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Résumé. Un cycle est un graphe connexe 2-régulier. Une propriété rela-
tive aux cycles est coopérative si elle est valable pour tout cycle qui est la
somme mod-2 de deux cycles se croisant dans un chemin nontrivial lorsque
les deux sommands ont la propriété. Une telle propriété vaut pour tous les
cycles si elle est valable pour les cycles dans une base a sommes connectées
(CS), et tous les graphes ont des bases CS. Nous montrons que la commu-
tativité “équivalence naturelle prés” est une propriété coopérative pour les
cycles d’un diagramme dans un groupoide et que le critére du cycle de Kol-
mogorov est coopératif pour les cycles dans les chaines de Markov.
Abstract. A cycle in a graph is a 2-regular connected subgraph. A prop-
erty of cycles is cooperative if it holds for any cycle which is the mod-2 sum
of two cycles intersecting in a nontrivial path when both summands have the
property. Cooperative properties hold for all cycles when they hold for the
cycles in a connected sum (CS) basis, and all graphs have CS bases. It is
shown that cooperative properties include commutativity up to natural equiv-
alence for cycles in a groupoid diagram and the Kolmogorov cycle criterion
for reversibility of an irreducible, stationary, aperiodic Markov chain.
Keywords. Groupoid diagram, commutative up to a natural equivalence,
Kolmogorov criterion, reversibility of a Markov chain, robust cycle basis.
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1. Introduction

We apply some concepts from graph theory to commutativity up to natu-
ral equivalence for diagrams in a groupoid category and to reversibility of
Markov chains. See Harary [5] for undefined graph terminology below.

Properties for the cycles in a graph are exhibited which need only be
checked for the cycles in a basis vs. all cycles in the graph. This avoids a
combinatorial explosion. For instance, the 5-dimensional (binary) hypercube
(05, with 32 vertices and 80 edges, contains more than 51 billion distinct
cycle-subgraphs but has a basis with 49 elements.

While our program works for some interesting properties, not every cy-
cle basis will do. One needs a connected sum basis (CS basis). This will
enable construction of cycles in a system which involves topology, order,
and hierarchy. Every graph has a CS basis; these bases are defined using the
concept of connected sum of cycles.

The connected sum of two cycles Z, and Z, in a graph G is defined
precisely when the intersection of the cycles is a nontrivial path, and, in that
case, it is the symmetric difference of the edge sets (that is, the mod-2 sum).

Figure 1: The connected sum of two cycles.

We write Z;+ 75 for connected sum. The connected sum of two cycles is
always a cycle, but their ordinary mod-2 sum is only guaranteed to have all
vertices of even degree. Connected sum is commutative but not associative.
The connected sum of a sequence of cycles, when it is defined, uses left-most
parenthesization. So the sequence of cycles (7, Zs, Z3) has a connected
sum iff Z; N Z5 and (Z; —T—Zg) M Z3 are nontrivial paths. Starting with a set S
of cycles, one can form all possible connected sums for sequences from the
set, and we call the resulting family of cycles the robust closure p(S) of S.

The edge sets of the even-degree subgraphs of G determine its cycle
space, an Fy-vector space, usually denoted Z((G), where addition mod-2 is
symmetric difference. As every even degree graph has an edge-disjoint de-
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composition into cycles, there are bases for Z(G) consisting only of cycles.
These are called cycle bases. See, e.g., [1, 6, 13, 17]. We introduced the
following concepts in [7].

A cycle basis for a graph G is a connected sum basis if it can be used
to construct every cycle in GG by iteratively taking robust closure. Note that
topology is involved in the definition of connected sum of two cycles, order
in the choice of a sequence of cycles whose connected sum is defined giving
the desired cycle, and hierarchy in the recursive construction of cycles.

Formally, we define a property of cycles to be a subset P of a graph’s
cycles. A cooperative property is one for which

71,7, €P = Z1+7Z, € P. (1)

Properties that hold for the cycles in a CS basis, and that are cooperative,
will hold for all cycles. In contrast, for less carefully controlled cycle sums,
where partial summands need not even be connected and where intersections
of cycles can be arbitrary, properties holding for the cycles in a basis may
not spread to the other cycles. Commutativity of cycles in a diagram turns
out to be cooperative.

Cooperative properties involve additional structure superimposed on the
graph. For diagram commutativity, this structure consists of a suitable dia-
gram in a groupoid. Later we consider the structure of a Markov chain.

It may seem unnecessary to have a property for all cycles guaranteed by
the members of a special cycle basis when it is almost a default assumption
that properties of a graph related to cycles need only be checked for members
of an arbitrary cycle basis. This belief could be due to two well-known
examples:

Kirchoff’s voltage law (the sum of the voltages around any cycle is
zero.) By a linear-algebra argument, one need only check for the cycles
in any basis.

A graph is bipartite if and only if each cycle has even length. Count-
ing shows this holds for all cycles if it holds for the cycles in any basis.

A third example might come to mind. Many of the diagrams arising in
elementary category theory and also in homological algebra are planar.

Plane diagrams commute iff the region boundaries commute. The
region boundaries (of all the bounded regions) do constitute a cycle basis.
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However, this last example, considered more carefully, shows that not
all cycle bases will suffice. We provided a nonplanar diagram and a non-cs
cycle basis where the cycles of the basis commute but some other cycles do
not commute; see [4] and Figure 3 below. Further, the region-boundaries
basis is a connected sum basis [10]. We showed in [4] that commutativity is
a cooperative property so diagrams commute if (and only if) all cycles in a
connected sum basis commute.

In this paper, the applicability of cooperative properties is demonstrated
with two more examples: commutativity up to a natural equivalence is a
cooperative property of cycles in a groupoid diagram, and the Kolmogorov
cycle criterion (KCC) is a cooperative property of cycles in a Markov chain.

In §2 below, we review CS bases and §3 extends the machinery to directed
graphs (digraphs). The results are applied in §4 to groupoid diagrams and in
§5 to Markov chains; we conclude with a brief discussion.

2. Background on connected sum

For any graph H, we write F/(H) for the edge-set. The connected sum
Z1%+7Z, of two cycle subgraphs of a graph G is just the usual mod-2 sum
(i.e., symmetric difference of edge sets) but it is only defined when Z; N Z,
is a path containing at least one edge.

Let Cyc(G) denote the set of all cycle-subgraphs of a graph GG and let
) #S C Cyc(G). A sequence of not necessarily distinct cycles from S

(217227"'aZk) (2)
is called S-admissable and its connected sum is defined by
(21, 2oy Zk) = (- (21 F Z) ¥ Z3) - - ) F 2. 3)

provided that its members have pairwise intersections as specified so that
all of the partial sums on the RHS of (3) are connected sums. Hence, the
connected sum of a sequence is defined iff the sequence is S-admissible.

The robust closure of S is the set of all cycles in G’ which are connected
sums of S-admissable sequences

p(S) = {Z:Hézl,ZieS, 1<i<t, Z=F(Z, 2 ..., %) } 4)
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By definition, S C p(S) C Cyc(G) and p preserves inclusion. If S = B
is a cycle basis for which p*(B) = p(p*1(B)) = Cyc(G) for a positive
integer k, then B is a connected sum (CS) basis; the depth of 5 is the least
such £, the number of iterated robust closures needed to generate all cycles.

Examples of CS bases of depths 1 and 2 are given in [10] and [7]. The
depth 1 case (called robust bases) includes plane graphs and complete graphs.

It was shown in [3] that for n > 8, the complete bipartite graph kK, ,, does
not have any robust basis, but the basis consisting of all 4-cycles through a
fixed edge from [7] is a CS basis. In [4], we gave a general method for con-
structing cs bases, involving ear decompositions [14], based on a theorem of
Whitney [19], .

Recall that a property of cycles is a subset P C Cyc(G). A property P
is cooperative provided 71,7, € P = Z,+%Zy € P. The following is
shown in [10], see also [7], [4].

Theorem 2.1. If P is any cooperative property and P holds for all cycles in
a connected sum basis for a graph G, then P holds for every cycle in G.

3. Connected sum of directed cycles

It will be convenient to describe a directed versions of connected sum and
cooperativity. We collect a few related definitions.

A digraph D is an ordered pair (V, A), where V' = () is a finite set of
vertices and a set of arcs A C V' x V. The underlying graph U (D) of D has
the same vertex set with vw € E(U(D)) iff (v,w) € A or (w,v) € A. We
also write a € A with s(a) = v (v is the source) t(a) = w (w is the targer).
Let deg_ (v) denote the in-degree of a vertex v which is the number of arcs
a with t(a) = v and let deg_(v) denote out-degree of v, the number of arcs
a with s(a) = v.

A quiver is an ordered pair (V, A), where V' # () is a set of vertices and A
is a multiset, allowing for each (v,w) € V' x V a family a;, j € J(v,w), of
arcs, all with s(a;) = v,t(a;) = w. Quivers have an underlying multigraph
and can be infinite. We write D = (V, A) for both digraphs and quivers.

If D is a digraph (or quiver), then U (D) will denote the underlying graph
(or multigraph) obtained by discarding the direction of the arcs, replacing
them by the corresponding edges.
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A directed walk (diwalk) in D of length ¢ > 0 is a sequence of vertices
(vo,v1, ..., ve) and a sequence of arcs (ay, as, .. ., ap) such that

t(a;)) =vi=s(aip1), 1 <i<Ll—1, s(ay) =wvy, tlar) = vp.

If all vertices are distinct, the diwalk is called a dipath. 1f vy = vy, the
diwalk is called a closed diwalk. A dicycle is a closed diwalk where v; = v;
for v < j implies s = 0, j = ¢, and ¢ > 1. Loops are dicycles of length 1.
Given any graph G, one can form an orientation digraph by choosing for
each edge of GG exactly one of the two possible arcs.
Note that a digraph is a dicycle iff it is an orientation of a cycle such that

deg, (v) =1 =deg_(v)

for all vertices v. Given a graph GG, one forms the symmetric digraph induced
by G, denoted D(G), by replacing every edge of G by both possible arcs, so
D(G) is the union of the set of possible orientations. A digraph is strongly
connected if every ordered pair of vertices is joined by a dipath from the first
to the second. Hence, a dicycle is a minimal strongly connected digraph.

Two orientation digraphs that have underlying graphs sharing at least
one edge will be in exactly one of the following relations with respect to
their common edges: consistently oriented (in agreement on all); oppositely
oriented (disagreeing on all); or variably oriented. We use this mostly for
dicycles.

Define the connected sum D;+ D, of two dicycles Dy, Dy when both of
the following hold: the underlying cycles U(D;) and U (D) meet in a non-
trivial path and the dicycles are oppositely oriented. In this case, D;+D, is
the unique dicycle orientation of the cycle U (D, )+U(Ds) such that D, D,
is consistently oriented with D, and D,. See Figure 2. We extend connected
sum to sequences of dicycles, using leftmost parenthesization analogously
with the undirected case.

Note that in any connected sum +(D;, Dy, D3) of dicycles for which
U(D3) € {U(D;),U(Ds)}, the repeated cycle appears with both dicycle
orientations.

A property of dicycles is cooperative if it holds for the connected sum of
two dicycles whenever it holds for the summands.

For each cycle Z of (G, we define

75 =177},

-393 -



R. HAMMACK, P. KAINEN COOPERATIVE PROPERTIES

where Z*, Z~ are the oppositely-oriented dicycle orientations of Z.
If S is a set of cycles, we write the corresponding set of dicycles as

S* = U zZ*
zes

The orientation of a dicycle is determined on any nontrivial path sub-
graph. Because of the constrained intersections of connected sum sequences,
one can choose the orientations so that each successive pairwise connected
sum is the sum of two oppositely oriented dicycles. When this is done, the
connected sum of the two underlying cycles is oriented consistently with the
summands. The following theorem is sufficient to confirm this.

Theorem 3.1. Let C be any cycle in a graph G with C = F(Zy, Zs, . .., Zy)
and let C° be any orientation of C. Then there exists a unique sequence
(e1,...,ex) € {+, —}F such that

Ce=(Z1,25%,..., ZF). (5)

Proof. By induction on k. The claim is trivial for £k = 1 where C = Z; and
e1 is determined by the orientation of C'. Assume the result for £ — 1 and
suppose that C' has a connected sum (3). Let Z;* be the unique orientation
of Zj, consistent with C¢. Put C := C*+Z, °*. Then

Ok - ‘?(Zl, ey Zk—l)-
By the inductive hypothesis, we have unique 1, . .., €51 and (5) holds. [

The results here show that, as 1-chains over the integers, dicycles can be
built so that all coefficients are 0, 1, or —1, using a connected sum basis.
Further, a cooperative property holds for all dicycles in a digraph when it
holds for all the dicycles in B* where B is a CS basis for U (D).

Figure 2: Two compatible dicycles (left), their connected sum (center) and
the connected sum of their underlying graphs (right).
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4. Diagrams in groupoids

In this section, we review our previous result on cooperativity of commu-
tativity in groupoid diagrams and show how to extend this to groupoid dia-
grams which are only commutative up to a natural transformation.

Let D be a digraph and let C be a category. A diagram d of shape D in
C is a homomorphism from D to the underlying quiver of C. For example,
the digraph with vertices a, b, ¢, d and arcs (a,b), (b, ¢), (a,d), (d, c) could
be mapped by sending all vertices to a fixed object X in C, with the arcs
associated with various morphisms X — X. See Mac Lane [15, p. 8].

Two dipaths in a digraph with a common source and a common target
vertex are called parallel; in the extreme case, they are internally disjoint but
this is not required. A diagram ¢ of shape D in C is parallel-commutative
if for any two parallel dipaths in D, the corresponding dipaths in C give the
same composite morphism. But any diagram parallel-commutes if its shape
has no two distinct parallel paths (e.g., a cycle in which arcs alternate in
direction).

Instead, we shall consider a stronger type of commutativity which, how-
ever, is only defined when the morphisms of the diagram are all invertible;
that is, when the category C is a groupoid G [15, p. 20], [18, pp. 45, 134].

For a diagram

0:D—=¢gG

in a groupoid G, we say that § groupoid-commutes (g-commutes) if the com-
position around any cycle of the underlying graph of D induces an identity
morphism in G [7], [4]. We assume that arc z = (v, w) of D, traversed in
proper order while going around the cycle, produces the morphism §(z) but
traversed in reverse, produces the morphism 6(z) ™! from §(w) to §(v).

It is easy to check that the groupoid commutativity of a cycle is inde-
pendent of which traversal is chosen (i.e., of starting point and of clockwise
vs counterclockwise orientation). But the particular identity morphism may
depend on starting point.

Indeed, consider the following case, which is sufficient. Let the diagram
have two objects X and Y with morphismsa : X — Y andb : Y — X.
Suppose that (i) ba = 1x, where we write composition from right to left as
usual. Hence, (ii) ab = 1y. Also, (i) implies (iii) a~16~! = 1.

The following was shown in [10].
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Theorem 4.1. Groupoid commutativity is a cooperative property.

The significance of the result follows from the fact that in [4], we ex-
hibited a diagram 0 : D — C*, where D is the orientation of the complete
bipartite graph K5 3 shown below, C* is the group of nonzero complex num-
bers, and each morphism is rotation by %”, together with a particular basis
B of U(D), indicated on the right, such that 6 commutes on the members
of B (and indeed on any 6-cycle but does not commute on the 4-cycles. See
Figure 3.

X—X X=X X X
SN e
X X X X X=X
VAVARR/ 2

Figure 3: A noncommutative diagram (left) that commutes on a cycle basis (right).
This basis is not a CS basis because no two of its members are compatible.

Assume where necessary that categories are small with only a set of ob-
jects. A natural transformation v : F = G between two functors F, G :
C — D is a family of D-morphisms indexed by the objects of C

{ve : Fo — Gx}aconi(o)
such that for every C-morphism « :  — y, we have
vy o Fla) = Gla) ow;

that is, all the associated squares commute. A natural equivalence is a natu-
ral transformation all of whose arrows are equivalences. A natural transfor-
mation is an equivalence iff it is invertible as a natural transformation.

Let CAT be a small subcategory of the category of all small categories
with functors as morphisms. We shall consider a fixed groupoid subcategory
G of CAT. Let D be an orientation digraph and let 6 : D — G be any
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diagram. Then one can extend ¢ in a unique way to a diagram 5 on the
symmetric digraph which D induces

§: D:=D(UD)) - G (6)

Commutativity up to natural equivalence for diagrams in G means that
the composition functor around any dicycle in D is naturally equivalent to
the appropriate identity functor.

Theorem 4.2. Commutativity up to natural equivalence is cooperative.

Proof. Without loss of generality, we take two dicycles DDy and Dy which
are oppositely oriented with P := U(D;) NU(Dy) a nontrivial path. Let P*
be the orientation of P consistent with D; and let Y and X, resp., denote the
first and last vertex of P™. We write a for the composition of the morphisms
along the path D; — P* from X to Y, and b for the composition along P+
from Y to X. For the other dicycle, we do the same thing: let ¢ denote the
composition of the morphisms along D, — P~ from Y to X. By definition,
the composition of the morphisms in P~ from X to Y is b~L.

X

Suppose now that both dicycles commute up to natural equivalences; let
v:boa=1y and p:cob ! =1x. (7)

where v and p are natural equivalences. We define a composition 7 := pOv
which is both a natural transformation and an equivalence; for every x € X,

Ty i= Jbgz O ((c o b_l)(yx)>, (8)
which is an X -morphism from ((c ob)o(bo a)) () = (coa)(x) to x.

Hence, D;+D, commutes up to natural equivalence. This is illustrated in
the following four commutative squares.
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The first square expresses the fact that v is a natural transformation; the
second applies the functor cb™!; the third expresses the naturality of y; and
the fourth is the (vertical) composition of the second and third squares.

ba(x) —> ba(z")

(R

ca(r) ———— ca(x)

"

cb™(2) ———cb~H(2)

ch™ ()

ca(r) ————— ca(z’)

Tm|
i

This completes the proof. U

5. Application to Markov chains

In this section, we consider the Kolmogorov cycle criterion (KCC) for the
reversibility of discrete Markov chains. See, e.g., Kelly [11, chap. 1].
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Let (X(t),t € T) be a Markov chain with a finite or countable state-
space S C N,. A Markov chain is stationary if for all n € N, and all
T,t1,...,t, €T,

(X(tl), X(ts), ... ,X(tn)> ~ (X(T Y ), X (T4 t), .., X (T + tn)>,

where A ~ B denotes the relation of equality of distributions.
A Markov chain is reversible if foralln € N, and all 7,¢y,...,t, € T,

(X(t1>,X(t2), . ,X(tn)) ~ (X<T ), X (T =ty X (T — tn)>.

Reversibilty implies stationarity [11, p. 5]. Also, a stationary Markov chain
X (t) is time-homogeneous; i.e., for all 7,t1,t, € T'and all j, k € S,

P(X(t, +7) =k|X(t1) = j) = P(X(t2 + 7) = k[ X(t2) = j).

Write p(7j, k) for P(X(t +1)=k ‘ X(t) = j> as it is independent of ¢ and
for every state j the state transitions describe all events, so ), .o p(j, k) = 1.

We define the communications digraph D(X) of a Markov chain X to
be the digraph with vertex set S, where (7, k) is an arc iff p(j, k) > 0. A
Markov chain is irreducible if and only if its communications digraph is
strongly connected (there is a positive probability of a dipath joining each
pair of states).

A Markov chain is periodic if there exists d > 1, d € N, such that

P(X(t+7):j’X(t):j> >0 = dr

(d|T means d divides 7). If the chain is not periodic, it is called aperiodic.
The following result is well-known (e.g., [11, p. 6]).

Theorem 5.1. A stationary, irreducible, and aperiodic Markov chain X (t)
is reversible if and only if there exists a function p on S with u(j) > 0 for
all jand 3 ;s p(j) = 1 such that, for all j,k € S, detailed balance holds:

1()p(d, k) = p(k)p(k, j). )
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As Kelly [11, p. 21] puts it, ... it is natural to ask whether we can es-
tablish the reversibility of a process directly from the transition rates alone.”

The Kolmogorov Cycle Criterion (KCC) makes this possible. (There are
also extensions to continuous-time Markov processes which we omit here.)
The KCC for a closed diwalk

W = (jlaj?a S 7jn7j1)

asserts that
P(w) = P(w™), (10)

where w denotes the diwalk oppositely orientated to w,

w? = (jlajna e >j27j1)

and the probability of a diwalk is the product of the probabilities of its arcs,

P(w) = p(jr, ja) - - - P(n-15Jn) P(dns J1)-
We sketch Kelly’s argument [11, p. 22] for the original result of [12].

Theorem 5.2. A stationary, irreducible, and aperiodic Markov chain X (t) is
reversible if and only if the KCC (10) holds for all closed walks w in D(X).

Proof. If X is reversible, then by the previous theorem, there exists a pos-
itive measure on S which satisfies detailed balance (9) for each oppositely
oriented pair of arcs in D(X ). Take the product of the set of detailed-balance
equations corresponding to the arcs in w and divide by the product of the
(positive!) measures of the states which occur (in reverse order) for the two
opposing diwalk orientations. The result is equation (10).

Conversely, suppose that (10) holds for every closed walk. One defines a
positive measure p as follows. Select an arbitrary base-point j, in S and let
j € 8. As X is irreducible, there exists a diwalk (in fact, a dipath) w from
j to jo in the communications digraph D(X). Define x(j) by the following
equation, o)

P(w°P
u(j) = B Pl
where B is an arbitrary positive constant that can later be adjusted to give a
probability measure.

(1)

- 400 -



R. HAMMACK, P. KAINEN COOPERATIVE PROPERTIES

To see that () does not depend on the path from j to jo, let ( denote

"

another j-jo-dipath in D(X). Using “x” to concatenate diwalks, the equation

P(w) _ P((™)
Pl) ~ PQ)

holds by (10) as P(w)P(¢?) = P(w * () = P(¢ * w?) = P(w?)P(() .
Also, p(j) > 0; indeed, as there is a diwalk 1 in D(X) from j, to 7,
the concatenation w * 1) is a closed diwalk of positive probability, so by (10),
P(n°P) > 0; hence, with 1°? instead of w in (11), u(j) > 0.
It is routine to show that each arc satisfies (9). [

(12)

The following result applies our theory to obtain a more efficient charac-
terization of reversibility.

Theorem 5.3. A stationary, irreducible, and aperiodic Markov chain X (t)
is reversible if and only if the KCC (10) holds for all dicycles in B+, where
B is any CS basis of U(D(X))

Proof. One direction is trivial in view of Kolmogorov’s theorem. In the
opposite direction, suppose that his criteria hold for all the dicycles of a CS
basis. Once we’ve established the next theorem, it follows that the KCC
holds for all dicycles and hence X is reversible. [

Theorem 5.4. The KCC is a cooperative property for dicycles in the commu-
nications digraph of a stationary, irreducible, and aperiodic Markov chain.

Proof. We follow the same outline as in the proof of Theorem 4.2. Take
oppositely oriented dicycles D, and Dy with P := U(D;) N U(D3) a non-
trivial path. Let P be the orientation of P consistent with D; and let Y and
X, resp., denote the first and last vertex of P™. We write « for the dipath
Dy — P* from X to Y, and 3 for the dipath P* from Y to X. Let v denote
the dipath Dy, — P~ from Y to X. As D; and D, satisfy the KCC, we have
the equations
P(a)P(8) = P(a")P(8”)

Py)P(B%) = P(y*)P(B)

Multiplying the two equations and cancelling the positive term P(3)P(3)
gives the KCC for D+ Dy, P(a)P(y) = P(a’)P (7). ]
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We now apply connected sum theory to an exercise [11, Ex. 1.5.2, p. 24].

Proposition 5.5 (Kelly). Let X (t) be a stationary, irreducible, and aperiodic
Markov chain. If jo € S is such that for every j € S, we have p(j,jo) > 0,
then X is reversible iff the KCC holds for all 3-cycles through jy; that is, for

all j1 # jo € S\ {Jjo},
p(jo, j1) (J1, 32) P(J2, Jo) = p(Jo, J2) P(J2, J1) P(J1. Jo)-

Proof. The bouquet of triangles centered at j is a CS basis for K, for every
n > 3 by [7, Proposition 1], and any dicycle in D(X) is contained in some
D(K,). O

6. Discussion

The implications of cooperativity for commutativity are interesting from the
perspective of the information theory of mathematics. For example, one can
define the structure of a group by a set of commutative diagrams and it is
well-known that only a subset need to be checked. As with application of the
Cube Lemma [16, p. 43], savings are modest. However, in a more complex
situation, savings might be substantial, cf. [7], [9].

Perhaps the theory of diagrams which commute or commute up to natural
equivalence could decrease the complexity of verifying commutativity for
the groupoid diagrams involved in higher category theory and adjointness.

Indeed, the only result in the literature, of which we are aware, with a
similar direction to ours is in Gray [2], who proved that a hypercube diagram
in a 2-category is 2-commutative if and only if all its ()3-subgraphs are 2-
commutative.

Are there applications of connected sum theory to natural processes in
biology and physics? The notion that cycles can be generated in a hierarchi-
cal fashion so that one must first prepare the ingredients in a previous stage
before combining them in a connected sum could be a desirable feature.

Also, are there implications for the random spread of cooperative prop-
erties? Given a fixed probability that any one cycle will have the property, if
the number of cs bases grows sufficiently rapidly as a function of the order
of a graph family, then we might expect that there is a threshold number of
vertices above which the property almost surely holds.

What other properties of cycles are cooperative?
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