
Résumé. Cet article utilise la structure de Con (la 2-catégorie des esquisses
pour les univers arithmétiques (AU) de l’auteur) pour obtenir des résultats
constructifs, indépendants de la base pour les topos de Grothendieck (S-topos
bornés) comme espaces généralisés. Le principal résultat montre comment
une application extension U : T1 → T0 peut être vue comme un fibré, trans-
formant les points de base (modèles de T0 dans un topos S avec objet des
nombres naturels) en fibres (espaces généralisés au-dessus de S). Parmi les
caractéristiques de ce travail, on notera : une comparaison entre modèles
stricts ou non-stricts, utilisant les propriétés des objets de Con ; l’utilisation
des produits tensoriels de Gray pour relier la transformation syntactique de
modèles par des 1-cellules de Con et les transformations sémantiques par
des AU-foncteurs non stricts ; et l’utilisation de 2-fibrations pour indexer au-
dessus d’une 2-catégorie de topos de base S.
Abstract. The paper uses structures in Con, the author’s 2-category of
sketches for arithmetic universes (AUs), to provide constructive, base-
independent results for Grothendieck toposes (bounded S-toposes) as gen-
eralized spaces.
The main result is to show how an extension map U : T1 → T0 can be viewed
as a bundle, transforming base points (models of T0 in any elementary topos
S with nno) to fibres (generalized spaces over S).
Features of the work include comparison of strict and non-strict models, us-
ing properties of the objects of Con; the use of Gray tensor products to relate
syntactic transformation of models by 1-cells in Con and semantic transfor-
mations by non-strict AU-functors; and the use of 2-fibrations to index over
a 2-category of base toposes S .
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1. Introduction

If T is a geometric theory, then the generalized topological space – in Gro-
thendieck’s sense – of models of T is realized mathematically as its category
of sheaves, the classifying topos S[T].
S here, the base, could be any elementary topos with nno that is able

to support the infinite disjunctions appearing in T, and if those disjunctions
are countable then any such S will do. So which topos S[T] is the true
incarnation of the generalized space?

[12] developed a 2-category Con whose objects are, in sketch form, such
theories; and whose 1-cells are the maps got if one replaces the classifying
topos S[T] by a classifying arithmetic universe AU〈T〉, which can thus be
understood as a base-independent incarnation of the space.

The present paper shows how to recover the base-dependent topos theory,
but in an indexed way, using 2-fibrations, that allows for change of base.

As a significant generalization of the indexed construction S 7→ S[T], we
also relativize by looking at certain maps U : T1 → T0 in Con considered
as bundles – that is to say, transformations from base point M (model of
T0) to space (fibre of U over M ). If M is in an elementary topos S, then
we construct an S-geometric theory T1/M of models of T1 that are reduced
to M by U , and then the fibre, as generalized space in the topos sense, is
S[T1/M ].

Our main result, Theorem 5.12, is that the whole construction (S,M) 7→
S[T1/M ] is indexed over pairs (S,M). This is formalized 2-fibrationally
using a new notion (Definition 4.4) of local representability.

Throughout this paper, every elementary topos will be assumed to have
a natural numbers object. We write eTop for the 2-category of elementary
toposes with nno, geometric morphisms (not necessarily bounded), and nat-
ural transformations.

1.1 Generalized spaces and their categories of sheaves

Let us elaborate on the underlying question. Grothendieck discovered a
huge generalization of the notions of topology and continuity, with a gen-
eralized space represented concretely by its category of sheaves (continuous
set-valued maps).
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This is point-free topology, analogous to representing a space X by its
frame ΩX of opens, albeit on a much grander scale.

[10] made an explicit attempt to make the analogous notational distinc-
tion, writingX for the generalized space and SX for its category of sheaves.
If [T] is written for the space of models of a geometric theory T, then S[T]
can be read either as “Sheaves over the space [T]” or as “the (geometric)
mathematics generated over the category S of sets by adjoining a generic
model of T”.

That paper was applied to domain theory, and in particular the ideal
completion of information systems (the compact bases) for SFP-domains.
These were studied using a generic SFP-domain, a geometric morphism
[IS][idl] → [IS], where [IS] classifies SFP information systems and the fi-
bre over one of them is its ideal completion. (We shall see a more general
account of such bundles in Section 5.2.)

But what is this category S of sets, within which one constructs the
sheaves, and over which one constructs S[T]? To Grothendieck it would
have been classical set theory Set. With the subsequent discovery of ele-
mentary toposes, it was found that any elementary topos S with nno could
be used as base for a notion of geometric theory and for constructing gener-
alized spaces (bounded geometric morphisms into S) as classifying toposes.
S-indexed categories are used to capture the idea that an object of S can be
used as an indexing set for a colimit diagram (see [7, B1.4]).

That relieves the classical dependency, but unfortunately creates a prob-
lem of its own: even if (as in [10]) the working is foundationally robust, one
still has to choose a base S in order to have a mathematical incarnation S[T]
of the generalized space [T].

In its conclusions, [10] proposed that S might be dispensed with if all
the working could be reduced to that of arithmetic universes (AUs), with fi-
nite colimits and list objects instead of “S-indexed” colimits. By [8], every
elementary topos with nno is an AU, and for any geometric morphism f be-
tween them, the inverse image part f ∗ is a (non-strict) AU-functor. Then the
infinities of geometric logic, supplied extrinsically by S, would be replaced
where possible by intrinsic infinities supplied by the list object construction.

The ultimate ambition would be to develop an entirely “arithmetic” ac-
count of generalized topology, using AUs AU〈T〉, to replace the present
geometric account using Grothendieck toposes. How far that can be carried
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through remains to be tested. The more modest aim of the present paper is
to show how arithmetic techniques can give base-independent results in the
existing topos theory.

1.2 Outline

Section 2 summarizes the background of AUs, their sketches, and the 2-
category Con [12]; and of geometric theories and classifying toposes largely
as presented in [7, B4.2].

Section 3 discusses the models of AU-sketches in AUs in general, and
elementary toposes in particular. A particular issue is whether the models
should be strict or not. We need both, and the contexts, the AU-sketches
appearing as objects of Con, have the special property that every non-strict
model has a canonical strict isomorph. We describe two interacting actions
on models: one by context maps between theories, and one by non-strict
AU-functors between the AUs where the models are found.

Section 4 collects miscellaneous remarks on the 2-fibrational background
that allows us to vary the base elementary topos S, and includes (Defini-
tion 4.4) a notion of local representability that captures, 2-fibrationally, the
idea of classifying toposes behaving in an indexed way under pseudopull-
back along change of base topos. In essence this is the idea of “geometricity”
as expressed in [11].

Section 5 examines classifying toposes for contexts. In fact, we deal with
a relativized version, with a context extension map U : T1 → T0 (given by
T0 ⊂ T1). If each context represents “the space of its models”, then we wish
to view U as a bundle: over each model M of T0, the fibre over it is the
“space of models of T1 that restrict to M”. We shall show how these fibres
can be represented as classifying toposes.

Now we fibre over pairs (S,M), where M is a strict model of T0 in
S. We find a geometric (though not arithmetic in general) theory T1/M of
models of T1 restricting to M , and it has a classifying topos S[T1/M ]→ S
(with its generic model).

Our main result, Theorem 5.12, is that this construction is locally repre-
sentable, in other words that it is geometric – preserved by pseudopullback
along arbitrary geometric morphisms. A corollary is the “geometricity of
presentations” result of [11, Section 5].

VICKERS - ARITHMETIC UNIVERSES AND CLASSIFYING TOPOSESVICKERS - ARITHMETIC UNIVERSES AND CLASSIFYING TOPOSES

- 216 -



2. Background

2.1 Sketches for arithmetic universes

We summarize the sketch approach to arithmetic universes as set out in [12].
The sketches are roughly as in [3], with a reflexive graph of nodes and edges
for objects and morphisms, a set of “commutativities” to specify commu-
tative triangles, and “universals” (the cones and cocones) for finite limits
and finite colimits – specifically: terminals, pullbacks, initials, pushouts. In
addition they have universals to specify list objects, thus gaining an nno as
List 1.

In our sketch extensions T ⊂ T′ such universals may be introduced only
for fresh objects, and hence in a definitional way. A context is then an exten-
sion of the empty sketch 11.

In equivalence extensions T b T′, everything fresh that is introduced
must have been implicitly present already. This includes composites of com-
posable pairs of edges; commutativities deducible from existing ones (e.g.
by unit laws or associativities); universals, fillins for universals and unique-
ness of fillins; and inverses for certain edges that must be isomorphisms
because of the categorical properties of AUs such as balance, stability and
exactness.

Homomorphisms TlT′ are structure-preserving homomorphisms for the
algebraic theory of sketches. They translate nodes to nodes, edges to edges,
commutativities to commutativities and universals to universals. The two
kinds of extensions are special cases of this.

Next, we have a notion of object equalities between nodes, certain edges
that include all identity edges but can also arise as fillins when the same
universal construction is applied to equal data. We extend this to object
equalities between edges, when their domains have an object equality and
so do the codomains, and there are appropriate commutativities to make a
commutative square; and then we extend to object equalities between homo-
morphism of models, using object equalities between corresponding nodes
and edges in the image.

Putting these together we get a category Con whose objects are contexts.
Its morphisms, context maps, are the dual of context homomorphisms, but
subject to (i) those for equivalence extensions are invertible, and (ii) object
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equalities become identity morphisms between actually equal objects. Every
map T0 → T1 is an equivalence class of opspans of homomorphisms T0 b
T′0 m T1.

Notice that, for each of the special symbols ⊂, b and l, the narrow end
is at the codomain for the corresponding reduction map.

For each context T there is also a context T→ for which a model is a
pair of models of T, together with a T-homomorphism between them. These
enable us to define 2-cells between maps, using maps T0 → T→1 , and Con
becomes a 2-category. It has finite PIE-limits (Product, Inserter, Equifier)
and pullbacks of extension maps (the duals of the homomorphisms corre-
sponding to extensions).

There is a full and faithful 2-functor from Con to the category AUs

of AUs and strict AU-functors, contravariant on 1-cells, that takes T 7→
AU〈T〉, the AU presented using T as generators and relations.

A central issue for models of sketches is that of strictness. The standard
sketch-theoretic notion is non-strict: for a universal, such as a pullback of
some given opspan, the pullback cone can be interpreted as any pullback of
the opspan. However, we could also seek strict models that use the canoni-
cal pullbacks (in categories where they exist). Strictness is essential for the
universal algebra that generates AU〈T〉, but in general it is inconvenient.
Significant parts of the present paper are concerned with relating the strict
and the non-strict.

Contexts are designed to give us good control over strictness, as summa-
rized by the following proposition.

Proposition 2.1. Let U : T1 → T0 be an extension map in Con, that is to say
one deriving from an extension T0 ⊂ T1. Suppose in some AU A we have
a model M1 of T1, a strict model M ′

0 of T0, and an isomorphism φ0 : M ′
0
∼=

M1U (the restriction of M1 to T0).

T1

U
��

M ′
1

φ1
∼=
//

_

��

M1_

��
T0 M ′

0

φ0
∼=
//M1U

Then there is a unique model M ′
1 of T1 and isomorphism φ1 : M ′

1
∼= M1

such that

VICKERS - ARITHMETIC UNIVERSES AND CLASSIFYING TOPOSESVICKERS - ARITHMETIC UNIVERSES AND CLASSIFYING TOPOSES

- 218 -



1. M ′
1 is strict,

2. M ′
1U = M ′

0,

3. φ1U = φ0, and

4. φ1 is equality on all the primitive nodes for the extension T0 ⊂ T1.

The proof can be deduced from the strictness results in [12]. In brief, it
is reduced by induction to the case of simple extension steps in T0 ⊂ T1.
Adjoining a primitive node, M ′

1 and φ1 are determined by (4). Adjoining a
primitive edge, M ′

1 and φ1 are determined by the need to make φ1 an iso-
morphism. Adjoining a universal, M ′

1 is determined by (1) and φ1 by (3), as
the unique fillin consistent with φ0.

In the case where T0 is the empty context 11, we see the important corol-
lary that for a context T every model is uniquely isomorphic to a unique strict
model with which it agrees on all primitive nodes. We call this its canonical
strict isomorph.

Thus in topos theory, where non-strict AU-functors are liable to trans-
form strict models into non-strict ones, we can regain strictness of models.

Example 2.2. The Proposition does not hold for arbitrary context maps
H : T1 → T0. Let O,O2 be the contexts that have, respectively, one and
two nodes, and nothing else. Consider the diagonal ∆: O → O2 given by
the context homomorphism that takes both nodes in O2 to the node in O.
If X is a model of O, then its ∆-reduct X∆ = (X,X). If we can find
X1
∼= X ∼= X2 with X1 6= X2, then (X1, X2) ∼= X∆ without itself being a

∆-reduct.

2.2 Elephant theories

Here we briefly summarize the account in [7, B4.2] of classifying toposes,
over a fixed base elementary topos S.

Central to its treatment is the 2-category BTop/S. A 0-cell is a bounded
geometric morphism p : E → S, a Grothendieck topos over S. In Defini-
tion 4.1 these will appear in the fibre of our GTop over S. A 1-cell f is a
pair (f, f⇓), where f is a bounded geometric morphism and f⇓ is a specified
isomorphism in the triangle over S.
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Any logical description of a theory does implicitly describe the mod-
els, but one can also try to use the category of models as a direct semantic
description of the theory. Unfortunately this does not work for geometric
theories, which may be incomplete – there are not enough models for se-
mantic entailment to agree with the syntactic entailment got from the rules
of geometric logic.

The semantic description used to get round this in [7, B4.2] is to describe
all the models in all Grothendieck toposes. For narrative purposes in the
present paper, to make a clear distinction from the logical theories, I shall
refer to such an “all model” description as an “elephant theory”. Of course
that acknowledges their use in [7], but I also want to convey something of
the sheer quantity of data encapsulated in one of these theories.

Definition 2.3. An elephant theory over S is an indexed category T over
BTop/S. Then an object of T(E) is a “model of T in E”.

In our applications derived from AU-sketches, the elephant theories will
be strict, 2-functors to CAT.

A particularly important example is the context O, the object classifier,
with O(E) = E .

Given an elephant theory T over S, a geometric construct on T is an
indexed functor from T to O.

Definition 2.4. Let T0 be an elephant theory over S . A geometric extension
of T0 is a theory built, starting from T0, by a finite sequence of the following
“simple” steps from T to T′.

• Simple functional extension: Let H0, H1 : T → O be two geometric
constructs. Define the theory T′ whose models in E are pairs (M,u)
where M is a model of T in E and u : MH0 → MH1 is a morphism.
A morphism from (M,u) to (M ′, u′) is morphism φ : M → M ′ such
that that following diagram commutes.

MH0
u //

φH0

��

MH1

φH1

��
M ′H0

u′
//M ′H1

.
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• Simple geometric quotient: Let φ : H0 → H1 be a morphism of geo-
metric constructs on T. T′ is the theory whose models in E are those
models of T for which φ is an isomorphism; its morphisms are all
T-morphisms.

• Simple extension by primitive object: We define T′(E) = T(E) × E .
In other words, we may write T′ = T×O.

Then a geometric theory over S is a geometric extension of 11, the trivial
theory for which every 11(E) is the category with one object ∗ and its identity
morphism.

Note that [7] does not define the general notion of geometric extension,
but simply that of geometric theory as an extension of On (for some finite
n) by simple functional extensions and simple geometric quotients. The two
are equivalent, because no harm is done if the primitive sorts are all adjoined
at the start, and doing this n times to 11 gives On.

If T1 is a geometric extension of T0, then there is a theory morphism
from T1 to T0 given by model reduction.

For future reference we prove the following result that does not appear
to be in [7].

Proposition 2.5. In the category of elephant theories over S and indexed
functors between them, geometric extensions can be pulled back along any
morphism.

Proof. The point is that we have a pullback, not a pseudopullback.
Let H : T′0 → T0 be an indexed functor between elephant theories over

S , and let T1 be a geometric extension of T0 with indexed functor U : T1 →
T0 defined by model reduction. We define the elephant theory T′1 by argu-
mentwise pullback of categories.

T′1(E) //

��

T1(E)

U(E)

��
T′0(E)

H(E)
// T0(E)

Thus a model of T′1 is a pair (M0,M1) of models of T′0 and T1 for which
M0H = M1U .
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For reindexing along f : F → E (over S), the naive attempt to define
f ∗(M0,M1) as (f ∗M0, f

∗M1) fails because we only have

(f ∗M0)H ∼= f ∗(M0H) = f ∗(M1U) = (f ∗M1)U .

(The last equality can be readily checked for different kinds of simple geo-
metric extension.) The trick then is to define f ∗(M0,M1) as (f ∗M0, N1) for
some N1

∼= f ∗M1 whose T0-reduct is (f ∗M0)H ∼= (f ∗M1)U .
It suffices to check the three kinds of simple geometric extension. For

extension by primitive sort, T1 = T0 × O, we find that T′1 as defined by
pullback is T′0 × O. For the reindexing question, we have M1 of the form
(M0H,X) and define N1 = ((f ∗M0)H, f ∗X).

The next case is when T1 is a simple functional extension of T0 for two
geometric constructs G0, G1 : T0 → O. We find that T′1, as defined by pull-
back, is a simple functional extension of T′0 for HG0 and HG1. For the
reindexing, we have M1 of the form (M0H, u : M0HG0 → M0HG1). Then
we take N1 to be ((f ∗M0)H, u′), where u′ is so as to make the following
diagram commute.

(f ∗M0)HG0

∼= //

u′

��

(f ∗(M0H))G0

∼= // f ∗(M0HG0)

f∗u
��

(f ∗M0)HG1

∼= // (f ∗(M0H))G1

∼= // f ∗(M0HG1)

For the final case, T1 is an extension of T0 by simple geometric quo-
tient for a morphism φ : G0 → G1 of two geometric constructs on T0.
Now T′1 is an extension of T′0 by simple geometric quotient for a morphism
Hφ : HG0 → HG1.

Definition 2.6. Let T be an elephant theory over S. A classifying topos for
T is a bounded S-topos p : S[T] → S, equipped with a “generic” T-model
NG, such that, for each bounded S-topos E , the functor

BTop/S[E ,S[T]]→ T(E), f 7→ f ∗NG,

is one half of an equivalence of categories.
In other words, the pseudofunctor T : BTop/S → CAT is representable.

Since all our elementary toposes have nno, [7, Theorem B4.2.9] tells us
that every geometric theory has a classifying topos.
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3. Indexed categories of models

In this section we deal with categories of models of AU-contexts from Con.
For each AU A and AU-context T we have a category A-Mod-T of models
of T in A, and a full subcategory A-Mods-T of strict models.

We shall show thatA-Mods-T is acted on strictly (on the right) by Con,
and strictly (on the left) by AU, the category of AUs and non-strict AU-
functors. This strict left action arises because T, a context, has the strict
model corollary of Proposition 2.1: applying a non-strict AU-functor gives
us a non-strict model, but we can then replace it by its canonical strict iso-
morph.1 The left and right actions commute up to isomorphism, which we
express in Theorem 3.6 as a category strictly indexed over the Gray tensor
product. However, right action by extension maps commutes up to equality
with the left actions (Lemma 3.7), and this will be important for us.

Note that the context maps, between contexts T, correspond to strict AU-
functors between the classifying AUs AU〈T〉. What we have done, there-
fore, is in effect to have strict and non-strict AU-functors acting on the right
and left respectively, with the Gray tensor action representing the interplay
between strict and non-strict.

One might wonder whether we could instead have focused on the non-
strict models A-Mod-T. There is an obvious action on the left by AU, and
an action on the right, by model reduction, by the context maps that corre-
spond to context homomorphisms. Those left and right actions commute up
to equality. However, the right action does not extend strictly to arbitrary
context maps: this is because the maps for context equivalence extensions,
which are invertible in Con, give only equivalences between model cate-
gories, not isomorphisms. We prefer to work with the strict action on strict
models.

In any case, the non-strict models of a context T are the strict models
of an extension T′. For each node X in T introduced by a universal, adjoin
another copy X ′ with edges and commutativities to make X ′ ∼= X .

Definition 3.1. Let A be an AU and T a context. Then A-Mods-T is the
category of strict models of T in A.

1 In fact, the definitions of extension and context in [12] were made in anticipation of
these results.
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Lemma 3.2. For each arithmetic universe A, we can define a 2-functor

A-Mods-• : Con→ CAT

for which A-Mods-•(T) = A-Mods-T.

Proof. Since those models are in bijection with strict AU-functors from
AU〈T〉 toA, and we have a (full and faithful) 2-functor from Con to AUop

s ,
this extends to a 2-functor A-Mods-• as desired.

IfM is a strict model inA-Mods-T0 andH : T0 → T1 is a context map,
then we write MH for A-Mods-H(M). If H is the dual of a context ho-
momorphism then MH is got by model reduction. If H is the inverse of the
dual for an equivalence extension T0 b T1, then MH is got by interpreting
all the adjoined ingredients of T1 in the unique strict way.

Now we fix T and let A vary.

Definition 3.3. Let f : A0 → A1 be an AU-functor, T a context and M a
model in A0-Mods-T. Then we define f ∗M = f -Mods-T(M) as follows.
We first define f ·M as the non-strict model got by applying f to M . Then
f ∗M is (using Proposition 2.1) the canonical strict isomorph of f ·M .

We extend this to 2-cells α : f0 → f1 by treating them as AU-functors
from A0 to the comma AU A1 ↓ A1. α∗M : f ∗0M → f ∗1M is then calculated
by pasting the following diagram.

A1 A0

f1

jj

f0
tt

�� α AU〈T〉
M
oo

f∗0M

∼=yy

f∗1M

∼=ee

Proposition 3.4. For each context T we have a 2-functor

•-Mods-T : AU→ CAT

for which •-Mods-T(A) = A-Mods-T and •-Mods-T(f)(M) = f ∗(M).
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Proof. The main point is that it is strictly functorial on 1-cells f . Suppose
we have AU-functors

A2
oo f1 A1

oo f0 A0 .

Then f ∗1 f
∗
0M and (f0f1)∗M are both the canonical strict isomorph of f1 ·f0 ·

M .
After this, the rest follows by pasting diagrams.

The equation f ∗1 f
∗
0M = (f0f1)∗M will seem notationally perverse for

morphisms in AU, composed diagrammatically, but it looks more natural
for geometric morphisms, where the AU-functor for f is f ∗.

Definition 3.5. Suppose we have 1-cells f : A0 → A1 in AU and H : T0 →
T1 in Con. Then we define a natural isomorphism Σf,H as follows.

A0-Mods-T0
A0-Mods-H //

f -Mods-T0

��

A0-Mods-T1

f -Mods-T1

��
A1-Mods-T0 A1-Mods-H

//

Σf,H⇓

A1-Mods-T1

(1)

For each M in A0-Mods-T0, we define the isomorphism

Σf,H(M) : f ∗(MH) ∼= (f ∗M)H

by pasting the following diagram.

A1 A0f
oo AU〈T0〉Moo

f∗M

∼=cc AU〈T1〉
AU〈H〉

oo

f∗(MH)

∼=vv

Naturality is clear.

Theorem 3.6. The two actions on •-Mods-• by AU and Con, together with
the pseudo-naturality isomorphisms Σf,H , make up a “cubical functor” from
AU× Con to CAT in the sense of [5], and hence a 2-functor from the Gray
tensor product AU⊗ Con to CAT.
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Proof. There are three conditions to be checked. The first two are that the
squares (1) paste together correctly, either horizontally or vertically, for com-
position of 1-cells in either Con or AU. The third is that it pastes correctly
with 2-cells in Con and AU. All are clear by pasting the appropriate isomor-
phisms from the definition of f ∗.

Lemma 3.7.

1. If U is an extension map (for T0 ⊂ T1) then (f ∗M)U = f ∗(MU) for
every f and M , and Σf,U(M) is the identity morphism.

2. If U is an equivalence extension map (T0 b T1), then (f ∗M)U−1 =
f ∗(MU−1), and Σf,U−1(M) is the identity morphism.

Proof. (1) f ∗(MU) is the canonical strict isomorph of f · (MU).
On the other hand (f ∗M)U ∼= (f · M)U = f · (MU) and they are

equal on all the primitive nodes of T0 because they are also primitive in the
extension T1.

(2) Apply part (1) to MU−1.

Example 3.8. Equality in Lemma 3.7 can fail for a mapH : T1 → T0 involv-
ing a context homomorphism that maps primitive nodes to non-primitives.
Consider the context T with a single node T , declared terminal, andH : T→
O given by the sketch homomorphism that takes the single node X in O to
T .

If M is the unique strict model of T in A, then MH simply picks out
the canonical terminal object, and (f ∗M)H does the same in A′. f ∗(MH)
picks out the image under f of the canonical terminal in A.

Finally, we can translate these results to elementary toposes. For each
AU-context T we have a 2-category •-Mods-T, strictly indexed over eTop,
and it restricts to BTop/S, with the geometric morphisms p : E → S playing
no role in the reindexing. Thus it gives a strict elephant theory over S for T.
Also, each context map H : T0 → T1 gives a corresponding indexed functor
from T0 to T1 as elephant theories.
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4. Remarks on 2-fibrations

In the 2-functor •-Mods-T : AU → CAT we have already seen a category
strictly indexed over the 2-category AUop. As we proceed, however, we
shall encounter non-strict indexations, with pseudofunctors, and for these
we shall prefer a fibrational approach. Thus we avoid confronting coherence
conditions for indexed 2-categories.

For the appropriate notion of 2-fibration we shall follow Buckley’s ac-
count [4], which in turn was based on earlier work of Hermida [6] and
Baković [1]. Definitions are given for fibrations both between 2-categories
and between bicategories. Note that, although we deal only with 2-categories,
and 2-functors between them, we shall still need to use the bicategorical no-
tion of fibration once we go beyond strictly indexed categories. The essential
difference, for a 2-functor P : E → B, is that the properties characteriz-
ing a cartesian 1-cell f : x → y in E are weaker. Given g : z → y and
h : Pz → Px with h(Pf) = Pg, we can lift h to ĥ : z → x but the corre-
sponding triangle in E commutes only up to isomorphism.

z
ĥ

��
∼=

g

��
x

f
// y

Pz
h

}}
=

Pg

!!
Px

Pf
// Py

To summarize Buckley’s definitions, –

• A 1-cell f in E is cartesian if it lifts 1-cells up to isomorphism, and lifts
2-cells coherently with the lifted isos. The uniqueness of lifted 2-cells
implies that lifted 1-cells are unique up to a coherent isomorphism.

• A 2-cell α : f ⇒ g : x→ y in E is cartesian if it is cartesian as a 1-cell
for the functor Pxy : E(x, y)→ B(Px, Py).

• P is a fibration if for every f : b → Pe in B, there is a cartesian
h : a → e with Ph = f ; each Pxy is a fibration of categories; and the
cartesian 2-cells are closed under whiskering on both sides.
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4.1 The fibred 2-category of Grothendieck toposes

By “Grothendieck topos”, we mean a bounded geometric morphism from
some elementary topos E to some, understood, base elementary topos S.2

The 2-category of Grothendieck toposes over S is studied in [7, B4] as
BTop/S.

A notable property of BTop/S is that any geometric theory T (geomet-
ric, that is, with respect to S) has a classifying topos S[T] that behaves in
many respect as “the space of models of T”; indeed, the whole of BTop/S
may then be viewed as the 2-category of generalized spaces relative to S:
0-cells are spaces, 1-cells are (continuous) maps, and 2-cells are generalized
specializations (morphisms, not order).

Our interest in using arithmetic universes is to deal with theories T that
depend on the base S only to the extent that nnos are required to exist. Our
aim here will be to prove results about Grothendieck toposes that are fibred
over choice of base.

From the point of view of indexed categories, the key result [7, B3.3.6]
is that bounded geometric morphisms can be pseudo-pulled-back along arbi-
trary geometric morphisms.3 Thus for any geometric morphism f : S0 → S1

we get a reindexing f ∗ : BTop/S1 → BTop/S0. This does not extend to
arbitrary natural transformations α : f → g unless the Grothendieck toposes
are restricted to fibrations or opfibrations over S, so instead we restrict the
αs at the base level to be isomorphisms.

We write eTop∼= for the 2-category of elementary toposes (with nno),
geometric morphisms and natural isomorphisms.

We now express S 7→ BTop/S as a fibred 2-category GTop of Grothen-
dieck toposes.

Definition 4.1. The data for the 2-category GTop is defined as follows.
A 0-cell is a bounded geometric morphism p : E → S.

2As always for us, our elementary toposes are assumed to have nnos.
3Beware that, in 2-categorical contexts, [7] consistently omits “pseudo-” – see B1.1.
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A 1-cell f = (f, f⇓, f) from E0
p0 // S0 to E1

p1 // S1 is a square

E0
f //

f⇓p0
��

E1

p1
��

S0 f
// S1

in which f⇓ : fp1 → p0f is an isomorphism.
Given two such 1-cells, f and f ′ from p0 to p1, a 2-cell α : f → f ′ is a

pair of natural transformations α : f → f
′
and α : f → f ′

E0

f
))

f
′

55�� α

f⇓

f ′⇓
p0

��

E1

p1

��
S0

f
))

f ′
55�� α S1

such that the obvious diagram of 2-cells commutes. Moreover, as mentioned
earlier, we require α to be an isomorphism.

It is clear that GTop is a 2-category

Proposition 4.2. There is a 2-functor GTopco → eTopco∼= that forgets all but
the downstairs part. Although it is strict, we consider it as a homomorphsm
of bicategories for the purposes of [4, 3.1].

1. A 1-cell is cartesian iff it is a pseudopullback square in eTop.

2. A 2-cell α is cartesian iff α is an isomorphism.

3. The 2-functor is a fibration of bicategories.

Proof. (1): This is essentially the same as the proof of the result for 1-
categories, that for the codomain fibration cod : C→ → C, a morphism for
C→ is cartesian iff it is a pullback square in C. The conditions for pseudop-
ullbacks and cartesian 1-cells both bring in the 2-cells in the same way. For

VICKERS - ARITHMETIC UNIVERSES AND CLASSIFYING TOPOSESVICKERS - ARITHMETIC UNIVERSES AND CLASSIFYING TOPOSES

- 229 -



the “⇒” direction, note that an arbitrary elementary topos E can be treated
as a 0-cell in GTop using the identity geometric morphism.

(2): If α is an isomorphism then so is the 2-cell α, and it is then clearly
cartesian. For the converse, suppose α : f → g is a cartesian 2-cell. (Note
that because we are going to dualize, α is really cocartesian in GTop.)
Downstairs, α is invertible and so by lifting α−1 we get α′ : g → f , with
αα′ = Idf . By considering Idg and α′α as lifts of Idg we see that they are
equal.

(3) Cartesian lifting of 1-cells arises because, in eTop, pseudopullbacks
of bounded geometric morphisms along arbitrary geometric morphisms al-
ways exist [7, B3.3.6].

Cartesian lifting of 2-cells is easy – in fact we can ensure that the upstairs
part of the lifted 2-cell is an identity.

Of course, eTopco∼= ∼= eTop∼=, so we could equally well consider GTopco

as fibred over eTop∼=.

4.2 Representability

In Definition 2.6, “classifying topos” is defined in terms of representability
of an indexed category, a pseudofunctor T : (BTop/S)op → CAT. We now
look at how this appears in terms of fibrations.

To work abstractly, suppose C is a 2-category, and F : Ccoop → CAT a
pseudofunctor. We shall describe the Grothendieck construction for it. In
our applications, for elephant theories deriving from AU-contexts, F will be
strict and the Grothendieck construction is described in [4, 2.2] as a fibration
of 2-categories. For the present section, however, we shall not assume strict-
ness: thus we retain the connection with general elephant theories. Because
of this we need to use [4, 3.3.3], which describes the Grothendieck construc-
tion as a fibration of bicategories. Nonetheless, our situation is somewhat
simpler than Buckley’s. We have not allowed C to be a bicategory, and we
have taken each F (X) to be a category, not a bicategory. Because of this,
our fibred bicategory E is actually a 2-category, though not fibred as such. It
has –

0-cells are pairs (x, x−) of objects of C and Fx.
1-cells are pairs (f, f−) : (x, x−)→ (y, y−) where

f : x→ y and f− : x− → Ff(y−).
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2-cells (f, f−)→ (g, g−) : (x, x−)→ (y, y−) are 2-cells α : f → g such
that the following diagram commutes.

x−
f− //

g− ##
=

Ff(y−)

Fg(y−)

Fαy−

99

Then the 1-cell (f, f−) is cartesian iff f− is an isomorphism. Every 2-cell
α is cartesian.

In the following proposition we characterize representability of the pseud-
ofunctor F in a purely fibrational way, independent of F as choice of cleav-
age.

Proposition 4.3. Let F : Ccoop → CAT be a pseudofunctor as above, and
let P : E → C be its Grothendieck construction. Then F is representable
iff there is an object (x, x−) in E (a representing object) with the following
properties.

1. For each (y, y−) in E , there is a cartesian 1-cell (f, f−) : (y, y−) →
(x, x−).

2. Each cartesian 1-cell (f, f−) : (y, y−) → (x, x−) is terminal in the
category E((y, y−), (x, x−)).

Proof. By definition, F is represented by (x, x−) iff for every y the functor
Ky : C(y, x)op → Fy, given by f 7→ Ff(x−), is an equivalence.

Condition (1) says that each Ky is essentially surjective. It remains to
show that, for each y, Ky is full and faithful iff condition (2) holds.

Suppose Ky is full and faithful and, for a given y−, we have

(f, f−), (g, g−) : (y, y−)→ (x, x−)

with (f, f−) cartesian, i.e. f− an isomorphism. Then there is a unique
α : g → f such that Fαx− = f−1

− ; g−, in other words a unique 2-cell from
(g, g−) to (f, f−).

Conversely, suppose condition (2) holds for a given y, and suppose we
have f, g : y → x and g− : Ff(x−)→ Fg(x−). We then have two 1-cells

(f, Id), (g, g−) : (y, Ff(x−))→ (x, x−).
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Since (f, Id) is cartesian we get a unique 2-cell α : (g, g−)→ (f, Id), in other
words, a unique α : g → f such that Ky(α) = g−.

By the usual means, one can show that if x is a representing object for
P , then for any object x′ in E we have that x′ is a representing object iff it is
equivalent to x.

We now extend the above discussion to a situation where C too is fibred:
we have fibrations

E P // C Q // B .

In our applications, P will again be got from a pseudofunctor (in fact a 2-
functor) Ccoop → CAT, but Q will be more general. The paradigm example
for Q is GTopco fibred over eTopco∼= .

We also assume (as in the paradigm) that all 2-cells in B are isomor-
phisms.

Note that f : x→ y in E is cartesian for P ;Q iff it is cartesian for P and
Pf is cartesian for Q. For the “⇐” direction, we just lift in two stages. For

“⇒”, consider cartesian lifts f̂ : x̂ → Py of Q(Pf), and then ˆ̂
f : ˆ̂x → y of

f̂ . We get an equivalence x ' ˆ̂x and deduce the result from that.
Now each object w of B has a fibre over it, a fibration Pw : Ew → Cw: it

comprises the 0-cells of C and E that map to w, and the 1- and 2-cells that
map to identities at w. We are now interested in the situation where each Pw
is representable, and in how the representing objects transform under 1-cells
in B.

Since we are assuming P arises from a pseudofunctor, it is easy to see
that a 1-cell or 2-cell in Ew is cartesian for Pw iff it is cartesian for P .

Definition 4.4. P is locally representable (over Q) iff

1. Each fibre Pw is representable.

2. (Geometricity) Suppose Pw is represented by xw, f : w′ → w in B,
and h : y → xw is P ;Q-cartesian over f . Then y is a representing
object for Pw′ .

We call condition (2) “geometricity” in line with [11], because it con-
cerns a property that is preserved by pseudopullback in eTop. Note that it
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suffices to verify it for some xw and some h. This is because representing
objects are equivalent, and so too are cartesian liftings.

As defined, local representability focuses on the fibres Pw. We can ex-
press the property in a way that says more about the interaction with change
of base.

Proposition 4.5. P is locally representable over Q iff, for each object w of
B, we have an object xw of E over it that satisfies the following conditions.

1. For every object y of E , and 1-cell f : Q(Py)→ w in B, there is some
f̂ : y → xw over f that is cartesian with respect to P .

2. Suppose h0, h1 : y → xw in E , with h1 being P -cartesian.

If α : Q(Ph0)→ Q(Ph1), then there is a unique α̂ : h0 → h1 over α.

Proof. ⇐: Clearly any xw satisfying the conditions must be a representing
object for Pw. It remains to show that the representing objects transform
correctly under base 1-cells f : w′ → w.

Suppose xw and xw′ satisfy the conditions. By the conditions for xw we
have P -cartesian g : xw′ → xw over f . Suppose also that h : y → xw is P ;Q-
cartesian over f . By the conditions on xw′ we get P -cartesian u : y → xw′
over Idw′ , and by cartesianness of h we get v : xw′ → y over Idw′ with an
isomorphism α : vh→ g over Idf .

xw′
g

""α⇑
v

��
y

u

CC

h
// xw

Since both g and h are P -cartesian, so is v. It follows by the conditions
on xw′ that there is a unique isomorphism vu ∼= Idxw′ in Pw′ . Also, by the
P ;Q-cartesian property of h, there is a unique isomorphism uv ∼= Idy in Pw′ .
Hence y is equivalent to xw′ , and so represents Pw′ as required.
⇒: Let xw be a representing object for Pw. We show it has the two

properties stated.
Suppose y is an object in E , and f : w′ = Q(Py) → w a 1-cell in B.

Let g : xw′ → xw be P ;Q-cartesian over f , so that xw′ is a representing
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object for Pw′ . Then there is a P -cartesian 1-cell u : y → xw′ in Pw′ , and
ug : y → xw is P -cartesian (because u and g are) over f .

Now suppose h0, h1 : y → xw are two 1-cells, with h1 cartesian for P ,
and with fi = Q(Phi) : w′ → w, and α : f0 → f1. Recall our assumption
that all 2-cells in B are isomorphisms. Let gi : zi → xw be a P ;Q-cartesian
lifting of fi, with ui : y → zi in Pw′ and βi : uigi ∼= hi over fi. By [4, 3.1.15],
there is an equivalence k : z0 ' z1 with isomorphism kg1

∼= g0 over α, and
the pair is unique up to unique isomorphism between ks in Pw′ . Thus 2-cells
h0 → h1 over α are in bijection with 2-cells u0kg1 → u1g1 over f1, and
hence (because g1 is P ;Q-cartesian) with 2-cells u0k → u1 in Pw′ . Since
z1 is a representing object for Pw′ , and u1 is P -cartesian (because h1 and g1

are), and hence cartesian in Pw′ , we get a unique 2-cell u0k → u1 in Pw′ .

5. Context extensions as bundles

In this Section we gather together the previous remarks to get results on
classifying toposes in a form that is fibred over a category of bases.

This is most easily understood in the simple case of a single context T.
For each Grothendieck topos p : E → S we have a category E-Mods-T
of strict models of T in E . This extends to a 2-functor from GTopop =
(GTopco)coop to CAT, and its Grothendieck construction can be written as
P : (GTop-T)co → GTopco.

In constructing that fibration we ignored the parts
p // S , but when

we bring in S we find that the classifying topos S[T] provides a representing
object for PS .

The main novelty here is that those representing objects transform ac-
cording to Definition 4.4: that (Theorem 5.11) the pseudopullback along
any f : S0 → S1 preserves classifiers. Our proof is non-trivial, and shows
that the steps constructing the classifier are preserved under pseudopullback.

As mentioned in Section 1.2, we shall prove local representability more
generally, dealing not just with a single context T, but in the relativized
situation for an extension T0 ⊂ T1.

Why extensions, and not arbitrary H : T1 → T0? The main reason is the
repeated use of Proposition 2.1, sometimes via Lemma 3.7.
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5.1 Models for a context extension

Definition 5.1. Let T0 ⊂ T1 be an extension of contexts, with corresponding
extension map U : T1 → T0, and let p : E → S be a bounded geometric
morphism. A strict model of U in p is a pair (M,N) where M is a strict
model of T0 in S, N a strict model of T1 in E , and NU = p∗M .

A morphism from one such strict model, (M,N), to another, (M ′, N ′), is
a pair φ = (φ−, φ

−) where φ− : M → M ′ and φ− : N → N ′ are homomor-
phisms and φ−U = p∗φ−.

For given U we thus get, for each p, a category p-Mods-U . It is strictly
indexed over GTop in the following way.

First suppose f : p0 → p1 is a 1-cell in GTop, as in Definition 4.1. If
(M,N) is a strict model in p1, then we define a strict model f ∗(M,N) =
(f ∗M, f ∗N)

f ∗N oo
∼=

_

��

f
∗
N
_

��

p∗0f
∗M oo

(f⇓)∗M
f
∗
p∗1M

where the upstairs isomorphism is the canonical one obtained from Proposi-
tion 2.1. The action extends to morphisms between strict models of U , and
we obtain a functor f -Mods-U : p1-Mods-U → p0-Mods-U .

If α : f → f ′ is a 2-cell in GTop, then it gives a natural transformation
from f -Mods-U to f ′-Mods-U . We obtain a strict 2-functor from GTopop

to CAT. Its Grothendieck construction is a fibration (Mods-U)co → GTopco.

Definition 5.2. The data for the 2-category Mods-U is defined as follows.
In each case, a 0-, 1- or 2-cell is the corresponding item for GTop, equipped
with extra structure in the form of models of U .

A 0-cell is a bounded geometric morphism p : E → S, equipped with a
strict model (M,N) of U .

A 1-cell from (p0,M0, N0) to (p1,M1, N1) is a 1-cell f : p0 → p1 from
GTop, equipped with a homomorphism (f−, f

−) : (M0, N0)→ f ∗(M1, N1).
(Note that the letter f is highly decorated: we have f , f⇓, f , f− and f−.)

Given 1-cells (f, f−, f
−) and (f ′, f ′−, f

′−), with the same domain and
codomain, a 2-cell from one to the other is a 2-cell α : f → f ′ in GTop such
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that
(f−, f

−)(α∗(M1, N1)) = (f ′−, f
′−).

It is clear that Mods-U is a 2-category, with a functor F ′ : Mods-U →
GTop that forgets the model, and by construction F ′co is a split fibration.
Note that –

1. A 1-cell (f, f−, f
−) is cartesian iff f− and f− are isomorphisms.

2. Every 2-cell α is (co-)cartesian.

Note the special case of a trivial extension T0 = T0. A model of this in
p is simply a model M of T0 in S, since the corresponding model in E has
to be p∗M . In this case we write Mods-(T0 ⊂ T0).

We have an obvious forgetful functor from Mods-U to Mods-(T0 ⊂ T0),
which (or its co-dual) is almost, but not quite, a fibration. The problem is
that T0-homomorphisms φ− : M → M ′ do not lift to functors for the cate-
gories of U -models over them. To rectify this, we restrict to isomorphisms
downstairs.

Definition 5.3. GTop-U is the sub-2-category of Mods-U with all the 0-
cells, but with only the 1-cells (f, f−, f

−) for which f− is an isomorphism.
It is full on 2-cells.

Proposition 5.4. We write P co : GTop-U → GTop-(T0 ⊂ T0) for the for-
getful functor. Then P : (GTop-U)co → (GTop-(T0 ⊂ T0))co is a split fi-
bration. A 1-cell (f, f−, f

−) is cartesian iff its f− is an isomorphism. Every
2-cell is cartesian.

Proof. It is the Grothendieck construction for the evident 2-functor from
(GTop-(T0 ⊂ T0))op to CAT.

We now fibre over pairs (S,M).

Definition 5.5. The 2-category eTop∼=-T has structure as follows. A 0-cell
is a pair (S,M) where S is an elementary topos and M a model of T in
S . A 1-cell from (S0,M0) to (S1,M1) is a pair (f, f−) where f : S0 → S1

is a geometric morphism and f− : M0 → f ∗M1 is an isomorphism. A 2-
cell from (f, f−) to (g, g−) is a natural isomorphism α : f → g such that
f−;α∗M1 = g−.
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The 2-category GTop-(T ⊂ T) is made from GTop by adding compo-
nents M and f−, and the condition on α, in the same way as eTop∼=-T is
made from eTop∼=.

Proposition 5.6. Let Qco : GTop-(T ⊂ T) → eTop∼=-T be the evident for-
getful functor. Then Q = (Qco)co is a fibration of bicategories.

Proof. Much as in Proposition 4.2.

We now get a diagram of 2-functors as follows, where the P s and Qs are
fibrations. The left hand tower is for the relativized situation T0 ⊂ T1, while
the right hand tower is the special case T0 = 11.

(GTop-U)co

P
�� ))

(GTop-(T0 ⊂ T0))co

Q

�� ))

(GTop-T1)co

P
��

(eTop∼=-T0)co

))

GTopco

Q

��
eTopco∼=

(2)

5.2 Context extensions fibred over models

Our aim now is to show that, in diagram (2), each P is locally representable
over its Q. (Note that the right hand one is a special case of the left hand,
for when T0 = 11.) The existence of the representing objects (as classifying
toposes) is straightforward; what seems more novel is their preservation by
pseudopullback.

Proposition 5.7. Let T0 ⊂ T1 be a context extension. Then, over any ele-
mentary topos S, it is also a geometric extension of elephant theories.

Proof. It suffices to check the different kinds of simple context extension.
Note that any node X in T0 gives a context homomorphism O l T0, so a
map T0 → O, and hence a geometric construct on T0. Likewise, any edge or
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composite of edges gives a map T0 → O→, and hence a morphism between
geometric constructs.

An extension by primitive node is a geometric extension by primitive
sort.

A simple functional extension of contexts (adjoining a primitive edge) is
also a simple functional extension of geometric theories.

An extension by a universal is essentially no geometric extension at all,
as the categories of (strict) models are isomorphic.

An extension by commutativities is a simple geometric quotient, as im-
posing an equality between morphisms is equivalent to requiring the equal-
izer to be an isomorphism.

Proposition 5.8. Let T0 be a context, and M a strict model of T0 in an
elementary topos S. Then there is an elephant morphism M : 11 → T0 that,
on bounded S-topos (E , p), takes ∗ to p∗M .

Proof. Note that, although the elephant theories for both 11 and T0 are strictly
indexed, M is not a strict morphism. Consider a morphism of S-toposes

F f //

q
��
f⇓

E

p
��
S

, 11(F)

M(F)

��
∼=

11(E)

M(E)

��
T0(F) oo

T0(f)
T0(E)

On the right is a pseudo-naturality square, subject to the isomorphism

(f⇓)∗M : f
∗
p∗M ∼= q∗M .

Of course, M : 11→ T0 is not a map of contexts in general.

Definition 5.9. Let T0 ⊂ T1 be a context extension and M a strict model
of T0 in an elementary topos S. By Proposition 2.5 we can pull back the
geometric extension for T0 ⊂ T1 along M : 11 → T0, getting a geometric
theory T1/M over S. Its models in (E , p) are the strict models of T1 whose
T0-reducts are equal to p∗M . It has a classifying topos S[T1/M ].
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Proposition 5.10. Let T0 ⊂ T1 ⊂ T2 be a sequence of context extensions,

with extension maps T2
U ′ // T1

U // T0 .
Let M be a strict model of T0 in an elementary topos S, and consider

the classifying toposes p : S ′ = S[T1/M ]→ S with generic model NG, and
p′ : S ′′ = S ′[T2/NG]→ S ′ with generic model N ′G.

Then (S ′′, p′p) serves as classifier for T2/M , with generic model N ′G.

Proof. Note that, using Lemma 3.7, N ′GU
′U = p′∗NGU = (p′p)∗M .

For the “essential surjectivity” part, suppose N is a model of T2/M in
(F , q). Then NU ′ is a model of T1/M , so we get g = (g, g⇓) : (F , q) →
(S ′, p) with NU ′ ∼= g∗NG as models of T1/M ; also g∗NG

∼= g∗NG as
models of T1. Now using Proposition 2.1 we can find a strict model N ′ ∼= N
of T2 with N ′U ′ = g∗NG, so N ′ is a model of T2/NG in (F , g). Hence there
is a morphism

f ′ = (f ′, f ′⇓) : (F , g)→ (S ′′, p′)

such that f ′∗N ′G ∼= N ′. Now define

f = (f ′, ((f ′⇓) · p; g⇓)) : (F , q)→ (S ′′, p′p) F f ′ //

f ′⇓
g

  
g⇓

q

# #

S ′′

p′

��
S ′

p

��
S

.

As models of T2, we have f ∗N ′G ∼= f ′
∗
N ′G
∼= f ′∗N ′G

∼= N ′ ∼= N ; and we see
from the following diagram that this composite isomorphism restricts under
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U ′U to the identity – it is an isomorphism for T2/M .

f ∗N ′G

∼=
zz

_

��

f ′∗N ′G
∼=

zz

G

��

f ′
∗
N ′G

∼=rr
∼=

oo
_

��

N_

��

N ′
∼=oo

_

��
NU ′_

��

g∗NG

∼=oo
_

��

g∗NG

∼=oo
_

��

f ′
∗
p′∗NG

∼=
(f⇓)∗NG

oo
_

��

NU ′U q∗M g∗p∗M
∼=

(g⇓)∗M
oo f ′

∗
p′∗p∗M

∼=
(f⇓)∗p∗M

oo

Now suppose we have two morphisms fi = (fi, fi⇓) : (F , q)→ (S ′′, p′p)
(i = 0, 1). Let us write gi = fip

′ and

gi = (gi, fi⇓) : (F , q)→ (S ′, p) F fi //

=
gi

  
fi⇓

q

##

S ′′

p′

��
S ′

p

��
S

.

This makes F two separate toposes (F , gi) over S ′.
Suppose also we have a T2/M -morphism θ : f ∗0N

′
G → f ∗1N

′
G. Our aim

is to show that there is a unique 2-cell α : f0 → f1 such that α∗N ′G = θ.
Consider the diagram

f ∗i N
′
GC

��

fi
∗
N ′G

∼=oo
_

��

T2

U ′

��
g∗iNG_

��

fi
∗
p′∗NG = gi

∗NG∼=
oo

_

��

T1

U

��
q∗M fi

∗
p′∗p∗M∼=

fi⇓oo T0.
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We find that (f ∗i N
′
G)U ′ = g∗iNG, as it has the correct properties according

to Proposition 2.1. Hence we have θU ′ : g∗0NG → g∗1NG, and there is a
unique β : g0 → g1 such that θU ′ = β∗NG. (This is modulo the appropriate
isomorphisms, for β is actually a natural transformation from g0 to g1.)

Let us first deal with the case where θ is an isomorphism, and β likewise.
We thus have two morphisms f ′i : (F , g1) → (S ′′, p′), given by f ′0 = (f0, β)
and f ′1 = (f1, Id). In the diagrams below, three levels are for T2, T1 and T0,
successively reduced by U ′ and U . The horizontal isomorphisms ‘∼=’ come
from Proposition 2.1, and the vertical ones are defined to make their outer
squares commute. We then find a unique α : f ′0 → f ′1 (which is the same as
saying α ·p′ = β) such that α∗N ′G is the isomorphism f ′∗0 N

′
G
∼= f ′∗1 N

′
G at top

right in the diagram. Then α : f0 → f1 and is unique such that θ = α∗N ′G.

T2

U ′

��

f ∗0N
′
G

θ

��

f0
∗
N ′G

∼=oo
∼= //

α∗N ′G
��

f ′∗0 N
′
G

∼=
��

f ∗1N
′
G f1

∗
N ′G

∼=oo f ′∗1 N
′
G

T1

U

��

g∗0NG

θU ′

��

g0
∗NG

∼=oo β∗NG //

β∗NG

��

g′∗1 NG

g∗1NG g1
∗NG

∼=oo g′∗1 NG

T0 q∗M g0
∗p∗M

(f0⇓)∗Moo

∼=
��

q∗M g1
∗p∗M

(f1⇓)∗M
oo

We now generalize to arbitrary morphisms θ. Let (G, q′) be the cocomma
object in BTop/S of the identity on (F , q) against itself, with cocomma
injections hi : (F , q) → (G, q′) and η : h0 → h1. By [7, B3.4.7], G as a
category is just the comma category F ↓ F . It follows from [9] that there is
a bijection between, on the one hand, morphisms θ : N0 → N1 between strict
T2/M -models in F , and, on the other, strict T2/M -models in G. Applying
the essential surjectivity property (already proved) for S ′′, in relation to G,
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we see that for every such θ there is a morphism f ′ : (G, q′) → (S ′′, p′p),
hence a pair of morphisms f ′i : (F , q) → (S ′′, p′p), and a 2-cell α′ between
them, with a commuting diagram

N0

∼= //

θ
��

f ′∗0 N
′
G

α′∗N ′G
��

N1

∼= // f ′∗1 N
′
G

We return to the case of interest, where Ni = f ∗i N
′
G. By the restricted

case, with θ an isomorphism, we find 2-cell isomorphisms βi : fi → f ′i that,
applied to N ′G, give the horizontal isomorphisms above. Then, taking α =
β0;α′; β−1

1 , we get θ = α∗N ′G. This proves fullness.
Finally we must prove faithfulness. Suppose we have f0 and f1 as before,

and 2-cells α, α′ : f0 → f1 with α∗N ′G = α′∗N ′G. We deduce that α · p′ =
α′ · p′ because S ′ is a classifier. Hence we have two geometric morphisms
g = (f0, α, f1) and g′ = (f0, α

′, f1) from G to S ′′, with gp′ = g′p′. We
have g∗N ′G = g′∗N ′G, so from the properties of S ′′ as classifying topos we
get a unique 2-cell β : g → g′ such that β∗N ′G is the identity. This gives two
2-cells βi : fi → fi, making a commutative square with α and α′, with β∗iN

′
G

the identity on fi
∗
N ′G. We deduce that each βi is an identity, and it follows

that α = α′.

Theorem 5.11. Let T0 ⊂ T1 be a context extension and M a strict model
of T0 in an elementary topos S1. Let the following diagram be a cartesian
1-cell f in GTop over eTop∼=, hence a pseudopullback in eTop.

E0
f //

p0

��
f⇓

E1 = S1[T1/M ]

p1

��
S0 f

// S1

Then p0 : E0 → S0 serves as a classifying topos S0[T1/f
∗M ].

If NG is a generic model for T1/M , then f ∗NG serves as generic model
for T1/f

∗M .
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Proof. First, pseudopullback squares are preserved under composition with
equivalences over S0 and S1, so it suffices to show that there is some pseudo-
pullback square whose vertical maps are classifiers as stated.

By Proposition 5.10 we can reduce to the case where the extension is
simple.

For extension by primitive node, we have the task of constructing an
object classifier, and this is a special case of classifying torsors (internal
flat presheaves) over an internal category C, here the category of finite sets:
objects are natural numbers, morphisms defined in the appropriate way.

For extension by commutativity, we have already remarked that this is
equivalent to inverting a morphism.

For a simple functional extension, adjoining a morphism from X to Y ,
we can decompose the classification problem into two steps of the above
kinds. First, we adjoin a subjobject of X×Y for the graph of the morphism,
and this is equivalent to adjoining a torsor (ideal) for the poset F(X × Y ),
the Kuratowski finite powerobject (free semilattice). Next we impose some
axioms for single-valuedness and totality, and this is equivalent to making
some morphism invertible.

It follows that we reduce to two cases over T0: adjoining a torsor for
an internal category C, and forcing the invertibility of some morphism. (Al-
though these are not simple extensions of contexts, we can still work with
them as single steps.) We show that our classifiers S1[T1/M ] can be found
in a way that is preserved under pseudopullback. The argument parallels that
of [7, B3.3.6].

In one case, T1 adjoins a torsor (flat presheaf) for an internal category C
in S1. Here we can take the classifier to be [C,S1] by Diaconescu’s Theorem,
and this can be pulled back along any f : S0 → S1 to [f ∗C,S0] over S0.
(See [7, B3.2.7, B3.2.14].)

For any geometric theory T, the models of T in [C,S1] are the internal C-
indexed families of models of T in S1, and in the particular case of C-torsors
the generic model is the Yoneda embedding Y , with the representable torsor
Y(j) for each object j of C. To express this more concretely as a (p∗1C)-
indexed family of C-torsors in [C,S1], use the morphism

C1
〈d,c〉 // C0 × C0

π2 // C0

It becomes the object part of an internal presheaf over p∗1C, and is the generic
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torsor. Its construction is geometric (arithmetic, even) and so is preserved by
f ∗.

In the other case, T1 imposes invertibility for a morphism u : X → Y
in S1. Here p1 : E1 → S1 is an inclusion, and by [7, A4.3.11] it can be
taken to be the topos of sheaves for the smallest local operator for which
im(u) � Y and X � kp(u), the kernel pair, are both dense. Inverting
both of these monomorphisms will make u invertible. By [7, A4.5.14(e)]
its pseudopullback along f is also an inclusion, in fact for the smallest local
operator that makes f ∗u an isomorphism. The generic model is p∗1M , so
f ∗p∗1M

∼= p∗0f
∗M is a generic model in E0.

Putting together these results, we now obtain our main Local Repre-
sentability Theorem –

Theorem 5.12. In diagram (2), the left hand fibration P is locally repre-
sentable (Definition 4.4) over its Q.

Proof. Given (S,M), then, as noted in Definition 5.9, the classifying topos
S[T1/M ] exists, and, by Proposition 4.3, this gives condition (1) of Defini-
tion 4.4. The geometricity condition (2) is Theorem 5.11.

As we have already mentioned, by taking T0 = 11 we get that the right
hand P in diagram (2) is also locally representable. This tells us that the
assignment S 7→ S[T1] is preserved under change of base S.

After the main theorem, Proposition 4.5 now provides us with ways to
use the classifying toposes S[T1/M ] in places beyond BTop/S. In particu-
lar, –

Corollary 5.13. Let T0 ⊂ T1 be a context extension and M a strict model of
T0 in an elementary topos S . Then E = S[T1/M ] has the classifying topos
property for arbitrary q : F → S, not necessarily bounded.

Proof. Apply Proposition 4.5 to models of U in Id : F → F for which the
T0 part is q∗M .

Example 5.14. Let T0 be the context whose models are “GRD-systems” as
in [11]. It has three nodesG,R,D, together with (amongst other ingredients)
a further node FG constrained to be the Kuratowski finite powerset of G.
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(For instance, it can be constructed as a quotient of the list object ListG.)
Finally, it has edges

D
ρ

}}
π
��

FG R
λ
oo

This can be used to present a frame, with generators g ∈ G subject to rela-
tions (for r ∈ R) ∧

λ(r) ≤
∨
{
∧

ρ(d) | π(d) = r}.

The points of the corresponding locale, the subsets F ⊆ G respecting
the relations, are models of a context T1 that extends T0. It has a node for
F , with an edge F → G constrained to be monic, nodes for X = {r ∈ R |
λ(r) ⊆ F} and Y = {r ∈ R | (∃d)(π(d) = r ∧ ρ(d) ⊆ F )} (which can be
constructed in the AU-sketches) and an edge X ⊆ Y .

Then the local representability Theorem 5.12 implies [11, Corollary 5.4],
the geometricity of presentations.

6. Conclusion

What our main result has done is to elaborate the idea that a map U : T1 →
T0, a T0-valued map on T1, may also be a bundle: that is to say, a space-
valued map on the codomain T0, transforming points to the corresponding
fibres.

This interpretation is often tacit in a morphism in a category, and is par-
ticularly important in type theory. We have made it concrete in the particular
case of a morphism U in Con that arises from a context extension.

Note that U certainly is a “T0-valued map on T1”, if we think of the
points of a context as its strict models. This is shown in Section 3 and does
not need toposes – the models can be taken in any AU.

To get U as a bundle, we interpret “space” as Grothendieck topos and
look for the classifying toposes for the fibres. However, the base toposes
are now allowed to vary, and in Theorem 5.11 we showed the geometricity
property that when you change the base, and the corresponding base point
of T0, the classifier (representing the fibre) transforms by pseudopullback.
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This result, which I have not been able to find in the literature, relies on a
difference between the “arithmetic” theories of Con and the geometric theo-
ries that are classified. An arithmetic theory depends only on the existence
of an nno, whereas a geometric theory depends on the choice of some base
topos S.

To avoid the intricacies of coherence for the choices made in indexed
2-categories, we have adopted a fibrational approach to classifiers. As part
of that, the definition of classifier as representing object for an indexed 2-
category has been reformulated in terms of fibrations. Then their indexed
behaviour was formulated (our “local representability”, Definition 4.4) in
terms of towers of two 2-fibrations. It may be that the formulation in Propo-
sition 4.5 has broader usefulness. I sense that the classifying objects xw may
be trying to fulfill some notion of “cartesian 0-cell”, though I have not been
able to make that idea any more precise.

The results here are a piece in the broad programme of using AU tech-
niques to prove base-independent, geometric results for toposes in those situ-
ations that do not need the full power of S-indexed colimits for some S. One
already mentioned is the “geometricity of presentations”, Example 5.14.

On the other hand, the results also provide clues to how one might seek
a self-standing arithmetic logic of spaces, developing [9]. They suggest that
the extension maps might be the correct analogues of bounded geometric
morphisms.

A final comment regards the word “topos” itself, which Grothendieck
chose to suggest “those things of which topology is the study”. The very
word “topos” should strongly carry the idea of generalized space, but with
the advent of the elementary topos this inherent meaning has become ob-
scure. It is not so much the elementary toposes themselves that are the gener-
alized spaces, as the bounded geometric morphisms between them, and those
are what are called “Grothendieck toposes” in the present paper. One might
dream that the true toposes, the generalized spaces, the subjects of topology,
are arithmetic universes, and [9, 12] were written with that in mind. All
the same, there are significant gaps between that and Grothendieck’s vision,
which was partly of “those categories with the structure needed to do sheaf
cohomology”. Much as one might hope that, suitably formulated, the basic
results of algebraic topology are foundationally robust enough to work with
AUs, we have no idea at present as to how to do that.
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