
Abstract. An autograph is a set A with an action of the free monoı̈d with 2

generators, and an autographic monad is a monad on the topos of autographs.

In previous papers we have shown that knots and double-categories are ex-

amples, and we proved that basic graphic algebras are autographic algebras.

In this third paper we add three new results. We explain how to get concrete

representations of autographs and conversely how to collect any representa-

tion into an autograph. We precise previous results and extend them, showing

that knots and general links and grid diagrams are autographs, and that gen-

eral graphic algebras are some autographic algebras.

Résumé. Un autographe est un ensemble A équipé d’une action du monoı̈de

libre à deux générateurs, une algèbre autographique est une algèbre d’une

monade sur le topos des autographes. Dans deux articles précédents nous

avons vu que les diagrammes de nœuds et les 2-graphes sont des exemples,

et que les algèbres graphiques basiques sont autographiques.

Dans ce troisième article, nous ajoutons trois résultats nouveaux. Nous mon-

trons comment représenter concrètement les autographes, et réciproquement

comment collecter une représentation en un autographe, nous expliquons

précisément comment les nœuds, les entrelacs, les diagrammes de grilles, et

aussi les catégories doubles, sont des exemples d’autographes, et nous iden-

tifions les algèbres graphiques générales avec des algèbres autographiques.

Keywords. graph, autograph, autographic algebra, autographic monad, knot,

link, double category.
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1. Category Rep(A, d, c) of representations of an autograph

Of course the construction in this section could work when Set is replaced by

an arbitrary topos E , providing Auto[Rel(E)] and Auto[E ], and consequently
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with the topos Agraph we would get Auto[Agraph], etc.

Definition 1.1. 1 — An autograph is the data A = (A, dA, cA) of a set A
and two maps dA : A → A, cA : A → A. Abusively, often the set A will

be denoted by A, and dA and cA are denoted by d and c. If we denote by

FM(2) = {d, c}∗ the free monoı̈d on two generators d and c (and with unit

v) then an autograph is an action A(−) of FM(2), with A(υ) = A,A(d) =
dA, A(c) = cA. We represent a ∈ A with dAa = v and cAa = w, by:

a : v → w, or v
a
→ w.

2 — The category of autographs is Agraph = SetFM(2) — a topos of course

— a morphism in it from A to A′ being a map f : A→ A′ satisfying

d′fa = fda, c′fa = fca.

3 — An autocategory [3, Definition 6.1] is an autograph with identifier and

a unitary and associative composition for consecutive arrows.

The purpose of this section is to show how to represent concretely such

autographs, and, starting from these representations, how to elaborate new

“collected” autographs.

1.1 From Autorelations to autographs, and conversely

Proposition 1.2. Considered as sets we have FM(2) = FA(()) = FA({f})
(the free autograph on one generator, see [3]), and they consist in words

written with c and d, with maps d(−) and c(−) given by m 7→ dm, m 7→ cm.

By a (binary) Autorelation we mean a family of sets R = (Rm)m∈FM(2), with

Rm ⊆ Rdm ×Rcm,

or with the induced “projections” cm : Rm → Rcm and dm : Rm → Rdm.

The set of these R is denoted by Auto[Rel].

In such an R, each element ξ in R() or in any Rm generates an image Rξ of

FM(2) which is an autograph, and the set R∞ disjoint union of the Rm

R∞ = ∪̇mRm = ∪m (Rm × {m}),

is itself an autograph, union of these Rξ. Furthermore πR : (ξ,m) 7→ m is

a morphism of autographs

πR : R∞ → FA(()).
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Conversely, given a morphism of autographs π : S → FA(()) we can recon-

struct an autorelation, with Rm = π−1(m).

Example 1.3. Given a data B of 3 sets X, Y, Z and 6 maps cX : X → Y ,

cY : Y → Z, cZ : Z → X , and dX : X → Z, dY : Y → X , dZ : Z → Y ,

we get maps X
(cX ,dX)
−→ Y × Z, Y

(cY ,dY )
−→ Z × X , Z

(cZ ,dZ)
−→ X × Y , and a

finite generator of an autorelation

X ⊂ Y × Z, Y ⊂ Z ×X, Z ⊂ X × Y,

the associated autorelation B being given by B() = X and

Bc = Y,Bd = Z,Bcc = Z,Bdc = X,Bcd = X,Bdd = Y,Bccc = X, . . .

Example 1.4. With notations from [3, Proposition 3.1.], interpreting each

Rm as N, with “projections” c(n) = t1(n) = 3n + 1, d(n) = t2(n) =
3n+2, we get an autorelation “on” N = FA(3N), of which the corresponding

autograph is FA(3N)× FA({f}), equipped with a morphism

FA(3N)× FA({f})→ FA({f}).

Proposition 1.5. An autograph A = (A, dA, cA) determines A
(dA,cA)
−→ A×A,

and so we get an autorelation “on” A, as in examples 1.3 and 1.4.

1.2 SetR(A, d, c) of relational representations of an autograph

Definition 1.6. A relational representation (or a spanning representation) of

an autograph (A, d, c) is a data ϕ = (Φ, φd, φc), with for each f ∈ A, the

data of a set Φ(f) and of a span of functions

Φ(df)
φd(f)
←− Φ(f)

φc(f)
−→ Φ(cf),

which are the induced “projections” associated to a specified inclusion

Φ(f) ⊂ Φ(df)× Φ(cf).

We denote byR(A, d, c) the set of these relational representations.
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Proposition 1.7. Given a relational representation ϕ = (Φ, φd, φc) of an

autograph A = (A, dA, cA), we collect it over A, constructing a map of

autograph

πϕ : Σϕ = (Sϕ, dϕ, cϕ) −→ (A, dA, cA) = A

with

Sϕ = {(f, u); f ∈ A, u ∈ Φ(f)},

dϕ(f, u) = (φd(u), dAf), cϕ(f, u) = (φc(u), cAf), qϕ(f, u) = f.

Example 1.8. A relational representation of FA(()) is exactly an autorela-

tion as in 1.2, so the set Autorel[Set] of autorelations is R(FA)(()), and the

πR is a case of a πϕ.

1.3 From autorelations to automaps, and conversely

Definition 1.9. We define Auto[Set] as the set of automaps, an automap

being a sequence f = (fm)m∈FM(2) of maps fm : Gdm → Gcm, each Gn

being the graphic of fn,

Gn = {(x, y); x ∈ Gdn, y ∈ Gcn, y = fn(x)} ≃ Gdn.

Of course such an automap is an autorelation, and Auto[Set] ⊂ Auto[Rel].

Proposition 1.10. An autorelation R determines an automap R̂ given by

maps R̂m : P(Rcm)→ P(Rdm) with P(E) the set of subsets of E, and

R̂m(X) = {y ∈ Rdm; ∃z ∈ Rm, (cm(z) ∈ X ∧ dm(z) = y)}.

So we get an injection −̂ : Auto[Rel] −→ Auto[Set].

1.4 Set F(A, d, c) of functional representations of an autograph

Definition 1.11. A functional representation of an autograph (A, d, c) is a

data (Φ, φ), with for each f ∈ A, the data of sets Φ(df) and Φ(cf), and of a

function

φ(f) : Φ(df)→ Φ(cf).

The set of these functional representations is denoted by F(A, d, c), and as a

functional representation is a special case of a relational representation —

with Φ(f) = Φ(df) — we have F(A, d, c) ⊂ R(A, d, c).
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Proposition 1.12. The definition in the construction of Auto[Set] in Propo-

sition 1.9 determines each automap as a functional representation of the

free autograph FA(()), and Auto[Set] as a subset of F(FA(())). A fortiori,

Auto[Rel] being a subset of Auto[Set], it is also a subset of F(FA(())).

Proposition 1.13. As in the case of Proposition 1.10 we have an injection

−̂ : R(A, d, c) −→ F(A, d, c).

Proposition 1.14. We get a category Rep(A, d, c) of representations of an

autograph, with objects the elements of F(A, d, c), a morphism from (Φ, φ)
to (Φ′, φ′) being a double collection (tdf , t

c
f )f∈A of maps

tdf : Φ(df)→ Φ′(df), tcf : Φ(cf)→ Φ′(cf),

such that

tcfφf = φ′
f t

d
f .

1.5 The regular representation, object of Rep(A, d, c)

The natural representation for a category is given by Yoneda’s lemma, with

at first the following basic fact. For each category C we have a faithful rep-

resentation by a functor UC : C −→ Set, given by UC(A) = ∪̇X Hom(X,A),
and UC(f)(u) = f.u, when f : A → B. In the special case where C is the

free category of paths in a graph G, this provides the representation of G by

action on its paths. Similarly for an autograph (A, d, c) we have:

Proposition 1.15. For each autograph A we have the following faithful reg-

ular representation f 7→ (Γ(f), γ(f)) with:

1 — The set Γ(f) of (d, c)-paths (cf. [3, Definition 1.4]) with end f i.e.

(zn)0≤n≤k−1, with cz0 = dz1, cz1 = dz2 . . . , czk−2 = dzk−1 and czk−1 = f.

2 — A map γ(f) : Γ(df)→ Γ(cf), given by concatenation with f , by

γ(f)((zn)0≤n≤k−1) = (z′n)0≤n≤k,

with z′n = zn if n < k, and z′k = f .

Shortly if (zn)0≤n≤k−1 = z, then (z′n)0≤n≤k = fz, or γ(f)(z) = fz.

So (A, d, c) can be identified with a special element of F(A, d, c) or object

of Rep(A, d, c).
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2. Double categories, Knots, Links, Grid Diagrams

In the first paper of this series [3] we obtained that the topos Agraph of auto-

graphs is a common setting for knots and 2-categories or double categories.

Here this result is strengthened and extended, using 2-dimensional paths in

double categories and grid diagrams.

2.1 Double categories and knots as well formed 2-dim words

Proposition 2.1. A double category C is determined by an associated auto-

category Ass(C), according to the following picture to represent a 2-block b
as an autograph:

A 2-block b as an autograph

b cb

db

cdbddb

ccb

dcb

cddb

  =

dccb

cccb

  =

ccdb

ddcb

  =

dddb

cdcb

  =

dcdb

idb

icb

idcb

iccb

iddb  icdb

Proof. A 2-block b (fig.[1] below) is considered as an arrow from its two

oriented versions, its vertical orientation bv and its horizontal orientation bh.

Then bv is an arrow from dvb to cvb, etc. (fig.[2]). Hence (fig.[3]) a resulting

autograph, which can be completed and redrawn as in Proposition 2.1 above.

The full description of Ass(C) is explained in [3, Proposition 7.1], but we

have to correct a typos there: in the picture an autoarrow Ibv = (bv)
θ : bv →

bv should be added.
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In particular we have shown how the two horizontal and vertical compo-

sitions, denoted by∞ and 8

b b
′

a a
′

and compatible according to

(a′∞a)8(b′∞b) = (a′8b′)∞(a8b),

are replaced by a unique composition law.

Proposition 2.2. Any knot or link can be presented as a 2-dim rectangular

“well formed” word, on a rectangle Rn,m of dimension n × m made with

the tiles from the set T of the 9 following tiles (a word is well formed if each

line decoration into any tile arriving on a side of this tile is pursued in the

next adjacent tile). Of course it is a map L : Rn,m → T, and of course such

a data is representable as an autograph.
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Consequently a link is a 2-dim path in the double category generated by these

tiles (or in the corresponding autograph according to Proposition 2.1).

Remark 2.3. Hence the question of isotopy type of links becomes a ques-

tion of 2-dim rewriting, as explained in [2] (This is also near from studies

on mosaics [6]). There are vertical (or horizontal) dilatations: if a column

consists only in empty tiles or horizontal line tiles, we can add a new similar

column juxtaposed to the first one; and furthermore they are analogous to

the three Reidemeister moves.

Example 2.4. The following 2-dim word is a borromean link.

2.2 Knots, from their knot diagrams

In the paper [3, section 4] for a knot K we introduced an associated auto-

graph As(K), used for trefoil or borromean knot and link. The following

Proposition 2.5 strengthens this result.

Proposition 2.5. If K is an alternating knot, then from As(K) we recover the

Gauss’code of K, and so this knot is determined by its associated autograph.
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For a general knot a modification of the construction is necessary, fol-

lowing Proposition 2.6

Proposition 2.6. If K is an arbitrary knot, then from the autograph As(Kaa)
— with K

aa defined in the proof — we recover the Gauss’code of K, and so

this knot is determined by this autograph.

Proof. If the knot is not alternating, then we cannot recover the Gauss’code

from As(K). For example the K in the next picture is a not-alternating knot,

and we consider an arc which is not going in an alternative way, as e from

b to h, passing over in two consecutive crossings; hence we have c and f
arriving to e, but in As(K) we have no information on the order in which

these arrows arrived on e: following e which one is the first met, c or f? So

before considering As(K) we decide to modify K into Kaa as follows. In

K we observe arcs which are alternating, as d, f , g, h, and the others, a, b,
c, e are said to be not-alternating. Each of these not-alternating arcs (see in

Kaa) is now decomposed by introducing autoarrows, 2, 5, 8, 12, and we have

a = 1.2.3, b = 4.5.6, c = 7.8.9, e = 11.12.13. Now c or rather 9 arrives to

11, whereas 14 arrives to a different arc, namely 13, and we can recover the

Gauss’code of K from As(Kaa). For the Gauss’code see [5, p.666].

K

a

b
c

d
e

f

g

h

10

2

Kaa

13

4

5

 6

7

11
12

13

14

15

16

8
9

2.3 Grid diagrams and links isotopy types

Proposition 2.7. Any link can be associated to an autograph determining its

isotopy type.
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Proof. A Grid diagram [7], is an n × n square with n triangles and n cir-

cles placed in distinct places, such that each row and each column contains

exactly one triangle and one circle. In the next picture the first left drawing

is an example with n = 8. Given such a grid, we join the triangle and the

circle in each column by continuous straight vertical lines (second step in the

picture), and then in each row we join the triangle and the circle by a straight

line passing under the previously vertical straight lines it meets (third step).

And finally (fourth step) we look at a link. In this example it is a borromean

link (but presented differently from the picture given in [3, Example 4.5]).

Another borromean example is furnished by Example 2.4.

grid diagram colums over rows under link

Now, as any isotopic type of link can be obtained in this way [1], we con-

clude if we can show that any grid can be determined by an autograph, and

this is obvious since a grid is a graph.

3. Graphic monads among autographic monads

3.1 The topos Agraph of autographs, between Graph and Set

3.1.1 Autographs and graphs

According to [3, def.1.1., p.66], [4, def.1.1.-1.2, p.152], we have:

Definition 3.1 (Graphs). Let G(2) be the category with objects υ0 and υ1,
five non-identity arrows

γ0, δ0 : υ1 → υ0, ι : υ0 → υ1, δ, γ : υ1 → υ1,
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identities on υ1, υ0, equations: δ0.ι = 1υ0 , γ0.ι = 1υ0 , γ = ι.γ0, δ = ι.δ0.

υ0
ι // υ1

δ0

ww

γ0

gg

δ

��

γ

GG

A presheaf G on G(2), i.e. an object of Graph = SetG(2) is named a graph.

Any c ∈ G(υ0) is named a vertex or a carfour, and if f ∈ G(υ1), f is

named an arrow; the fact that G(δ0)(f) = c and G(γ0)(f) = c′ is written:

f : c→ c′.

3.1.2 The comparison V and its equivalent W

With [4, Prop.1.4 p.153, Prop.2.2. p.154] the comparison between auto-

graphs and graphs is given by a functor V : Graph→ Agraph. :

Proposition 3.2. The categories Agraph and Graph are toposes, inscribed

in the sequence

Graph
V
→ Agraph

U
→ Set,

where U = evav
FM(2) is the monadic forgetful functor given by evaluation at

v, (A, (dA, cA)) 7→ A, and V = Φ = (−).φ is the monadic functor induced

by the map φ : FM(2)→ G(2); v, c, d 7→ v1, γ, δ.

Remark 3.3. In a graph G the G(ι) = φ associates to each vertex an arrow.

Hence we have the more general situation of flexigraph in [3, Defg. 5.4.]. An

autograph A appears as a special case of a flexigraph, when φ = 1A. Let us

recall also from [4] that with graphs we have 2 types of arities (vertices and

arrows), wheras with autographs only 1 type (arrows) is considered. Next

Proposition 3.4 clarifies thist point.

Proposition 3.4. The category G(2) is the Karoubian envelope of the monoı̈d

M(2) = {1, c, d}, with equations c2 = c, d2 = d, cd = d, dc = c, and

Graph is equivalent to SetM(2). Up to this equivalence, the functor V is the

functor W = Setφ̄ induced by the composition with the monoı̈d quotient

homomorphism φ̄ given by v 7→ 1, c 7→ c, d 7→ d:

φ̄ : FM(2)→M(2),

W = Setφ̄ : SetM(2) → SetFM(2) .
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3.2 From graphic monads to autographic monads

In the second paper of this series [4], via graphic monoı̈ds of Lawvere we

have shown that basic Albert Burroni’s graphic algebras are autographic al-

gebras; and especially as autographic algebras we get categories as well as

autocategories. Now we have to precise the study for graphic algebras which

are not necessarily basic. Albert Burroni defined a graphic algebra as an

algebra of a monad on Graph (a graphic monad); similarly we defined an

autographic algebra as an algebra of a monad on Agraph (an autographic

monad). So we have to complete the result in the general case, for algebras

of arbitrary monads on Graph = SetG(2) ≃ SetM(2) and their transport via

the W in Proposition 3.4.

Generally speaking, for any homomorphism of monoı̈ds ϕ : F →M the

induced functor

Setϕ : SetM → SetF

is monadic, This works for our W = Setφ̄ : SetM(2) → SetFM(2) from Propo-

sition 3.4, as well as for any quotient map of monoı̈ds

qM : FM(2)→M,

the corresponding WqM = SetqM , its left adjoint LanqM , TM = (−)qM LanqM

and TM = (TM , r) the associated idempotent monad on SetFM(2) = Agraph.

So, for a given qM — see [4, Proposition 2.6]) — the topos SetM is a reflex-

ive subcategory of Agraph, with for any E = (A, d, c) a reflexion

rE : E → TM(E),

given by a quotient set TM(E) = TM(A, d, c) = A/[qM ], quotient of A by

the smallest congruence [qM ] on E compatible with qM .

Proposition 3.5. With the notations above for a given qM : FM(2) → M
(and the associated monad TM ) on Agraph, we consider another monad

T = (T, η, µ) on SetM . Then the functor

(SetM ]T
UT−→ SetM

WqM−→ SetFM(2) = Agraph

determines a monad T̄ = (T̄ , η̄, µ̄) on Agraph, of which an algebra θ̄ on E
is a composition θ̄ = λθ of an algebra θ = rE θ̄ of T on TM(E) and of a
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special section λ = θ̄ηE/[q] of the reflexion rE : E → TM(E).
Consequently we have

(SetM ]T ≃ AgraphT̄ ∩ AgraphTM .

In particular this is true for M = M(2) and the corresponding W , and al-

gebras of graphic monad are such special algebras of autographic monads.

Proof. With (T̄ = (T̄ , η̄, µ̄) the monad associated to WqMUT we have, with

TM(E) = E/[q] = A/[qM ] and rE : E → E/[q], the following formula:

T̄ (E) = T (E/[q]), η̄E = ηE/[q]rE , µ̄E = µE/[q], T̄
2(E) = T 2(E/[q]).

If (E, θ̄) is a T̄-algebra on E, then we introduce θ = rE θ̄, and so Tθ =
T (rE θ̄). The T̄-associativity θ̄T̄ θ̄ = θ̄µ̄E implies, by composition on the left

with rE , rE θ̄T (rE θ̄) = rE θ̄µ̄E i.e. the T-associativity: θ.Tθ = θµE/[q]. Also

from T̄-unitarity we obtain T-unitarity, θηE/[q] = 1E/[q], from θ̄η̄E = 1E] by

composition on the left with rE: θηE/[q]rE = rE . So we obtain (E/[q], θ) a

T-algebra on E/[q].
In fact introducing λ = θ̄ηE/[q], we obtain λθ = θ̄, and rEλ = 1E/[q].

For the first we have θ̄ηE/[q]rE θ̄ = θ̄, i.e. θ̄η̄E θ̄ = θ̄. For the second, by

composition on the right with the epimorphism θ we get rEλθ = θ, or

rE θ̄ηE/[q]θ = θ, θηE/[q]θ = θ.

So any θ̄, T̄-algebra on E, determines two things: θ, an algebra on E/[q],
and λ, a section of rE : E → E/[q]. Conversely, given θ and λ, we recover

θ̄ = λθ.

Especially, a T-algebra is a T̄-algebra on a E such that E ≃ E/[q], i.e. a E
equipped with a TM -algebra structure (λ = 1E = rE).
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Université Paris Diderot Paris 7. IMJ-PRG. UMR 7586

Bâtiment Sophie Germain. Case 7012

75205 Paris Cedex 13

rene.guitart@orange.fr

- 80 -


