
Résumé. Suite aux deux premiers articles de cette série, on étudie ici les

foncteurs adjoints entre catégories multiples de dimension infinie. Le cadre

général est constitué par les catégories multiples chirales - une forme faible

partiellement laxe ayant des interchangeurs dirigés entre les compositions

faibles.

Abstract. Continuing our first two papers in this series, we study adjoints for

infinite-dimensional multiple categories. The general setting is chiral multi-

ple categories - a weak, partially lax form with directed interchanges between

the weak composition laws.

Keywords. multiple category, double category, cubical set, adjoint functor.

Mathematics Subject Classification (2010). 18D05, 55U10, 18A40.

0. Introduction

This is the third paper in a series on weak and lax multiple categories, of

finite or infinite dimension - an extension of weak double and weak cubical

categories.

Our main framework, a chiral multiple category, was introduced in the

first article [GP8], cited below as Part I; it is a partially lax multiple cate-

gory with a strict composition gf = f +0 g in direction 0 (the transversal

direction), weak compositions x+i y in all positive (or geometric) directions

i ∈ N \{0} and a directed ij-interchanger for the i- and j-compositions (for

0 < i < j)

χij(x, y, z, u) : (x+i y) +j (z +i u)→ (x+j z) +i (y +j u). (1)

Part II [GP9] studies multiple limits in this setting. We now investigate

multiple adjoints, extending the study of double adjunctions in [GP2] and

cubical adjunctions in [G3].
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Section 1 is an informal introduction to multiple adjunctions. After a

synopsis of weak and chiral multiple categories, we describe a natural co-

lax/lax adjunction F ⊣ G between the weak double categories of spans and

cospans (already studied in [GP2]) and its extension to the corresponding

infinite dimensional, weak multiple categories (of cubical type); the functor

F is constructed with pushouts and is colax, while G is constructed with

pullbacks and is lax. Then we derive from this adjunction other instances,

between chiral multiple categories that are not of cubical type. Other exam-

ples are given in 1.7.

In Section 2 we introduce the strict double category Cmc of chiral mul-

tiple categories (or cm-categories), lax and colax cm-functors and suitable

double cells. Comma cm-categories are also considered. Both topics extend

notions of weak double categories developed in [GP2].

Section 3 reviews the notions of companions and adjoints in a double

category, from [GP2]. Then Sections 4 and 5 introduce and study multiple

colax/lax adjunctions, as adjoint arrows in the double category Cmc.
Finally, Section 6 deals with the preservation of limits by right adjoints,

for cm-categories.

Literature. Strict double and multiple categories were introduced and stud-

ied by C. Ehresmann and A.C. Ehresmann [Eh, BE, EE1, EE2, EE3]. Strict

cubical categories can be seen as a particular case of multiple categories

(as shown in Part I); their links with strict ω-categories are made clear in

[BM, ABS]. Weak double categories (or pseudo double categories) were in-

troduced and studied in our series [GP1 - GP4]; adjunctions and monads in

this setting are also studied in [FGK1, FGK2, Ni]; other aspects are devel-

oped in [DPR, Fi, Ga, P2, P3]. For weak cubical categories see [G1 - G3]

and [GP5]. The three-dimensional case of lax triple categories covers and

combines diverse structures like duoidal categories, Gray categories, Verity

double bicategories and monoidal double categories; see [GP6, GP7]. Fur-

ther information on literature for higher dimensional category theory can be

found in the Introduction of Part I.

Notation. We follow the notation of Parts I and II [GP8, GP9]; the reference

I.2.3 or II.2.3 points to Subsection 2.3 of Part I or Part II. The symbol ⊂
denotes weak inclusion. Categories and 2-categories are generally denoted

as A,B...; weak double categories as A,B...; weak or lax multiple categories
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as A,B... More specific points of notation are recalled below, in 1.1.

Acknowledgments. The authors are grateful to the anonymous referee for a

very careful reading of the paper and detailed comments.

1. Some basic examples of adjunctions

We begin by recalling examples of adjunctions for weak double categories,

studied in [GP2], and their extension to (infinite-dimensional) weak cubical

categories, studied in [G3]. Then we derive from the latter some instances of

adjunctions between chiral multiple categories that are not of a cubical type.

This section is an informal introduction to such adjunctions, precise def-

inition will be given later.

1.1 Notation

The definitions of weak and chiral multiple categories can be found in Part

I, or - briefly reviewed - in Part II, Section 1. Here we only give a sketch of

them, while recalling the notation we are using.

The two-valued index α (or β) varies in the set 2 = {0, 1}, also written

as {−,+}.
A multi-index i is a finite subset of N, possibly empty. Writing i ⊂ N

it is understood that i is finite; writing i = {i1, ..., in} it is understood that i

has n distinct elements, written in the natural order i1 < i2 < ... < in; the

integer n > 0 is called the dimension of i. We write:

ij = ji = i ∪ {j} (for j ∈ N \ i),

i|j = i \{j} (for j ∈ i).
(2)

For a weak multiple category A, the set of i-cells Ai is written as A∗, Ai,
Aij when i is ∅, {i}, {i, j} respectively. Faces and degeneracies, satisfying

the multiple relations, are denoted as

∂αj : Xi → Xi|j, ej : Xi|j → Xi. (3)

The transversal direction i = 0 is set apart from the positive, or geo-

metric, directions. For a positive multi-index i = {i1, ..., in} ⊂ N \{0} the

augmented multi-index 0i = {0, i1, ..., in} has dimension n + 1, but both i
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and 0i have degree n. An i-cell x ∈ Ai of A is also called an i-cube, while a

0i-cell f ∈ A0i is viewed as an i-map f : x→0 y (also written as f : x→ y),

where x = ∂−0 f and y = ∂+0 f . Composition in direction 0 is categorical

(and generally realised by ordinary composition of mappings); it is written

as gf = f+0g, with identities 1x = id(x) = e0(x). The transversal category

tvi(A) consists of the i-cubes and i-maps of A, with transversal composition

and identities.

On the other hand, composition of i-cubes and i-maps in a positive di-

rection i ∈ i (often realised by pullbacks, pushouts, tensor products, etc.) is

written in additive notation

x+i y (∂+i x = ∂−i y),

f +i g : x+i y → x′ +i y
′ (f : x→ x′, g : y → y′, ∂+i f = ∂−i g).

(4)

These operations are categorical and interchangeable up to transversally-

invertible comparisons (for 0 < i < j, see I.3.2)

λix : (ei∂
−
i x) +i x→0 x (left i-unitor),

ρix : x+i (ei∂
+
i x)→0 x (right i-unitor),

κi(x, y, z) : x+i (y +i z)→0 (x+i y) +i z (i-associator),

χij(x, y, z, u) : (x+i y) +j (z +i u)→0 (x+j z) +i (y +j u)

(ij-interchanger).

(5)

The comparisons are natural with respect to transversal maps; λi, ρi and

κi are special in direction i (i.e. their i-faces are transversal identities), while

χij is special in both directions i, j; all of them commute with ∂αk for k 6= i
(or k 6= i, j in the last case). Finally the comparisons must satisfy various

conditions of coherence, listed in I.3.3 and I.3.4.

More generally for a chiral multiple category A the ij-interchangers χij

are not assumed to be invertible (see I.3.7).

1.2 Cubical spans and cospans

Weak multiple categories generalise weak cubical categories and weak sym-

metric cubical categories; the latter were introduced in [G1] for studying

higher cobordism, and give our main examples of weak multiple categories
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of infinite dimension. We begin by recalling two instances in an informal,

incomplete way.

The weak symmetric cubical category Span(C) of cubical spans (or

ωSpan(C)) was constructed in [G1] over a category C with (a fixed choice

of) pullbacks. An n-cube is a functor x : ∨n → C, where ∨ is the formal-

span category

0 uoo // 1 ∨

(0, 0) (u, 0)oo // (1, 0) •
//

2
��

1

(0, u)

OO

��

(u, u)oo //

OO

��

(1, u)

OO

��
(0, 1) (u, 1)oo // (1, 1) ∨

2.

(6)

(Identities and composites are understood.) An n-map, or transversal

map of n-cubes, is a natural transformation f : x → y : ∨n → C of such

functors; these maps form the category Spann(C) = Cat(∨n,C), with

composition written as gf and identities 1x = id(x). There are obvious

geometric faces and degeneracies (satisfying the cubical relations)

∂αi : Spann(C)→ Spann−1(C),

ei : Spann−1(C)→ Spann(C) (i = 1, ..., n; α = ±).
(7)

Moreover there are geometric composition laws: the i-concatenation

x +i y is defined for i-consecutive n-cubes (i = 1, ..., n; ∂+i x = ∂−i y),

and constructed with pullbacks; it is categorical up to invertible n-maps (un-

itors and associators); similarly we have the i-concatenation f +i g of i-
consecutive n-maps. All pairs of composition laws have a strict interchange.

Viewing Span(C) as a weak multiple category (of cubical type), an n-

cube x : ∨n → C is viewed as an i-cube, for every positive multi-index

i = {i1, ..., in} of dimension n > 0; an n-map is viewed as an i-map.

The 2-dimensional and 3-dimensional truncations of Span(C) are writ-

ten as:

Span(C) = 2Span(C), 3Span(C). (8)

The weak double category Span(C) was studied in our series [GP1] -

[GP4]: its horizontal and vertical arrows are ordinary arrows and spans of C,
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respectively, while a double cell is a morphism of spans. The 3-dimensional

truncation 3Span(C) consists of i-cells for i ⊂ 3 = {0, 1, 2} (or i-cubes and

i-maps for i < 3, in the cubical framework).

Similarly one can find in [G1] the construction of the weak symmet-

ric cubical category Cosp(C) of cubical cospans over a category C with (a

fixed choice of) pushouts. An n-cube is now a functor x : ∧n → C, where

∧ = ∨
op is the formal-cospan category 0 → u ← 1; again, a transversal

map of n-cubes is a natural transformation of such functors. Cosp(C) is

transversally dual to Span(Cop).
The 2-dimensional and 3-dimensional truncations are written as:

Cosp(C) = 2Cosp(C), 3Cosp(C). (9)

1.3 The chiral case

Chiral multiple categories of non-cubical type are constructed in [GP7] and

Part I, Section 4.

For instance, if the category C has pullbacks and pushouts, the weak

double category Span(C), of arrows and spans of C, can be ‘amalgamated’

with the weak double category Cosp(C), of arrows and cospans of C, to

form a 3-dimensional structure: the chiral triple category SC(C) whose ar-

rows in direction 0, 1 and 2 are the arrows, spans and cospans of C, in this

order (as required by the 12-interchanger).

The highest cubes, of type {1, 2}, are functors x : ∨×∧→ C, the highest

(3-dimensional) cells are the natural transformations of the latter

(0, 0)

��

(u, 0)oo //

��

(1, 0)

��

•
//

2
��

1

(0, u) (u, u)oo // (1, u)

(0, 1)

OO

(u, 1)oo //

OO

(1, 1)

OO

∨×∧.

(10)

Here 0-composition works by ordinary composition in C, 1-composition

by composing spans (with pullbacks) and 2-composition by composing co-

spans (with pushouts).

Higher dimensional examples, like SpCq(C), SpC∞(C) and S−∞C∞(C)
(and the corresponding left-chiral cases) can be found in I.4.4; note that
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S−∞C∞(C) is indexed by all integers, with spans in each negative direction,

ordinary arrows in direction 0 and cospans in positive directions.

1.4 A double adjunction

Let C be a category with distinguished pullbacks and pushouts. For the sake

of simplicity we assume that the distinguished pullback (resp. pushout) of an

identity along any map is an identity.

The weak double categories Span(C) and Cosp(C) of spans and cospans

of C are linked by an obvious colax/lax adjunction

F : Span(C) −→←− Cosp(C) :G,

η : 1 99K GF, ε : FG 99K 1,
(11)

that we describe here in an informal way. (Writing η : 1 99K GF and

ε : FG 99K 1 is an abuse of notation, since the comparisons of F and G
have conflicting directions and cannot be composed. The precise definition

of a colax/lax adjunction of weak double categories can be found in [GP2];

but the reader will find here its multiple extension, in Section 4, and can

easily recover the truncated notion.)

At the basic level of tv∗(Span(C)) = tv∗(Cosp(C)) = C everything is

an identity. At the level 1 (of 1-cubes and 1-maps) F operates by pushout

and G by pullback; the special transversal 1-maps ηx : x → GFx and

εy : FGy → y are obvious (for a span x = (x′, x′′) and a cospan y = (y′, y′′)
with 1-faces A and B):

A

&&

A

&&

y′

++X ηx //

x′
33

x′′ ++

•

88

&&

• •

88

&&

•
εy // Y

B

88

B

88

y′′

33 (12)

The triangle identities are plainly satisfied:

ε(Fx).F (ηx) = id(Fx), G(εy).η(Gy) = id(Gy).

Finally it is easy to check that F is, in a natural way, a colax double

functor (while G is lax). The comparison cell

F (x, y) : F (x+1 y)→ Fx+1 Fy
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for concatenation is given by the natural map from the pushout of x +1 y =
(x′z′, y′′z′′) to the cospan Fx+1 Fy (with vertex Z ′ in the diagram below)

A

&&X
x′′

''

x′ 77

•

&&
Z

z′ 77

z′′ ''

B

88

&&

Z ′

Y
y′

77

y′′ ''

•

88

C

88

(13)

Since we agreed to follow the unitarity constraint for the choice of pull-

backs and pushouts in C, the adjunction is unitary, in the sense that this

property holds for the weak double categories Span(C), Cosp(C) and the

colax/lax double functors F,G. It is also interesting to note that the restricted

adjunction at the ⋆-level

F∗ : C −→←− C :G∗ η∗ : 1→ G∗F∗, ε∗ : F∗G∗ → 1, (14)

is composed of identity functors and identity transformations.

We also remark that the natural transformations Fη, εF , ηG, Gε at level

1 are invertible (which means that the ordinary adjunction at level 1 is idem-

potent: see [AT, LS]).

1.5 A multiple adjunction

Following [G3], the unitary colax double functor F : Span(C)→ Cosp(C)
can be extended to a unitary colax multiple functor of cubical type

F : Span(C)→ Cosp(C).

For instance, let us take a 2-dimensional span x ∈ Span
i
(C) indexed by

i = {i, j}, as in the left diagram below

x00 xu0oo // x10 x00 //

��

F (∂−j x)(u)

��

x10oo

��
x0u

OO

��

xuuoo //

OO

��

x1u

OO

��

F (∂−i x)(u)
// colim(x) F (∂+i x)(u)

oo

x01 xu1oo // x11 x01 //

OO

F (∂+j x)(u)

OO

x11

OO

oo

(15)
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The 2-dimensional cospan F (x) = Fi(x) is constructed at the right hand,

with the pushouts F (∂αi x), F (∂
α
j x) of the four faces and, in the central ver-

tex, the colimit of the whole diagram x : ∨2 → C. (The latter can be con-

structed in C as a pushout of pushouts; a general characterisation of the dual

topic, limits ‘generated’ by pullbacks, can be found in [P1].)

One proceeds in a similar way, defining Fi for a positive multi-index

i = {i1, ..., in} of degree n, after all instances of degree n− 1

∂αi (Fi(x)) = Fi|i(∂
α
i x) for α = ± and i ∈ i,

Fi(x)(u) = colim(x), where u = (u, ..., u) ∈ ∨
n.

(16)

The definition of F on transversal i-maps is obvious, as well as the

comparison cells for the i-directed concatenation F i(x, y) : F (x +i y) →
Fx+i Fy.

The unitary lax double functor G : Cosp(C) → Span(C) is similarly

extended, using distinguished limits instead of colimits, and gives a unitary

lax multiple functor G : Cosp(C)→ Span(C) of cubical type.

One extends the unit η : 1 99K GF by a similar inductive procedure:

∂αi (ηi(x)) = ηi|i(∂
α
i x) (α = ±, i ∈ i),

(ηix)(u) : x(u)→ (GiFix)(u) = lim(Fix),
(17)

where the map (ηix)(u) is given by the universal property of lim(Fix) as

the limit of the cubical cospan Fix : ∧
n → C.

Analogously for the counit ε : FG 99K 1. The triangular identities hold.

1.6 Chiral examples

The colax/lax adjunction of weak triple categories of cubical type

F : 3Span(C) −→←− 3Cosp(C) :G, (18)

can be factorised through the chiral triple category SC(C) of spans and co-

spans of C, obtaining two colax/lax adjunctions of chiral triple categories

(no longer of cubical type)

F ′ : 3Span(C) −→←− SC(C) :G′,

F ′′ : SC(C) −→←− 3Cosp(C) :G′′.
(19)
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Here the functor F ′ : 3Span(C)→ SC(C) acts on a 12-cube x

- by pushout on the three 2-directed spans of x,

- as the identity on the two 1-directed boundary spans ∂α2 (x),
- by induced morphisms on the middle 1-directed span.

On the other hand the functor G′ : SC(C)→ 3Span(C) acts by pullback

on the three (2-directed) cospans of x, as the identity on the (1-directed)

boundary spans ∂α2 (x) and by induced morphisms on the middle span. Sim-

ilarly for F ′′ and G′′.

One can also factorise the adjunction (18) through the left chiral triple

category CS(C) of cospans and spans, obtaining two colax/lax adjunctions

of left chiral triple categories.

Similarly, the multiple adjunction constructed in 1.5 can be factorised

through any right chiral multiple category SpC∞(C), or through any left

chiral multiple category CpS∞(C).
However, in infinite dimension, one may prefer to consider a more sym-

metric situation, starting from a colax/lax adjunction of weak multiple cate-

gories indexed by the ordered set Z of integers (pointed at 0)

F : ZSpan(C) −→←− ZCosp :G. (20)

This can be factorised through the chiral multiple category S−∞C∞(C),
obtaining two colax/lax adjunctions of ‘unbounded’ chiral multiple cate-

gories

F ′ : ZSpan(C) −→←− S−∞C∞(C) :G′,

F ′′ : S−∞C∞(C) −→←− ZCosp(C) :G′′.
(21)

1.7 Other examples

Now we start from an ordinary adjunction F ⊣ G

F : X −→←− A :G, η : 1→ GF, ε : FG→ 1, (22)

between categories with (a choice of) pullbacks. This can be extended in a

natural way to a unitary colax/pseudo adjunction between the weak multiple

categories of higher spans (of cubical type)

Span(F ) : Span(X) −→←− Span(A) : Span(G). (23)
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In fact there is an obvious 2-functor

Span : Catpb → CxCmc, (24)

defined on the full sub-2-category of Cat containing all categories with (a

choice of) pullbacks, with values in the 2-category of chiral multiple cate-

gories, colax functors and their transversal transformations (see 2.1).

It sends a category C with pullbacks to the chiral multiple category

Span(C) (actually a weak multiple category of symmetric cubical type).

For a functor F : X→ A (between categories with pullbacks), Span(F ),
also written as F for brevity, simply acts by computing F over the dia-

grams of X that form i-cubes and i-maps; formally, over an i-map f : x →
y : ∨n → X, F (f) : F (x)→ F (y) is the composite

F.f : F.x→ F.y : ∨n → A.

This extension is, in a natural way, a unitary colax functor, since iden-

tities of X go to identities of A and a composition x +i y of two spans

x, y : ∨ → X (in any direction i > 0) gives rise to a diagram in X and a

diagram in A

X1 FX1

X

x′ 99

x′′

$$

FX

Fx′ 77

Fx′′

''
P

z′ ::

z′′ $$

X2 FP a //

Fz′
44

Fz′′ **

Q

99

%%

FX2

Y
y′

::

y′′ %%

FY
Fy′

77

Fy′′ ''
X3 FX3

(25)

where the comparison F i(x, y) : F (x +i y) → F (x) +i F (y) is an i-special

transversal map given by the A-morphism a : FP → Q determined by the

universal property of the pullback Q. Similarly we define F i(x, y) for every

i-composition of i-cubes. Note that Span(F ) is pseudo if (and only if) the

functor F : X→ A preserves pullbacks.

Finally, a natural transformation ϕ : F → F ′ : X → A yields a trans-

versal transformation

Span(ϕ) : Span(F )→ Span(F ′) : Span(X)→ Span(A), (26)
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that again will often be written as ϕ. On an i-cube x : ∨n → X, ϕx :
F (x)→0 F

′(x) is the composite of the functor x : ∨n → X with the natural

transformation ϕ : F → F ′ : X → A. Concretely, the transversal i-map

ϕx : F (x)→0 F
′(x) has components ϕ(x(t)), for every vertex t of ∨n.

Now, letting the 2-functor Span : Catpb → CxCmc act on the adjunc-

tion (22), we get an adjunction of weak multiple categories with the proper-

ties stated above: Span(F ) is colax, Span(G) is pseudo and both are unitary.

On the other hand, if X and A have pushouts, the adjunction (22) yields

a pseudo/lax adjunction of weak multiple categories

F : Cosp(X) −→←− Cosp(A) :G. (27)

Finally, if X and A have pullbacks and pushouts, we can extend (22) to

a colax/lax adjunction of chiral triple categories

F : SC(X) −→←− SC(A) :G, (28)

or consider higher-dimensional extensions of ‘type’ SpCq, SpC∞, S−∞C∞,

etc. (see 1.3).

Note that, according to the analysis of [GP6], Section 5, F is a colax-

pseudo morphism of chiral triple categories (i.e. colax for the 1-directed

composition, realised by pullbacks, and pseudo for the 2-directed compo-

sition, realised by pushouts) while G is pseudo-lax.

2. The double category of lax and colax multiple functors

In the 2-dimensional case, weak double categories with lax and colax double

functors and suitable double cells form a strict double category Dbl, a crucial

structure introduced in [GP2] to define colax/lax double adjunctions - also

recalled in Part I.

This construction was extended in [G3], Section 2, to form the strict

double category Wsc of weak symmetric cubical categories, lax and colax

symmetric cubical functors (and suitable double cells), in order to define

colax/lax adjunctions between weak symmetric cubical categories.

We now give a further extension, building the strict double category Cmc
of chiral multiple categories, lax and colax multiple functors, that will be

GRANDIS & PARE ADJOINTS IN MULTIPLE CATEGORIES...  (III)

- 14 -



used below to define colax/lax adjunctions between chiral multiple cate-

gories.

Comma chiral multiple categories are also considered, extending again

the cases of double and symmetric cubical categories, dealt with in [GP2,

G3].

For Cmc we follow the notation for double categories used in [GP1] -

[GP4]: the horizontal and vertical compositions of cells are written as (π | ρ)
and (π

σ
), or more simply as π|ρ and π⊗σ. Horizontal identities, of an object

or a vertical arrow, are written as 1A and 1u; vertical identities, of an object

or a horizontal arrow, as 1•

A and 1•

f .

2.1 Lax cm-functors

A chiral multiple category is also called a cm-category, for short.

As defined in I.3.9, a lax multiple functor F : A → B between chiral

multiple categories, or lax cm-functor, has components Fi : Ai → Bi for all

multi-indices i (often written as F ) that agree with all faces, 0-degeneracies

and 0-composition. Moreover, for every positive multi-index i and i ∈ i, F
is equipped with i-special comparison i-maps F i that agree with faces

F i(x) : eiF (x)→0 F (eix) (for x in Ai|i),

F i(x, y) : F (x) +i F (y)→0 F (z) (for z = x+i y in Ai),

∂αj F i(x) = F i(∂
α
j x) (for j 6= i),

∂αj F i(x, y) = F i(∂
α
j x, ∂

α
j y) (for j 6= i).

(29)

and satisfy some axioms. We write down the naturality conditions (lmf.1-

2), frequently used below, while the coherence conditions (lmf.3-5) can be

found in I.3.9.

(lmf.1) (naturality of unit comparisons) For every i|j-map f : x →0 y in A

we have:

F (ejf).F j(x) = F j(y).ej(Ff) : ejF (x)→0 F (ejy). (30)

(lmf.2) (naturality of composition comparisons) For two j-consecutive i-

maps f : x→0 x
′ and g : y →0 y

′ in A we have:

F (f +j g).F j(x, y) = F j(x
′, y′).(F (f) +j F (g)). (31)
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A transversal transformation h : F → G : A → B between lax multiple

functors of chiral multiple categories consists of a face-consistent family of

i-maps in B (its components), one for every positive multi-index i and every

i-cube x in A

hx : F (x)→0 G(x), h(∂αj x) = ∂αj (hx), (32)

under the axioms (trt.1) and (trt.2L), see I.3.9.

We have thus the 2-category LxCmc of cm-categories, lax cm-functors

and their transversal transformations. Similarly one defines the 2-category

CxCmc, for the colax case where the comparisons of colax cm-functors

have the opposite direction. A pseudo cm-functor is a lax cm-functor whose

comparisons are invertible; it is made colax by the inverse comparisons.

2.2 The double category Cmc

Lax and colax cm-functors do not compose well, since we cannot compose

their comparisons. But they give the horizontal and vertical arrows of a strict

double category Cmc, crucial for our study, where ‘internal’ orthogonal ad-

junctions (recalled below, in Section 3) will provide our general notion of

multiple adjunction (Section 4) while companion pairs amount to pseudo

cm-functors (Section 5).

The objects of Cmc are the cm-categories A,B,C, ...; its horizontal ar-

rows are the lax cm-functors R, S...; its vertical arrows are the colax cm-

functors F,G...
A double cell π : (F R

S G)

A
R //

•F

��

B

• G

��
π

C
S

// D

(33)

is - roughly speaking - a ‘transformation’ π : GR 99K SF . But the com-

posites GR and SF are neither lax nor colax: the coherence conditions of π
require the individual knowledge of the four ‘functors’, including the com-

parison cells of each of them.

Precisely, the double cell π consists of the following data:
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(a) two lax cm-functors R : A → B and S : C → D, with comparisons as

follows:

Ri(x) : ei(Rx)→0 R(eix), Ri(x, y) : Rx+i Ry →0 R(x+i y),

Si(x) : ei(Sx)→0 S(eix), Si(x, y) : Sx+i Sy →0 S(x+i y),

(b) two colax cm-functors F : A → C and G : B → D, with comparisons as

follows:

F i(x) : F (eix)→0 ei(Fx), F i(x, y) : F (x+i y)→0 Fx+i Fy,

Gi(x) : G(eix)→0 ei(Gx), Gi(x, y) : G(x+i y)→0 Gx+i Gy,

(c) a family of i-maps πx : GR(x)→0 SF (x) of D (for every i-cube x in A),

consistent with faces

π(∂αi x) = ∂αi (πx). (34)

These data have to satisfy the naturality condition (dc.1) and the coher-

ence conditions (dc.2), (dc.3) (with respect to i-directed degeneracies and

composition, respectively)

(dc.1) SFf.πx = πy.GRf : GR(x)→ SF (y) (for f : x→ y in tvi(A)),

(dc.2) SF i(x).πei(x).GRi(x) = SiF (x).ei(πx).GiR(x) (for x in Ai|i),

Gei(Rx)
GR

i
(x)

//

G
i
R(x)

��

GR(eix)
πei(x) // SF (eix)

SF
i
(x)

��
eiGR(x)

eiπ(x)
// eiSF (x)

S
i
F (x)

// SeiF (x)

(dc.3) SF i(x, y).πz.GRi(x, y) = Si(Fx, Fy).(πx+i πy).Gi(Rx,Ry)

(for z = x+i y in Ai),

G(Rx+i Ry)
GR

i
(x,y)

//

G
i
(Rx,Ry)

��

GR(z) πz // SF (z)

SF
i
(x,y)

��
GRx+i GRy πx+iπy

// SFx+i SFy
S
i
(Fx,Fy)

// S(Fx+i Fy)
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The horizontal composition (π | ρ) and the vertical composition π⊗ σ =
(π
σ
) of double cells are both defined via the composition of transversal maps

(in a cm-category)

A
R //

•F

��

•

R′

//

• G

��

•

• H

��

π ρ

• S //

•F ′

��

• S′ //

• G′

��

•

• H′

��
σ τ

•

T
//

•

T ′

//
•

(35)

(π | ρ)(x) = S ′πx.ρRx : HR′R(x)→0 S
′GR(x)→0 S

′SF (x),

(π
σ
)(x) = σFx.G′πx : G′GR(x)→0 G

′SF (x)→0 TF
′F (x),

(36)

(for x in A). We verify below, in Theorem 2.3, that these compositions are

well-defined and satisfy the axioms of a double category.

Within Cmc, we have the strict 2-category LxCmc of cm-categories, lax

cm-functors and transversal transformations: namely, LxCmc is the restric-

tion of Cmc to trivial vertical arrows. Symmetrically the strict 2-category

CxCmc, whose arrows are the colax cm-functors, also lies in Cmc.
As in I.1.2 (for weak double categories), we can also note that a dou-

ble cell π : (F R
1 1) gives a notion of transversal transformation π : R 99K

F : A → B from a lax to a colax functor, while a double cell π : (1 1
S G)

gives a notion of transversal transformation π : G 99K S : A → B from a

colax to a lax functor. Moreover, for a fixed pair A,B of chiral multiple

categories, all the transversal transformations between lax and colax func-

tors (of the four possible kinds) compose, forming a category {A,B} whose

objects are the lax and the colax functors A→ B.

2.3 Theorem

The structure Cmc, as defined above, is indeed a strict double category.

Proof. The argument is much the same as for Dbl in [GP2] and for Wsc in

[G3].

First, to show that the double cells defined in (36) are indeed coherent,

we verify the condition (dc.3) for (π | ρ), with respect to a concatenation

GRANDIS & PARE ADJOINTS IN MULTIPLE CATEGORIES...  (III)

- 18 -



z = x +i y in A. Our property amounts to the commutativity of the outer

diagram below, formed of transversal maps (omitting the index i in +i and

all comparisons Ri etc.)

HR′Rz
ρRz // S ′GRz S′πz // S ′SFz

S′SF
��

HR′(Rx+Ry)
ρ(Rx+Ry) //

HR′R

OO

S ′G(Rx+Ry)

S′GR

OO

S′GR
��

S ′S(Fx+ Fy)

H(R′Rx+R′Ry)

HR′R

OO

HR′R
��

S ′(GRx+GRy)
S′(πx+πy)// S ′(SFx+ SFy)

S′SF

OO

HR′Rx+HR′Ry
ρRx+ρRy

// S ′GRx+ S ′GRy
S′πx+S′πy

//

S′GR

OO

S ′SFx+ S ′SFy

S′SF

OO

Indeed, the two hexagons commute applying (dc.3) to π and ρ, respec-

tively. The upper square commutes by naturality of ρ on Ri(x, y); the lower

one by axiom (lmf.2) (see 2.1) on the lax functor S ′, with respect to the

i-maps πx : GR(x)→0 SF (x) and πy : GR(y)→0 SF (y)

S ′(πx+i πy).S
′
i(GR(x), GR(y)) = S ′

i(SF (x), SF (y)).(S
′(πx)+iS

′(πy)).

Now, both composition laws of double cells have been defined, in (36),

via the composition of transversal maps (in a cm-category), and therefore

are strictly unitary and associative.

Finally, to verify the middle-four interchange law on the four double

cells of diagram (35), we compute the compositions (π | ρ) ⊗ (σ | τ) and

(π ⊗ σ) | (ρ ⊗ τ) on an i-cube x, and we obtain the two transversal maps

H ′HR′Rx →0 T
′TF ′Fx of the upper or lower path in the following dia-

gram

H ′HR′Rx
H′ρRx // H ′S ′GRx

H′S′πx //

τGRx

��

H ′S ′SFx

τSFx

��
T ′G′GRx

T ′G′πx
// T ′G′SFx

T ′σFx
// T ′TF ′Fx

But these two composites coincide because the square commutes: a con-

sequence of the naturality of τ on the transversal map πx : GR(x)→ SF (x),
by axiom (dc.1) for the double cell τ .
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2.4 Comma cm-categories

Comma double categories [GP2] also have a natural extension to the multiple

case.

Given a colax cm-functor F : A → C and a lax cm-functor R : X → C

with the same codomain, we can construct the comma cm-category F ↓R,

where the projections P and Q are strict cm-functors and π is a double cell

of Cmc

F ↓R
P //

•

Q

��

A

•

F

��
π

X
R

// C

(37)

An i-cube of F ↓R is a triple (a, x; c : Fa →0 Rx) where a is an i-cube

of A, x is an i-cube of X and c is an i-map of C. An i-map (h, f) : (a, x; c)→0

(a′, x′; c′) comes from a pair of i-maps h : a →0 a
′ (in A) and f : x →0 x

′

(in X) that give in C a commutative square of transversal maps

Fa
c //

Fh

��

Rx

Rf

��
Rf.c = c′.Fh.

Fa′
c′

// Rx′

(38)

Faces and transversal composition are obvious. The degeneracies are

defined using the fact that F is colax and R is lax:

ei(a, x; c : Fa→0 Rx) = (eia, eix;Ri(x).eic.F i(a)). (39)

Similarly the i-concatenation is defined as follows

(a, x; c) +i (b, y; d)

= (a+i b, x+i y; u : F (a+i b)→0 R(x+i y)),

u = Ri(x, y).(c+i d).F i(a, b) :

F (a+i b) →0 Fa+i Fb →0 Rx+i Ry →0 R(x+i y).

(40)

The associativity comparison for the i-composition of three i-consecutive

i-cubes of F ↓R

(a, x; c), (a′, x′; c′), (a′′, x′′; c′′),
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is given by the pair (κi(a), κi(x)) of associativity i-isomorphisms for our

two triples of i-cubes, namely a = (a, a′, a′′) in A and x = (x, x′, x′′) in X

(κi(a), κi(x)) : (a, x; c) +i ((a
′, x′; c′) +i (a

′′, x′′; c′′))

→0 ((a, x; c) +i (a
′, x′; c′)) +i (a

′′, x′′; c′′).
(41)

The coherence of this i-map, as in diagram (38) above, is proved in the

lemma below.

Similarly one constructs the unitors λi, ρi and the interchangers χij of

F ↓R, using those of A and X.

Finally, the strict cm-functors P and Q are projections, while the com-

ponent of the ‘transformation’ π on the i-cube (a, x; c) of F ↓R is the trans-

versal map:

π(a, x; c) = c : Fa→ Rx. (42)

2.5 Lemma

The pair (κ(a), κ(x)) is indeed an i-map of F ↓R, with domain and codomain

as specified in (41).

Proof. First, these two i-cubes of F ↓R can be written as:

(a, x; c) + ((a′, x′; c′) + (a′′, x′′; c′′)) = (a1, x1; c1),

((a, x; c) + (a′, x′; c′)) + (a′′, x′′; c′′) = (a2, x2; c2),
(43)

where a1, x1, a2, x2, c1, c2 are defined as follows (by commutative diagrams

in the last two cases, and always leaving the index i understood for +, F , R)

a1 = a+ (a′ + a′′), x1 = x+ (x′ + x′′),

a2 = (a+ a′) + a′′, x2 = (x+ x′) + x′′,
(44)

Fa1
c1 //

F (a, a′+a′′)
��

Rx1

Fa+ F (a′ + a′′)

1+F (a′, a′′)
��

Rx+R(x′ + x′′)

R(x, x′+x′′)

OO

Fa+ (Fa′ + Fa′′)
c+(c′+c′′)

// Rx+ (Rx′ +Rx′′)

1+R(x′, x′′)

OO
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Fa2
c2 //

F (a+a′, a′′)
��

Rx2

F (a+ a′) + Fa′′

F (a,a′)+1
��

R(x+ x′) +Rx′′

R(x+x′, x′′)

OO

(Fa+ Fa′) + Fa′′
(c+c′)+ c′′

// (Rx+Rx′) +Rx′′

R(x, x′)+1

OO

Now our claim, i.e. the condition for (κ(a), κ(x)) expressed in diagram

(38), amounts to

Rκ(x).c1 = c2.Fκ(a) : Fa1 → Rx2. (45)

First, the coherence of the lax functor R with the associator κ gives (ap-

plying axiom (lmf.4) of I.3.9):

Rκ(x).c1

= Rκ(x).R(x, x′ + x′′).(1 +R(x′, x′′)).(c+ (c′ + c′′)).

(1 + F (a′, a′′)).F (a, a′ + a′′)

= R(x+ x′, x′′).(R(x, x′) + 1).κR(x).(c+ (c′ + c′′)).

(1 + F (a′, a′′)).F (a, a′ + a′′).

Second, the coherence of the colax functor F with κ gives (applying the

corresponding axiom, with reversed comparisons F ):

c2.Fκ(a)

= R(x+ x′, x′′).(R(x, x′) + 1).((c+ c′) + c′′).

(F (a, a′) + 1).F (a+ a′, a′′).Fκ(a)

= R(x+ x′, x′′).(R(x, x′) + 1).((c+ c′) + c′′).

κ(Fa).(1 + F (a′, a′′)).F (a, a′ + a′′).

Finally, condition (45) follows from the naturality of κ on the triple of

transversal maps (c, c′, c′′) : Fa → Rx, which gives the commutative dia-

gram

Fa+ (Fa′ + Fa′′)
κ(Fa) //

c+(c′+c′′)

��

(Fa+ Fa′) + Fa′′

(c+c′)+c′′

��
Rx+ (Rx′ +Rx′′)

κ(Rx)
// (Rx+Rx′) +Rx′′
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2.6 Theorem (Universal properties of commas)

(a) For a pair of lax cm-functors S, T and a cell ϕ as below (in Cmc) there

is a unique lax cm-functor L : Z → F ↓ R such that S = PL, T = QL
and ϕ = (ψ | π) where the cell ψ is defined by the identity 1: QL → T (a

horizontal transformation of lax cm-functors)

Z
S //

•1

��

A

• F

��

Z
L //

•1

��

F ↓R P //

• Q

��

A

• F

��
ϕ = ψ π

Z
T

// X
R

// C Z
T

// X
R

// C

(46)

Moreover L is pseudo or strict if and only if both S and T are.

(b) A similar property holds for a pair of colax cm-functors G,H and a

double cell ϕ′ : (G 1
R FH).

Proof. (a) L is defined as follows on an i-cube z and an i-map f : z → z′ of

Z
L(z) = (Sz, Tz; ϕz : FSz → RTz),

L(f) = (Sf, Tf).
(47)

The comparison transversal mapsLi are constructed with the laxity trans-

versal maps S and T (and are invertible or degenerate if and only if the latter

are)

Lix = (Six, T ix) : ei(Lx)→ Lei(x) (for x in Zi|i),

Li(x, y) = (Si(x, y), T i(x, y)) : Lx+i Ly → L(z)
(for z = x+i y in Zi).

(48)

Here Lx+i Ly is the i-cube defined as below (applying (40) and writing

+i as +)

Lx+ Ly = (Sx, Tx; ϕx : FSx→ RTx) + (Sy, Ty; ϕy : FSy → RTy)

= (Sx+ Sy, Tx+ Ty; u),

u = Ri(Tx, Ty).(ϕx+ ϕy).F iSx, Sy) :

F (Sx+ Sy)→ FSx+i FSy → RTx+RTy → R(Tx+ Ty).
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Letting z = x +i y, the coherence condition (38) on the transversal map

Li(x, y) = (Si(x, y), T i(x, y)) of F ↓R (with z = x+i y)

RT i(x, y).u = ϕz.FSi(x, y), (49)

F (Sx+i Sy)
u //

FS
i
(x,y)

��

R(Tx+i Ty)

RT
i
(x,y)

��
FS(z) ϕz

// RT (z)

follows from the coherence condition (dc.3) of ϕ as a double cell in Cmc
(where RT i(x, y) = RT i(x, y).Ri(Tx, Ty))

RT i(x, y).(ϕx+i ϕy).F i(Sx, Sy) = ϕz.FSi(x, y), (50)

F (Sx+i Sy)
FS

i
(x,y)

//

F
i
(Sx,Sy)

��

FS(z)
ϕz // RT (z)

1

��
FSx+i FSy ϕx+iϕy

// RTx+i RTy
RT

i
(x,y)

// RT (z)

The uniqueness of L is obvious.

3. Companions and adjoints in double categories

This brief section, taken from [GP2], Section 1, studies the connections be-

tween horizontal and vertical morphisms in a double category: horizontal

morphisms can have vertical companions and vertical adjoints (the latter

were called ‘conjoints’ in [DPR]). Such phenomena are interesting in them-

selves and typical of double categories.

D is always a weak double category, that we assume to be unitary for the

sake of simplicity. We shall apply these notions to Cmc, which is strict.

3.1 Orthogonal companions

In the weak double category D, the horizontal morphism f : A → B and

the vertical morphism u : A •−→ B are made (orthogonal) companions by
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assigning a pair (η, ε) of cells as below, called the unit and counit, that satisfy

the identities η|ε = 1•

f and η ⊗ ε = 1u

A

•1

��

A

• u

��

A
f //

•u

��

B

• 1

��
η ε

A
f

// B B B

(51)

Given f , this is equivalent (by unitarity) to saying that the pair (u, ε)
satisfies the following universal property:

(a) for every cell ε′ : (u′ f
g B) there is a unique cell λ : (u′ A

g u) such that

ε′ = λ|ε

A
f //

•u′

��

B

• 1

��

A

•u′

��

A
f //

• u

��

B

• 1

��
ε′ λ ε

A′
g

// B A′
g

// B B

(52)

In fact, given (η, ε), we can (and must) take λ = η ⊗ ε′; on the other

hand, given ε′ we define η : (A A
f u) by the equation η|ε = 1•

f and deduce

that η ⊗ ε = 1u because (η ⊗ ε) | ε = (η|ε)⊗ ε = ε = (1u|ε).

Similarly, also the pair (u, η) is characterised by a universal property

(b) for every cell η′ : (A g
f u

′) there is a unique cell µ : (u g
B u′) such that

η′ = η|µ.

Therefore, if f has a vertical companion, this is determined up to a

unique special isocell, and will often be written as f∗. Companions com-

pose in the obvious (covariant) way: if g : B → C also has a companion g∗,
then the vertical arrow g∗f∗ : A •−→ C is companion to gf : A → C, with

unit
(

η | 1

1• | η′

)

: (A A
gf g∗f∗).

Companionship is preserved by unitary lax or colax double functors.

We say that D has vertical companions if every horizontal arrow has a

vertical companion. The weak double categories recalled in Section 1 have
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vertical companions, given by the obvious embedding of horizontal arrows

into the vertical ones.

Companionship is simpler for horizontal isomorphisms. If f is one and

has a companion u, then its unit and counit are also horizontally invertible

and determine each other:

(ε | 1•

g | η) = η ⊗ ε = 1u (g = f−1), (53)

as one can see rewriting (ε | 1•

g | η) as follows, and then applying middle-four

interchange

A
f //

•1

��

B
g //

•
1

��

A

• 1

��

A

• u

��

1•

f 1•

g η

A f //

•u

��

B g //

•
1

��

A f //

• 1

��

B

• 1

��

ε 1•

g 1•

f

B B g
// A

f // B

Conversely, the existence of a horizontally invertible cell η : (A A
f u)

implies that f is horizontally invertible, with companion u and counit as

above.

3.2 Orthogonal adjoints

Transforming companionship by horizontal (or vertical) duality, the arrows

f : A → B and v : B •−→ A are made orthogonal adjoints by a pair (α, β)
of cells as below

A
f //

•1

��

B

• v

��

B

•v

��

B

• 1

��
α β

A A A
f

// B

(54)

with α|β = 1•

f and β ⊗ α = 1v. Then, f is the horizontal adjoint and v the

vertical one. (In the general case there is no reason of distinguishing ‘left’

and ‘right’, unit and counit; see the examples of [GP2], Section 1.3).
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Again, given f , these relations can be described by universal properties

for (v, β) or (v, α)

(a) for every cell β′ : (v′ g
f B) there is a unique cell λ : (v′ g

A v) such that

β′ = λ|β,

(b) for every cell α′ : (A f
g v

′) there is a unique cell µ : (v B
g v′) such that

α′ = α|µ.

The vertical adjoint of f is determined up to a special isocell and will

often be written as f ∗; vertical adjoints compose, contravariantly: (gf)∗ can

be constructed as f ∗g∗.

We say that D has vertical adjoints if every horizontal arrow has a verti-

cal adjoint. Plainly, this is the case for the weak double categories recalled

in Section 1.

3.3 Proposition

Let f : A → B have a vertical companion u : A •−→ B. Then the arrow

v : B •−→ A is vertical adjoint to f if and only if u ⊣ v in the bicategory VD

(of objects, vertical arrows and special cells).

Proof. Given four cells η, ε, α, β as above (in 3.1, 3.2), we have two special

cells

η ⊗ α : 1• → u⊗ v, β ⊗ ε : u⊗ v → 1•,

that are easily seen to satisfy the triangle identities in VD. The converse is

similarly obvious.

4. Multiple adjunctions

We now define a colax/lax adjunction between chiral multiple categories, a

notion that occurs naturally in various situations, as already seen in Section

1.

4.1 Colax/lax adjunctions

A colax/lax cm-adjunction (η, ε) : F ⊣ G, or a colax/lax adjunction between

chiral multiple categories, will be an orthogonal adjunction in the double

category Cmc (as defined in 3.2).
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The data amount thus to:

- a colax cm-functor F : X→ A, the left adjoint,

- a lax cm-functor G : A→ X, the right adjoint,

- two Cmc-cells η : 1X 99K GF and ε : FG 99K 1A (unit and counit) that

satisfy the triangle equalities:

X

•F

��

X A
G // X

• F

��

η ⊗ ε = 1F ,

η ε

A
G

// X A A ε | η = 1•

G.

(55)

We speak of a pseudo/lax (resp. a colax/pseudo) adjunction when the left

(resp. right) adjoint is pseudo, and of a pseudo (or strict) adjunction when

both adjoints are pseudo (or strict).

From general properties (see 3.2), we already know that the left adjoint

of a lax cm-functor G is determined up to transversal isomorphism (which

amounts to a special invertible cell between vertical arrows in Cmc) and that

left adjoints compose, contravariantly. Similarly for right adjoints.

As in 2.2, the arrow of a colax cm-functor is marked with a dot when

displayed vertically, in a double cell of Cmc. Again, we may write unit

and counit as η : 1 99K GF and ε : FG 99K 1, but we should recall that

the coherence conditions of such ‘transformations’ involve the comparison

cells of F and G. Therefore (as with double categories, in [GP2]), a general

colax/lax adjunction cannot be seen as an adjunction in some bicategory;

although this is possible for a pseudo/lax or a colax/pseudo adjunction, as

we shall prove in the next section.

4.2 A description

To make the previous definition explicit, a colax/lax adjunction (η, ε) : F ⊣
G between the cm-categories X and A consists of the following items.

(a) A colax cm-functor F : X→ A, with comparison transversal maps

F i(x) : F (eix)→0 ei(Fx), F i(x, y) : F (x+i y)→0 Fx+i Fy.
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(b) A lax cm-functor G : A→ X, with comparison transversal maps

Gi(a) : ei(Ga)→0 G(eia), Gi(a, b) : Ga+i Gb→0 G(a+i b).

(c) An ordinary adjunction Fi ⊣ Gi for every positive multi-index i

ηi : 1→ GiFi : tvi(X)→ tvi(X), εi : FiGi → 1: tvi(A)→ tvi(A),

εiFi.Fiηi = 1Fi
, Giεi.ηiGi = 1Gi

.

(Note that there is an abuse of notation: for the sake of simplicity we

write as Fi the functor tvi(F ) : tvi(X) → tvi(A), which involves the com-

ponents Fi : Xi → Ai and F0i : X0i → A0i of F .)

Explicitly this means that we are assigning:

- transversal maps ηix : x →0 GiFix in X (for x in Xi), also written as

ηx : x→0 GFx,

- transversal maps εia : FiGia →0 a in A (for a in Ai), also written as

εa : FGa→0 a,

satisfying the naturality conditions (c1) (for transversal maps f : x →0 y in

X and h : a→0 b in A) and the triangle identities (c2),

(c1) ηy.f = GFf.ηx, εb.FGh = h.εa,

(c2) εFx.Fηx = 1Fx, Gεa.ηGa = 1Ga.

(d) These families η = (ηi) and ε = (εi) must respect faces

η(∂αi x) = ∂αi (ηx), ε(∂αi a) = ∂αi (εa), (56)

and be coherent with the comparison cells of F and G:

(d1) (coherence of η and ε with i-identities) for x in X and a in A:

GF i(x).η(eix) = Gi(Fx).ei(ηx),

(η(ei(x) = ei(ηx), if F and G are unitary),
(57)

ε(eia).FGi(a) = ei(εa).F i(Ga),

(ε(eia) = ei(εa), if F and G are unitary),
(58)
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(d2) (coherence of η and ε with i-composition) for z = x +i y in X and

c = a+i b in A:

GF i(x, y).ηz = Gi(Fx, Fy).(ηx+i ηy), (59)

εc.FGi(a, b) = (εa+i εb).F i(Ga,Gb). (60)

z

ηz

��

ηx+i ηy // GFx+i GFy

G
i
(Fx,Fy)

��

F (Ga+Gb)
FG

i
(a,b)

//

F
i
(Ga,Gb)

��

FGc

εc

��
GFz

GF
i
(x,y)

// G(Fx+i Fy) FGa+ FGb
εa+i εb

// c

4.3 Lemma

(a) In a colax/lax cm-adjunction (η, ε) : F ⊣ G, the comparison maps of

G determine the comparison maps of F , through the ordinary adjunctions

Fi ⊣ Gi, as

F i(x) = εei(Fx).FGi(Fx).F ei(ηx) :

Fei(x)→ Fei(GFx)→ FG(eiFx)→ eiFx,
(61)

F i(x, y) = ε(Fx+i Fy).FGi(Fx, Fy).F (ηx+i ηy) :

F (x+i y)→ F (GFx+GFy)→ FG(Fx+ Fy)→ Fx+i Fy.
(62)

Dually, the comparison maps of F determine the comparison maps of G,

through the ordinary adjunctions.

(b) If all the components of η, ε are invertible, then G is pseudo if and only

if F is.

Note. Loosely speaking, point (a) says that a lax multiple functor can only

have a colax left adjoint (if any), and symmetrically. This fact will be com-

pleted in Theorem 5.3, showing that if a lax functor has a lax adjoint, the

latter is necessarily pseudo.

Proof. (a) The first equation of (d1) says that the adjoint map of F i(x), i.e.

(F i(x))
′ = GF i(x).η(eix), must be equal to f = Gi(Fx).ei(ηx). The

adjoint map of the latter gives F i(x) = f ′ = εei(Fx).F (f).
In the same way the first equation of (d2) determines F i(x, y). Point (b)

is a straightforward consequence.
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4.4 Theorem (Characterisation by transversal hom-sets)

A multiple adjunction (η, ε) : F ⊣ G can equivalently be given by a colax

cm-functor F : X → A, a lax cm-functor G : A → X and a family (Li) of

functorial isomorphisms indexed by the positive multi-indices i ⊂ N

Li : tvi(A)(Fi(−),=) → tvi(X)(−, Gi(=)) :

tvi(X)
op×tvi(A)→ Set,

Li(x, a) : tvi(A)(Fx, a)→ tvi(X)(x,Ga).

(63)

The components Li(x, a), also written as L(x, a) or just L, have to com-

mute with faces and be coherent with the positive operations (through the

comparison maps of F and G), i.e. must satisfy the following conditions

(ad.1-3):

(ad.1) Li(∂
α
i x, ∂

α
i a) = ∂αi (Li(x, a)),

(ad.2) L(eix, eia)(ei(h).F (x)) = G(a).ei(Lh) (for h : Fx→ a in A),

F ei(x)
F (x) // ei(Fx)

ei(h) // ei(a)

ei(x)
ei(Lh) // ei(Ga)

G(a) // Gei(a)

(ad.3) L((h+i k).F i(x, y)) = Gi(a, b).(Lh+i Lk)

(for h : Fx→ a, k : Fy → b in tvi(A)),

F (x+i y)
F

i
(x,y)

// Fx+i Fy
h+ik // a+i b

x+i y
Lh+iLk // Ga+i Gb

G
i
(a, b)

// G(a+i b)

In this equivalence, Li(x, a) is defined by the unit η as

Li(x, a)(h) = Gh.ηix : x→ GFx→ Ga (h : Fx→ a in tvi(A)). (64)

The other way round, the component ηi : 1→ GiFi : Xi → Xi of the unit

is defined by L as

ηi(x) = Li(x, Fx)(idFx) : x→ GF (x) (for x in Xi). (65)
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Proof. We have only to verify the equivalence of the conditions (56)-(60)

with the conditions above.

This is straightforward. For instance, to show that (59) implies (ad.3),

let h : Fx → a and k : Fy → b be i-consecutive i-maps in A, and apply

L = L(x+i y, a+i a) as defined above, in (64):

L((h+i k).F i(x, y)) = G(h+i k).GF i(x, y).η(x+i y)

= G(h+i k).Gi(Fx, Fy).(ηx+i ηy) (by (59))

= Gi(a, b).(Gh+i Gk).(ηx+i ηy) (by (lmf.2))

= Gi(a, b).(Lh+i Lk).

4.5 Corollary (Characterisation by commas)

With the previous notation, a multiple adjunction amounts to an isomorphism

of chiral multiple categories L : F ↓A → X ↓G over the cartesian product

X×A

F ↓A
L //

''

X↓G

ww
=

X×A

(66)

Proof. A straightforward consequence of the previous theorem.

4.6 Theorem (Right adjoint by universal properties)

Let a colax cm-functor F : X→ A be given.

The existence (and choice) of a right adjoint lax cm-functor G amounts

to a family (rad.i) of conditions and choices, indexed by the positive multi-

indices i:

(rad.i) for every i-cube a in A there is a universal arrow (Ga, εia : F (Ga)→
a) from the functor Fi : tvi(X)→ tvi(A) to the object a, and we choose one,

provided that these choices commute with faces.

Explicitly, the universal property means that, for each i-cube x in X and

i-map h : Fx →0 a in A there is a unique f : x →0 Ga such that h =
εa.Ff : Fx→0 F (Ga)→0 a.
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The comparison i-maps of G

Gi(a) : ei(Ga)→0 G(eia), Gi(a, b) : Ga+i Gb→0 G(a+i b), (67)

are then given by the universal property of ε, as the unique solution of the

equations (58), (60), respectively.

Proof. The conditions (rad.i) are plainly necessary, including consistency

with faces.

Conversely, each (rad.i) provides an ordinary adjunction (ηi, εi) : Fi ⊣ Gi

for the categories tvi(X), tvi(A), so that G, η and ε are correctly defined - as

far as cubes, transversal maps, faces, transversal composition and transversal

identities are concerned.

Now we define the comparison maps Gi as specified in the statement, so

that the coherence properties of ε are satisfied (see (58), (60)). One verifies

easily, for such transversal maps, the axioms of naturality and coherence (see

2.1).

Finally, we have to prove that η : 1 99K GF satisfies the coherence prop-

erty (59)

GF i(x, y).ηz = Gi(Fx, Fy).(ηx+i ηy), (68)

with respect to a composition z = x +i y of i-cubes in X (similarly one

proves (57)). By the universal property of ε, it will suffice to show that the

composite ε(Fx +i Fy).F (−) takes the same value on both terms of (68).

In fact, on the left-hand term we get F i(x, y)

ε(Fx+i Fy).FGF i(x, y).Fηz = F i(x, y).εFz.Fηz = F i(x, y).

We get the same on the right-hand term of (68), using (60), the naturality

of F i, the 0i-interchange in A and a triangle identity

ε(Fx+i Fy).FGi(Fx, Fy).F (ηx+i ηy)

= (εFx+i εFy).F i(GFx,GFy).F (ηx+i ηy)

= (εFx+i εFy).(Fηx+i Fηy).F i(x, y)

= (εFx.Fηx+i εFy.Fηy).F i(x, y)

= (1Fx +i 1Fy).F i(x, y)

= F i(x, y).
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4.7 Theorem (Factorisation of adjunctions)

Let F ⊣ G be a colax/lax adjunction between X and A. Then, using the

isomorphism of cm-categories L : F ↓ A → X ↓G (Corollary 4.5), we can

factorise the adjunction

X
F ′

// F ↓A
L //

P
oo X↓G

Q //

L−1

oo A
G′

oo

F = QLF ′, G = PL−1G′,

(69)

as a composite of:

- a coreflective colax/strict adjunction F ′ ⊣ P (with unit PF ′ = 1),

- an isomorphism L ⊣ L−1,

- a reflective strict/lax adjunction Q ⊣ G′ (with counit QG′ = 1),

where the comma projections P and Q are strict cm-functors.

Proof. We define the lax cm-functor G′ : A → X ↓ G by the universal

property of commas 2.6(a), applied to G : A→ X, 1: A→ A and ϕ = 1•

G as

in the diagram below

A
G //

•1

��

X

• 1

��

A
G′

//

•1

��

1↓G P //

• Q

��

X

• 1

��
ϕ = ψ π

A
1

// A
G

// X A
1

// A
G

// X

(70)

G′(a) = (Ga, a; 1 : Ga→ Ga),

G′
i(a) = (Gi(a), 1) : (eiGa, eia;Gi(a))→ (G(eia), eia; 1),

G′
i(a, b) = (Gi(a, b), 1) :

(Ga+i Gb, a+i b;Gi(a, b))→ (G(a+i b), a+i b; 1).

Similarly, we define the colax cm-functor F ′ : X → F ↓ A by the dual

result 2.6(b)

F ′(x) = (x, Fx; 1 : Fx→ Fx),

F ′
i(x) = (1, F i(x)) : (eix, F (eix); 1)→ (eix, Feix;F i(x)),

F ′
i(x, y) = (1, F i(x, y)) :

(x+i y, F (x+i y); 1)→ (x+i y, Fx+i Fy;F i(x, y)).

(71)
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The coreflective adjunction F ′ ⊣ P is obvious

η′x = 1x : x→ PF ′x,

ε′(x, a; f : Fx→ a) = (1x, f) :

(x, Fx; 1 : Fx→ Fx)→ (x, a; f : Fx→ a),

(72)

as well as the reflective adjunction Q ⊣ G′ and the factorisation above.

5. Multiple adjunctions and pseudo cm-functors

We consider now cm-adjunctions where the left or right adjoint is a pseudo

cm-functor. Then we introduce adjoint equivalences of chiral multiple cate-

gories.

5.1 Comments

Let us recall, from 4.1, that a pseudo/lax cm-adjunction F ⊣ G is a colax/lax

adjunction between cm-categories where the left adjoint F is pseudo.

Then the comparison cells of F are horizontally invertible and the com-

posites GF and FG are lax cm-functors; it follows (from definition 2.2)

that the unit and counit are horizontal transformations of such functors.

Therefore a pseudo/lax cm-adjunction gives an adjunction in the 2-category

LxCmc of cm-categories, lax cm-functors and transversal transformations

(see 2.2); and we shall prove that these two facts are actually equivalent

(Theorem 5.3).

Dually a colax/pseudo cm-adjunction, where the right adjoint G is

pseudo, will amount to an adjunction in the 2-category CxCmc of cm-

categories, colax cm-functors and transversal transformations. Finally a

pseudo cm-adjunction, where both F and G are pseudo, will be the same

as an adjunction in the 2-category PsCmc whose arrows are the pseudo

cm-functors.

5.2 Theorem (Companions in Cmc)

A lax cm-functor G has an orthogonal companion F in the double category

Cmc if and only if it is pseudo; then one can define F = G∗ as the colax
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cm-functor which coincides with G except for comparison maps, that are

transversally inverse to those of G.

Proof. We restrict to unitary cm-categories, for simplicity. If G is pseudo, it

is obvious that G∗, as defined above, is an orthogonal companion.

Conversely, suppose that G : A → X (lax) has an orthogonal companion

F (colax). There are thus two double cells η, ε in Cmc)

A A

• F

��

A
G //

•F

��

X

η ε

A
G

// X X X

(73)

which satisfy the identities η|ε = 1•

G, η ⊗ ε = 1F .

This means two ‘transformations’ η : F 99K G, ε : G 99K F , as defined

in 2.2; for every i-cube a in A, we have two transversal maps ηa and εa in X

ηa : Fa→ Ga, εa : Ga→ Fa, (74)

consistently with faces. These maps are transversally inverse, because of the

previous identities (see (36))

ηa.εa = (η | ε)(a) = 1Ga, εa.ηa = (η ⊗ ε)(a) = 1Fa. (75)

Applying now the coherence condition (dc.3) (of 2.2) for the transforma-

tions η, ε and a concatenation c = a+i b in A we find

ηc = Gi(a, b).(ηa+i ηb).F i(a, b) : Fc→ Gc,

εa+i εb = F i(a, b).εc.Gi(a, b) : Ga+i Gb→ Fa+i Fb.
(76)

Since all the components of η and ε are transversally invertible, this

proves that Gi(a, b) has a left inverse and a right inverse transversal map,

whence it is invertible. Similarly for degeneracies.

Therefore G is pseudo and F is transversally isomorphic to G∗.
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5.3 Theorem

(a) (Pseudo/lax adjunctions) For every adjunction F ⊣ G in the 2-category

LxCmc, the functor F is pseudo and the adjunction is pseudo/lax, in the

sense of 4.1 (or 5.1).

(b) (Colax/pseudo adjunctions) For every adjunction F ⊣ G in the 2-category

CxCmc, the functor G is pseudo and the adjunction is colax/pseudo, in the

sense of 4.1 (or 5.1).

Note. More formally, (a) can be rewritten saying that, in the double category

Cmc, if the horizontal arrow G has a ‘horizontal left adjoint’ F (within the

horizontal 2-category HCmc = LxCmc), then it also has an orthogonal ad-

jointG∗ (colax). (Then, applying Proposition 3.3, it would follow that F and

G∗ are companions, whence F is pseudo, by Theorem 5.2, and isomorphic

to G∗.)

Proof. It suffices to prove (a); again, we only deal with the comparisons of

a composition.

Let the lax structures of F : X → A and G : A → X be given by the

following comparison maps, where z = x+i y and c = a+i b

λi(x, y) : Fx+i Fy → F (x+i y), Gi(a, b) : Ga+i Gb→ G(a+i b),

so that we have:

ηz = Gλi(x, y).Gi(Fx, Fy).(ηx+i ηy) :

z → GFx+i GFy → G(Fx+i Fy)→ GFz,

εa+i εb = εc.FGi(a, b).λi(Ga,Gb) :

FGa+i FGb→ F (Ga+i Gb)→ FG(a+i b)→ c.

(77)

We construct a colax structure F for F , letting

F i(x, y) = ε(Fx+i Fy).FGi(Fx, Fy).F (ηx+i ηy) :

Fz → F (GFx+i GFy)→ FG(Fx+i Fy)→ Fx+i Fy.

Now it is sufficient to verify that F i(x, y) and λi(x, y) are transversally
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inverse, using the naturality of ε, λ and (77):

λi(x, y).F i(x, y)

= λi(x, y).ε(Fx+i Fy).FGi(Fx, Fy).F (ηx+i ηy)

= εFz.FGλi(x, y).FGi(Fx, Fy).F (ηx+i ηy)

= εF (z).F (ηz) = 1Fz,

F i(x, y).λi(x, y)

= ε(Fx+i Fy).FGi(Fx, Fy).F (ηx+i ηy).λi(x, y)

= ε(Fx+i Fy).FGi(Fx, Fy).λi(GFx,GFy).(Fηx+i Fηy)

= (εFx+i εFy).(Fηx+i Fηy)

= εFx.Fηx+i εFy.Fηy = 1Fx +i 1Fy = 1Fx+iFy.

5.4 Equivalences of cm-categories

An adjoint equivalence between two cm-categories X and A will be a pseudo

cm-adjunction (η, ε) : F ⊣ Gwhere the transversal transformations η : 1X →
GF and ε : FG→ 1A are invertible.

The following properties of a cm-functor F : X → A will allow us (in

the next theorem) to characterise this fact in the usual way, under the mild

restriction of transversal invariance (see II.1.6):

(a) We say that F is faithful if all the ordinary functors Fi : tvi(X)→ tvi(A)
(between the categories of i-cubes and their transversal maps) are faithful:

given two i-maps f, g : x →0 y of X between the same i-cubes, F (f) =
F (g) implies f = g.

(b) Similarly, we say that F is full if all the ordinary functors Fi : tvi(X) →
tvi(A) are: for every i-map h : F (x) →0 F (y) in A there is an i-map

f : x→0 y in X such that F (f) = h.

(c) Finally, we say that F is essentially surjective on cubes if every Fi is: for

every i-cube a in A there is some i-cube x in X and some invertible i-map

h : F (x)→0 a in A.
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5.5 Theorem (Characterisations of equivalences)

Let F : X → A be a pseudo cm-functor between two transversally invariant

cm-categories (see II.1.6). The following conditions are equivalent:

(i) F : X→ A belongs to an adjoint equivalence of cm-categories,

(ii) F is faithful, full and essentially surjective on cubes (see 5.4),

(iii) every ordinary functor Fi : tvi(X) → tvi(A) is an equivalence of cate-

gories.

Moreover, if F is unitary, one can make its ‘quasi-inverse’ unitary as

well.

Remark. The axiom of choice is assumed.

Proof. By our previous definitions in 5.4, conditions (ii) and (iii) are about

the family of ordinary functors (Fi) and are well known to be equivalent (as-

suming (AC)). Moreover, if F belongs to an adjoint equivalence (η, ε) : F ⊣
G, every Fi is obviously an equivalence of categories.

Conversely, let us assume that every Fi is an equivalence of ordinary cat-

egories and let us extend the pseudo cm-functor F to an adjoint equivalence,

proceeding by induction on the degree n > 0 of the positive multi-index i.

First, F∗ : tv∗(X)→ tv∗(A) is an equivalence of categories and we begin

by choosing an adjoint quasi-inverse G∗ : tv∗(A)→ tv∗(X).
In other words, we choose for every ⋆-cube (or object) a some G(a) in X

and some isomorphism εa : FG(a)→ a in A; then a transversal map h : a→
b in A is sent to the unique X-map G(h) : G(a) → G(b) coherent with the

previous choices (since F∗ is full and faithful). Finally the isomorphism

ηx : x→ GF (x) is determined by the triangle equations (for every ⋆-cube x
of X).

Assume now that the components of G, ε and η have been defined up to

degree n − 1 > 0, and let us define them for a multi-index i of degree n,

taking care that the new choices be consistent with the previous ones.

First, for every i-cube a in A we want to choose some i-cube G(a) in X

and some i-isomorphism εa : FG(a) → a in A, consistently with all faces

∂αi (i ∈ i). In fact there exists (and we choose) some i-cube x and some

i-isomorphism u : F (x) → a. Then, by the inductive hypothesis, we have a
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family of 2n transversal isomorphisms of A

vαi = ∂αi u
−1.ε(∂αi a) : FG(∂

α
i a)→ ∂αi a→ F (∂αi x) (i ∈ i, α = ±),

which can be uniquely lifted as transversal isomorphisms tαi of X, since F is

full and faithful

tαi : G(∂
α
i a)→ ∂αi x, vαi = F (tαi ).

The family (vαi ) has consistent positive faces (see II.1.6), because this

is true of the family (∂αi u
−1)i,α, by commuting faces, and of the family

(ε(∂αi a))i,α by inductive assumption. It follows that also the family (tαi )
has consistent positive faces.

By transversal invariance in X we can fill this family (tαi ) with a (chosen)

transversal i-isomorphism t : y → x, and we define the i-cube G(a) and the

i-isomorphism εa as follows:

G(a) = y, εa = u.F t : FG(a)→ F (x)→ a.

This choice is consistent with faces:

∂αi (εa) = (∂αi u).F t
α
i = (∂αi u).v

α
i = ε(∂αi a).

Now, since Fi is full and faithful, a transversal i-map h : a → b in A

is sent to the unique X-map G(h) : G(a) → G(b) satisfying the condition

εb.F (Gh) = h.εa (naturality of ε).
Again, the i-isomorphism ηx : x→ GF (x) is determined by the triangle

equations, for every i-cube x of X.

The comparison i-maps Gi are uniquely determined by their coherence

conditions (see 4.2), for an i|i-cube a and an i-composition of i-cubes c =
a+i b in A

εeia.FGi(a) = ei(εa).F i(Ga),

εc.FGi(a, b) = (εa+i εb).F i(Ga,Gb).

Moreover Gi(a) and Gi(a, b) are invertible, because so are their images

by F , full and faithful.

The construction of G, ε and η is now achieved. One ends by proving

that G is indeed a pseudo cm-functor, and that ε, η are coherent with the

comparison cells of F and G.
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Finally, let us assume that F is unitary: F i(x) : F (eix) → ei(Fx) is

always an identity. To make G unitary we assume that - in the previous

inductive construction - the following constraint has been followed: for a

j-degenerate i-cube a = ejc we always choose the transversal isomorphism

u = ej(εc) : F (ej(Gc))→ ejc. It follows that each

vαi : FG(∂
α
i ejc)→ F (∂αi ejGc)

is the identity; then tαi : G(∂
α
i ejc) → ∂αi ejGc is the identity as well. We

(choose to) fill their family with the identity t : ejGc→ ejGc, which gives

G(ejc) = ejGc, ε(ejc) = u.F t = ej(εc).

If a is also j′-degenerate, the commutativity of degeneracies ensures that

both constructions give the same result.

6. Limits and adjoints for cm-categories

We briefly recall the definition of cones and limits from Part II, Section 3,

and prove that unitary right adjoints preserve the limits of cm-functors.

6.1 Lift functors

First we recall a tool from II.1.5, II.1.8. For the positive integer j there is

a j-directed lift 2-functor with values in the 2-category of chiral multiple

categories indexed by the ordered set N|j = N \{j}, pointed at 0

Qj : LxCmc→ LxCmcN|j. (78)

On a cm-category A the cm-categoryQjA is - loosely speaking - that part

of A that contains the index j, reindexed without it:

(QjA)i = Aij,

(∂αi : (QjA)i → (QjA)i|i) = (∂αi : Aij → Aij|i),

(ei : (QjA)i|i → (QjA)i) = (ei : Aij|i → Aij) (i ∈ i ⊂ N|j);

(79)

similarly for compositions and comparisons. In the same way for a lax cm-

functor F : A→ B and a transversal transformation h : F → G : A→ B we

let

(QjF )i = Fij, (Qjh)i = hij (i ⊂ N|j). (80)
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There is also an obvious restriction 2-functorRj : LxCmc→ LxCmcN|j

where the multiple category RjA is that part of A that does not contain the

index j. The j-directed faces and degeneracies of A are not used in QjA, but

yield three natural transformations, also called faces and degeneracy, that

act as follows for i ⊂ N|j

Dα
j : Qj → Rj : LxCmc→ LxCmcN|j, (Dα

j )i = ∂αj : Aij → Ai,

Ej : Rj → Qj : LxCmc→ LxCmcN|j, (Ej)i = ej : Ai → Aij,

Dα
j Ej = id.

(81)

All the functors Qj commute. By composing n of them in any order we

get an iterated lift functor of degree n, in a positive direction i = {i1, ..., in}

Qi : LxCmc→ LxCmcN|i, Qi(A) = Qin ...Qi1(A),

tv∗(Qi(A)) = tvi(A).
(82)

6.2 Cones

Let X and A be cm-categories, and let X be small. Consider the diagonal

functor (of ordinary categories)

D : tv∗A→ PsCmc(X,A). (83)

where tv∗A is the ordinary category of ⋆-cubes (objects) of A and their trans-

versal maps.

D takes each objectA of A to a unitary pseudo functor X→ A, ‘constant’

at A via the family of the total i-degeneracies ei = ei1 ...ein : A∗ → Ai

DA : X→ A

DA(x) = ei(A), DA(f) = id(eiA) (for x, f in tviX),

DAi(x) = id(eiA) : ei(DA(x))→ DA(eix) (for x in Xi|i),

DAi(x, y) = λi : ei(A) +i ei(A)→ ei(A) (for x, y in Xi),

(84)

where λi = λi(eiA) = ρi(eiA) is a left and right unitor of A.

Similarly, a ⋆-map f : A → B in A is sent to the constant transversal

transformation

Df : DA→ DB : X→ A,

(Df)(x) = ei(f) : ei(A)→ ei(B) (x in tviX).
(85)
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Let T : X→ A be a lax functor. A (transversal) cone of T will be a pair

(A, h : DA → T ) formed of an object A of A (the vertex of the cone) and

a transversal transformation of lax functors h : DA → T : X → A; in other

words, it is an object of the ordinary comma category (D ↓ T ), where T is

viewed as an object of the category LxCmc(X,A).
By definition (cf. II.1.8), the transversal transformation h amounts to

assigning the following data:

- a transversal i-map hx : ei(A)→ Tx, for every i-cube x in X,

subject to the following axioms of naturality and coherence:

(tc.1) Tf.hx = hy (for every i-map f : x→0 y in X),

(tc.2) h commutes with positive faces, and agrees with positive degeneracies

and compositions:

h(∂αi x) = ∂αi (hx), (x in Xi),

h(eix) = T i(x).ei(hx) : ei(A)→0 T (eix) (x in Xi|i),

h(z) = T i(x, y).(hx+i hy).λ
−1
i : ei(A)→0 T (z) (z = x+i y in Xi).

As remarked in II.3.2, a unitary lax functor G : A → B preserves diag-

onalisation, in the sense that G.DA = D(GA); therefore G takes a cone

(A, h : DA→ T ) of T to a cone (GA,Gh) of GT .

6.3 Limits of degree zero

As defined in II.3.3, the (transversal) limit of degree zero lim(T ) = (L, t)
of a lax functor T : X → A between chiral multiple categories is a universal

cone (L, t : DL→ T ).
In other words:

(tl.0) L is an object of A and t : DL → T is a transversal transformation of

lax functors,

(tl.1) for every cone (A, h : DA→ T ) there is precisely one ⋆-map f : A→
L in A such that t.Df = h.

We say that A has limits of degree zero on X if all these exist.

Theorem II.3.6 proves that all limits of degree zero in A can be con-

structed from products, equalisers and tabulators - all of degree zero; it also
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gives a corresponding result for the preservation of such limits by unitary lax

multiple functors. (Tabulators, the basic form of higher limits, were sketched

in Part I and studied in Part II, Section 3.)

6.4 Multiple limits

The general definition of multiple limits in a chiral multiple category A was

given in II.4.4.

(a) For a positive multi-index i ⊂ N and a chiral multiple category X we say

that A has limits of type i on X if QiA has limits of degree zero on X.

(b) We say that A has limits of type i if this happens for all small chiral

multiple categories X.

(c) We say that A has limits of all degrees (or all types) if this happens for all

positive multi-indices i.

(d) We say that A has multiple limits of all degrees if all the previous limits

exist and are preserved by the multiple functors (see 6.1)

Dα
j : Qij(A)→ RjQi(A), Ej : RjQi(A)→ Qij(A) (j /∈ i). (86)

In this case, if A is transversally invariant one can always operate a choice

of multiple limits such that this preservation is strict.

The Main Theorem of Part II (II.4.5) shows that all multiple limits in A

can be constructed from multiple products, multiple equalisers and multiple

tabulators; again, it also gives a corresponding result for the preservation of

such limits by multiple functors.

We are now ready to prove the preservation properties of unitary adjoints.

6.5 Theorem (Adjoints and limits of degree zero)

Let (η, ε) : F ⊣ G be a colax/lax cm-adjunction, where both functors are

unitary.

Then G : A → B preserves all (the existing) limits of degree zero of lax

cm-functors T : X→ A.

Proof. The argument is the usual one. Let (A, h : DA(A) → T ) be a limit

of T in A. We want to prove that the pair (GA,Gh : G.DA(A) → GT ) is a

limit of GT in B.
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First, since G is unitary, GDA(A) = DB(GA) and the pair (GA,Gh) is

indeed a cone of the lax cm-functor GT : X→ B.

Moreover, given a cone (B, k′ : DB(a) → GT ) of GT , with transversal

components k′x : ei(B)→ GTx for every i-cube x in X, the adjunction gives

a family h′x : Fei(B) → Tx, that is a cone (FB, h′ : DA(FB) → T ) in A.

Therefore there is precisely one transversal map f : FB → A in A such that

h.Df = h′. This means precisely one transversal map g : B → GA in B

such that Gh.Dg = k′.

6.6 Remark

Since the lift 2-functor

Qi : LxCmc→ LxCmcN|j

preserves cm-adjunctions, it follows that, if the cm-category A has multiple

limits on X, these are preserved by a right adjoint cm-functor G : A → B

(under the previous unitarity assumptions).
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to appear.

Preprint available at: http://www.dima.unige.it/∼grandis/Mlc1.pdf

[GP9] M. Grandis - R. Paré, Limits in multiple categories (On weak and lax

multiple categories, II), Cah. Topol. Géom. Différ. Catég., to appear.
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