
Résumé. On construit une catégorie multiple, utile dans l’étude des adjunc-
tions multiples. Les objets sont les catégories multiples ‘laxes’. Les flèches
transversales sont les foncteurs multiples stricts tandis que les flèches en di-
rection positive sont des foncteurs multiples de ‘laxité mixte’, qui varient des
foncteurs laxes (en direction 1) aux colaxes (en direction∞).
Abstract. We construct a multiple category which occurs in the study of
multiple adjunctions. The objects are all the ‘lax’ multiple categories. The
transversal arrows are their strict multiple functors while the arrows in a pos-
itive direction are multiple functors of a ‘mixed laxity’, varying from the lax
ones (in direction 1) to the colax ones (in direction∞).
Keywords. Multiple category, weak double category, cubical set.
Mathematics Subject Classification (2010). 18D05, 55U10.

0. Introduction

This note is about strict, weak and lax multiple categories, an extension of
double categories that we have studied in the articles [5] – [9]. The first two
of them are about the 3-dimensional case, where intercategories (a kind of
lax triple category) cover and combine diverse structures like duoidal cate-
gories [1, 3, 12], Gray categories [10], Verity double bicategories [13] and
monoidal double categories [11]. The other papers [7] – [9] are about weak
and lax infinite-dimensional multiple categories, an extension of the strict
case introduced by Bastiani – Ehresmann [2].

A weak multiple category has objects, i-directed arrows in each direction
i ∈ N, ij-cells of dimension two for all i < j, and so on. Composition is
strict in the transversal direction i = 0 and weak in each direction i > 0, i.e.
associative and unitary up to invertible transversal comparisons. The trans-
versal composition has a strict interchange with all the geometric ones, while
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the latter have invertible ij-interchangers; more generally, chiral multiple
categories and intercategories have directed ij-interchangers, for i < j. A
(weak or lax) n-tuple category has indices in the ordinal n = {0, 1, ..., n−1}.

Here we investigate the different sorts of morphisms that can link chiral
multiple categories. We know, from [9], that in a general multiple adjunction
F a G the left adjoint is a colax (multiple) functor, while the right adjoint
is lax; the adjunction lives in a double category Cmc of chiral multiple cate-
gories, where the horizontal arrows are lax functors and the vertical ones are
colax functors.

But we have already seen in [5] that – in dimension three – there exists an
intermediate sort, called a colax-lax morphism, which is colax in direction 1
and lax in direction 2 (and of course strict in the transversal direction 0). Also
this case is important in concrete situations, when a triple adjunction F a G
has a colax-pseudo left adjoint and a pseudo-lax right adjoint, so that the
compositesGF and FG are colax-lax morphisms, forming a monadGF and
a comonad FG. Higher dimensional examples present higher dimensional
cases of ‘mixed laxity functors’.

With these motivations, we construct here a multiple category Cmc of
chiral multiple categories, indexed by the ordinal ω + 1 = {0, 1, ...,∞}. Its
transversal arrows are the strict multiple functors while, in direction p (for
1 6 p 6 ∞), the p-morphisms are ‘multiple functors of mixed laxity’, that
vary from the lax ones (in direction 1) to the colax ones (in direction∞). The
double category Cmc is embedded in Cmc, with indices in {1,∞}. Similar
frameworks are concerned with intercategories, and the n-dimensional case.

Acknowledgements. The authors would like to thank the anonymous referee
for detailed comments. This work was partially supported by GNSAGA, a
research group of INDAM (Istituto Nazionale di Alta Matematica), Italy.

1. Notation

We mainly follow the notation of [7] – [9]. The symbol ⊂ denotes weak in-
clusion. Categories and 2-categories are generally denoted as A,B, ...; weak
double categories as A,B, ...; weak or lax multiple categories as A,B, ...

The definitions of weak and chiral multiple categories can be found in
[7], or – briefly reviewed – in [8], Section 1. Here we only give a sketch of
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them, while recalling the notation we are using.
The two-valued index α (or β) varies in the set 2 = {0, 1}, also written

as {−,+}.
A multi-index i is a finite subset of N, possibly empty. Writing i ⊂ N

it is understood that i is finite; writing i = {i1, ..., in} it is understood that i
has n distinct elements, written in the natural order i1 < i2 < ... < in; the
integer n > 0 is called the dimension of i. We write:

ij = ji = i ∪ {j} (for j ∈ N \ i),
i|j = i \{j} (for j ∈ i).

(1)

For a weak multiple category A, the set of i-cells Ai is written as A∗,
Ai, Aij when i is ∅, {i} or {i, j} respectively. Faces and degeneracies,
satisfying the multiple relations (cf. [7], Section 2.2), are denoted as

∂αj : Ai → Ai|j, ej : Ai|j → Ai (for α = ±, j ∈ i). (2)

The transversal direction i = 0 is set apart from the positive, or geomet-
ric, directions. For a positive multi-index i = {i1, ..., in} ⊂ N∗ = N \{0},
the augmented multi-index 0i = {0, i1, ..., in} has dimension n+ 1, but both
i and 0i are said to have degree n. An i-cell x ∈ Ai of A is also called an
i-cube, while a 0i-cell f ∈ A0i is viewed as an i-map f : x →0 y, where
x = ∂−0 f and y = ∂+0 f . Composition in direction 0 is categorical (and
generally realised by ordinary composition of mappings); it is written as
gf = f +0 g, with identities 1x = id(x) = e0(x).

The transversal category tvi(A) consists of the i-cubes and i-maps of A,
with transversal composition and identities. Their family forms a multiple
object in Cat, indexed by the positive multi-indices.

Composition of i-cubes and i-maps in a positive direction i ∈ i (often
realised by pullbacks, pushouts, tensor products, etc.) is written in additive
notation

x+i y (∂+i x = ∂−i y),

f +i g : x+i y → x′ +i y
′ (f : x→ x′, g : y → y′, ∂+i f = ∂−i g).

(3)

The transversal composition has a strict interchange with each of the pos-
itive operations. The latter satisfy the unitarity, associativity and interchange
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laws up to transversally invertible comparisons (for 0 < i < j)

λix : (ei∂
−
i x) +i x→0 x (left i-unitor),

ρix : x+i (ei∂
+
i x)→0 x (right i-unitor),

κi(x, y, z) : x+i (y +i z)→0 (x+i y) +i z (i-associator),

χij(x, y, z, u) : (x+i y) +j (z +i u)→0 (x+j z) +i (y +j u)

(ij-interchanger).

(4)

The comparisons are natural with respect to transversal maps; λi, ρi and
κi are special in direction i (i.e. their i-faces are transversal identities) while
χij is special in both directions i, j; all of them commute with ∂αk for k 6= i
(or k 6= i, j in the last case). Finally the comparisons must satisfy various
conditions of coherence, listed in [7], Sections 3.3 and 3.4.

More generally for a chiral multiple category A the ij-interchangers χij
are not assumed to be invertible (see [7], Section 3.7).

Even more generally, in an intercategory we also have ij-interchangers
µij, δij, τij involving the units; this extension is studied in [5, 6] for the 3-
dimensional case, the really important one. Infinite dimensional intercate-
gories have been introduced in [7], Section 5, and mentioned marginally in
[8] and [9], but a further study must await good examples.

While a chiral multiple category A is a multiple object of ordinary cat-
egories tvi(A) indexed by positive multi-indices i = {i, j, k...} ⊂ N∗, the
structure Cmc that we shall construct will be indexed by ‘extended’ positive
multi-indices p = {p, q, r...} ⊂ {1, 2, ...,∞}.

2. Lax and colax multiple functors

We want to analyse which sorts of ‘morphisms’ A→ B between chiral mul-
tiple categories are of interest.

Two main kinds stand out:

(a) a lax (multiple) functor F : A → B is equipped with comparison i-maps
F i, for the i-directed composition (for t ∈ Ai|i and i-consecutive cubes x, y
in Ai)

F i(t) : eiF (t)→0 F (eit), F i(x, y) : F (x) +i F (y)→0 F (x+i y), (5)

GRANDIS & PARE -  A MULTIPLE CATEGORY OF MULTIPLE LAX CATEGORIES

- 198 -



(b) a colax (multiple) functor F : A → B has comparisons in the opposite
direction.

The definitions of such ‘functors’, with the transversal transformations
of both sorts, can be found in [7], Section 3.9 (or here, in a more general
form, in Sections 4 and 5.)

A pseudo functor is a lax multiple functor with (transversally) invert-
ible comparisons, and is made colax by the inverse comparisons. It is strict
when the comparisons are identities, so that the whole structure is strictly
preserved.

In a general multiple adjunction (defined and studied in [9]) these two
sorts appear together: the left adjoint F : A → B is colax while the right
adjoint G : B→ A is lax; many natural situations are of this type, with non-
invertible comparisons. We do not want to compose F and G, since this
would destroy their comparisons; yet we must give a unit and a counit.

This point was solved in [9], Section 2, where we constructed a (strict)
double category Cmc of chiral multiple categories. The lax and colax mul-
tiple functors form the horizontal and vertical arrows, respectively. They are
not to be composed, but linked by suitable double cells.

Finally, a colax-lax (multiple) adjunction F a G is a pair of adjoint
arrows in this double category. This means a colax functor F : A→ B, a lax
functor G : B→ A and two double cells of Cmc, called a unit and a counit

A

F
��

A B G // A

F
��

η ε

B
G

// A B B

(6)

They have components ηx : x→0 GF (x) and εy : FG(y)→0 y (for any
cube x in A and y in B), whose coherence conditions are based – separately –
on the comparisons of F andG. The triangular laws state that the composites
(ε | η) and (η

ε
) are identities.

If F is a pseudo functor, this is the same as an adjunction in the 2-
category LxCmc of chiral multiple categories, lax functors and their trans-
versal transformations (as proved in [9], Section 5). Symmetrically, if G is a
pseudo functor, this is the same as an adjunction in the 2-category CxCmc,
whose arrows are the colax multiple functors.
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These two particular cases, a pseudo-lax and a colax-pseudo adjunction,
do not cover the examples of [9]; furthermore, composing adjunctions of
these two kinds we come back to the general case.

Yet the particular cases are important, since the first gives a lax (multiple)
monad GF : A→ A and a lax comonad FG : B→ B, while the second case
gives a colax monad and a colax comonad.

3. Examples

Some examples, from [9], Section 1.7, will lead to new morphisms, interme-
diate between the two previous kinds, and also important in adjunctions. For
the sake of simplicity, we begin by working in dimension 3.

For a category C with (a choice of) pullbacks, we have a weak triple
category 3Span(C) of ‘spans of spans’. A 12-cube is a functor x : ∨×∨→
C (where ∨ is the formal-span category) and a 12-map f : x →0 y is a
natural transformation of such functors (a 3-dimensional item f : ∨×∨×2→
C).

Dually, if C has pushouts, there is a weak triple category 3Cosp(C)
whose highest cubes are ‘cospans of cospans’ x : ∧×∧→ C.

When C has both pullbacks and pushouts, we can form a chiral triple
category SC(C) = S1C1(C) where a 12-cube is a functor x : ∨×∧ → C;
the 1-directed composition is by pullbacks, the 2-directed one by pushouts.

An ordinary functor F : X → A between categories with pullbacks and
pushouts produces:

(a) a colax (triple) functor 3Span(F ) : 3Span(X) → 3Span(A) of weak
triple categories,

(b) a lax (triple) functor 3Cosp(F ) : 3Cosp(X)→ 3Cosp(A) of weak triple
categories,

(c) a colax-lax morphism SC(F ) : SC(X) → SC(A) of chiral triple cate-
gories.

We have thus a new morphism of an intermediate sort: SC(F ) is co-
lax for the 1-directed composition, realised by pullbacks, and lax for the
2-composition, realised by pushouts; the precise definition can be found in
[5], Section 5. Moreover, if F preserves pushouts, 3Cosp(F ) is a pseudo
functor and SC(F ) is a colax-pseudo morphism; and so on.
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Now, an ordinary adjunction between categories with pullbacks and push-
outs

F : X −→←− A :G, F a G, (7)

has three natural extensions to colax-lax triple adjunctions:

3Span(F ) a 3Span(G), 3Cosp(F ) a 3Cosp(G), SC(F ) a SC(G). (8)

The first is actually a colax-pseudo adjunction (becauseG preserves pull-
backs), and gives a colax triple monad on 3Span(X). The second is pseudo-
lax, and gives a lax triple monad on 3Cosp(X).

In the last, F ′ = SC(F ) is a colax-pseudo morphism while G′ = SC(G)
is a pseudo-lax morphism; their composites G′F ′ = SC(GF ) and F ′G′ =
SC(FG) make sense: they are colax-lax morphisms, and we still have a triple
monad on SC(X), where T = G′F ′ is a colax-lax morphism. (Multiple
monads will be studied elsewhere.)

All this can be extended to higher dimensions, for the weak multiple
categories Span(C), Cosp(C) and the chiral multiple categories SpCq(C),
SpC∞(C), S−∞C∞(C) (see [9], Section 1.3). We get thus morphisms of
‘mixed laxity’, colax up to a certain degree and lax above. (The reverse case
cannot occur, as we shall see below.)

Finally we recall from [9], Sections 1.5 – 1.6, a colax-lax adjunction of
weak triple categories, based on an ordinary category C with pullbacks and
pushouts:

F : Span(C) −→←− Cosp(C) :G, F a G, (9)

F works by pushouts and G by pullbacks. None of them is pseudo (in
general, of course), and we do not have an associated multiple monad (nor
comonad).

4. Mixed-laxity functors

We are now ready to begin the construction of a multiple category Cmc con-
taining different morphisms in different directions, that vary from the lax
case to the colax one.
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In degree 0, the objects of Cmc are the (small) chiral multiple categories,
and the transversal arrows (or 0-morphisms) are the strict multiple functors
F : A→0 B.

In degree 1 and direction p (for 1 6 p 6∞), a p-morphism R : A→p B
between chiral multiple categories will be a mixed-laxity functor which is
colax in all positive directions i < p and lax in all directions i > p. In
particular, this is a lax functor for p = 1 and a colax functor for p =∞.

Basically, R has components Ri = tvi(R) : tvi(A) → tvi(B), for all
positive multi-indices i, that are ordinary functors and commute with faces:
∂αi .Ri = Ri|i.∂

α
i (for i ∈ i).

Moreover R is equipped with comparison i-maps Ri (for t ∈ Ai|i and
x, y i-consecutive in Ai), either in the lax direction for i > p

Ri(t) : eiR(t)→0 R(eit), Ri(x, y) : R(x) +i R(y)→0 R(x+i y), (10)

or in the colax direction for 0 < i < p

Ri(t) : R(eit)→0 eiR(t), Ri(x, y) : R(x+i y)→0 R(x) +i R(y). (11)

All these comparisons are i-special, i.e. their two i-faces are transversal
identities, and must commute with the other faces ∂αj (for j 6= i in i)

∂αj Ri(t) = Ri(∂
α
j t), ∂αj Ri(x, y) = Ri(∂

α
j x, ∂

α
j y). (12)

Then they have to satisfy the axioms of naturality and coherence (see
[7], Section 3.9), either in the lax form (lmf.1 – 4) for i > p, or in the
transversally dual form for i < p.

Furthermore there is an axiom of coherence with the interchanger χij
(for 0 < i < j) which has three forms (where (a) corresponds to (lmf.5), (c)
corresponds to its dual and (b) is an intermediate case):

(a) for p 6 i < j (so that R is i- and j-lax), we have commutative diagrams
of transversal maps:

(Rx+i Ry) +j (Rz +i Ru)
χijR //

Ri+jRi ��

(Rx+j Rz) +i (Ry +j Ru)
Rj+iRj��

R(x+i y) +j R(z +i u)
Rj ��

R(x+j y) +i R(z +j u)

Ri��
R((x+i y) +j (z +i u))

Rχij

// R((x+j z) +i (y +j u))

(13)

GRANDIS & PARE -  A MULTIPLE CATEGORY OF MULTIPLE LAX CATEGORIES

- 202 -



(b) for 0 < i < p 6 j (so that R is i-colax and j-lax), we have commutative
diagrams:

(Rx+i Ry) +j (Rz +i Ru)
χijR // (Rx+j Rz) +i (Ry +j Ru)

Rj+iRj

��
R(x+i y) +j R(z +i u)

Ri+jRi

CC

Rj ��

R(x+j y) +i R(z +j u)

R((x+i y) +j (z +i u))
Rχij

// R((x+j z) +i (y +j u))

Ri

CC

(14)

(c) for 0 < i < j < p (so that R is i- and j-colax), we have commutative
diagrams as in (13), with all vertical arrows reversed.

The composition of p-morphisms R′R = R+pR
′ is easily defined: their

comparisons are separately composed.
Finally, a transversal map (F,G) : R →0 S of p-arrows will be a com-

mutative square

•
F //

•
R
��

•

•
S
��

•
0 //

p
� �= SF = GR

•
G

// •

(15)

with strict functors F,G and p-morphisms R, S. Commutativity means that
SF = GR as p-morphisms, including comparisons.

(As already remarked in [5], the ‘lax-colax’ case makes no sense: modi-
fying diagram (13) by reversing all arrowsRj would lead to a diagram where
no pairs of arrows compose.)

We have thus defined the double category dbl0p(Cmc) of chiral multiple
categories, strict functors and p-morphisms.

5. Two-dimensional cubes

To define a pq-cube (for 1 6 p < q 6 ∞) we have to adapt the axioms of
transversal transformation (again in [7], Section 3.9).
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A pq-cube ϕ : (U R
S V ) will be a ‘generalised quintet’ consisting of two

p-morphismsR, S, two q-morphisms U, V , together with – roughly speaking
– a ‘transversal transformation’ ϕ : V R 99K SU

A •
R //

•
U

��

ϕqq

•

•
V

��

•
p //

q
��ϕ : V R 99K SU.

• •
S

// B

(16)

This is an abuse of notation since there are no composites V R and SU in
our structure: the coherence conditions of ϕ are based on the four morphisms
R, S, U, V and all their comparison maps. Precisely, the cell ϕ consists of a
face-consistent family of transversal maps in B

ϕ(x) = ϕi(x) : V R(x)→0 SU(x), (for every i-cube x of A),

∂αi .ϕi = ϕi|i.∂
α
i (for i ∈ i),

(17)

so that each component ϕi : ViRi → SiUi : tvi(A) → tvi(B) is a natural
transformation of ordinary functors:

(nat) for all f : x →0 y in A, we have a commutative diagram of transversal
maps in B

V R(x)
ϕx //

V Rf

��

SU(x)

SUf

��
=

V R(y) ϕy
// SU(y)

(18)

Moreover ϕ has to satisfy the following coherence conditions (coh.a),
(coh.b), (coh.c) with the comparisons of R, S, U, V , for a degenerate cube
ei(t) (with t ∈ Ai|i) and a composite z = x+i y in Ai.

(coh.a) If p < q 6 i (so that R, S, U, V are lax in direction i), we have

GRANDIS & PARE -  A MULTIPLE CATEGORY OF MULTIPLE LAX CATEGORIES

- 204 -



commutative diagrams (with ϕ = ϕx+i ϕy):

eiV R(t)
ei(ϕt)//

V i(Rt)
��

eiSU(t)

Si(Ut)
��

V Rx+i V Ry
ϕ //

V i(Rx,Ry)
��

SUx+i SUy

Si(Ux,Uy)
��

V (eiRt)

V Ri(t)
��

S(eiUt)

SU i(t)
��

V (Rx+i Ry)

V Ri(x,y)
��

S(Ux+i Uy)

SU i(x,y)
��

V R(eit)
ϕ(eit)
// SU(eit) V R(z)

ϕ(z)
// SU(z)

(19)

(coh.b) If p 6 i < q (so that R, S are lax and U, V are colax in direction i),
we have commutative diagrams:

eiV R(t)
ei(ϕt)// eiSU(t)

Si(Ut)
��

V Rx+i V Ry
ϕ // SUx+i SUy

Si(Ux,Uy)
��

V (eiRt)

V Ri(t)
��

V i(Rt)

OO

S(eiUt) V (Rx+i Ry)

V Ri(x,y)
��

V i(Rx,Ry)

OO

S(Ux+i Uy)

V R(eit)
ϕ(eit)
// SU(eit)

SU i(t)

OO

V R(z)
ϕ(z)

// SU(z)

SU i(x,y)

OO
(20)

(coh.c) If i < p < q (so that R, S, U, V are colax in direction i), we have
commutative diagrams as in (19), with all vertical arrows reversed.

The p- and q-composition of these cubes are both defined using compo-
nentwise the transversal composition of a chiral multiple category. Namely,
for a consistent matrix of pq-cubes and x ∈ A

• •
R //

•U

��

• •
R′ //

• V

��

•

• W

��

ϕ ψ •
p //

q

��
• S //

•U ′

��

• S′ //

• V ′

��

•

• W ′

��

σ τ

• •
T

// • •
T ′

// •

(21)
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(ϕ+p ψ)(x) = ψ(Rx) +0 S
′(ϕx) : WR′Rx→ S ′V Rx→ S ′SUx,

(ϕ+q σ)(x) = V ′(ϕx) +0 σ(Ux) : V ′V Rx→ V ′SUx→ TU ′Ux.
(22)

The main technical points of the whole construction of Cmc are con-
cerned with these composition laws. We shall prove, in Theorem 10, that
they are well-defined, i.e. the cells above do satisfy the previous coherence
conditions. We also prove that these laws strictly satisfy unitarity, associa-
tivity and the middle-four interchange law.

6. Transversal maps of degree two

Given two pq-cubes

ϕ : (U R
S V ), ϕ′ : (U ′ R

′

S′ V
′) (23)

a transversal pq-map (F,G, F ′, G′) : ϕ →0 ϕ
′ (of degree two and dimen-

sion three) is a quadruple of strict functors forming four transversal maps of
degree 1

(F,G) : R→0 R
′, (F ′, G′) : S →0 S

′,

(F, F ′) : U →0 U
′, (G,G′) : V →0 V

′,
(24)

A R //

U

��

F
��

•
G

��

A R //

U

��

ϕtt

•

V

��

G

��
•

R′ //

U ′

��

=

ϕ′tt

•

V ′

��

•

V ′

��

•
p //
0
� �

q
��

•

F ′ ��

=

•
R′ //

F ′ ��
=

•

G′ � �

=

•
S′

// B •
S′

// B

and such that ‘the cube commutes’, in the sense that, for every i-cube x of
A, the following transversal maps of B coincide

G′(ϕx) : G′V R(x)→ G′SU(x), ϕ′(Fx) : V ′R′F (x)→ S ′U ′F (x). (25)

We have thus defined the triple category trp0pq(Cmc) of chiral multiple
categories, with strict functors and p- and q-morphisms (for 0 < p < q 6
∞). Its indices vary in the pointed ordered set {0, p, q}.
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7. Three-dimensional cubes

A pqr-cube (for 0 < p < q < r 6 ∞) will be a ‘commutative cube’ Π
determined by its six faces:

– two pq-cubes ϕ, ψ (the faces ∂αr Π),

– two pr-cubes π, ρ (the faces ∂αq Π),

– two qr-cubes ω, ζ (the faces ∂αp Π),

A R //

X

��

U
��

•
V

��

A R //

X

��

•

X′

��

V

� �
•

S //

Y

��

ϕ

•

Y ′

��

•

Y ′

��

•
p //
q

��r ��
•

U ′ ��

ω

•
R′ //

U ′ ��

π

ψ

•

V ′ ��

ζ

•
S′

//

ρ

B •
S′

// B

(26)

The commutativity condition means that, for every i-cube x of A, the
following composed transversal arrows in B coincide

S ′ωx.ρUx.Y ′ϕx : Y ′V R(x)→ Y ′SU(x)→ S ′Y U(x)→ S ′U ′X(x)

ψXx.V ′πx.ζRx : Y ′V R(x) = V ′X ′R(x) = V ′R′X(x) = S ′U ′X(x).

These cubes are composed in direction p, q, or r, by pasting cubes (with
the operations of 2-dimensional cubes). Again, these operations are associa-
tive, unitary and satisfy the middle-four interchange by pairs.

8. Higher items

A transversal pqr-map F : Π →0 Π′ between pqr-cubes is determined by
its boundary, a face-consistent family of six transversal maps of degree two
(and dimension three)

∂αj F : ∂αj Π→0 ∂
α
j Π′ (α = ±, j ∈ {p, q, r}), (27)

under no other conditions. Their operations are computed on such faces.
We have thus defined a quadruple category of chiral multiple categories,

with strict functors and p-, q-, r-morphisms (for extended positive integers
p < q < r). The indices vary in the pointed ordered set {0, p, q, r}.
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Finally, we have the multiple category Cmc (indexed by the ordinal ω +
1), where each cell of dimension > 4 (starting with the transversal maps of
degree 3 considered above and the cubes of dimension 4, not yet considered)
is coskeletally determined by a face-consistent family of all its iterated faces
of dimension 3.

In the truncated case we have the (n+ 1)-dimensional multiple category
Cmcn of (small) chiral n-multiple categories, where the objects are indexed
by the ordinal n = {0, ..., n − 1}, while Cmcn is indexed by n + 1 (the
previous∞ being replaced by n). But one should note that Cmcn is not an
ordinary truncation of Cmc, as its objects too are truncated.

Cmc is a substructure of the – similarly defined – multiple category Inc
of small infinite dimensional intercategories, and Cmcn is a substructure of
the (n+ 1)-dimensional multiple category Incn of small n-intercategories.

9. Comments

These multiple categories are related to various double or triple categories
previously constructed.

(a) A chiral 1-multiple category is just a category, and Cmc1 is the double
category of small categories, with commutative squares of functors as double
cells.

(b) A chiral 2-multiple category is a weak double category. We have studied
in [4], Section 2, the double category Dbl of weak double categories, with lax
and colax functors – where double adjunctions live. Later Dbl was extended
to a triple category SDbl of weak double categories, with strict, lax and colax
functors (see [7], Section 1); in the latter all 2-dimensional cells are inhabited
by possibly non-trivial transformations, while in Cmc2 the 01- and 02-cells
are ‘commutative squares’, inhabited by identities. Thus Cmc2 extends Dbl
but is a triple subcategory of SDbl.

(c) As we have recalled, multiple adjunctions live in the double category
Cmc of chiral multiple categories, with lax and colax multiple functors ([9],
Section 2). This can be extended to a triple category SCmc of chiral multiple
categories, with strict, lax and colax functors, where again all 2-dimensional
cells are inhabited by possibly non-trivial transformations. Then SCmc con-
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tains the triple category obtained from Cmc by restricting to the multi-indices
i ⊂ {0, 1,∞}.
(d) The quadruple category Inc3 of 3-dimensional intercategories is an ex-
tension of the triple category ICat of [9], Section 6, obtained by adding strict
functors in the transversal direction and ‘commutative transversal cells’.

10. Theorem

The structure Cmc constructed above is indeed a strict multiple category.

Proof. We prove the non-obvious points, listed at the end of Section 5.

(a) First we prove that the the composition law ϕ +p ψ of pq-cubes is well-
defined by the formulas (22)

(ϕ+p ψ)(x) = ψ(Rx) +0 S
′(ϕx) : WR′Rx→ S ′V Rx→ S ′SUx, (28)

in the sense that this family of transversal maps does satisfy the conditions
(coh.a) – (coh.c) of Section 5.

The argument is an extension of a similar one for the double category Dbl
in [4], Section 2, or for the double category Cmc in [9], Section 2, taking
into account the mixed laxity of the present ‘functors’. We prove the three
coherence axioms with respect to a composed cube z = x +i y in Ai; one
would work in a similar way for a degenerate cube ei(t), with t ∈ Ai|i.

First we prove (coh.a), letting p < q 6 i, so that all our functors
R,R′, S, S ′, U, V,W are lax in direction i. This amounts to the commuta-
tivity of the outer diagram below, formed of transversal maps (the index i
being omitted in +i and in all comparisons Ri, R

′
i, etc.)

WR′Rz
ψRz // S ′V Rz

S′ϕz // S ′SUz

WR′(Rx+Ry)
ψ(Rx+Ry) //

WR′R

OO

S ′V (Rx+Ry)

S′V R

OO

S ′S(Ux+ Uy)

S′SU

OO

W (R′Rx+R′Ry)

WR′R
OO

S ′(V Rx+ V Ry)
S′(ϕx+ϕy)//

S′V R
OO

S ′(SUx+ SUy)

S′SU
OO

WR′Rx+WR′Ry
ψRx+ψRy

//

WR′R
OO

S ′V Rx+ S ′V Ry
S′ϕx+S′ϕy

//

S′V R
OO

S ′SUx+ S ′SUy

S′SU
OO
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Indeed, the two hexagons commute by (coh.a), applied to ϕ and ψ, re-
spectively. The upper rectangle commutes by naturality of ψ on Ri(x, y).
The lower rectangle commutes by axiom (lmf.2) (in [7], Section 3.9), on the
lax functor S ′, with respect to the transversal i-maps ϕx : V R(x)→0 SU(x)
and ϕy : V R(y)→0 SU(y)

S ′(ϕx+iϕy).S ′i(V R(x), V R(y)) = S ′i(SU(x), SU(y)).(S ′(ϕx)+iS
′(ϕy)).

The proof of (coh.c) is transversally dual to the previous one. To prove
(coh.b) we let p 6 i < q, so thatR,R′, S, S ′ are lax, while U, V,W are colax
in direction i. We reverse the comparisons U i, V i,W i in the diagram above

WR′Rz
ψRz // S ′V Rz

S′ϕz // S ′SUz
S′SU
� �

WR′(Rx+Ry)
ψ(Rx+Ry) //

WR′R

OO

S ′V (Rx+Ry)

S′V R

OO

S′VR��

S ′S(Ux+ Uy)

W (R′Rx+R′Ry)

WR′R
OO

WR′R ��

S ′(V Rx+ V Ry)
S′(ϕx+ϕy)// S ′(SUx+ SUy)

S′SU
OO

WR′Rx+WR′Ry
ψRx+ψRy

// S ′V Rx+ S ′V Ry
S′ϕx+S′ϕy

//

S′V R
OO

S ′SUx+ S ′SUy

S′SU
OO

and note that the two hexagons commute, by (coh.b) on ϕ and ψ, while the
rectangles are unchanged.

(b) The composition law ϕ +p ψ has been defined via the composition of
transversal maps, and therefore is strictly unitary and associative.

(c) Finally, to verify the middle-four interchange law on the four double
cells of diagram (21), we compute the composites (ϕ +p ψ) +q (σ +p τ)
and (ϕ+q σ) +p (ψ +q τ) on an i-cube x, and we obtain the two transversal
maps W ′WR′Rx→0 T

′TU ′Ux of the upper or lower path in the following
diagram

W ′WR′Rx
W ′ψRx// W ′S ′V Rx

W ′S′ϕx//

τV Rx
��

=

W ′S ′SUx

τSUx
��

T ′V ′V Rx
T ′V ′ϕx

// T ′V ′SUx
T ′σUx

// T ′TU ′Ux
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The square commutes, by naturality of the double cell τ (with respect
to the transversal map ϕx : V R(x) →0 SU(x)), so that the two composites
coincide.
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Department of Mathematics and Statistics
Dalhousie University
Halifax NS
Canada B3H 4R2
pare@mathstat.dal.ca

GRANDIS & PARE -  A MULTIPLE CATEGORY OF MULTIPLE LAX CATEGORIES

- 212 -


