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Résumé. Nous étudions les objets et les morphismes exponentiables dans la
2-catégorie Gpd(C) des groupoides internes à une catégorie C avec sommes
finies lorsque C est : (1) finiment complète, (2) cartésienne fermée et (3)
localement cartésienne fermée. Parmi les exemples auxquels on s’intéresse
on trouve, en particulier, (1) les espaces topologiques, (2) les espaces com-
pactement engendrés, (3) les ensembles, respectivement. Nous considérons
aussi les morphismes pseudo-exponentiables dans les catégories “pseudo-
slice” Gpd(C)//B. Comme ces dernières sont les catégories de Kleisli d’une
monade T sur la catégorie “slice” stricte sur B, nous pouvons appliquer
un théorème général de Niefield [17] qui dit que si TY est exponentiable
dans une 2-catégorie K, alors Y est pseudo-exponentiable dans la catégorie
de Kleisli KT . Par conséquent, nous verrons que Gpd(C)//B est pseudo-
cartésienne fermée, lorsque C est la catégorie des espaces compactement en-
gendrés et chaque Bi est faiblement de Hausdorff, et Gpd(C) est localement
pseudo-cartésienne fermée quand C est la catégorie des ensembles ou une
catégorie localement cartésienne fermée quelconque.
Abstract. We study exponentiable objects and morphisms in the 2-category
Gpd(C) of internal groupoids in a category C with finite coproducts when
C is: (1) finitely complete, (2) cartesian closed, and (3) locally cartesian
closed. The examples of interest include (1) topological spaces, (2) com-
pactly generated spaces, and (3) sets, respectively. We also consider pseudo-
exponentiable morphisms in the pseudo-slice categories Gpd(C)//B. Since
the latter is the Kleisli category of a monad T on the strict slice over B,
we can apply a general theorem from Niefield [17] which states that if TY
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is exponentiable in a 2-category K, then Y is pseudo-exponentiable in the
Kleisli category KT . Consequently, we will see that Gpd(C)//B is pseudo-
cartesian closed, when C is the category of compactly generated spaces and
each Bi is weak Hausdorff, and Gpd(C) is locally pseudo-cartesian closed
when C is the category of sets or any locally cartesian closed category.
Keywords. exponentiability, internal groupoids, topological groupoids
Mathematics Subject Classification (2010). 22A22, 18D15.

1. Introduction

Suppose C is a category with finite limits. An object Y of C is exponentiable
if the functor−×Y : C //C has a right adjoint, usually denoted by ( )Y , and
C is called cartesian closed if every object is exponentiable. A morphism
q : Y //B is exponentiable if q is exponentiable in the slice category C/B,
and C is called locally cartesian closed if every morphism is exponentiable.
Note that if q : Y //B is exponentiable and r : Z //B, we follow the abuse
of notation and write the exponential as rq : ZY //B.

It is well known that the class of exponentiable morphisms is closed un-
der composition and pullback along arbitrary morphisms. For proofs of these
and other properties of exponentiability, we refer the reader to Niefield [16].

An internal groupoid G in C is a diagram of the form

G2 G1
c // G1

i

��
G1 G0

s //
G0G1 uooG1 G0

t
//

where G2 = G1 ×G0 G1, making G an internal category in C in which every
morphism is invertible. Unless otherwise stated, the morphism in the pull-
back is t : G1

//G0 when G1 appears on the left in G1 ×G0 G1 and s when
it is on the right. When C is the category of topological spaces, we say G is
a topological groupoid.

Let Gpd(C) denote the 2-category whose objects are groupoids in C,
morphisms σ : G // H are “internal homomorphisms,” i.e., morphisms
σ0 : G0

// H0 and σ1 : G1
// H1 of C compatible with the groupoid struc-

ture, and 2-cells σ ⇒ σ′ : G //H are “internal natural transformations,” i.e,
morphisms α : G0

//H1 of C such that the following diagram is defined and
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commutes

H2 H1c
//

G1

H2

〈σ1,αt〉
��

G1 H2

〈αs,σ′1〉 // H2

H1

c
��

(1)

Note that for an object of a 2-category C to be 2-exponentiable, one re-
quires that the 2-functor − × Y : C // C has a right 2-adjoint, i.e., there is
an isomorphism of categories C(X × Y, Z) ∼= C(X,ZY ) natural in X and
Z. One can similarly define 2-exponentiable morphisms of C.

It is well known that the 2-category Cat(C) of internal categories in C
is cartesian closed whenever C is, and the construction of exponentials re-
stricts to Gpd(C) (see Bastiani/Ehresmann [1], Johnstone [10]). Since the
construction of the exponentials HG depends only on the exponentiability of
G0, G1, and G2 in C, we will see that G is exponentiable in Gpd(C) when-
ever G0, G1, and G2 are exponentiable in C, for any merely finitely complete
category C. However, Cat(C) and Gpd(C) are not locally cartesian closed
even when C is. In fact, q : Y // B is exponentiable in Cat if and only
if it satisfies a factorization lifting property (FLP) known as the Conduché-
Giraud condition (see Conduché [3], Giraud [7]). In the groupoid case, q
satisfies FLP if and only if it is a fibration in the sense of Grothendieck [8].

In [11], Johnstone characterized pseudo-exponentiable morphisms in the
pseudo-slice Cat//B, where the morphisms commute up to specified natu-
ral transformation, as those satisfying a certain pseudo-factorization lifting
property, and Niefield [17] later obtained this result as a consequence of a
general theorem about pseudo-exponentiable objects in the Kleisli bicate-
gory of a pseudo-monad on a bicategory. In a related note, Palmgren [18]
showed that every groupoid homomorphism is pseudo-exponentiable, so that
Gpd//B is locally pseudo-cartesian closed. Although Palmgren includes a
complete proof, we will see that his result follows from the characterization
in [17].

The goal of this paper is to generalize these results so that we can eventu-
ally apply them to categories of topological groupoids arising in the study of
orbifolds. We begin, in Section 2, by recalling a general construction from
Niefield [15] of cartesian closed coreflective subcategories of the category
Top of all topological spaces (see also Bunge/Niefield [2]), which includes
compactly generated spaces as a special case, and leads to cartesian closed
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coreflective subcategories of Top. In the next two sections, we consider ex-
ponentiable objects of Gpd(C) and its slices when C is not locally cartesian
closed, and apply this to Top and its subcategories. In this process we will
need the internal version of the notion of fibration. This has been devel-
oped in full detail for arbitrary 2-categories in [20]. However, for internal
groupoids, the descriptions given in the literature for q : G // B to be an
internal cloven fibration are equivalent to the existence of a right inverse for
the arrow 〈s, q1〉 : G1

//G0×B0 B1. The reason this naive internalization of
the Grothendieck condition works is the fact that in groupoids all arrows of
the domain of a fibration are cartesian. We conclude, in Section 5, with the
construction of a pseudo-monad on Gpd(C)/B, in the case where C also has
finite coproducts, and thus obtain pseudo-cartesian closed slices of Gpd(C)
when C/B is cartesian closed. This includes the case where C = Sets,
giving another proof of Palmgren’s result, as well as certain slices of Top
considered in Section 2.

2. Exponentiability in Categories of Spaces

In this section, we recall some general results about cartesian closed core-
flective subcategories of Top and their slices. It is well known that the
exponentiable topological spaces Y are those for which the collectionO(Y )
is a continuous lattice, in the sense of Scott [19]. This is equivalent to lo-
cal compactness for Hausdorff (or more generally sober [9]) spaces Y . The
sufficiency of this condition goes back to R.H. Fox [6] and the necessity ap-
peared in Day/Kelly [5]. A characterization of exponentiable morphisms of
Top was established by Niefield in [15] and published in [16], where it was
shown that the inclusion of a subspace Y of B is exponentiable if and only
if it is locally closed, i.e., of the form U ∩ F , with U open and F closed in
B.

There are several general expositions of cartesian closed coreflective sub-
categories of Top. One, we recall here, follows from a general construction
presented in [15] and later included in Bunge/Niefield [2].

LetM be a class of topological spaces. Given a space X , let X̂ denote
the set X with the topology generated by the collection

{f : M //X |M ∈M}
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of continuous maps. We say X isM-generated if X = X̂ , and let TopM
denote the full subcategory of Top consisting ofM-generated spaces. Then
one can show that TopM is a coreflective subcategory of Top with coreflec-
tion̂ : Top //TopM.

In particular, TopK and TopE are the categories of compactly generated
and exponentiably generated spaces, when K and E are the classes of com-
pact Hausdorff spaces and all exponentiable spaces, respectively. Moreover,
it is not difficult to show that ifM ⊆ N ⊆ TopM, then TopM = TopN .
Thus, since every locally compact Hausdorff space is known to be compactly
generated, adding all such spaces to K does not increase TopK.

The following theorem is a special case of the one in [15] and later in-
cluded in [2]. We include a proof here for completeness.

Theorem 2.1. If M is a class of exponentiable objects of Top such that
M ×N ∈ TopM, for all M,N ∈M, then TopM is cartesian closed.

Proof. The product in TopM is given by

X×̂Y = lim−→
L //X×Y

L = lim−→
M //X
N
//
Y

M×N = lim−→
N // Y

(( lim−→
M //X

M)×N) = lim−→
N // Y

X×N

where the second equality holds since each M × N ∈ TopM and the third
since −×N preserves colimits as N is exponentiable. Thus,

TopM(X×̂Y, Z) = Top( lim−→
N
//
Y

X ×N,Z) = lim←−
N
//
Y

Top(X ×N,Z)

= lim←−
N
//
Y

Top(X,ZN) = TopM(X, ̂lim←−
N
//
Y

ZN)

Although TopM is generally not locally cartesian closed, there are many
cases of cartesian closed slices. In fact, we know of no nontrivial case (i.e.,
TopM 6= Sets) for which TopM is locally cartesian closed. The following
general proposition leads to examples of such slices.

Proposition 2.2. If Y is exponentiable in C andB is any object for which the
diagonal ∆: B //B×B is exponentiable, then every morphism q : Y //B
is exponentiable.
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Proof. Since the horizontal morphisms in the pullbacks

B B ×B
∆
//

Y

B

q

��

Y Y ×B〈id,q〉 // Y ×B

B ×B

q×id
��

Y 1//

Y ×B

Y

π1

��

Y ×B B
π2 // B

1
��

are exponentiable, factoring q = π2〈id, q〉, yields the desired result.

Corollary 2.3. If the diagonal B // B×̂B is exponentiable in TopM, then
TopM/B is cartesian closed.

For examples of spaces satisfying the hypotheses of Corollary 2.3, we
use:

Proposition 2.4. If TopM is closed under locally closed subspaces of all
M in M, then inclusions of locally closed subspaces are exponentiable in
TopM.

Proof. Suppose B isM-generated and q : Y // B is the inclusion of a lo-
cally closed subspace. Then for all p : X // B in TopM, since p−1(Y ) is
locally closed, one can show that X×̂BY = p−1(Y ) = X ×B Y is the prod-
uct in TopM/B. Then TopM/B(X×̂BY , Z) = Top/B(X ×B Y, Z) =

Top/B(X,ZY ) = TopM/B(X, ẐY ), since locally closed inclusions are
exponentiable in Top.

Corollary 2.5. Locally closed inclusions are exponentiable in the categories
TopK of compactly generated spaces and TopE of exponentially generated
spaces.

Proof. Locally closed subspaces of compact Hausforff spaces are compactly
generated and locally closed subspaces of exponentiable space are exponen-
tiable.

AnM-generated space X is calledM-Hausdorff (respectively, locally
M-Hausdorff) if the diagonal B // B×̂B is closed (respectively, locally
closed). AK-Hausdorff space is also known as a weak Hausdorff compactly
generated space or a k-space in the literature Lewis [12]. Note that weak
Hausdorff compactly generated spaces also form a cartesian closed category
but the only exponentiable morphisms there are the open maps [12].
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Corollary 2.6. If TopM is closed under locally closed subspaces of all M
inM, and B isM-Hausdorff (more generally, locallyM-Hausdorff), then
TopM/B is cartesian closed.

Proof. Apply Corollary 2.3 and Proposition 2.4.

In particular, we get:

Corollary 2.7. If B is a weak Hausdorff space, then TopK/B is cartesian
closed.

3. Exponentiable Topological Groupoids

In this section, we consider exponentiable topological groupoids, but first
some general results in Gpd(C), where C is a finitely complete category
with finite coproducts. As noted in the introduction, G is exponentiable in
Gpd(C), whenever G0, G1, and G2 are exponentiable in C. It is not true
that q : G // B is exponentiable in Gpd(C)/B whenever the qi : Gi

// Bi

are exponentable for i=0,1,2, since even when C = Sets, for G // B to be
exponentiable it is necessary that it is a fibration. Moreover, one cannot use
Proposition 2.2 to obtain exponentiable morphisms of Gpd(C), since the
diagonal ∆: B // B × B is rarely exponentiable. In fact, when C = Sets,
this is the case if and only if B is discrete.

When C is cartesian closed, the exponential HG in Gpd(C) can be con-
structed as follows. The object of objects (HG)0 needs to encode triples of
arrows 〈σ0 : G0

//H0, σ1 : G1
//H1, σ2 : G2

//H2〉 that fit in the appropriate
commutative diagrams to form an internal functor G //H; i.e.,

G1
σ1 //

s

��

H1

s

��

G1
σ1 //

t
��

H1

t
��

G1
σ1 // H1

G0 σ0

// H0 G0 σ0

// H0 G0

u

OO

σ0

// H0

u

OO

G2
σ2 //

c

��

H2

c

��

G2

π1

��

σ2 // H2

π1

��

G2

π2

��

σ2 // H2

π2

��
G1 σ1

// H1 G1 σ1

// H1 G1 σ1

// H1
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Hence, it is obtained as the equalizer

(HG)0
// //HG0

0 ×HG1
1 ×HG2

2

f0 //
g0

//HG1
0 ×HG1

0 ×HG0
1 ×HG2

1 ×HG2
1 ×HG2

1

where
f0 = 〈Hs

0π1, H
t
0π1, u

G0π1, H
c
1π2, H

π1
1 π2, H

π2
1 π2〉

and
g0 = 〈sG1π2, t

G1π2, H
u
1 π2, c

G2π3, π
G2
1 π3, π

G2
2 π3〉

The object of arrows (HG)1 needs to encode internal natural tranformations
α : σ ⇒ σ′ between internal functors σ, σ′ : G ⇒ H . These are given by
quintuples 〈σ, σ′, α, β1, β2〉, where α : G0

//H1 and β1, β2 : G1 ⇒ H2, that
make the following diagrams commute,

G0

σ0 !!

α // H1

s

��

G0

σ′0 !!

α // H1

t
��

G1

β1

��

β2 // H2

c

��
H0 H0 H2 c

// H1

G1
β1 //

σ1 !!

H2

π1

��

G1
β1 //

t
��

H2

π2

��

G1

σ′1 !!

β2 // H2

π2

��

G1
β2 //

s

��

H2

π1

��
H1 G0 α

// H1 H1 G0 α
// H1

(Note that the last five encode commutativity of the naturality square (1).)
Hence, it is obtained as the equalizer (HG)1 of the parallel pair,

(HG)0×(HG)0×HG0
1 ×HG1

2 ×HG1
2

f1 //
g1

//HG0
0 ×HG0

0 ×HG1
1 ×HG1

1 ×HG1
1 ×HG1

1 ×HG1
1

where
f1 = 〈π1π1, π1π2, c

G1π4, π2π1, H
t
1π3, π2π2, H

s
1π3〉

and
g1 = 〈sG0π3, t

G0π3, c
G1π5, π

G1
1 π4, π

G1
2 π4, π

G1
2 π5, π

G1
1 π5〉

The source and target maps (HG)1
// (HG)0 are given by first and second

projection. The unit map (HG)0
// (HG)1 has the identity map in the first
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and second coordinate and uG0π1 in the third coordinate. We describe the
last two coordinates using the transpose. Note that (HG)0 is a subobject of
HG0

0 ×HG1
1 ×HG2

2 . So consider

HG0
0 ×HG1

1 ×HG2
2 ×G1

〈π1,π2,∆G1
π4〉 // HG0

0 ×HG1
1 ×G1 ×G1

id
H
G0
0

×id
H
G1
1

×s×idG1

// HG0
0 ×HG1

1 ×G0 ×G1

〈ev〈π1,π3〉,ev〈π2,π4〉〉 // H0 ×H1

u×idH1 // H1 ×H1

When we take the subobject (HG)0
// //HG0

0 ×HG1
1 ×HG2

2 , this restricts to
a map

τ : (HG)0 ×G1
//H1 ×H0 H1

∼= H2

Its transpose τ̂ : (HG)0
//HG1

2 is the projection of the fourth coordinate of
the unit. The fifth coordinate is obtained in a similar fashion, but starting
with the mapping

HG0
0 ×HG1

1 ×HG2
2 ×G1

〈π1,π2,∆G1
π4〉 // HG0

0 ×HG1
1 ×G1 ×G1

id
H
G0
0

×id
H
G1
1

×idG1
×t
// HG0

0 ×HG1
1 ×G1 ×G0

〈ev〈π2,π3〉,ev〈π1,π4〉〉 // H1 ×H0

idH1
×u

// H1 ×H1

Composition in (HG)1 can be expressed using projections in the first two
coordinates and the appropriate composites in H1 in the last three coor-
dinates of the map. This makes HG the “groupoid of homomorphisms”

- 412 -



NIEFIELD/PRONK GROUPOIDS AND EXPONENTIABILITY

G //H and the adjunction can be established using only the exponentiabil-
ity of G0, G1, and G2. Thus:

Proposition 3.1. If G0, G1, and G2 are exponentiable in C, then G is expo-
nentiable in Gpd(C).

To obtain a partial converse to Proposition 3.1, we use the left and right
adjoints to ( )0 : Gpd(C) // C which we recall are given by

L0(X) :X Xid // X

id

��
X X

id //
XX ido oX X

id
// and

R0(X) :X ×X ×X X ×Xπ13 // X ×X

〈π2,π1〉

��
X ×X X

π1 //
XX ×X ∆ooX ×X X

π2

//

respectively.

Proposition 3.2. IfG is exponentiable in Gpd(C), thenG0 is exponentiable
in C. The converse holds if s (or equivalently, t) is exponentiable.

Proof. Suppose G is exponentiable in Gpd(C). Then G0 is exponentiable
in C, since

C(X ×G0, Y ) ∼= C((L0X ×G)0, Y ) ∼= Gpd(C)(L0X ×G,R0Y )

∼= Gpd(C)(L0X, (R0Y )G) ∼= C(X, (R0Y )G0 )

For the converse, suppose G0 and s : G1
//G0 are exponentiable in C. Then

G1 is exponentiable since composition preserves exponentiability. To see
that G2 is exponentiable, consider the pullback

G1 G0t
//

G2

G1

π1

��

G2 G1
π2 // G1

G0

s

��

where π1 is exponentiable since s is and pullback preserves exponentiability,
and soG2 is exponentiable sinceG1 is. Thus,G is exponentiable in Gpd(C)
by Proposition 3.1.
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Note that if G is an étale groupoid, in the sense of Moerdijk/Pronk [14],
then s and t are local homeomorphisms in Top, and we conjecture thatHG is
étale when H is also étale and G1/G0 is compact. Thus, G is exponentiable
in Gpd(Top) if and only if G0 is exponentiable in Top. Of course, all
étale groupoids are exponentiable in Gpd(TopK), since TopK is cartesian
closed.

An exponentiable internal groupoid of interest is the groupoid II with
two objects and one nontrivial isomorphism. It is well known that II makes
sense in Gpd(C), for any finitely complete C with finite coproducts, where
II0 = 1 + 1 and II1 = 1 + 1 + 1 + 1. In particular, the exponentials BII will
play a role when we consider the pseudo-slices Cat//B in Section 5. We
know that BII is exponentiable whenever BII

0 , BII
1 , and BII

2 are.
Using our construction of exponentials, one can see that BII can be de-

scribed as follows. Since BII
0 can be thought of as the “object of homomor-

phisms II //B,” i.e., morphisms bs // bt in B, we can take BII
0 = B1. Then

BII
1 becomes (BII)1 = B2 ×B1 B2 via the pullback

B2 B1c
//

B2 ×B1 B2

B2

π1

��

B2 ×B1 B2 B2
π2 // B2

B1

c

��

i.e., the “object of squares”

b̄s b̄tᾱ
//

bs

b̄s

βs
��

bs bt
α // bt

b̄t

βt
��

andBII
1

s //
t
//BII

0 is given byB2×B1B2

π1 //
π2

//B2

π1 //
π2

//B1, i.e., s(βs
α //
ᾱ
//βt) = βs

and t(βs
α //
ᾱ
// βt) = βt. Finally, BII

2 = (B2 ×B1 B2) ×B1 (B2 ×B1 B2) is the

“object of commutative diagrams” with composition
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b̄s b̄tᾱ
//

bs

b̄s

βs

��

bs bt
α // bt

b̄t

βt

��
b̄t b̄t′

ᾱ′
//

bt

b̄t

bt bt′
α′ // bt′

b̄t′

βt′

��
7→

b̄s b̄t′
ᾱ′ᾱ

//

bs

b̄s

βs

��

bs bt′
α′α // bt′

b̄t′

βt′

��

Thus, we get the following corollary of Proposition 3.2.

Corollary 3.3. If BII is exponentiable in Gpd(C), then B1 is exponentiable

in C. The converse holds if the arrows B2

c //
π1

// B1 are exponentiable in C.

Proof. The first part holds by Proposition 3.2, since BII
0 = B1. So, assume

that B1 and B2

c //
π1

//B1 are exponentiable in C. Then BII
1 = B2×B1 B2

π1 //B2

is exponentiable being a pullback of c : B2
// B1, and so BII is exponen-

tiable in Gpd(C) by Proposition 3.2, since s : BII
1

//BII
0 is given by B2×B1

B2
π1 // B2

π1 // B1.

Recall [4] that a topological groupoid G is called an orbigroupoid if s
and t are étale and 〈s, t〉 : G1

//G0 ×G0 is a proper map.

Proposition 3.4. If B is an orbigroupoid, then so is BII.

Proof. Suppose B is an orbigroupoid. Since s is étale and

B1 B0s
//

B2

B1

c

��

B2 B1
π1 // B1

B0

s

��

is a pullback (as B is a groupoid), it follows that c : B2
//B1 and hence the

projections B2 ×B1 B2

π1 //
π2

// B2 are étale. Thus, BII
1

s //
t
// BII

0 are étale, as
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desired. To see that 〈s, t〉 : BII
1

//BII
0 ×BII

0 is proper, consider the diagram

BII
1 BII

0 ×BII
0

〈s,t〉 //

|| ||

B1 B0 ×B0〈s,t〉
//

B2 ×B1 B2

B1

cπ1

��

B2 ×B1 B2 B1 ×B1
// B1 ×B1

B0 ×B0

s×t
��

which is a pullback as B is a groupoid. Since the bottom row is proper it
follows that the top one is, and so BII is an orbigroupoid.

4. Exponentiable Morphisms of Groupoids

In this section, we consider exponentiable morphisms in Gpd(C). When
C = Sets, or any topos, we know that these are precisely the fibrations.
Though the categories C of spaces of interest are not even locally cartesian
closed, we will see that if q : G // B is a fibration (in the sense defined
below) and each qi : Gi

// Bi is exponentiable in C, then q is exponentiable
in Gpd(C).

Suppose q : G // B is exponentiable in Gpd(C)/B. Then, as in Propo-
sition 3.2, we know q0 : G0

//B0 is exponentiable in C, since

( )0 : Gpd(C)/B // C/B0

has left and right adjoints, given by (X
p // B0) 7→ (L0X

L0p // L0B0
ε // B),

where ε is the counit of the adjunction L0 a ( )0, and (X
p //B0) 7→ (B×R0B0

R0X
π1 // B), where B //R0B0 is the unit of the adjuncion ( )0 a R0.

Definition 4.1. A morphism q : G //B is a fibration in Gpd(C) if

〈s, q1〉 : G1
//G0 ×B0 B1

has a right inverse, or equivalently, 〈q1, t〉 : G1
// B1 ×B0 G0 has a right

inverse in C.
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Remark 4.2. When C is the category of all topological spaces (or any con-
crete category), this says q is a fibration, in the sense of Grothendieck [8];
i.e., given a and β : q0a // b̄, there exists α : a // ā such that q1α = β, but
our condition is stronger since (a, β) 7→ α must be a morphism of C.

Our notion is equivalent to the notion of a cloven strict internal fibration
as given in [20] for the 2-category Gpd(C). Note that the description for
Gpd(C) can be simplified this way because we do not need to worry about
cartesian arrows: for a fibration between groupoids all arrows in the domain
are cartesian.

Lemma 4.3. An arrow q : G // B in Gpd(C) is a fibration in our sense
precisely when it is representably a cloven strict internal fibration.

Proof. Let q : G //B be a fibration in Gpd(C) with θ : G0 ×B0 B1
//G1 a

right inverse to 〈s, q1〉. Let H be any groupoid in C. We need to show that
the induced functor

q∗ = Gpd(C)(H, q) : Gpd(C)(H,G) //Gpd(C)(H,B)

is a cloven strict fibration in Cat. So let ϕ : H // G be an internal func-
tor, viewed as object in Gpd(C)(H,G) and let α : qϕ ⇒ ψ be an inter-
nal natural transformation, viewed as an arrow in Gpd(C)(H,B), Then α
gives rise to a morphism α : H0

// B1 in C, with sα = q0ϕ0. Hence
this gives us 〈ϕ0, α〉 : H0

// G0 ×B0 B1. It follows that the composition
θ〈ϕ0, α〉 : H0

//G1 is the required lifting. This defines a cleavage, because
the internal categories here are groupoids. The fact that for any f : H //H ′,
the induced square is a morphism of fibrations follows immediately from the
fact that we are working with groupoids.

Conversely, suppose that q : G // B is representably a cloven internal
fibration in Gpd(C). This implies that

q∗ = Gpd(C)(H, q) : Gpd(C)(H,G) //Gpd(C)(H,B)

is a cloven strict fibration in Cat for each H in Gpd(C). Now take H to be
the strict comma square,

H
r //

p
��

α⇒

B

idB
��

G q
// B
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Then we may take H0 to be the pullback

H0
//

� �

B1

s

��
G0 q0

// B0

and p0 = π1 : H0
//G0 and α = π2 : H0

//B1.
Note that we have α : qp ⇒ r, an arrow in Gpd(C)(H,B), and p is

such that q∗(p) = qp. Hence the cleavage gives us a lifting α̃ : q ⇒ r̃ in
Gpd(H,G) represented by α̃ : H0

//G1 such that sα̃ = p0 and q1α̃ = α =
π2. So we get that 〈s, q1〉α̃ = idG0×B0

B1 as required.

Note thatBII becomes a groupoid overB viaBII
s //
t
//B defined by s0 = s,

t0 = t, s1 : B2 ×B1 B2
π2 // B2

π1 // B1, and t1 : B2 ×B1 B2
π1 // B2

π2 // B1,

i.e., s1(βs
α //
ᾱ
// βt) = α, and t1(βs

α //
ᾱ
// βt) = ᾱ.

Proposition 4.4. The morphisms BII ×B G
sπ1 // B and G×B BII tπ2 // B are

fibrations, for all q : G //B. In particular, s : BII //B and t : BII //B are
fibrations, for all B.

Proof. This result follows from the general theory on fibrations as spelled
out in Theorem 14 [20] for instance, where it is shown that any span which
is the comma object of some opspan is a split bifibration. However, in this
particular case, there is also a short straightforward argument: For sπ1, the
morphism 〈s, (sπ1)1〉 : (BII ×B G)1

// (BII ×B G)0 ×B0 B1 is given by

qas qatqγ
//

bs

qas

βs
��

bs bt
α // bt

qat

βt
��
7→

bs

qas

βs
��

bs bt
α //

and so

bs

qas

βs
��

bs bt
α //

7→
qas qasqid

//

bs

qas

βs
��

bs bt
α // bt

qas

βsα−1

��
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is a right inverse to 〈s, (sπ1)1〉. The proof for t is similar.

Now, for “discrete” groupoids L0B, we know

Gpd(C)/L0B ∼= Gpd(C/B)

and so q : G // L0B is exponentiable in Gpd(C) if each qi : Gi
// B is

exponentiable in C. Thus, if C is cartesian closed, then Gpd(C)/L0B is
cartesian closed whenever the diagonal on B is exponentiable in C. In par-
ticular, Gpd(TopM)/L0B is cartesian closed wheneverB isM-Hausdorff,
e.g., weak Hausdorff in the case whereM = K.

For the non-discrete case, given q : G //B and r : H //B, to see how to
define the exponentials rq : HG //B when q is exponentiable in Gpd(C)/B,
consider the case where C = Sets. Recall that the fiber of (HG)0 over b in
B is the set of homomorphisms σ : Gb

//Hb between the fibers of G and H
over b. A morphism Σ: σ //σ′ over β : b //b′ inB is a family of morphisms
Σα : σa //σ′a′ of H over β indexed by the morphisms α : a // a′ of G over
β such that the diagram

σ′a′ σ′ā′
σ′ᾱ′
//

σā

σ′a′

Σαᾱ

��

σā σaσᾱ // σa

σ′ā′

Σᾱ′α

��

σa

σ′a′

Σα

��
(2)

commutes, for all ā ᾱ // a
α // a′

ᾱ′ // ā′ such that q(ᾱ) = idb and q(ᾱ′) = idb′ .
Defining the morphisms s, t, u and i is straightforward, but for composition,
one must assume q is a fibration. Then, let r : G0×B0 B1

//G1 be a right in-

verse of 〈s, q1〉. Suppose σ Σ //σ′
Σ′ //σ′′ is a composable pair over b

β //b′
β′ //b′′,

and define σ Σ′Σ // σ′′ as follows. Given a α′′ // a′′ over b
β′β // b′′, consider

a

a′
α ��

a a′′α′′ // a′′

a′

AA

α′

where α = r(a, β) and α′ = α′′α−1, and define (Σ′Σ)α′′ = Σ′α′Σα. Then it
is not difficult to show that HG is a groupoid over B and that this provides a
right adjoint to the functor −×B G : Gpd/B //Gpd/B.
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Theorem 4.5. If q : G //B is a fibration and qi : Gi
//Bi is exponentiable

in C, for i = 0, 1, 2, then q is exponentiable in Gpd(C)/B.

Proof. Given H //B, define (HG)0
//B0 by the equalizer

(HG)0
// //HG0

0 ×B0 (B0 ×B1 H
G1
1 )×B0 (B0 ×B2 H

G2
2 )

f0 //
g0

//X0

in C/B0, capturing the fact that

(σ0 : G0
//H0, σ1 : G1

//H1, σ2 : G2
//H2)

is a “homomorphism of groupoids”, where HG0
0

// B0, HG1
1

// B1 and
HG2

2
//B2 are the exponentials,

B0 B1u
//

B0 ×B1 H
G1
1

B0

π1

��

B0 ×B1 H
G1
1 HG1

1

π2 // HG1
1

B1

� �

and

B0 B2
(u,u)

//

B0 ×B2 H
G2
2

B0

π1

��

B0 ×B2 H
G2
2 HG2

2

π2 // HG2
2

B2

��

are pullbacks in C, and the morphisms f0 and g0 ensure that σ0, σ1 and σ2

are compatible with s, t, u, c and the projections. In detail, for s, X0 has a
factor of the form H

B0×B1
G1

0 whose projections of f0 and g0 are given by

HG0
0 ×B0 (B0 ×B1 H

G1
1 )×B0 (B0 ×B2 H

G2
2 )

HG0
0

π1

77

HG0
0 ×B0 (B0 ×B1 H

G1
1 )×B0 (B0 ×B2 H

G2
2 )

B0 ×B1 H
G1
1

π2
��

∼= (B0 ×B1 H1)B0×B1
G1

H
B0×B1

G1

0

(sπ2)
B0×B1

G1

??

HG0
0

H
B0×B1

G1

0

Hs
0

''
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The factor of X0 for t is defined similarly: just replace both occurrences
of s by t in this diagram.

The factor of X0 for u is of the form (B0 ×B1 H1)G0 and the projections
of f0 and g0 for this factor are given by

HG0
0 ×B0 (B0 ×B1 H

G1
1 )×B0 (B0 ×B2 H

G2
2 )

HG0
0

π1

77

HG0
0 ×B0 (B0 ×B1 H

G1
1 )×B0 (B0 ×B2 H

G2
2 )

B0 ×B1 H
G1
1

π2
��

∼= (B0 ×B1 H1)B0×B1
G1

(B0 ×B1 H1)G0

(B0×B1
H1)(q0,u)

??

HG0
0

(B0 ×B1 H1)G0

(q0,u)G0

''

The factor of X0 for c is of the form (B0 ×B1 H1)B0×B2
G2 and the pro-

jections of f0 and g0 for this factor are given by

HG0
0 ×B0 (B0 ×B1 H

G1
1 )×B0 (B0 ×B2 H

G2
2 )

B0 ×B2 H
G2
2

π3

??

HG0
0 ×B0 (B0 ×B1 H

G1
1 )×B0 (B0 ×B2 H

G2
2 )

B0 ×B1 H
G1
1

π2
��

∼=

∼=

(B0 ×B1 H1)B0×B1
G1

(B0 ×B1 H1)B0×B2
G2

(B0×B1
H1)

B0×B1
c

??

(B0 ×B2 H2)B0×B2
G2

(B0 ×B1 H1)B0×B2
G2

(B0×B2
c)
B0×B2

G2

� �

The factors of X0 for the commutativity with the two projections from the
objects of composable pairs to the objects of arrows are given by two addi-
tional copies of (B0 ×B1 H1)B0×B2

G2 and the projections of f0 and g0 are
obtained by replacing c in this diagram by π1 and π2 respectively.

We conclude that

X0 = H
B0×B1

G1

0 ×B0H
B0×B1

G1

0 ×B0(B0×B1H1)G0×B0(B0×B1H1)B0×B2
G2

×B0 (B0 ×B1 H1)B0×B2
G2 ×B0 (B0 ×B1 H1)B0×B2

G2

and the maps f0 and g0 are given by

f0 = (Hs
0π1, H

t
0π1, (q0, u)G0π1, (B0 ×B2 c)

B0×B2
G2π3,

(B0 ×B2 π1)B0×B2
G2π3, (B0 ×B2 π2)B0×B2

G2π3)
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and

g0 = ((sπ2)B0×B1
G1π2, (tπ2)B0×B1

G1π2, (B0 ×B1 H1)(q0,u)π2,

(B0 ×B1 H1)B0×B1
cπ2, (B0 ×B1 H1)B0×B1

π1π2, (B0 ×B1 H1)B0×B1
π2π2)

To define (HG)1
//B1 we use an equalizer over B1 of the form

(HG)1
// //X2

f1 //
g1

//X1

where X2 is given by

((HG)0 ×B0 H
G1
1 ×B0 (HG)0)×B1 H

(B0×B1
G1)×G0

G1

2 ×B1 H
(B0×B1

G1)×G0
G1

2

and HG1
1

// B1

s //
t
// B0 appear in the product over B0 via the usual con-

vention. The morphisms f1 and g1 are defined to encode the commutativity
of the diagram (2) defining Σ in Gpd(Sets). The H

(B0×B1
G1)×G0

G1

2 and
H

(B0×B1
G1)×G0

G1

2 components in X2 have been added to be able to express
commutativity of the top left triangle and bottom right triangle (respectively)
in (2). To make our diagrams a bit more managable we will write G′1 for
B0×B1 G1. Commutativity of the top left triangle is then expressed by com-
mutativity of the following three diagrams:

H
G′1×G0

G1

2

π
G′1×G0

G1
1

++
((HG)0 ×B0 H

G1
1 ×B0 (HG)0)×B1 H

G′1×G0
G1

2 ×B1 H
G′1×G0

G1

2

π2

OO

π2π1π1

��

H
G′1×G0

G1

1

H
G′1
1

H
π1
1

33

H
G′1×G0

G1

2

π
G′1×G0

G1
2

++
((HG)0 ×B0 H

G1
1 ×B0 (HG)0)×B1 H

G′1×G0
G1

2 ×B1 H
G′1×G0

G1

2

π2

OO

π2π1

��

H
G′1×G0

G1

1

HG1
1

H
π2
1

33
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H
G′1×G0

G1

2

c
G′1×G0

G1

++
((HG)0 ×B0 H

G1
1 ×B0 (HG)0)×B1 H

G′1×G0
G1

2 ×B1 H
G′1×G0

G1

2

π2

OO

π2π1

��

H
G′1×G0

G1

1

HG1
1

Hc
1

33

The diagrams for the commutativity of the bottom right triangle are con-
structed similarly.

So we need that

X1 = H
G′1×G0

G1

1 ×B1 H
G′1×G0

G1

1 ×B1 H
G′1×G0

G1

1 ×B1 H
G1×G0

G′1
1

×B1 H
G1×G0

G′1
1 ×B1 H

G1×G0
G′1

1 ,

and

f1 = (π
G′1×G0

G1

1 π2, π
G′1×G0

G1

2 π2, c
G′1×G0

G1π2, π
G1×G0

G′1
1 π3, π

G1×G0
G′1

2 π3, c
G1×G0

G′1π3)

g1 = (Hπ1
1 π2π1π1, H

π2
1 π2π1, H

c
1π2π1, H

π1
1 π2π1, H

π2
1 π2π3π1, H

c
1π2π1)

Note that s, t : (HG)1
//(HG)0 are given by the projections. The morphisms

i : (HG)1
//(HG)1 and u : (HG)0

//(HG)1 are induced by iG1 : HG1
1

//HG1
1

and
〈id, ϕ, id〉 : (HG)0

// (HG)0 ×B0 ×HG1
1 ×B0 (HG)0

respectively, where ϕ is the composition

(HG)0
// //HG0

0 ×B0 (B0 ×B1 H
G1
1 )×B0 (B0 ×B2 H

G2
2 )

π2π2// HG1
1

To define composition, let θ : G0 ×B0 B1
// G1 denote the right inverse of

〈s, q1〉, which exists since q is a fibration, and consider the diagram

HG1
1 ×B1 B2 ×B1 H

G1
1 HG1

1
//

(HG)1 ×(HG)0
(HG)1

HG1
1 ×B1 B2 ×B1 H

G1
1

��

(HG)1 ×(HG)0
(HG)1 (HG)1

// (HG)1

HG1
1

��

B2 B1c
//

HG1
1 ×B1 B2 ×B1 H

G1
1

B2

��

HG1
1 ×B1 B2 ×B1 H

G1
1 HG1

1
// HG1

1

B1

��
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where the vertical compositions are the “projections” and the unnamed hor-
izontal morphisms are to be determined. It suffices to define a morphism
HG1

1 ×B1 B2 ×B1 H
G1
1

//HG1
1 so that the bottom square commutes, since

all other components can be derived from this map. Now, θ induces a mor-
phism

θ′ : G1 ×B1 B2
〈π1,sπ1,π1π2〉 // G1 ×B1 (G0 ×B0 B1)

〈θπ2,c(iθπ2,π1)〉// G1 ×G0 G1

and hence, (HG1
1 ×B1B2×B1H

G1
1 )×B1G1

//(HG1
1 ×B1G1)×B0(HG1

1 ×B1G1)
// H1 ×H0 H1

c // H1, whose transpose gives the desired morphism. As in
the case of C = Sets, this defines the exponential HG //B.

Remark 4.6. Since each one of our fibrations in Gpd(C) is a fibration in
Cat(C) as used in [21], Theorem 4.5 describes a special case of Theorem
2.17 in that paper. We include the proof given here, because it gives an
explicit construction of the exponential groupoid in the slice category and
shows where each assumption is used.

By Theorem 4.5, a fibration q : G //B is exponentiable in Gpd(Top)/B,
if each qi : Gi

// Bi is exponentiable in Top, for i = 0, 1, 2. Now, if C/Bi

is cartesian closed, for i = 0, 1, 2, then every fibration is exponentiable in
Gpd(C)/B. This is the case when C is cartesian closed and each diagonal
∆: Bi

//Bi ×Bi is exponentiable in C, e.g., C = TopM and the Bi are lo-
callyM-Hausdorff. By the following lemma, we need not assume the i = 2
case.

Lemma 4.7. Suppose C is a finitely complete category.

(a) If X and Y have exponentiable diagonals, then so does X × Y .

(b) If B is a groupoid in C and B1 has an exponentiable diagonal, then so
does B2.

Proof. For (a), suppose X and Y have exponentiable diagonals. Then the
diagonal on X × Y is exponentiable, since it can be factored

X×Y idX×∆ //X×(Y×Y )
∆×idY×Y// (X×X)×(Y×Y )

ϕ //(X×Y )×(X×Y )
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where the first two morphisms are exponentiable being pullbacks of expo-
nentiables and ϕ is an isomorphism.

For (b), suppose B1 has an exponentiable diagonal. Then B1 ×B1 does,
by (a). Since there is a monomorphism ψ : B2

// B1 × B1, we see that the
diagram

B1 ×B1 (B1 ×B1)× (B1 ×B1)
∆
//

B2

B1 ×B1

ψ

��

B2 B2 ×B2
∆ // B2 ×B2

(B1 ×B1)× (B1 ×B1)

ψ×ψ
��

is a pullback, and it follows that B2 has an exponentiable diagonal.

Thus, we get the following corollaries to Theorem 4.5:

Corollary 4.8. If G0, G1, and G2 are exponentiable spaces, and B0 and B1

are locally Hausdorff, then every fibration q : G // B is exponentiable in
Gpd(Top).

Corollary 4.9. If B0 and B1 have exponentiable diagonals in a cartesian
closed category C, then every fibration q : G //B is exponentiable in Gpd(C).

Corollary 4.10. Every fibration is exponentiable in Gpd(TopM)/B, if B0

and B1 are locallyM-Hausdorff.

Corollary 4.11. The following are equivalent.

(a) s : BII //B is exponentiable in Gpd(C).

(b) s : B1
//B0 is exponentiable in C.

(c) t : BII //B is exponentiable in Gpd(C).

(d) t : B1
//B0 is exponentiable in C.

Proof. Since si = t and i is an isomorphism, we know (b) and (d) are equiv-
alent. We will establish the equivalence of (a) and (b). The proof for (c) and
(d) is similar.

First, (a) implies (b) follows from the remark at the beginning of this sec-
tion. For the converse, it suffices to show that s1 : BII

1
//B1and s2 : BII

2
//B2
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are exponentiable in C, since s : BII // B is a fibration by Proposition 4.4.
We know the first one is exponentiable, as it is given by

s1 : B2 ×B1 B2
π2 // B2

π1 // B1

which is a composition of exponentiables when s : B1
// B0 is exponen-

tiable, since the diagrams

B1 B0s
//

B2 ×B1 B2

B1

π1π1

��

B2 ×B1 B2 B2
π2 // B2

B0

sπ1

��
B1 B0s

//

B2

B1

π1

��

B2 B1
π2 // B1

B0

t

��

are pullbacks in C. To see that s2 : BII
2

// B2 is exponentiable, note that
s2 = π1π2 × π2π1 and the square

B2 B1c
//

BII
2

B2

s2
��

BII
2 B2 ×B0 B2

π1×π2 // B2 ×B0 B2

B1

c(c×c)
��

is a pullback. Thus, it suffices to show that

B2 ×B0 B2 = (B1 ×B0 B1)×B0 (B1 ×B0 B1)
c×c // B1 ×B0 B1

c //B1

is exponentiable. Since s is exponentiable and

B1 B0s
//

B1 ×B0 B1

B1

c

��

B1 ×B0 B1 B1
π1 // B1

B0

s

��

is a pullback, we know c is exponentiable. Since

B1 ×B0 B1 B0sπ2

//

(B1 ×B0 B1)×B0 (B1 ×B0 B1)

B1 ×B0 B1

c×c
��

(B1 ×B0 B1)×B0 (B1 ×B0 B1) B1 ×B0 B1
π2π1×π1π2 // B1 ×B0 B1

B0

sπ2

��

is a pullback and sπ2 is a composition of exponentiable morphisms, it fol-
lows that c× c is exponentiable.
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Corollary 4.12. If s : B1
//B0 (respectively, t : B1

//B0) and qi : Gi
//Bi

are exponentiable in C, for i = 0, 1, 2, then sπ1 : BII×BG //B (respectively,
tπ2 : G×B BII //B) is exponentiable in Gpd(C)/B.

Proof. Since pullback and composition preserve exponentiability, the result
follows from Proposition 4.4, Theorem 4.5, and Corollary 4.11.

Corollary 4.13. If B0 and B1 have exponentiable diagonals in a cartesian
closed category C, then sπ1 : BII ×B G // B and tπ2 : G ×B BII // B are
exponentiable in Gpd(C), for all q : G //B.

Proof. By Lemma 4.7(b), since B1 has an exponentiable diagonal, so does
B2. Thus, applying Proposition 2.2, we see that every morphism X // Bi

is exponentiable in C, for i = 0, 1, 2, and so the desired result follows from
Corollary 4.12.

Corollary 4.14. IfG0, G1, G2, andB1 are exponentiable spaces andB0 and
B1 are locally Hausdorff, then sπ1 : BII×BG //B and tπ2 : G×BBII //B
are exponentiable in Gpd(Top), for all q : G //B.

Corollary 4.15. If B0 and B1 are locallyM-Hausdorff, then sπ1 : BII ×B
G //B and tπ2 : G×B BII //B are exponentiable in Gpd(TopM), for all
q : G //B.

5. Pseudo-Exponentiability of Morphisms of Groupoids

In this section, we use a general theorem from Niefield [17] for monads
and their Kleisli categories to show that G // B is pseudo-exponentiable
in Gpd(C)//B if sπ1 : BII ×B G // B is exponentiable in Gpd(C)/B,
e.g., s : B1

// B0 and Gi
// Bi are exponentiable in C, for i = 0, 1, 2.

Consequently, Gpd(C)//B is pseudo-cartesian closed whenever B0 and B1

have exponentiable diagonals in a cartesian closed category C. In particu-
lar, Gpd(C) is locally pseudo-cartesian closed when C is locally cartesian
closed, e.g., C = Sets.

The general result in [17], i.e.,Theorem 3.4, was proved for pseudo-
monads on a bicategory since one of the examples there was not a 2-category.
Restricting to the strict case we get:
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Theorem 5.1. Suppose K is a 2-category with finite 2-products and T, µ, η
is a 2-monad on K such that ηT ∼= Tη and the induced morphism

ρ : T (X × TY ) // TX × TY

is an isomorphism, for all X, Y in K. If TY is 2-exponentiable in K, then Y
is pseudo-exponentiable in the Kleisli 2-category KT .

Before applying this theorem to K = Gpd(C)/B, we recall the defini-
tion of pseudo-exponentiability. First, a diagram

X Y

X × Y

X

π1

��

X × Y

Y

π2

��

is a pseudo-product in a 2-category K if the induced functor

K(Z,X × Y )
ϕZ //K(Z,X)×K(Z, Y )

is an equivalence of categories, for all Z. Since the definition of 2-product
requires that ϕZ is an isomorphism, for all Z, it follows that every 2-product
is necessarily a pseudo-product in K. An object Y is pseudo-exponentiable
if the pseudo-functor − × Y : K // K has a right pseudo-adjoint, i.e., for
every object Z, there is an object ZY together with an equivalence

K(X × Y, Z)
θX,Z // K(X,ZY )

which are pseudo-natural in X and Z.
As before, we are assuming that C is a finitely complete category with

finite coproducts. Then there is an internal groupoid

BII ×B BII BIIc // BII

i




BII B

s //
BBII uooBII B

t
//

in Gpd(C), where as usual, we writeBII on the left of×B, when t : BII //B
and on the right when s : BII //B. Note that s and t are as in Section 4 and
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c, i and u are defined analogously. Thus, as in [17] (see also Street [20]), we
get a monad on Gpd(C)/B defined by

T (G
q //B) = BII ×B G

sπ1 // B η : G
〈uq,id〉// BII ×B G

µ : BII ×B BII ×B G
c×id // BII ×B G

and it is not difficult to show that the 2-Kleisli category is (isomorphic to)
the pseudo-slice Gpd(C)//B whose objects are homomorphism q : G //B,
morphisms are triangles

G

B

q
��

G H
f // H

B

r
��

ϕ //
or equivalently

G

B

q ��

G BII ×B H
〈ϕ̂,f〉 // BII ×B H

B
sπ1��

and 2-cells θ : (f, ϕ) // (g, ψ) are 2-cells θ : f // g such that

rf rg
rθ
//

q

rf

ϕ
��
q

rg

ψ
��

To show that ρ : BII ×B (G×B BII ×B H) // (BII ×B G)×B (BII ×B H) is
an isomorphism, note that πiρ = πi, for i = 1, 2, 4, and

BII ×B BII BII
c

//

BII ×B (G×B BII ×B H)

BII ×B BII

〈π1,π3〉
��

BII ×B (G×B BII ×B H) (BII ×B G)×B (BII ×B H)
ρ // (BII ×B G)×B (BII ×B H)

BII

π3

��

Then one can show that ρ is invertible with πiρ−1 = πi, for i = 1, 2, 4, and

BII ×B BII BII
c

//

(BII ×B G)×B (BII ×B H)

BII ×B BII

〈iπ1,π3〉
��

(BII ×B G)×B (BII ×B H) BII ×B (G×B BII ×B H)
ρ−1
// BII ×B (G×B BII ×B H)

BII

π3

��

To show ηT ∼= Tη, it suffices to show (ηT )BII
∼= TηBII , where t : BII // B,

since ηG = ηBII ×B G. Now, (ηT )BII and TηBII are given by

BII 〈s,id〉 //B×BBII 〈u,id〉 //BII×BBII and BII 〈id,t〉 //BII×BB
〈id,u〉 //BII×BBII
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Then one can show that the desired isomorphism is induced by the following
morphism θ : (BII)0

// (BII)1 ×B1 (BII)1. First, recall that

(BII)0
∼= B1 and (BII)1 ×B1 (BII)1

∼= (B2 ×B1 B2)×B1 (B2 ×B1 B2)

Then π1θ and π2θ are given by

B1
〈us,id,us,id〉 // (B1 ×B0 B1)×B1 (B1 ×B0 B1) ∼= B2 ×B1 B2

and

B1
〈id,ut,id,ut〉 // (B1 ×B0 B1)×B1 (B1 ×B0 B1) ∼= B2 ×B1 B2

respectively.

Theorem 5.2. If s : B1
// B0 and qi : Gi

// Bi are exponentiable in C, for
i = 0, 1, 2, then q : G //B is pseudo-exponentiable in Gpd(C)//B.

Proof. Apply Corollary 4.12 and Theorem 5.1.

In particular, we get the following corollaries:

Corollary 5.3. If G0, G1, G2, and B1 are exponentiable (e.g., locally com-
pact) and B0 and B1 are locally Hausdorff spaces, then every morphism
q : G //B is pseudo-exponentiable in Gpd(Top).

Corollary 5.4. If B0 and B1 have exponentiable diagonals in a cartesian
closed category C, then Gpd(C)//B is pseudo-cartesian closed.

Corollary 5.5. IfB0 andB1 are locallyM-Hausdorff, then Gpd(TopM)//B
is pseudo-cartesian closed.

Corollary 5.6. IfB0 andB1 are compactly generated weak Hausdorff spaces,
then Gpd(TopK)//B is pseudo-cartesian closed.

Corollary 5.7. If C is locally cartesian closed, then Gpd(C) is locally pseudo-
cartesian closed.

Corollary 5.8. Gpd(Sets) is locally pseudo-cartesian closed.
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