
Résumé. Etant donné une catégorie additive et equationelle, munie d’une

structure fermeé monoı̈dale symetrique ainsi que d’un objet dualisateur po-

tentiel, on trouve des conditions suffisantes pour que la catégorie des objets

topologiques sur cette catégorie admette une bonne notion des souscatégories

pleines qui contiennent des objets fortement et faiblement topologisés. On

montre que chacune des souscatégories est équivalente à la catégorie chu de

la catégorie originale par rapport à l’objet dualisateur.

Abstract. Given an additive equational category with a closed symmetric

monoidal structure and a potential dualizing object, we find sufficient con-

ditions that the category of topological objects over that category admits a

good notion of full subcategories of strong and weakly topologized objects

and show that each is equivalent to the chu category of the original category

with respect to the dualizing object.
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1. Introduction

This paper is a continuation of [5, 6, 7]. The first reference showed that

the full subcategory of the category of (real or complex) topological vec-

tor spaces that consists of the Mackey spaces (defined in 2.5 below)is ∗-

autonomous and equivalent to both the full subcategory of weakly topolo-

gized topological vector spaces and to the full subcategory of topological

vector spaces topologized with the strong, or Mackey topology. This means,

first, that those subcategories can, in principle at least, be studied without

taking the topology into consideration. Second it implies that both of those

categories are ∗-autonomous.

In [6], we showed that the category of topological abelian groups had
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similar properties: that both the weakly and strongly topologized abelian

groups formed a ∗-autonomous category.

Later, André Joyal raised the question whether the results of [5] remained

valid for vector spaces over the field Qp of p-adic rationals. This question

was mentioned, but not answered, in [7]. Thinking about this question, I

realized that there is a useful general theorem that answers this question for

any locally compact field and also for locally compact abelian groups. The

current paper provides a positive answer to Joyal’s question.

All these results follow from a systematic use of the chu construction,

see Section 3 below.

To state the main results, we need a definition. A normed field is spheri-

cally complete if any family of closed balls with the finite intersection prop-

erty has non-empty intersection. It is known that every locally compact field

is spherically complete (so this answers Joyal’s question since Qp, as well as

its finite extensions, is locally compact) and spherically complete is known

to be strictly stronger than metrically complete.

Theorem 1.1. Let K be a spherically complete field and |K| its underlying

discrete field. Then the following five categories are equivalent:

1. chu(K-Vect, |K|) (Section 3)

2. The category Vw(K) of topological K-spaces topologized with the

weak topology for all their continuous linear functionals into K.

3. The category Vs(K) of topological K-spaces topologized with the

strong topology (see Section 2) for all their continuous linear func-

tionals into K.

4. The category Vw(|K|) of topological |K|-spaces topologized with the

weak topology for all their continuous linear functionals into |K|.

5. The category Vs(|K|) of topological |K|-spaces topologized with the

strong topology (see Section 2) for all their continuous linear func-

tionals into |K|.

and all are ∗-autonomous (see beginning of Section 3).

The methods also apply to give the results of [6].
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1.1 Terminology

We assume that all topological objects are Hausdorff. As we will see, each

of the categories contains an object K with special properties. It will be

convenient to call a morphism V //
K a functional on V . In the case of

abelian groups, the word “character” would be more appropriate, but it is

convenient to have one word. In a similar vein, we may refer to a mapping

of topological abelian groups as “linear” to mean additive. We will be deal-

ing with topological objects in categories of topological vector spaces and

abelian groups. If V is such an object, we will denote by |V | the underlying

vector space or group.

If K is a topological field, we will say that a vector space is linearly

discrete if it is a categorical sum of copies of the field.

2. The strong and weak topologies

2.1 Blanket assumptions.

In this section, we deal with a certain category T of topological algebras and

a distinguished objectK, usually called the dualizing object. Maps V //K
in T will be called functionals. A bijective map V // V ′ will be called a

weak isomorphism if it induces a bijection Hom(V ′, K) // Hom(V,K).
We show that for any V , there is a space τV with the finest possible topology

for which τV //V is a weak isomorphism and a space σV with the coarsest

possible topology for which V //σV is a weak isomorphism. We show that

σ and τ are functors for which the weak isomorphisms just mentioned are

natural transformations.

Throughout this section, we make the following assumptions.

1. A is an additive equational closed symmetric monoidal category and

T is the category of topological A-algebras.

2. K is a uniformly complete object of T .

3. there is a neighbourhood U of 0 in K such that

(a) U contains no non-zero subobject;
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(b) whenever ϕ : T // K is such that ϕ−1(U) is open, then ϕ is

continuous.

In connection with point 2, in the application to spherically complete

fields, K will be the ground field and we have already noted that sperically

complete fields are metrically complete. In the application to topological

groups, K will the compact circle group.

Point 3 says that, in some sense, the neighbourhood U is small. The ex-

istence of such a neighbourhood in the circle group is well known, although

we provide an argument.

Lemma 2.1. Suppose there is an embedding T � � //
∏

i∈I Ti and there is a

morphism ϕ : T //K. Then there is a finite subset J ⊆ I and a commutative

diagram

T0

K

ϕ0

��

T

T0
��

T

K

ϕ

��

T
∏

i∈I Ti
� � //

T0
∏

j∈J Tj
� � //

∏
i∈I Ti

∏
j∈J Tj
��

Moreover, we can take T0 closed in
∏

j∈J Tj .

Proof. Since ϕ−1(U) is a neighbourhood of 0 in T , it must be the meet with

T of a neighbourhood of 0 in
∏

i∈I Ti. From the definition of the product

topology, we must have a finite subset J ⊆ I and neighbourhoods Uj of 0 in

Tj such that

ϕ−1(U) ⊇ T ∩ (
∏

j∈J

Uj ×
∏

i∈I−J

Ti)

It follows that

U ⊇ ϕ(T ∩ (
∏

j∈J

0×
∏

i∈I−J

Ti))

But the latter is a subobject of K contained in U and therefore must be 0.

Now let

T0 =
T

T ∩ (
∏

j∈J 0×
∏

i∈I−J Ti)
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topologized as a subspace of
∏

j∈J Tj and ϕ0 be the induced map. It is

immediate that ϕ−1
0 (U) ⊇

∏
j∈J Uj which is a neighbourhood of 0 in the

induced topology and hence ϕ0 is continuous. Finally, since K is complete,

we can replace T0 by its closure in
∏

j∈J Tj .

Theorem 2.2. Suppose S is a full subcategory of T that is closed under finite

products and closed subobjects and that K ∈ S satisfies the assumptions in

2.1. If V is the closure of S under all products and all subobjects and K is

injective in S , then it is also injective in V .

Proof. It is sufficient to show that if V ⊆
∏

i∈I Si with each Si ∈ S , then ev-

ery morphism V //K extends to the product. But the object V0 constructed

in the preceding lemma is a closed suboject of
∏

j∈J Sj so that V0 ∈ S and

the fact that K is injective in S completes the proof.

Recall that a weak isomorphism V // V ′ is a bijective morphism that

induces a bijection on the functionals.

Of course, a bijective morphism induces an injection so the only issue is

whether the induced map is a surjection.

Proposition 2.3. A finite product of weak isomorphisms is a weak isomor-

phism.

Proof. Assume that J is a finite set and for each j ∈ J , Vj // V ′
j is a weak

isomorphism. Then since finite products are the same as finite sums in an

additive category, we have

Hom(
∏

V ′
j , K) ∼= Hom(

∑
V ′
j , K) ∼=

∏
Hom(V ′

j , K)

∼=
∏

Hom(Vj, K) ∼= Hom(
∑

Vj, K) ∼= Hom(
∏

Vj, k)

Theorem 2.4. Assume the conditions of Theorem 2.2 and also suppose that

for every object of S , and therefore of V , there are enough functionals to

separate points. Then for every object V of V , there are weak isomorphisms

τV // V // σV with the property that σV has the coarsest topology that

has the same functionals as V and τV has the finest topology that has same

functionals as V .
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Proof. The argument for σ is standard. Simply retopologize V as a subspace

of KHom(V,K). This is the weakest topology for which all the functionals are

continuous and obviously no weaker topology will admit all the functionals.

Let {Vi // V } range over the isomorphism classes of weak isomor-

phisms to V . We define τV as the pullback in

V V I//

τV

V
��

τV
∏
Vi//

∏
Vi

V I
��

The bottom map is the diagonal and is a topological embedding so that the

top map is also a topological embedding. We must show that every func-

tional on τV is continuous on V . Let ϕ be a functional on τV . From injec-

tivity, it extends to a functional ψ on
∏
Vi. By Lemma 2.1, there is a finite

subset J ⊆ I and a functional ψ0 on
∏

j∈J Vj such that ψ is the composite
∏

i∈I Vi
//
∏

j∈J Vj
ψ0 //K. Thus we have the commutative diagram

τV
∏

i∈I Vi
∏

j∈I Vj

K

V V I V J

// //

ψ0

%%

�� �� ��
// //

99

The dashed arrow exists because of Proposition 2.3, which completes the

proof.

Remark 2.5. We will call the topologies on σV and τV the weak and strong

topologies, respectively. They are the coarsest and finest topology that have

the same underlying A structure and the same functionals as V . The strong

topology is also called the Mackey topology.

Proposition 2.6. Weak isomorphisms are stable under pullback.
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Proof. Suppose that

V ′ V
‘

//

W ′

V ′

f

��

W ′ W//W

V

f ′

��

and the bottom arrow is a weak isomorphism. Clearly, W ′ //W is a bijec-

tion, so we need only show that Hom(W,K) // Hom(W ′, K) is surjective.

I claim that W ′ ⊆ W × V ′ with the induced topology. Let us define W ′′

to be the subobject W ×V V
′ with the induced topology. Since W ′ //W

and W ′ // V are continuous, the topology on W ′ is at least as fine as that

of W ′′. On the other hand, we do have W ′′ //W and W ′′ // V ′ with the

same map to V so that we have W ′′ //W ′, so that the topology on W ′′ is

at least as fine as that of W ′. Then we have a commutative diagram

W × V ′ W × V//

W ′

W × V ′

� _

��

W ′ W//W

W × V

(id,f)

��

Apply Hom(−, K) and use the injectivity of K to get:

Hom(W,K)× Hom(V ′, K) Hom(W,K)× Hom(V,K)oo
∼=

Hom(W ′, K)

Hom(W,K)× Hom(V ′, K)

OOOO
Hom(W ′, K) Hom(W,K)oo Hom(W,K)

Hom(W,K)× Hom(V,K)

OO

The bottom arrow is a bijection and the left hand arrow is a surjection, which

implies that the top arrow is a surjection.

Proposition 2.7. σ and τ are functors on V .

Proof. For σ, this is easy. If f : W // V is a morphism, the induced

σf : σW // σV will be continuous if and only if its composite with every

functional on V is a functional on W , which obviously holds.
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To see that τ is a functor, suppose f : W // V is a morphism. Form the

pullback

τV V//

W ′

τV

f ′

��

W ′ W//W

V

f

��

Since τV // V is a weak isomorphism, the preceding proposition implies

that W ′ //W is a weak isomorphism. But since τW has the finest topol-

ogy with that property, it follows that the topology on τW is finer than

that of W ′ and hence τW // W factors through W ′ and the composite

τW //W ′ // τV .

Proposition 2.8. If V // V ′ is a weak isomorphism, then σV // σV ′ and

τV // τV ′ are isomorphisms.

Proof. For σ, this is obvious. Clearly, τV // V // τV ′ is also a weak

isomorphism so that τV is one of the factors in the computation of τV ′

and then τV ′ // τV is a continuous bijection, while the other direction is

evident.

Corollary 2.9. Both σ and τ are idempotent, while στ ∼= σ and τσ ∼= τ .

Proposition 2.10. For any V, V ′ ∈ V , we have Hom(σV, σV ′) ∼= Hom(τV, τV ′).

Proof. It is easiest to assume that the underlying objects |V | = |σV | = |τV |
and similarly for V ′. Then for any f : V // V ′, we also have that |f | =
|σf | = |τf |. Thus the two composition of the two maps below

Hom(σV, σV ′) // Hom(τσV, τσV ′) = Hom(τV, τV ′)

and

Hom(τV, τV ′) // Hom(στV, στV ′) ∼= Hom(σV, σV ′)

give the identity in each direction.

Let Vw ⊆ V and Vs ⊆ V denote the full subcategories of weak and

strong objects, respectively. Then as an immediate corollary to the preced-

ing, we have:
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Theorem 2.11. τ : Vw
// Vs and σ : Vs

// Vw determine inverse equiva-

lences of categories.

3. Chu and chu

A ∗-autonomous is a symmetric monoidal closed category equipped with

a “dualizing object” ⊥. We will denote the monoidal structure by ⊗ with

tensor unit ⊤ and the closed structure by −◦. The basic assumption is that

for every object A the canonical map A // (A−◦⊥)−◦⊥ is an isomor-

phism. We let A∗ = A−◦⊥. Many things follow from this, e.g. A−◦B ∼=
B∗ −◦A∗, A ⊗ B ∼= (A−◦B∗)∗, and A−◦B ∼= (A ⊗ B∗)∗. See [2] for all

details.

Now we add to the assumptions on A that it be a symmetric monoidal

closed category in which the underlying set of A−◦B is Hom(A,B). We

denote by E and M the classes of surjections and injections, respectively.

We briefly review the categories Chu(A , K) and chu(A , K). See [4] for

details. The first has a objects pairs (A,X) of objects of A equipped with a

“pairing” 〈−,−〉 : A ⊗ X // K. A morphism (f, g) : (A,X) // (B, Y )
consists of a map f : A // B and a map g : Y //X such that

A⊗X K
〈−,−〉

//

A⊗ Y

A⊗X

A⊗g

��

A⊗ Y B ⊗ Y
f⊗Y // B ⊗ Y

K

〈−,−〉

��

commutes. This says that 〈fa, y〉 = 〈a, gy〉 for all a ∈ A and y ∈ Y .

This can be enriched over A by internalizing this definition as follows. Note

first that the map A ⊗ X // K induces, by exponential transpose, a map

X // A−◦K. This gives a map Y −◦X // Y −◦ (A−◦K) ∼= A ⊗
Y −◦K. There is a similarly defined arrow A−◦B // A⊗ Y −◦K. De-
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fine [(A,X), (B, Y )] so that

Y −◦X A⊗ Y −◦K//

[(A,X), (B, Y )]

Y −◦X
��

[(A,X), (B, Y )] A−◦B// A−◦B

A⊗ Y −◦K
��

is a pullback. Then define

(A,X)−◦ (B, Y ) = ([(A,X), (B, Y )], A⊗ Y )

with 〈(f, g), a⊗ y〉 = 〈fa, y〉 = 〈a, gy〉 and

(A,X)⊗ (B, Y ) = (A⊗ B, [(A,X), (Y,B)])

with pairing 〈a ⊗ b, (f, g)〉 = 〈b, fa〉 = 〈a, gb〉. The duality is given by

(A,X)∗ = (X,A) ∼= (A,X)−◦ (K,⊤) where ⊤ is the tensor unit of A .

Incidentally, the tensor unit of Chu(A , K) is (⊤, K).
The category Chu(A , K) is complete (and, of course, cocomplete). The

limit of a diagram is calculated using the limit of the first coordinate and the

colimit of the second. The full subcategory chu(A , K) ⊆ Chu(A , K) con-

sists of those objects (A,X) for which the two transposes of A ⊗X //K
are injective homomorphisms. When A // //X −◦K, the pair is called sep-

arated and when X // //A−◦K, it is called extensional. In the general case,

one must choose a factorization system (E ,M ) and assume that the arrows

in E are epic and that M is stable under −◦, but here these conditions are

clear. Let us denote by Chus(A , K) the full subcategory of separated pairs

and by Chue(A , K) the full subcategory of extensional pairs.

The inclusion Chus(A , K) � � // Chu(A , K) has a left adjoint S and

the inclusion Chue(A , K) � � // Chu(A , K) has a right adjoint E. More-

over, S takes an extensional pair into an extensional one and E does the

dual. In addition, when (A,X) and (B, Y ) are separated and extensional,

(A,X)−◦ (B, Y ) is separated but not necessarily extensional and, dually,

(A,X)⊗ (B, Y ) is extensional, but not necessarily separated. Thus we must

apply the reflector to the internal hom and the coreflector to the tensor, but

everything works out and chu(A , K) is also ∗-autonomous. See [4] for de-

tails.
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In the chu category it is evident that for any (f, g) : (A,X) // (B, Y ),
f and g determine each other uniquely. So a map could just as well be

described as an f : A // B such that x.ỹ ∈ X for every y ∈ Y . Here

ỹ : B // K is the evaluation at y ∈ Y of the exponential transpose

Y //B−◦K.

Although the situation in the category of abelian groups is as described,

in the case of vector spaces over a field, the hom and tensor of two separated

extensional pairs turns out to be separated and extensional already ([3]).

4. The main theorem

Theorem 4.1. Assume the hypotheses of Theorem 2.4 and also assume

that the canonical map ⊤ // K −◦K is an isomorphism. Then the cate-

gories of weak spaces and strong spaces are equivalent to each other and to

chu(A , K) and are thus ∗-autonomous.

Proof. The first claim is just Theorem 2.11. Now define F : V // chu
by F (V ) = (|V |,Hom(V,K)) with evaluation as pairing. We first de-

fine the right adjoint R of F . Let R(A,X) be the object A, topologized

as a subobject of KX . Since it is already inside a power of K, it has

the weak topology. Let f : |V | // A be a homomorphism such that

for all x ∈ X , x̃.f ∈ Hom(V,K). This just means that the composite

V // R(A,X) //KX πx //K is continuous for all x ∈ X , exactly what

is required for the map into R(A,X) to be continuous. The uniqueness of f
is clear and this establishes the right adjunction.

We next claim that FR ∼= Id. That is equivalent to showing that

Hom(R(A,X), K) = X . Suppose ϕ : R(A,X) // K is a functional.

By injectivity, it extends to a ψ : KX //K. It follows from 2.1, there is a

finite set of elements x1, . . . , xn ∈ X and morphisms θ1, . . . , θn such that ψ

factors as KX // Kn (θ1,...,θn) // K. Applied to R(A,X), this means that

ϕ(a) = 〈θ1x1, a〉 + · · · + 〈θnxn, a〉. But the θi ∈ I and the tensor products

are over I so that the pairing is a homomorphism A⊗IX //K. This means

that ϕ(a) = 〈θ1x1 + · · · θnxn, a〉 and θnx1 + · · ·+ θnxn ∈ X .

Finally, we claim thatRF = S, the left adjoint of the inclusion Vw ⊆ V .

If V ∈ V , then RFV = R(|V |,Hom(V,K)) which is just V with the weak
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topology it inherits from KHom(V,K), exactly the definition of SV . It follows

that F |Vw is an equivalence.

Since Vw and Vs are equivalent to a ∗-autonomous category, they are

∗-autonomous.

The fact that the categories of weak and Mackey spaces are equivalent

was shown, for the case of B (Banach) spaces in [8, Theorem 15, p. 422].

Presumably, the general case has also been long known, but I am not aware

of a reference.

5. Examples.

Example 1. Vector spaces over a spherically complete field

Let K be a spherically complete field. Let U = {× ∈ K | ||x|| < 1}. As a
ranges over the non-zero elements of K, the sets of the form aU are a neigh-

bourhood base at 0. If V is a topologicalK-vector space and ϕ : |V | //K is

a linear mapping such that ϕ−1(U) is open in V , then ϕ−1(aU) = aϕ−1(U)
which is open by continuity of division and thus ϕ is actually continuous

on V . That U contains no K-subspace of K and that K // K −◦K is an

isomorphism are obvious.

This example includes all locally compact fields, see [15, Corollary

20.3(i)].

We take for S the category of normed linear K-spaces, except in the

case that K is discrete, we require also that the spaces have the discrete

norm. We know that K is injective in the discrete case. The injectivity of

K in the real or complex case is just the Hahn-Banach theorem, which has

been generalized to ultrametric fields according to the theorem following the

definition:

An ultrametric is a metric for which the ultratriangle inequality, ||x +
y|| ≤ ||x|| ∨ ||y||, holds. This is obviously true for p-adic and t-adic norms.

Spherically complete means that the meet of any descending sequence of

closed balls is non-empty. This is known to be satisfied by locally compact

ultrametric spaces.

Theorem 5.1 (Ingelton). Let K be a spherically complete ultrametric field.

E a K-normed space and v a subspace of E. For every bounded linear
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functional ϕ defined on V , there exists a bounded linear functional ψ defined

on E whose restriction to V is ϕ and such that ||ϕ|| = ||ψ||.

The proof is found in [14]

Notice that if K is non-discrete, then what we have established is that

both Vs and Vw are equivalent to chu(Vect-|K|, |K|). But exactly the same

considerations show that the same is true if we ignore the topology onK and

use the discrete norm. The category S will now be the category of discrete

finite-dimensional |K|-vector spaces. Its product and subobject closure will

consist of spaces that are mostly not discrete, but there are still full subcat-

egories of weakly and strongly topologized spaces within this category and

they are also equivalent to chu(Vect-|K|, |K|).
Thus, these categories really do not depend on the topologies. Another

interpretation is that this demonstrates that, for these spaces, the space of

functionals replaces the topology, which was arguably Mackey’s original

intention.

Example 2. Locally compact abelian groups.

For the abelian groups, we take for V the category of those abelian that

are subgroups (with the induced topology) of products of locally compact

abelian groups. The object K in this case is the circle group R/Z. A sim-

ple representation of this group is as the closed interval [−1/2, 1/2] with the

endpoints identified and addition mod 1. The group is compact. Let U be

the open interval (−1/3, 1/3). It is easy to see that any non-zero point in

that interval, added to itself sufficiently often, eventually escapes that neigh-

borhood so that U contains no non-zero subgroup. It is well-known that the

endomorphism group of the circle is Z.

If f : G // K is a homomorphism such that T = f−1(U) is open in

G, let T = T1, T2, . . . , Tn, . . . be a sequence of open sets in G such that

Ti+1 + Ti+1 ⊆ Ti for all i. Let Ui = (−2−i/3, 2−i/3) ⊆ K. Then the

{Ui} form a neighborhood base in K and one readily sees that f−1(Ui) ⊆ Ti
which implies that f is continuous.

We take for S the category of locally compact abelian groups. The fact

that K is an injective follows directly from the Pontrjagin duality theorem.

A result [9, Theorem 1.1] says that every locally compact group is strongly

topologized. Thus both categories of weakly topologized and strongly topol-
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ogized groups that are subobjects of products of locally compact abelian

groups are equivalent to chu(Ab, |K|) and thus are *-autonomous.

We can ask if the same trick of replacing K = R/Z by |K|, as in the

first example, can work. It doesn’t appear so. While Hom(K,K) = Z, the

endomorphism ring of |K| has cardinality 2c and is non-commutative, so we

cannot draw no useful inference about maps from |K|n // |K|, even for

finite n.

Example 3. Modules over a self injective cogenerator.

If we examine the considerations that are used in vector spaces over a field, it

is clear that what is used is that a field is both an injective module over itself

and a cogenerator in the category of vector spaces. Then if K is a such a

commutative ring, we can let T be the category of topologicalK-modules, S

be the full subcategory of submodules of finite powers ofK with the discrete

topology and V the limit closure of S . Then chu(ModK , K) is equivalent to

each of the categories Vs and Vw of topological K-modules that are strongly

and weakly topologized, respectively, with respect to their continuous linear

functionals into K.

We now show that there is a class of commutative rings with that prop-

erty. Let k be a field and K = k[x]/(xn). When n = 2, this is called the ring

of dual numbers over k.

Proposition 5.2. K is self injective.

We base this proof on the following well-known fact:

Lemma 5.3. Let k be a commutative ring, K is a k-algebra, Q an injective

k-module, and P a flat right K-module then Homk(K,Q) is an injective

K-module.

The K-module structure on the Hom set is given by (rf)(a) = f(ar) for

r ∈ K and a ∈ P .

Proof. Suppose A // // B is an injective homomorphism of K-modules.
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Then we have

Homk(P ⊗R B,Q) Homk(P ⊗R A,Q)// //

HomR(B,Homk(P,Q))

Homk(P ⊗R B,Q)

∼=

��

HomR(B,Homk(P,Q)) HomR(A,Homk(P,Q))// HomR(A,Homk(P,Q))

Homk(P ⊗R A,Q)

∼=

��

and the flatness of P , combined with the injectivity of Q force the bottom

arrow to be a surjection.

of 5.2. From the lemma it follows that Homk(K, k) is a K-injective. We

claim that, as K-modules, Homk(K, k) ∼= K. To see this, we map

f : K // Homk(K, k). Since these are vector spaces over k, we be-

gin with a k-linear map and show it is K-linear. A k-basis for K is

given by 1, x, . . . , xn−1. We define f(xi) : K // k for 0 ≤≤ n − 1 by

f(xi)(xj) = δi+j,n (the Kronecker δ). For this to be K-linear, we must show

that f(xxi) = xf(xi). But

f(xxi)(xj) = f(xi+1(xj)) = δi+1+j,n = f(xi)(xj+1) = (xf(xi))(xj)

Clearly, the f(xi), for 0 ≤ i ≤ n are linearly independent and so f is an

isomorphism.

Proposition 5.4. K is a cogenerator in the category of K-modules.

Proof. Using the injectivity, it suffices to show that every cyclic mod-

ule can be embedded into K. Suppose M is a cyclic module with gen-

erator m. Let i be the first power for which xim = 0. I claim that

m, xm, . . . , xi−1m are linearly independent over k. If not, suppose that

λ0m + λ1xm + · · ·λi−1x
i−1m = 0 and not all coefficients 0. Let λj be the

first non-zero coefficient, so that λjx
j + · · · + λi−1x

i−1m = 0. Multiply

this by xi−j−1 and use that xlm = 0 for l ≥ i to get λjx
i−1m = 0. But

by assumption, xi−1m 6= 0 so that this would imply that λj = 0, con-

trary to hypothesis. Thus there is a k-linear map f : M // K given by

f(xjm) = xn−i+j . Since the xj are linearly independent, this is k-linear and

then it is clearly K-linear.
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6. Interpretation of the dual of an internal hom

These remarks are especially relevant to the vector spaces, although they are

appropriate to the other examples. The fact that (U −◦V )∗ ∼= U −◦V ∗ can

be interpreted that the dual of U −◦V is a subspace of V −◦U , namely those

linear transformations of finite rank. An element of the form u ⊗ v∗ acts

as a linear transformation by the formula (u ⊗ v∗)(v) = 〈v, v∗〉u. This is a

transformation of row rank 1. Sums of these elements is similarly an element

of finite rank.

This observation generalizes the fact that in the category of finite dimen-

sional vector spaces, we have that (U −◦V )∗ ∼= V −◦U (such a category is

called a compact ∗-autonomous category). In fact, Halmos avoids the com-

plications of the definition of tensor products in that case by defining U ⊗ V
as the dual of the space of bilinear forms on U ⊕ V , which is quite clearly

equivalent to the dual of U −◦V ∗ ∼= V −◦U∗ ([10, Page 40]). (Incidentally,

it might be somewhat pedantic to point out that Halmos’s definition makes

no sense since U ⊕ V is a vector space in its own right and a bilinear form

on a vector space is absurd. It would have been better to use the equivalent

form above or to define Bilin(U, V ).)
Since linear transformations of finite rank are probably not of much in-

terest in the theory of topological vector spaces, this may explain why the

internal hom was not pursued.
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