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1. A Brief Curriculum Vitae

On June 6, 2014, Reinhard Börger passed away, after persistent heart com-
plications. He had taught at Fernuniversität in Hagen, Germany, for over
three decades where he had received his Dr. rer. nat. (Ph.D.) in 1981, with
a thesis [15] on notions of connectedness, written under the direction of Di-
eter Pumplün. He had continued to work on mathematical problems until
just hours before his death.

Born on August 19, 1954, Reinhard went to school in Gevelsberg (near
Hagen) before beginning his mathematics studies at Westfälische Wilhelms-
Universität in Münster in 1972. A year later he won a runner-up prize at the
highly competitive national Jugend forscht competition. Quite visibly, math-
ematics seemed to always be on his mind, and he often seemed to appear out
of nowhere at lectures, seminars or informal gatherings. These sudden ap-
pearances quickly earned him his nickname Geist (ghost), a name that he
willingly adopted for himself as well. His trademark ability to then launch
pointed and often unexpected, but always polite, questions, be it on mathe-
matics or any other issue, quickly won him the respect of all.

Reinhard’s interest in category theory started early during his studies in
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Münster when, supported by a scholarship of the prestigious Studienstiftung
des Deutschen Volkes, he took Pumplün’s course on the subject that eventu-
ally led him to write his 1977 Diplomarbeit (M.Sc. thesis) about congruence
relations on categories [3]. For his doctoral studies he accepted a scholarship
from the Cusanuswerk and followed Pumplün from Münster to Hagen where
Pumplün had accepted an inaugural chair at the newly founded Fernuniver-
sität in 1975. After the completion of his doctoral degree in 1981 with an
award-winning thesis, he assumed a number of research assistantships, at
the Universities of Karlsruhe (Germany) and of Toledo (Ohio, USA), and
back at Fernuniversität. For his Habilitationsschrift [31], which earned him
the venia legendi in 1989, he developed a categorical approach to integration
theory. Beginning from 1990 he worked as a Hochschuldozent at Fernuni-
versität, interrupted by a visiting professorship at York University in Toronto
(Canada) in 1993, and in 1995 he was appointed Außerplanmäßiger Profes-
sor at Fernuniversität, a position that he kept until his premature death in
2014.

In what follows I give a synopsis of Reinhard’s mathematical work, em-
phasizing early, incomplete or not easily accessible contributions. After a
brief account in Section 2 of his work up to the completion of his M.Sc. the-
sis, I recall some of his early contributions to the development of categor-
ical topology (Section 3), before describing in Section 4 some aspects of
his Ph.D. thesis and the work that emanated from it. Section 5 sketches
the work on integration theory in his Habilitationsschrift, and Section 6
highlights some of his more isolated mathematical contributions. For Rein-
hard’s substantial contributions in the area of convexity theory, inspired by
the Pumplün–Röhrl works on convexity (such as [86, 87]), we refer to the
article [81] by his frequent coauthor on the subject, Ralf Kemper.

Acknowledgements. I am indebted to Dieter (“Nico”) Pumplün and Hol-
ger Petersson at Fernuniversität for their strong encouragement and valuable
advice during the preparation of this article, an extended version of which
appeared in the local preprint series Seminarberichte (vol. 87, 2015). Sin-
cere thanks are also due to Ottmar Loos and Diethard Pallaschke for their
help in recovering information and materials that may easily have been lost
otherwise. Andrea Börger provided information on Reinhard’s contributions
outside mathematics, for which I am grateful as well. Last, but not least, I
thank the editors of the Cahiers for publishing this article.
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2. First Steps

The earliest written mathematical work of Reinhard that I am aware of and
that may still be of interest today, is the three-page mimeographed note [1]
giving a sufficient condition for the non-existence of a cogenerating (also
called coseparating) set of objects in a category K. While the existence of
such a set in the category of R-modules and, in particular, of abelian groups,
is standard, none of the following categories can possess one: fields; skew
fields; (commutative; unital) rings; groups; semigroups; monoids; small cat-
egories. Reinhard’s theorem, found when he was still an undergraduate stu-
dent, gives a unified reason for this, as follows.

Theorem 2.1. Let K have (strong epi,mono)-factorizations and admit a
functor U to Set that preserves monomorphisms. If, for every cardinal num-
ber κ, there is a simple object A in K with the cardinality of UA at least κ,
then there is no cogenerating set in K.

(He defined an object A to be simple if the identity morphism on A is not
constant while every strong epimorphism with domain A must be constant
or an isomorphism; a morphism f is constant if for all parallel morphisms
x, y composable with f one has fx = fy.) Reinhard returned to the theme
of the existence of cogenerators repeatedly throughout his career, see [16,
34, 44, 45, 49, 50].

In 1975 Reinhard and I discussed various generalizations of the notion
of right adjoint functor that had appeared in the literature at the time, in par-
ticular Kaput’s [80] locally adjunctable functors. We tightened that notion to
strongly locally right adjoint and proved, among other things, preservation
of connected limits by such functors. Our paper [2] was presented at the
“Categories” conference in Oberwolfach in 1976, and we discussed it with
Yves Diers who was working on a slightly stricter notion for his thesis [71]
that today is known under the name multi-right adjoint functor. Diers’ only
further requirement to our strong local right adjointness was that the local
adjunction units of an object, known as its spectrum, must form a set. With-
out this size restriction, Reinhard and I had already given in [2] a complete
characterization of the spectrum of an object, as follows.

Theorem 2.2. For a strongly locally right adjoint functor U : A → X and
an objectX ∈ X , its spectrum is the only full subcategory of the comma cat-
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egory (X ↓ U) that is a groupoid, coreflective, and closed under monomor-
phisms.

These works actually precede Reinhard’s M.Sc. thesis [3] (summarized
in [5]) whose starting point was a notion presented in Pumplün’s categories
course that went beyond the classical notion (as given in [72]) which con-
fines equivalent morphism to the same hom set. Without that restriction,
for any equivalence relation ∼ on the class of morphisms of a category K
to be (uniquely) normal Pumplün required the existence of a (uniquely de-
termined) composition law for the equivalence classes that makes K/∼ a
category and the projection P : K → K/∼ a functor. Reinhard showed that
the behaviour of a compatible equivalence relation ∼ on the morphism class
of a category K (so that u ∼ u′ and v ∼ v′ implies uv ∼ u′v′ whenever the
composites are defined) requires great caution:

Theorem 2.3. Each of the following statements on an equivalence relation
∼ on the class of morphisms of a category K implies the next, but none of
these implications is reversible:

• ∼ is compatible, and 1A ∼ 1B only if A = B, for all objects A,B ∈
K;

• ∼ is compatible, and for all u : A → B, v : C → D with 1B ∼ 1C ,
there are u′ : A′ → B′, v′ : C ′ → D′ with u ∼ u′, v ∼ v′ and
B′ = C ′;

• ∼ is uniquely normal;

• ∼ is normal;

• there is a functor F with domain K inducing ∼ (so that u ∼ u′ ⇐⇒
Fu = Fu′);

• ∼ is compatible.

3. Semi-topological functors and total cocompleteness

Brümmer’s [68], Shukla’s [90], Hoffmann’s [77] and Wischnewsky’s [98]
theses and Wyler’s [100, 99], Manes’ [84] and Herrlich’s [75, 76] semi-
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nal papers triggered the development of what became known as Categor-
ical Topology, with various groups in Germany, South Africa, the United
States and other countries working intensively throughout the 1970s on ax-
iomatizations of “topologically behaved” functors and their generalizations
and properties; see [69] for a survey. Reinhard and I, long before he started
working on his doctoral dissertation, were very much part of this effort. Here
are some examples of results that he has influenced the most.

Topologicity of a functor P : A → X may be defined by the sole
requirement that initial liftings of (arbitrarily large) so-called P -structured
sources exist, without the a-priori assumption of faithfulness of P . (This is
Brümmer’s [68] definition, although he did not use the name topological for
such functors in his thesis.) Herrlich realized that faithfulness is a conse-
quence of the definition, with a proof that made essential use of the small-
ness of hom-sets for the categories in question. Reinhard’s spontaneous idea
then was to use a Cantor-type diagonal argument instead that works also for
not necessarily locally small categories. In [8] we came up with a general
theorem that not only proves the faithfulness of topological and, more gen-
erally, semi-topological functors [94, 78, 95] , but that also entails Freyd’s
theorem that a small category with (co)products must be, up to categorical
equivalence, a complete lattice, and that in fact reproduces Cantor’s original
theorem about the cardinality of a a set being always exceeded by that of its
power set, as follows:

Theorem 3.1. Consider a (possibly large) family (ti : Ai → C)i∈I of mor-
phisms and an object B in a category K, such that any family (hi : Ai →
B)i∈I factors as hi = hti (i ∈ I) for some h : C → B. If there is a surjec-
tion I → K(C,B), then for any morphisms f, g : C → B one has fti = gti
for some i ∈ I .

Semi-topological functors in their various incarnations (also called solid
functors, at Herrlich’s urging) were a topic of Reinhard’s and my joint inter-
est for considerable time, in particular in conjunction with strong complete-
ness properties of the participating categories, as witnessed by our papers
[9, 16, 34, 35, 38]. In [96] I had shown that the fundamental property of
totality (or total cocompletness) introduced by Street and Walters [92] lifts
from X to A along a semi-topological P : A → X , and in [66] total cate-
gories with a (strong) generating set of objects were characterized as the cat-
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egories admitting a semi-topological (and conservative) functor into some
small discrete power of Set. For our paper [34] Reinhard constructed an
incredible example:

Theorem 3.2. There is a total category A with a (single-object) strong
generator but no regularly generating set of objects. A is cowell-powered
with respect to regular epimorphisms but not with respect to strong epimor-
phisms; A does not admit co-intersections of arbitrarily large families of
strong epimorphisms. The colimit closure B of the strong generator in A
fails to be complete since it doesn’t even possess a terminal object.

Since totality entails a very strong completeness property, called hyper-
completeness by Reinhard (see [16]), the colimit closure B in the example
above fails badly to inherit totality from its ambient category A. A com-
parison with the following affirmative result on totality of colimit closures
obtained in [38] demonstrates how “tight” this example is:

Theorem 3.3. Let the cocomplete category B be the colimit closure of a
small full subcategory G, and assume that every extremal epimorphisms in
B is the colimit of a chain of regular epimorphisms of length at most α, for
some fixed ordinal α. Then B is total and admits large co-intersections of
strong epimorphisms, and G is strongly generating in A.

4. Connectedness, coproducts, and extensive categories

Reinhard’s doctoral dissertation [15] relates various categorical notions of
connectedness studied throughout the 1970s with each other, adds new con-
cepts and gives some surprising applications. Starting points for him were
the notions of component subcategory (initiated by Herrlich [74] and devel-
oped further by Preuß [85], Strecker [91] and Tiller [97]), of left-constant
subcategory (also initiated by Herrlich [74] in generalization of the corre-
spondence between torsion and torsion-free classes and fully characterized
within the category of topological spaces by Arhangel’skii and Wiegandt
[67]), and the notion of strongly locally coreflective [2] or multi-coreflective
[71] subcategory (already mentioned in Section 2 in the dual situation and
applied in topology by Salicrup [88]).

Let us concentrate here on a more category-intrinsic approach to con-
nectedness to which Reinhard greatly contributed and which led him to make
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significant contributions to preservation properties of coproducts in abstract
and concrete categories. The starting point is the easy observation that a
topological space X is (not empty and) connected if, and only if, every con-
tinuous map X →

∐
i∈I Yi into a topological sum factors uniquely through

exactly one coproduct injection; in other words, if the covariant hom-functor
Top → Set represented by X preserves coproducts. Trading Top for any
category K with coproducts Hoffmann [77] called such objects X Z-objects,
Reinhard preferred the name coprime, while most people will nowadays use
the term connected in K. More specifically, for a cardinal number α, let
us call X α-connected in K if the hom-functor of X preserves coproducts
indexed by a set of cardinality ≤ α.

In his thesis Reinhard was the first to explore this concept deeply in the
dual category of the category Rng of unital (but not necessarily commuta-
tive) rings. α-connectedness of a ring R now means that every unital ho-
momorphism f :

∏
β<α Sβ → R depends only on exactly one coordinate

(so that it factors uniquely through precisely one projection of the direct
product). While it is easy to see that, without loss of generality, one may
assume here that every ring Sβ is the ring Z of integers, and that the finitely-
connected (i.e., α-connected, for every finite α) rings are precisely those that
traditionally are called connected (i.e., those rings that have no idempotent
elements other than 0 and 1), Reinhard unravelled several surprises in the in-
finite case. Calling a ring ultraconnected when it is ℵ0-connected, he proved
in [15] (see also [21]) that the countable case governs the arbitrary infinite
case precisely when there are no uncountable measurable cardinals:

Theorem 4.1. If there are no uncountable measurable cardinals, then the
connected objects in Rngop are precisely the ultraconnected rings. If there
are uncountable measurable cardinals, then there are no ultraconnected ob-
jects in Rngop.

The fields R and C of real and of numbers are ultraconnected, and so is
every subring of an ultraconnected ring. But none of the following connected
rings is ultraconnected: the cyclic rings of cardinality pm (p prime, m ≥ 1),
the ring Zp of p-adic integers and its field of fractions Qp

The Theorem remains valid if Rng is traded for the category of com-
mutative unital rings. Its proof makes essential use of a general categorical
result that Reinhard had first presented at a meeting on “Categorical Algebra
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and Its Applications” held in Arnsberg (Germany) in 1979 (see [13]):

Theorem 4.2. For a category K with an initial object and α-indexed co-
products (α an infinite cardinal), a functor F : K → Set preserves such
coproducts if, and only if, F preserves β-indexed coproducts for every mea-
surable β ≤ α.

He only subsequently learned that Trnková [93] had proved this theorem
earlier in the special case that also the domain of F is Set. In [25], keeping
the general domain K, he went on to expand it further to functors with target
categories other than Set.

The themes touched upon in, or emerging from, Reinhard’s thesis very
much reverberate in today’s research. I can mention here only one exam-
ple in this regard. It concerns the important notion of extensive category, a
term introduced by Carboni, Lack and Walters in [70]: a category K with
(finite) coproducts and pullbacks is (finitely) extensive if (finite) coproducts
are universal (i.e., stable under pullback) and disjoint (i.e., the pullback of
any two coproduct injections with distinct labels is the initial object). This is
a typically geometric property shared by Set and Top, while a pointed ex-
tensive category must be trivial. Every elementary topos is finitely extensive,
and Grothendieck topoi (i.e., the localizations of presheaf categories) may be
characterized as those Barr-exact categories with a generating set of objects
that are extensive. In a (finitely) extensive category the (finitely) connected
objects are characterized as a topologist would expect: they are precisely the
coproduct-indecomposable objects, i.e., those non-initial objects X with the
property that whenever X is presented as a coproduct of Y and Z, one of
Y, Z must be initial.

Reinhard started his studies of the universality and disjointness proper-
ties of coproducts years before the appearance of [70]. His initial account
[26] went through a multi-year period of refinement, extension and correc-
tion before it finally got published in [46]. But his first account already
contains all the ingredients to the proof of a refined analysis of the notion
of (finite) extensitivity that is missing from [70]; it shows that universality
almost implies disjointness, as follows:

Theorem 4.3. A category with (finite) coproducts and pullbacks is (finitely)
extensive if, and only if, non-empty (binary) coproducts are universal and
pre-initial objects are initial.
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(A pre-initial object admits at most one morphism into any other ob-
ject, while an initial object admits exactly one. A streamlined proof of the
Theorem is contained in [79].) The dual of the category of commutative uni-
tal rings is finitely extensive, and Reinhard gave an example showing that
commutativity is essential here, although Rngop still has the disjointness
property.

5. Measure and Integration

Given the wide range of his mathematical interests, it is hardly surprising that
a large part of Reinhard’s work addresses analytic themes, which are also
at the core of his Habilitationsschrift [31], titled “A categorical approach
to integration theory” (written in German, with the preprint [28] giving a
compressed English version of it). Before Reinhard started his work in this
area, there had been only few attempts to present measure and integration
theory in a categorically satisfactory fashion, with limited follow-up work;
among others, see [82, 83, 73]. Of these, Reinhard’s approach may be seen
as a further development of Linton’s early work.

The starting point in his approach is the elementary, but crucial, obser-
vation that integration of simple functions is given by a universal property.
Specifically, for a Boolean algebraB (with top and bottom elements 1 and 0)
and a real vector space A, the space M(B,A) of charges µ : B → A (i.e., of
maps µ with µ(u∨ v) = µ(u) +µ(v) for all u, v ∈ B with u∧ v = 0) is rep-
resentable when considered as a functor in A, so that for the fixed Boolean
algebra B there is a real vector space EB with M(B,−) ∼= HomR(EB,−) :
VecR → Set. Hence, there is a charge χB : B → EB such that any charge
µ : B → A factors as µ = l · χB, for a uniquely determined R-linear map
l : EB → A. For a set algebra B of a set Ω, EB is the space of simple
functions, and χB assigns to a subset of Ω in B its characteristic function. In
particular then, for A = R and a charge µ, the corresponding map l assigns
to a simple function its integral with respect to µ.

Since every bounded measurable function is the uniform limit of simple
functions, it is clear that one must provide for a “good” convergence setting
to arrive at a satisfactory integration theory, and Reinhard formulates the
following necessary steps to this end: 1. express the integration of simple
functions categorically in sufficient generality; 2. provide for a “convenient
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convergence environment”, by replacing the category of sets by a suitable
category of topological spaces; 3. test the categorical theory obtained against
classical approaches to, and results in, integration theory. Unfortunately, as
Reinhard explains in the 18-page introduction to his Habilitationsschrift, this
obvious roadmap is loaded with specific obstacles.

The “simple integration theory” sketched above relies crucially on the
fact that the symmetric monoidal-closed category VecR lives over the Carte-
sian closed category Set, with the left adjoint L to the forgetful functor V :
VecR → Set preserving the monoidal structure: L(X×Y ) ∼= L(X)⊗L(Y )
for all setsX, Y . Since the category Top fails to be Cartesian closed and can
therefore not replace Set, the first question then is which subtype of topo-
logical or analytic structure one should add on both sides of the adjunction
without losing its “monoidal well-behavedness”. A good replacement candi-
date for Set is the Cartesian closed category SeqHaus of sequential Haus-
dorff spaces (in which every sequentially closed subset is actually closed).
However, since even its finite (categorical) products generally carry a finer
topology than the product topology, vector space objects in !SeqHaus may
fail to be topological vector spaces. To overcome this and other “technical”
obstacles, Reinhard restricts himself to considering only vector spaces in
which convergence to 0 may be tested with convex neighbourhoods of 0, thus
replacing the functor V above by the forgetful functor SCS→ SeqHaus of
sequentially convex spaces. Reassuringly, SCS is still big enough to contain
all Banach spaces (real or complex), even all locally convex Fréchet spaces.

His general categorical setting and theory is centred around a right-adjoint
functor V : A → X with a (semi-)additive category A where, for simplic-
ity, I assume here that both A and X be finitely complete and cocomplete.
For every Boolean algebra object B in X and every A in A he gives a cat-
egorical construction of the set M(B,A) of A-valued measures on B. As
described in the elementary case of set-based charges, a representation of
M(B,−) : A → Set defines a universal measure χB : B → EB, where
EB plays the role of L(∞)(B) in concrete situations, and the factorization
of an arbitrary measure µ through χB defines the integral with respect to
µ. Multiplicativity of measures, a property that Reinhard defines in this ab-
stract setting, requires a symmetric monoidal structure on A and the well-
behavedness of the left adjoint L of V with re! spect to that structure on A
and the Cartesian structure of X . Under mild hypotheses he then shows that
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the universal measure is automatically multiplicative and that E, considered
as a functor B → R to the category R of commutative monoid objects in
the additive category A, is left adjoint. As a particular consequence then,
E preserves binary coproducts, a fact that may be interpreted as Fubini’s
Theorem, as one may explain for the specific categories considered earlier.

Indeed, for A = SCS,X = SeqHaus, a Boolean algebra object B in
X is now called a sequential Hausdorff Boolean algebra, and a commuta-
tive monoid object R inA gives a commutative sequentially convex algebra.
The fact that the functor E : SHBool → SCA preserves binary coprod-
ucts implies that, for B0, B1 in SHBool, an element in E(B0 ⊗ B1), i.e.,
an integrable functionoid on the coproduct B0 ⊗ B1 in SHBool, may be
considered a “functionoid in two variables”, and its “iterated integral” with
respect to measures µ0, µ1 on B0, B1 respectively, coincides with its integral
with respect to the (real-valued) “product measure” on the coproductB0⊗B1

in SHBool determined by µ0, µ1.
This is only a coarse and partial sketch of the work presented in his Ha-

bilitationsschrift. Reinhard kept working on refining and extending his inte-
gration theory till the end of his life. Beyond his published article [61] there
are preliminary versions of a planned monograph on categorical integration
theory of 2006 (see [57]) and 2010 (see [62]) which await some editorial
work before they will hopefully be made available to a wider audience.

6. Across Mathematics

In the previous sections I have tried to give an impression of Reinhard’s con-
tributions to category theory and its applications to algebra, topology and
analysis. But I haven’t touched upon many of his other contributions (as
listed in the References) that have no apparent connection to the type of
work mentioned so far, for example in number theory (algebraic or analytic)
and topology (general or algebraic), of which I can mention here only very
few examples. They should underline his fascination with “concrete” ob-
jects and problems, his mastery of which was as strong as that of “abstract”
mathematical theories. Take, for example, the intricate proof of his solution
[39] to the problem of “How to make a path injective” that cleverly utilizes
the order of the unit interval I = [0, 1]:
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Theorem 6.1. Let ϕ : I → X be a continuous path from a to b in a
Hausdorff space X, a 6= b. Then there exist an injective continuous path
ψ : I → X from a to b, a closed subset A ⊆ I and a continuous order-
preserving map p : I → I with p(A) = I and ψ · p|A = ϕ.

In [53] he constructs “A non-Jordan measurable regularly open subset
of the unit interval”, and in [33] he exploits the role of rational numbers in R
to give a surprisingly easy example of a “reasonable” connected Hausdorff
space in which every point has a hereditarily disconnected neighbourhood.
In fact, he proves the following theorem.

Theorem 6.2. There is a topology on the set of real numbers finer than the
Euclidean topology, making it a connected Hausdorff space that is the union
of two hereditarily disconnected open subspaces.

His proof takes less than a page and “adds” just a little elementary num-
ber theory to everybody’s knowledge of the topology of the real line. Quite
a different side of number theory is displayed in Reinhard’s informal discus-
sion note [30] that was sparked by the observation 6! · 7! = 10! and the quest
for other integer solutions x, y, z of x! ·y! = z! with 1 ≤ x ≤ y. Hence, after
discarding the “trivial” solutions 1, y, y with y ≥ 1 and x, x! − 1, x! with
x ≥ 3 he asked whether the set S of non-trivial solutions is finite or, in fact,
contains any triple other than 6, 7, 10. His note, which asks for input from
specialist number theorists, does not settle this question, but it does provide
the following constraint on members of S that he obtained with analytic
methods:

Theorem 6.3. Any non-trivial integer solution to x! ·y! = z! with 1 ≤ x ≤ y

must satisfy 2
√

x
2 − x < y. As a consequence, there is no non-trivial integer

solution to that equation with x = y.

7. Farewell

As a former colleague and frequent coauthor I belong to the many privileged
people with whom Reinhard generously shared the depth and breadth of his
mathematical knowledge and ideas. They include his teachers as much as
his students and the accidental acquaintance at a conference, all of whom
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may have experienced his initial shyness that, however, could quickly give
way to a spark in his eyes when confronted with an interesting mathematical
question, usually followed by a rapid flow of pointed remarks that were often
difficult to comprehend at first. Reinhard’s premature death is surely a great
loss to all of us.

Despite his superior talents Reinhard was a fundamentally modest per-
son, with firm beliefs in Christian values. He saw no conflict between sci-
ence and his religion, the principles of which he consistently upheld as a
letter writer to papers and author of non-mathematical articles. His life-long
dedicated engagement in local parish work as well as his contributions to na-
tional organizations addressing social and environmental issues, especially
regarding the impact of individual car traffic, may not have been as visible
to the people around him as they deserved to be. For example, in spite of
having known him since his early university student times, it took me years
to understand that his passion for railways and especially the use of local
trains and public transport were rooted in much more than just a hobby.

Reinhard hardly ever talked much about himself, neither about his ac-
complishments nor his problems. His mathematical coworkers would rarely
hear from him about his engagements outside mathematics, even when these
were professionally related to his mathematical activities, such as his ambi-
tion to learn the Czech language. And only when asked directly would one
hear the proud father speak about his three sons Lukas, Simon and Jonas.
He fought hard to overcome the consequences of a devastating stroke some
seven years before his death, especially as he was looking forward to cele-
brate later in 2014 his sixtieth birthday and the thirtieth anniversary of his
wedding to Andrea Börger. Sadly, he lost that battle.

In what follows I first list, in approximate chronological order and typeset
in italics, Reinhard Börger’s written mathematical contributions, including
unpublished or incomplete works, to the extent I was able to trace them,
followed by an alphabetical list of references to other works cited in this
article.
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