
Résumé. Nous étudions brièvement une espèce de colimites, appellée
ici ‘pushout généralisé’. On prouve que, dans une catégorie quelconque,
l’existence de ces colimites correspond à celle des colimites connexes; dans
le cas fini on sait que ceci se reduit à l’existence de pushouts ordinaires et
coégalisateurs (R. Paré, 1993). Cette étude a été motivée par la remarque que
tout groupoı̈de est, à équivalence près, un pushout généralisé de groupoı̈des
codiscrets. Pour les groupoı̈des fondamentaux d’espaces convenables nous
donnons des résultats plus fins concernant des pushouts généralisés finis.
Abstract. This is a brief study of a particular kind of colimit, called a ‘gener-
alised pushout’. We prove that, in any category, generalised pushouts amount
to connected colimits; in the finite case the latter are known to amount to or-
dinary pushouts and coequalisers (R. Paré, 1993). This study was motivated
by remarking that every groupoid is, up to equivalence, a generalised pushout
of codiscrete subgroupoids. For the fundamental groupoids of suitable spaces
we get finer results concerning finite generalised pushouts.
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1. Introduction

We are interested in colimits of a particular form, that will be called ‘gen-
eralised pushouts’ (see Section 2), following a line well represented in cat-
egory theory: to study particular classes of (co)limits, like filtered colimits,
flexible (co)limits, connected (co)limits, etc.

Generalised pushouts are connected, non-simply-connected colimits and
therefore cannot be reduced to ordinary pushouts (see R. Paré [P1, P2]).
We show in Sections 2 and 3 that generalised pushouts give all connected
colimits and - in the finite case - amount to finite connected colimits; the

               CAHIERS DE TOPOLOGIE ET                                                        Vol. LVI-3 (2015)

GEOMETRIE DIFFERENTIELLE CATEGORIQUES

GENERALISED PUSHOUTS, CONNECTED COLIMITS

AND CODISCRETE GROUPOIDS

by Ettore CARLETTI and Marco GRANDIS

- 232 -



latter can be reduced to pushouts and coequalisers, as proved in [P2].
The second part is about colimits of groupoids. In Section 4 we show

that - up to categorical equivalence - every groupoid is a generalised pushout
of codiscrete subgroupoids.

In the last Section 5 we consider cases where the fundamental groupoid
π1X of a space can be obtained as a finite colimit of this kind.

For instance, an obvious cover of the circle S1 with three open arcs
X1, X2, X3 shows that the fundamental groupoid π1(S1) is a 3-generalised
pushout of the codiscrete subgroupoids π1Xi over codiscrete subgroupoids.
Moreover if we form a subset A by choosing a point in each of the three
intersections Xi ∩ Xj , the (equivalent) restricted groupoid π1(S1)|A (with
objects in A) is a 3-generalised pushout of finite codiscrete subgroupoids.

There are similar results for a compact differentiable manifold (Corollary
5.3), while a sphere with countably many handles would require a countable
generalised pushout. More generally these facts hold for spaces having ‘suf-
ficiently good’ covers, as we show in Theorem 5.2.

Let us stress the point that this article is not about the concrete compu-
tation of fundamental groupoids, which is already well covered in the liter-
ature (see [Bw2, BwS] and references therein): our goal is to isolate a kind
of connected colimit motivated by the previous arguments and to study its
categorical aspects.

As a related question, suggested by F.W. Lawvere, one might investi-
gate ‘codiscretely generated’ toposes, like symmetric simplicial sets [Gr].
The van Kampen theorem for lextensive categories of [BwJ] might also be
examined in the present line.

Here a connected category is assumed to be non-empty, as usual; but we
do not follow this convention for spaces.
Acknowledgments. We gratefully acknowledge helpful information and sug-
gestions from R. Brown, G. Janelidze, F.W. Lawvere and R. Paré. This work
was supported by a PRIN Research Project and a Research Contract of Uni-
versità di Genova.

2. Generalised pushouts

In an arbitrary category C we are interested in colimits of a particular form,
that will be called ‘generalised pushouts’.
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We start from a non-empty set I and form the set Î of its subsets {i, j}
having one or two elements, ordered by the relation {i, j} ≤ {i} and viewed
as a connected category.

A functor X : Î → C will be (partially) represented as the left diagram
below

Xi Xi fi
((

Xij

uij 55

uji
((

(i, j ∈ I), Xij

55

((
Y

Xj Xj
fj

66 (1)

A cocone of vertex Y amounts to family fi : Xi → Y of morphisms of
C such that all the right-hand squares above commute. The colimit will be
called the generalised pushout of the objects Xi over the objects Xij . We
speak of a finite generalised pushout, or n-generalised pushout when the set
I is finite, with n elements.

Plainly, 1-generalised pushouts are trivial and 2-generalised pushouts
are ordinary pushouts. A 3-generalised pushout is the colimit of a diagram
X : Î → C with I = {1, 2, 3}

3 X3

{1, 3}

88

||

{2, 3}

ff

""

Î X13

;;

}}
X23

cc

!!
X

1 {1, 2}oo // 2 X1 X12
oo // X2

(2)

as in the example of the Introduction for π1(S1). We prove below that they
give all finite generalised pushouts and that their existence amounts to that
of pushouts and coequalisers (Section 3).

The fact that pushouts are not sufficient to construct all finite generalised
pushouts is already known from a paper of R. Paré [P1] (see Theorem 2)
that characterises the limits that can be constructed with pullbacks. In fact
the category Î associated to I = {1, 2, 3} (or any larger set) is not simply
connected: the left figure above shows a non-trivial loop, that gives a non-
trivial endomorphism in π1(Î) = π1(Î

op) (cf. [P1]).

3. Generalised pushouts and connected colimits

We shall now make use of a second paper of R. Paré on connected limits
[P2], recalling a result from its Section 4 (written here in dual form).
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Theorem 3.1 (R. Paré). The category C has arbitrary (resp. finite) con-
nected colimits if and only if it has arbitrary (resp. finite) fibred coproducts
and coequalisers.

Here a fibred coproduct is the colimit of a family hi : X → Xi of mor-
phisms indexed by a non-empty set I . Of course the existence of finite fibred
coproducts is equivalent to the existence of pushouts.

Lemma 3.2. If the category C has arbitrary (resp. finite) generalised push-
outs then it has arbitrary (resp. finite) fibred coproducts.

Proof. Starting from a family (hi : X → Xi)i∈I (I 6= ∅), we transform it
into a diagram X : Î → C. After the given objects Xi, we let Xij = X for
i 6= j and

uij = hi : X → Xi, for i 6= j, uii = idXi.

Now the given diagram (hi : X → Xi) and the new one have the same
cocones, namely the families of morphisms fi : Xi → Y such that fihi =
fjhj for all indices i, j.

Lemma 3.3. If the category C has 3-generalised pushouts then it has ordi-
nary pushouts and coequalisers.

Proof. Suppose that C has 3-generalised pushouts. To prove the existence
of pushouts, starting from the left diagram below

X1 X1 X2

X12

u12 44

u21
**

X13

u13 44

u31
**

X23

u23 44

u32
**

X2 X3 X3

(3)

we extend it to a diagram on I = {1, 2, 3}, where X3 = X2, the second span
above coincides with the first and the third consists of identities u23 = u32 =
idX2. Plainly the extended diagram has the same cocones as the original one
and its colimit is the pushout of the latter.

To prove that C has coequalisers, we start from two arrows u, v : X → Y
and construct a new diagram on I = {1, 2, 3}, where X1 = X2 = X3 = Y
and the three spans are specified below

X1 X1 X2

X
u 44

v **
Y

id 5 5

id
* *

Y
id 55

id
**

X2 X3 X3

(4)
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For the new diagram, a cocone (fi : Xi → Z) is a map f = f1 = f2 =
f3 : Y → Z such that fu = fv; the 3-generalised pushout is thus the co-
equaliser of u, v.

Corollary 3.4. The following conditions on a category C are equivalent:
(a) C has generalised pushouts,
(b) C has fibred coproducts and coequalisers,
(c) C has connected colimits.

Proof. (a)⇒ (b) From the previous lemmas. (b)⇒ (c) From Theorem 3.1.
(c)⇒ (a) Obvious.

Corollary 3.5. The following conditions on a category C are equivalent:
(a) C has finite generalised pushouts,
(b) C has 3-generalised pushouts,
(c) C has pushouts and coequalisers,
(d) C has finite connected colimits.

Proof. (d) ⇒ (a) ⇒ (b) Obvious. (b) ⇒ (c) From 3.3. (c) ⇒ (d) From
3.1.

We end by remarking that the ‘weight’ of generalised pushouts within
finite colimits can be measured noting that each of the conditions below
implies the following one
(a) C has finite colimits,
(b) C has finite generalised pushouts, or (equivalently) finite connected col-
imits, or pushouts and coequalisers, or 3-generalised pushouts,
(c) C has pushouts.

These implications cannot be reversed. In fact the category of non-empty
sets has all colimits of non-empty diagrams but lacks an initial object. Sec-
ondly, every groupoid has (trivial) pushouts, but it has coequalisers if and
only if it is an equivalence relation.
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4. Generalised pushouts of groupoids

We prove now that all groupoids can be obtained as generalised pushouts of
codiscrete groupoids. Of course a groupoid G is said to be codiscrete, or
chaotic, if it has precisely one arrow x → y for any two vertices x, y; this
means that G is either empty or equivalent to the singleton groupoid.

Proposition 4.1. Every groupoid is categorically equivalent to a groupoid
G that is a generalised pushout of finite codiscrete groupoids and inclusions.
These groupoids can be assumed to be subgroupoids of G, and non-empty if
G is connected.

Proof. As a motivation of making appeal to categorical equivalence, note
that a group has only one codiscrete subgroupoid, the trivial one, and cannot
be a generalised pushout of codiscrete subgroupoids - unless it is trivial.
(But one can prove, by an argument similar to the following one, that every
connected groupoid on at least three vertices is a generalised pushout of
codiscrete subgroupoids and inclusions.)

We can suppose that our groupoid is connected (non-empty); then it is
equivalent to its skeleton, which is a groupG0, and we replace the latter with
an equivalent groupoid G on three vertices, say 1, 2, 3. Let I be the set of
commutative diagrams in G of the following form

2 y
''

1

x 77

z
// 3 z = yx.

(5)

It will be convenient to denote this diagram by the triple (x, y, z), even
though each pair of these arrows determines the third; we write as F (x, y, z)
the subgroupoid of G generated by these arrows: it is formed by all the
objects, their identities, the three given maps and their inverses. I can be
identified with the set of all the wide codiscrete subgroupoids of G. It is also
easy to see that the set I is in bijective (non-canonical) correspondence with
G0×G0: after fixing a diagram (5) and identifyingG(1, 1) withG0, each pair
(g, h) ∈ G0×G0 determines a triple (xg, y′, zh), with y′ = zhg−1x−1.

We now form a diagram F : Î → Gpd of finite codiscrete groupoids and
inclusions. F is already defined on the triples (x, y, z) ∈ I . For two distinct
triples (x, y, z), (x′, y′, z′) we distinguish two cases:
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(i) if x = x′ or y = y′ or z = z′, we let

F (x, y, z;x′, y′, z′) = (F (x, y, z) ∩ F (x′, y′, z′))̂ ,

where (−)̂ means taking out the isolated vertex (since the intersection itself
is not codiscrete),
(ii) otherwise we let F (x, y, z;x′, y′, z′) be the (co)discrete groupoid on the
vertex 1 (since we do not want to use the empty groupoid).

It is now evident that every cocone fxyz : F (x, y, z)→ H (for (x, y, z) ∈
I) of F has precisely one extension to a ‘mapping’ f : G→ H , which neces-
sarily preserves identities and composition. The only point that is not com-
pletely trivial is showing that two arbitrary morphisms fxyz and fx′y′z′ of this
cocone coincide on each vertex. Working for instance on the vertex 3, it is
sufficient to consider the objects

F (x, y, z), F (x′′, y′, z), F (x′, y′, z′) (x′′ = z−1y′),

so that the cocone condition gives: fxyz(3) = fx′′y′z(3) = fx′y′z′(3).

5. Good covers of spaces and manifolds

We end by investigating cases where the fundamental groupoid π1(X) of a
space can be obtained as a finite generalised pushout of codiscrete groupoids.

First we need an extension of the van Kampen theorem for fundamental
groupoids, as formulated by R. Brown in [Bw1, Bw2].

Theorem 5.1. LetX be a space equipped with a family of subspaces (Xi)i∈I
such thatX is covered by their interior parts. Then the fundamental groupoid
π1X is (strictly) the generalised pushout of the groupoids π1Xi over the
groupoids π1(Xi ∩Xj).

Proof. The binary case, concerning a pushout, is proved in [Bw2], Section
6.7.2. This extension can be proved by the same argument. (See also Exer-
cise 6 of [Bw2], 6.7.)

Secondly we recall (from [BT], Theorem 5.1) that every differentiable
n-manifold X has a good cover, i.e. an open cover (Xi)i∈I such that all
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non-empty intersections Xi1 ∩ ... ∩ Xik are diffeomorphic to Rn. (Up to
dimension 3, but not beyond, every topological manifold has a differentiable
structure, so that this result can be extended [Sc, Mo].)

With this motivation we consider a topological space X having an open
cover (Xi) such that all subspaces Xi ∩ Xj (including the original Xi, of
course) are 1-connected: in other words we assume that the following fun-
damental groupoids are codiscrete

π1(Xi) = C(Xi), π1(Xi ∩Xj) = C(Xi ∩Xj) = C(Xi) ∩ C(Xj), (6)

where C(S) denotes the codiscrete groupoid on a set of objects S, possibly
empty.

Theorem 5.2. (a) In this hypothesis the fundamental groupoid π1X is (in a
strict sense) the generalised pushout of a diagram C : Î → Gpd of codis-
crete groupoids and inclusions

Ci

Cij

uij 66

uji
((

Ci = C(Xi), Cij = C(Xi ∩Xj) = Ci ∩ Cj.

Cj

(7)

All these objects are subgroupoids of π1X , the colimit.
(b) If X has a finite cover (Xi) of the previous type (which is a consequence
of the previous assumption, for a compact X), then π1X is a finite gener-
alised pushout of codiscrete groupoids and inclusions.
(c) If, moreover, each subspace Xijk = Xi ∩Xj ∩Xk has a finite number of
path components, we can choose a finite subset A of X which meets every
such component so that the (equivalent) restricted groupoid π1X|A is a finite
generalised pushout of finite codiscrete subgroupoids and inclusions.

Proof. The first two points follow from Theorem 5.1. Point (c) follows from
the Main Theorem of Brown - Salleh [BwS]. This article also shows that -
here - it is not sufficient to consider the binary intersections Xi ∩ Xj; the
authors are indebted to R. Brown for helpful comments on this aspect.

Corollary 5.3. These results are automatically true for every differentiable
manifold X . In the compact case, also the additional hypotheses of 5.2 (b),
(c) automatically hold.

Proof. Follows from the existence of good covers recalled above.
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