial modifications, so we can form the ge-category \(\text{Inv} C \) whose objects, maps and homotopies are inverse systems, maps of systems and their congruences, respectively. The resulting homotopy category of \(\text{Inv} C \) is Grothendieck’s category \(\text{Pro} C \) of inverse systems in \(C \) [11].

\(\text{Inv} C \) is actually a ge-category whose constituent bricks are the ge-categories of diagrams [\(\Lambda^{\text{op}}, C \)], for \((\Lambda, \leq) \) a cofinite, strongly directed set.

Changing \([\Lambda^{\text{op}}, C] \) to \([\Lambda^{\text{op}}, C] \) leads to :

4.4. A coherent map of inverse systems \(\varphi = (f, f_\mu, f_{\mu\mu}) : X \to Y \) consists of:
- an increasing map \(f : M \to \Lambda \),
- a psd-transformation \((f_\mu, f_{\mu\mu}) : X_f \to Y \).
Let $\psi = (g, g', g''') : Y \to Z = (Z, z_{\nu'}, N)$ be another coherent map. The composition $\psi \varphi$ is the coherent map given by $(f g, g_{\nu} f(g(\nu)), g_{\nu'} * f(g(\nu')))$. Such a composition is indeed associative and the identity coherent map $X \to X$ is given by $1_X = (1_\Lambda; 1_{X_{\lambda}}, 1_{f_{\lambda}})$.

4.5. Let $\varphi = (f; f_\mu, f_{\mu'}) : X \to Y$ and let $F : M \to \Lambda$ be an increasing map such that $f \leq F$. The coherent shift of φ by F is the coherent map $\bar{\varphi} = (F; \bar{f}_\mu, \bar{f}_{\mu'}) : X \to Y$ which is given by $\bar{f}_\mu = f_\mu f(f(\mu))F(\mu)$ and $\bar{f}_{\mu'} = f_{\mu'} * f(f(\mu'))F(\mu')$.

If $\varphi' = (f', f'_\mu, f'_{\mu'})$ is another coherent map $X \to Y$, a coherent homotopy $\Phi : \varphi \Rightarrow \varphi'$ consists of:

- an increasing map $F : M \to \Lambda$ such that $f, f' \leq F$;
- a homotopy of psd-transformations $\Phi : (\bar{f}_\mu, \bar{f}_{\mu'}) \Rightarrow (\bar{f}'_\mu, \bar{f}'_{\mu'}) : X_F \to Y$, between their coherent shifts by F. It follows that Φ is family of homotopies of C

$$\phi_{\mu} : \bar{f}_\mu x(f(\mu))F(\mu) \Rightarrow g_\mu x(g(\mu))F(\mu), \mu \in M,$$

such that $(g_{\mu\mu'} * x(f(\mu))g(\mu')) \cdot (y_{\mu\mu'} * \phi_{\mu'}) = (\phi_{\mu} * x(f(\mu))F(\mu')) \cdot (f_{\mu'} * f(f(\mu'))F(\mu')).$

4.6. The data above define the ge-category $\text{Inv} \ C$ with objects the inverse systems in C, coherent maps and their coherent homotopies. We define the coherent category of inverse systems in C to be $h(\text{Inv} \ C) = \text{Pro} \ C$.

If X and Y are indexed over the same set Λ, then a map of systems $(1_\Lambda, f_\lambda) : X \to Y$ is natural transformation while a coherent map of systems $(1_\Lambda, f_\lambda, f_{\lambda'}) : X \to Y$ is a psd-transformation, We call such maps level (coherent) maps of systems.

4.7. Recall from [18] that every map of systems $(f, f_\mu) : X \to Y$, with $f : M \to \Lambda$, is isomorphic, in the category of maps of $\text{Inv} \ C$, to a level map $(1_N, f_\nu) : X' \to Y'$ where

$$N = \{\nu = (\lambda, \mu) \in \Lambda \times M \mid f(\mu) \leq \lambda\}$$

is directed by the relation

$$\nu = (\lambda, \mu) \leq (\lambda', \mu') \iff \lambda \leq \lambda' \text{ and } \mu \leq \mu',$$

is directed by the relation
with $f_\nu = f_\mu x(f(\mu)_\lambda)$. This is the so called Mardešić's trick, which admits a coherent version as follows.

Starting from a coherent map of systems $(f, f_\mu, f_{\nu\nu'}) : X \to Y$ one obtains a level coherent map of systems

$$(1, f_\nu, f_{\nu\nu'}) : X' \to Y'$$

where $f_\nu = f_\mu \circ x(f(\mu)_\lambda)$ and $f_{\nu\nu'}$ is the homotopy represented by

$$
\begin{align*}
X_{\nu'} = X_{\lambda'} x(f(\nu'))_{\lambda'} & \to X_{f(\mu')} f_{\nu'} \\
\downarrow x_{\lambda'} & \downarrow x_{(f(\nu))(\nu')} \\
X_{\nu} = X_{\lambda} x(f(\nu)) & \to X_{f(\mu)} f_{\mu}
\end{align*}
$$

Then there is a commutative square in $\text{Inv } C$

$$
\begin{array}{ccc}
X & (f, f_\mu, f_{\nu\nu'}) & Y \\
\downarrow (i, i_\nu) & \downarrow (j, j_\nu) & \downarrow \\
X' & (1, f_\nu, f_{\nu\nu'}) & Y'
\end{array}
$$

where (i, i_ν) and (j, j_ν) are isomorphisms of systems given by $i : N \to \Lambda$, $i(\nu) = \lambda$ and $i_\nu = 1_{X_{\lambda}}$, $j : N \to M$, $j(\nu) = \mu$ and $j_\nu = 1_{Y_{\mu}}$.

4.8. Edwards-Hastings [8] consider a nicely behaved model category C satisfying a certain condition "N" which provides, among other things, the existence of a functorial cylinder. They define a model structure in $\text{Pro } C$ where the weak equivalences and the cofibrations are defined to be retracts in the category of maps of $\text{Pro } C$ of level equivalences and of level Hurewicz cofibrations from some $[\Lambda^\infty, C]$, respectively. The Steenrod homotopy category of inverse systems $\text{Ho}(\text{Pro } C)$ is obtained by localizing $\text{Pro } C$ at the class of level homotopy equivalences (see also [20]). An equivalent description of $\text{Ho}(\text{Pro } C)$ is given in [6], let us recall it briefly. First extend the cylinder functor given on C to $\text{Pro } C$: for $X = (X_\lambda, x_{\lambda\lambda'}, \Lambda)$, let $X \times I = (X_\lambda \times I, x_{\lambda\lambda'} \times 1, \Lambda)$. Two maps of systems $f = (f, f_\mu)$, $g = (g, g_\mu) : X \to Y$ are declared naive homotopic if there exists a map of systems $F = (F, F_\mu) : X \times I \to Y$, where $F : M \to \Lambda$ is an increasing map.
such that $F \geq f, g$ and, for each $\mu \in M$, $F_\mu : X_{f(\mu)} \times I \to Y_{g(\mu)}$ is a homotopy in \mathcal{C} connecting $f_\mu \circ x_{f(\mu)} F(\mu)$ and $g_\mu \circ x_{g(\mu)} F(\mu)$. The resulting quotient category is denoted $\pi(\text{Pro } \mathcal{C})$ and is called the naive homotopy category. We write $[X, Y]$ for the set of naive homotopy classes of maps $X \to Y$. If $\pi(\text{Pro } \mathcal{C})_f$ denotes the full subcategory of all fibrant objects in the previous model structure, then there is a reflective functor

$$F : \pi(\text{Pro } \mathcal{C}) \to \pi(\text{Pro } \mathcal{C})_f, \quad X \mapsto \hat{X},$$

with unit of adjunction $i_X : X \to \hat{X}$ a level trivial cofibration. The main result is that there is a natural bijection

$$\text{Ho}(\text{Pro } \mathcal{C})(X, Y) \cong [\hat{X}, \hat{Y}],$$

which exhibits $\text{Ho}(\text{Pro } \mathcal{C})$ as the full image of the functor F.

We note that two coherent maps of systems that are coherently homotopic are also naive homotopic.

$\text{Inv } \mathcal{C}$ is a ge-subcategory of $\text{Inv } \mathcal{C}$ and the inclusion 2-functor $\text{Inv } \mathcal{C} \to \text{Inv } \mathcal{C}$ lifts to the homotopy categories as $I : \text{Pro } \mathcal{C} \to \text{Pro } \mathcal{C}$. Since level homotopy equivalences in $\text{Pro } \mathcal{C}$ become homotopy equivalences in $\text{Pro } \mathcal{C}$, then the inclusion 2-functor I takes level homotopy equivalences to isomorphisms. It follows [2] that there exists a unique functor $U : \text{Ho}(\text{Pro } \mathcal{C}) \to \text{Pro } \mathcal{C}$ making the following diagram

$$\text{Pro } \mathcal{C} \xrightarrow{p_E} \text{Ho}(\text{Pro } \mathcal{C}) \xrightarrow{U} \text{Pro } \mathcal{C},$$

commutative, where p_E is the localization functor.

Theorem 4.9. The functor $U : \text{Ho}(\text{Pro } \mathcal{C}) \to \text{Pro } \mathcal{C}$ is an isomorphism of categories.

Proof. Let us note first that all functors involved in the above diagram are identical on objects. Let now $\varphi : X \to Y$ be a coherent map of systems.
By (4.7) we can assume that \(\varphi \) is actually a psd-transformation between systems indexed over the same directed set. By (3.6) there is a unique natural transformation \(\varphi' : X' \to Y \) which is homotopic in \(\text{Pro } C \) to the composition

\[
X' \xrightarrow{q} X \xrightarrow{\varphi} Y
\]

Recall (3.5) that \(q_2 \) is a level homotopy equivalence, then in \(\text{Ho}(\text{Pro } C) \) consider the morphism

\[
[X \xleftarrow{q} X' \xrightarrow{\varphi'} Y]
\]

It follows that (see [2], A.4)

\[
U(\varphi'(q_2)^{-1}) = U(\varphi')U(q_2)^{-1} = I(\varphi')I(q_2)^{-1} = \varphi'p_2 : X \to Y
\]

and it is clear that \(\varphi'p_2 \) is homotopic to \(\varphi \) in \(\text{Inv } C \), so that they give the same morphism in \(\text{Pro } C \), hence the functor \(U \) is full. Let now \(\phi, \psi : X \to Y \) be two morphisms in \(\text{Ho}(\text{Pro } C) \). We may assume without loss of generality (4.8) that they correspond to homotopy classes \(\phi = [f] \), \(\psi = [g] \) of maps of systems \(f, g : X \to Y \). Then, assuming that \(U(\phi) = U(\psi) \) amounts to assume that \(f \) and \(g \) are coherently homotopic maps of systems. This means that there is an increasing map \(F : M \to \Lambda \) and a family of homotopies

\[
F_\mu : f_\mu x_{f(\mu)F(\mu)} \Rightarrow g_\mu x_{g(\mu)F(\mu)}
\]

in the ge-category \(C \), such that \(F_\mu x_{F(\mu)F(\mu')} = y_{\mu \mu'}F_{\mu'} \), for \(\mu \leq \mu' \). It follows that \(F = (F, F_\mu) : X \times I \to Y \) is a naive homotopy connecting \(f \) and \(g \), thus \(U \) is also a faithful functor.

Let us note that \(\text{Pro } \text{Top} \) is also isomorphic to the coherent pro-homotopy category of Lisića and Mardešić \(CH(\text{Pro } \text{Top}) \), see [17], Theorem 4.3.8.

References

- 158 -

Luciano Stramaccia
Dipartimento di Matematica e Informatica
Università di Perugia
via Vanvitelli, 06123 Perugia (Italy)
stra@DMI.unipg.it