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Résumé. Pour chaque n ≥ −1, une quasi-catégorie est dite n-tronquée
si ses espaces de morphismes sont des (n− 1)-types d’homotopie. Dans
ce travail, nous étudions la structure de catégorie de modèles pour
les quasi-catégories n-tronquées. Nous montrons que cette structure
peut être construire comme une localisation de Bousfield de la struc-
ture de catégorie de modèles de Joyal pour les quasi-catégories par
rapport à l’inclusion du bord du (n + 2)-simplexe. En outre, nous
établissons l’équivalence de Quillen attendue entre les catégories et
les quasi-catégories 1-tronquées, ainsi qu’entre les quasi-catégories n-
tronquées et les (n, 1)-Θ-espaces de Rezk.
Abstract. For each n ≥ −1, a quasi-category is said to be n-truncated
if its hom-spaces are (n− 1)-types. In this paper we study the model
structure for n-truncated quasi-categories, which we prove can be con-
structed as the Bousfield localisation of Joyal’s model structure for
quasi-categories with respect to the boundary inclusion of the (n + 2)-
simplex. Furthermore, we prove the expected Quillen equivalences
between categories and 1-truncated quasi-categories and between n-
truncated quasi-categories and Rezk’s (n, 1)-Θ-spaces.
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1. Introduction

Quasi-categories were introduced by Boardman and Vogt [5, §IV.2], and
were developed by Joyal [14, 15] and Lurie [20] among others as a model
for (∞, 1)-categories: (weak) infinite-dimensional categories in which
every morphism above dimension 1 is (weakly) invertible. Among the
(∞, 1)-categories are the (n, 1)-categories, which have no non-identity
morphisms above dimension n.1 In [20, §2.3.4], Lurie identified the quasi-
categories that model (n, 1)-categories (for n ≥ 1) as those in which every
inner horn above dimension n has a unique filler. Moreover, he proved
that a quasi-category is equivalent to such a quasi-category precisely
when its hom-spaces are homotopy (n − 1)-types (i.e. Kan complexes
whose homotopy groups are trivial above dimension n− 1); in [16, §26],
Joyal called quasi-categories with this latter property n-truncated, and
stated without proof a collection of assertions on n-truncated quasi-
categories.

In this paper, we prove (Theorem 3.28) that, for each n ≥ −1,
the n-truncated quasi-categories are the fibrant objects of the Bousfield
localisation of Joyal’s model structure for quasi-categories with respect to

1This description is accurate only for n ≥ 1; it is natural to identify (0, 1)-
categories with posets and (−1, 1)-categories with truth values (i.e. 0 and 1). See [3]
for a discussion of this point.
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the boundary inclusion ∂∆n+2 −→ ∆n+2. (Note that the existence of the
model structure for n-truncated quasi-categories was stated without proof
in Joyal’s notes [16, §26.5]. However, our construction and identification
of this model structure as the Bousfield localisation of Joyal’s model
structure for quasi-categories with respect to the boundary inclusion
∂∆n+2 −→ ∆n+2 is new to this paper; see Remark 3.29.) Moreover,
we prove (Theorem 4.14) Joyal’s assertion (stated without proof in
[16, §26.6]) that, if n ≥ 1, a morphism of quasi-categories is a weak
equivalence in this model structure if and only if it is essentially surjective
on objects and an (n− 1)-equivalence on hom-spaces.

Furthermore, we prove (Theorem 5.9) that the two Quillen equiva-
lences

[∆op,Set] `

t!
//
[(∆×∆)op,Set]

t!oo

[(∆×∆)op,Set] `
i∗ 1 //

[∆op,Set]
p∗1oo

established by Joyal and Tierney [17] between the model structures for
quasi-categories and complete Segal spaces remain Quillen equivalences
between the model structures for n-truncated quasi-categories and Rezk’s
(n, 1)-Θ-spaces [22], which are another model for (n, 1)-categories. We
also prove (Theorem 5.1) that the nerve functor N : Cat −→ sSet is the
right adjoint of a Quillen equivalence between the folk model structure
for categories and the model structure for 1-truncated quasi-categories,
and hence (Theorem 5.11) that the composite adjunction

Cat `

N
//
[∆op,Set]

τ1oo

`

t!
//
[(∆×∆)op,Set],

t!oo

whose right adjoint is Rezk’s “classifying diagram” functor [21], is a
Quillen equivalence between the model structures for categories and
Rezk’s (1, 1)-Θ-spaces.

The need for the n = 1 case of these results arose during the first-
named author’s work on the paper [6], wherein they serve as part of the

- 156 -



A. Campbell and E. Lanari On truncated quasi-categories

proofs that certain adjunctions

Bicats `
N

//
[Θop

2 ,Set]
τboo

`

t!
//
[(Θ2 ×∆)op,Set]

t!oo

are Quillen equivalences between Lack’s model structure for bicategories
[19], the Bousfield localisation of Ara’s model structure for 2-quasi-
categories [1] with respect to the boundary inclusion ∂Θ2[1; 3] −→
Θ2[1; 3], and Rezk’s model structure for (2, 2)-Θ-spaces [22].

We begin this paper in §2 with a collection of some preliminary
notions and results pertaining to simplicial sets and n-types. Our study
of n-truncated quasi-categories begins in §3, where we construct the
model structure for n-truncated quasi-categories, and continues in §4,
where we characterise the weak equivalences of this model structure.
Finally, in §5 we prove the aforementioned Quillen equivalences between
the model categories of categories and 1-truncated quasi-categories and
between the model categories of n-truncated quasi-categories and Rezk’s
(n, 1)-Θ-spaces. In an appendix §A, we recall some of the basic theory
of Bousfield localisations of model categories, including two criteria for
detecting Quillen equivalences between Bousfield localisations.
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FT160100393. The second-named author gratefully acknowledges the
support of a Macquarie University iMQRes PhD scholarship.

2. Simplicial preliminaries

In this section, we collect some preliminary notions and results pertaining
to simplicial sets and homotopy n-types (as modelled by Kan complexes)
that we will use in the following sections on truncated quasi-categories.
For further background on simplicial sets, see for example [10], [11], and
[7, Chapitre 2].

We begin with the definition of (homotopy) n-types, which we will
use in the definition of truncated quasi-categories in §3.
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Definition 2.1. Let n ≥ 0 be an integer. A Kan complex X is said to
be an n-type if, for each object (i.e. 0-simplex) x ∈ X0 and each integer
m > n, the homotopy group πm(X, x) is trivial (i.e. πm(X, x) ∼= 1).

Example 2.2. Every discrete (i.e. constant) simplicial set is a 0-type.
Furthermore, a Kan complex X is a 0-type if and only if the unit
morphism X −→ disc(π0X) of the adjunction

Set `
disc

//
sSet

π0oo

(2.3)

is a homotopy equivalence.

It is natural to extend the notion of n-type to lower values of n as
follows. Recall that a Kan complex X is said to be contractible if the
unique morphism X −→ ∆0 is a homotopy equivalence.

Definition 2.4. A Kan complex is said to be a (−1)-type if it is either
empty or contractible, and is said to be a (−2)-type if it is contractible.

In our study of truncated quasi-categories, we will use the following
well-known alternative characterisation of n-types in terms of a lifting
property (whose proof is a standard exercise).

Proposition 2.5. Let n ≥ −2 be an integer. A Kan complex is an
n-type if and only if it has the right lifting property with respect to the
boundary inclusion ∂∆m −→ ∆m for every m ≥ n+ 2.

We will see in Proposition 3.12 that n-truncated quasi-categories can
be characterised by the same lifting property. For this reason, we now
record this lifting property in the following definition and explore some
of its consequences.

Definition 2.6. Let n ≥ −1 be an integer. A simplicial set X is said
to be n-acyclic if it has the right lifting property with respect to the
boundary inclusion ∂∆m −→ ∆m for every m > n.

In these terms, Proposition 2.5 states that, for every n ≥ −2, a Kan
complex is an n-type if and only if it is (n + 1)-acyclic. Similarly, we
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will prove in Proposition 3.12 that, for every n ≥ −1, a quasi-category
is n-truncated if and only if it is (n+ 1)-acyclic. This lifting property
will be very useful, as it yields a large class of morphisms with respect
to which n-truncated quasi-categories have the right lifting property.

Definition 2.7. Let n ≥ −1 be an integer. A morphism of simplicial
sets f : X −→ Y is said to be n-bijective if the function fk : Xk −→ Yk
is bijective for each 0 ≤ k ≤ n.

Lemma 2.8. Let n ≥ −1 be an integer. A simplicial set is n-acyclic if
and only if it has the right lifting property with respect to every n-bijective
monomorphism of simplicial sets.

Proof. Since the boundary inclusion ∂∆m −→ ∆m is an n-bijective
monomorphism for every m > n, any simplicial set with the stated
lifting property is n-acyclic. Note that any class of morphisms defined
by a left lifting property is stable under pushout and closed under
coproducts and countable composition. The converse then follows from
the fact that any n-bijective monomorphism can be decomposed into a
countable composite of pushouts of coproducts of the boundary inclusions
∂∆m −→ ∆m for m > n, as in [10, §II.3.8].

Remark 2.9. If n = −1, the condition in Definition 2.7 is vacuous, and
so every morphism of simplicial sets is (−1)-bijective. Hence the n = −1
case of Lemma 2.8 states that a simplicial set is (−1)-acyclic if and
only if it is an injective object in the category of simplicial sets, i.e. a
contractible Kan complex, i.e. a (−2)-type. Furthermore, a simplicial
set is 0-acyclic if and only if it is a (−1)-type.

In §3, we will use the following consequence of Lemma 2.8 to prove
that the model structures for n-truncated quasi-categories are cartesian.

Lemma 2.10. Let n ≥ −1 be an integer. For every simplicial set A
and n-acyclic simplicial set X, the internal hom simplicial set XA is
n-acyclic.

Proof. It is required to prove that XA has the right lifting property with
respect to the boundary inclusion bm : ∂∆m −→ ∆m for every m > n.
By adjunction, this is so if and only if X has the right lifting property
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with respect to the morphism bm × A : ∂∆m × A −→ ∆m × A for every
m > n. But the n-acyclic simplicial set X has this lifting property by
Lemma 2.8, since the morphism bm×A is an n-bijective monomorphism
for every m > n.

The following lemma shows that the property of n-acyclicity can be
understood as a weakening of the property of n-coskeletality. (Recall
that a simplicial set X is said to be n-coskeletal if the unit morphism
X −→ cosknX to its n-coskeleton is an isomorphism; dually, X is said
to be n-skeletal if the counit morphism sknX −→ X from its n-skeleton
is an isomorphism.)

Lemma 2.11. Let n ≥ −1 be an integer. A simplicial set X is n-acyclic
if and only if the unit morphism X −→ cosknX is a trivial fibration.

Proof. Let X be a simplicial set. By definition, the unit morphism
X −→ cosknX is a trivial fibration if and only if it has the right lifting
property with respect to the boundary inclusion ∂∆m −→ ∆m for each
m ≥ 0. By adjointness, this is so if and only if X has the right lifting
property with respect to the inclusion skn∆m ∪ ∂∆m −→ ∆m for each
m ≥ 0. If m ≤ n, this inclusion is an identity, and so the lifting property
is satisfied trivially. If m > n, this inclusion is the boundary inclusion
∂∆m −→ ∆m. Thus the two properties in the statement are seen to be
equivalent.

Remark 2.12. By an argument similar to the proof of Lemma 2.8, one
can show that a simplicial set is n-coskeletal if and only if it has the
unique right lifting property with respect to the boundary inclusion
∂∆m −→ ∆m for each m > n. This gives another sense in which the
property of n-acyclicity is a weakening of the property of n-coskeletality.

Now, recall that (the simplicial analogue of) Whitehead’s theorem
states that a morphism of Kan complexes f : X −→ Y is a homotopy
equivalence if and only if (i) the induced function π0(f) : π0X −→ π0Y
is a bijection and (ii) for every integer n ≥ 1 and every object x of X,
the induced function πn(f) : πn(X, x) −→ πn(Y, fx) is a bijection (and
hence an isomorphism of groups). We will use the following weakenings
of these properties in our characterisation of the weak equivalences in
the model structures for n-truncated quasi-categories in §4.
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Definition 2.13. Let n ≥ 0 be an integer. A morphism of Kan com-
plexes f : X −→ Y is said to be a homotopy n-equivalence if

(i) the induced function π0(f) : π0X −→ π0Y is a bijection, and

(ii) the induced function πk(f) : πk(X, x) −→ πk(Y, fx) is a bijection
(and hence an isomorphism of groups) for every integer 1 ≤ k ≤ n
and every object x ∈ X.

Thus a morphism of Kan complexes is a homotopy 0-equivalence if
and only if it is inverted by the functor π0 : sSet −→ Set. We similarly
define a morphism of Kan complexes to be a homotopy (−1)-equivalence
if it is inverted by the functor π−1 : sSet −→ {0 < 1} that sends the
empty simplicial set to 0 and every nonempty simplicial set to 1. Thus
a morphism of Kan complexes is a homotopy (−1)-equivalence if either
(i) its domain and codomain are both empty, or (ii) its domain and
codomain are both nonempty. Furthermore, we define a morphism of
Kan complexes to be a homotopy (−2)-equivalence if it is inverted by
the unique functor π−2 : sSet −→ 1 to the terminal category; thus every
morphism of Kan complexes is a homotopy (−2)-equivalence.

For each n ≥ −2, a morphism of n-types is a homotopy equivalence
if and only if it is a homotopy n-equivalence: if n ≥ 0, this follows
from Whitehead’s theorem; if n = −2,−1, this follows from the fact
that any morphism between contractible Kan complexes is a homotopy
equivalence.
Remark 2.14. It is a standard result (cf. [12, §1.5] and [7, §9.2]) that, for
each integer n ≥ −2, the n-types are the fibrant objects of the Bousfield
localisation of the model structure for Kan complexes with respect to
the boundary inclusion ∂∆n+2 −→ ∆n+2, and that a morphism of Kan
complexes is a weak equivalence in this Bousfield localisation if and only
if it is a homotopy n-equivalence in the sense of the above definitions.
In §§3–4, we will generalise both of these statements to n-truncated
quasi-categories.

We will use the following two properties of the class of homotopy
n-equivalences in §4.
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Lemma 2.15. Let n ≥ −2 be an integer and let f : X −→ Y and
g : Y −→ Z be morphisms of Kan complexes. If two of the morphisms
f, g, gf are homotopy n-equivalences, then so is the third.

Proof. This is proved by any of the standard arguments proving that
the class of morphisms of Kan complexes described in the statement of
Whitehead’s theorem enjoys the same property.

Lemma 2.16. Let n ≥ −2 be an integer. An (n+ 1)-bijective morphism
of Kan complexes is a homotopy n-equivalence.

Proof. The cases n = −2,−1 are immediate. Suppose n ≥ 0. The
result follows from the facts that the set of connected components of a
simplicial set depends only on its 1-skeleton, and that, for each integer
k ≥ 1, the kth homotopy groups of a Kan complex depend only on
its (k + 1)-skeleton (since their elements are pointed homotopy classes
of morphisms to X from the (simplicial) k-sphere, whose homotopy
type can be modelled by a k-skeletal simplicial set, e.g. ∆k/∂∆k or
∂∆k+1).

3. Truncated quasi-categories

Throughout this section, let n ≥ −1 be an integer.

Remark 3.1. As mentioned in §1, some of the results of §§3–5 are stated
without proof in Joyal’s notes [16, §26]. These results will be indicated
below by references to the numbered paragraphs of those notes in which
they are stated. (Given that one of the purposes of this paper is to
provide proofs for these statements, we beg the reader’s patience if we
spell out the occasional “obvious” argument.)

As recalled in Remark 2.14, the (homotopy) n-types are the fibrant
objects of the Bousfield localisation of the model structure for Kan
complexes with respect to the boundary inclusion ∂∆n+2 −→ ∆n+2, and
a morphism of Kan complexes is a weak equivalence in this Bousfield
localisation if and only if it is a homotopy n-equivalence. The goal of this
section and the next is to prove the analogous results for quasi-categories.
In this section, we prove that the n-truncated quasi-categories are the
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fibrant objects of the Bousfield localisation of Joyal’s model structure for
quasi-categories with respect to the same boundary inclusion (Theorem
3.28). In §4, we will prove that a morphism of quasi-categories is a weak
equivalence in this Bousfield localisation if and only if it is a categorical
n-equivalence (Theorem 4.14). (Note that the first of these two results
is new to this paper, whereas the second was stated without proof in
[16, §26.6].)

We refer the reader to Appendix A for the necessary background on
Bousfield localisations, and to [14], [17, §1], and [20, Chapter 1] for a
more than sufficient background in the theory of quasi-categories. In
particular, recall that there is a (left proper and combinatorial) cartesian
model structure due to Joyal on the category of simplicial sets whose
cofibrations are the monomorphisms and whose fibrant objects are the
quasi-categories [15, Theorem 6.12]. We call this model structure the
model structure for quasi-categories; the weak equivalences and fibrations
between fibrant objects of this model structure will be called weak cate-
gorical equivalences and isofibrations respectively. (Note that, following
[9], we will sometimes denote the category of simplicial sets equipped
with the model structures for Kan complexes and quasi-categories by
sSetK and sSetJ respectively.)

To begin, let us recall the definition of the hom-spaces of a quasi-
category. For each pair of objects (i.e. 0-simplices) x, y of a quasi-
category X, their hom-space HomX(x, y) is the Kan complex defined by
the pullback

HomX(x, y) //

��

X∆1

(Xδ1 ,Xδ0 )
��

∆0
(x,y)

// X ×X
(3.2)

in the category of simplicial sets. By [9, Proposition 4.5], this hom-space
construction defines the right adjoint of a Quillen adjunction

∂∆1\sSetJ `

Hom
//
sSetK

Σoo

(3.3)

between the category of bipointed simplicial sets (note that ∂∆1 ∼=
∆0 + ∆0) equipped with the model structure induced by the model
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structure for quasi-categories and the category of simplicial sets equipped
with the model structure for Kan complexes, whose left adjoint sends a
simplicial set U to its (two-point) suspension ΣU , defined by the pushout

U × ∂∆1 pr2 //

��

∂∆1

(⊥,>)
� �

U ×∆1 // ΣU

(3.4)

in the category of simplicial sets; note that the simplicial set ΣU has
precisely two 0-simplices, which we denote by ⊥ and >, as in the diagram
above.

Next, recall that one can assign to each category A a quasi-category
NA via the nerve functor N : Cat −→ sSet, which defines the fully
faithful right adjoint of an adjunction

Cat `

N
//
sSet

τ1oo

(3.5)

whose left adjoint sends a simplicial set X to its fundamental category
τ1X (see [10, §II.4]). If X is a quasi-category, then its fundamental
category τ1X is isomorphic to its homotopy category hoX, which was first
constructed by Boardman and Vogt [5, §IV.2] (for a detailed proof, see [15,
Chapter 1]). The homotopy category hoX of a quasi-category X has the
same set of objects asX, and its hom-sets (hoX)(x, y) ∼= π0(HomX(x, y))
are isomorphic to the sets of connected components of the hom-spaces
of X; thus the unit morphism X −→ N(hoX) of the adjunction (3.5) is
a bijection on objects, and is given on hom-spaces by the unit morphism
HomX(x, y) −→ disc(π0(HomX(x, y))) of the adjunction π0 a disc (2.3).
A morphism (i.e. a 1-simplex) in a quasi-category X is said to be an
isomorphism if it is sent by the unit morphism X −→ N(hoX) to an
isomorphism in hoX.

A morphism of quasi-categories f : X −→ Y is said to be essen-
tially surjective on objects if the induced functor between homotopy
categories ho(f) : hoX −→ hoY is essentially surjective on objects. A
fundamental theorem of quasi-category theory states that a morphism
of quasi-categories f : X −→ Y is an equivalence of quasi-categories (i.e.
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a weak categorical equivalence between quasi-categories) if and only if
it is essentially surjective on objects and a homotopy equivalence on
hom-spaces, that is, for each pair of objects x, y ∈ X, the induced mor-
phism of hom-spaces f : HomX(x, y) −→ HomY (fx, fy) is a homotopy
equivalence of Kan complexes.

We now recall the definition of n-truncated quasi-categories from [16,
§26].
Definition 3.6. A quasi-category X is said to be n-truncated if, for each
pair of objects x, y ∈ X, the hom-space HomX(x, y) is an (n− 1)-type.
Remark 3.7. In [20, Proposition 2.3.4.18], Lurie proved that a quasi-
category is n-truncated if and only if it is equivalent to an n-category in
the sense of [20, Definition 2.3.4.1]. We will not use this result in the
present paper.

Before proceeding with the study of the homotopy theory of n-
truncated quasi-categories, let us examine the low dimensional cases of
this definition. By definition, a quasi-category is 1-truncated if and only
if its hom-spaces are 0-types. For example, the nerve NA of a category
A is a 1-truncated quasi-category, since its hom-spaces are the discrete
simplicial sets HomNA(a, b) ∼= disc(A(a, b)) given by the hom-sets of A,
and since every discrete simplicial set is a 0-type.
Proposition 3.8 ([16, §26.1]). A quasi-category X is 1-truncated if
and only if the unit morphism X −→ N(hoX) is an equivalence of
quasi-categories. In particular, the nerve of a category is a 1-truncated
quasi-category.

Proof. Let X be a quasi-category. By construction, the unit morphism
X −→ N(hoX) is bijective on objects, and therefore is an equivalence
if and only if it is a homotopy equivalence on hom-spaces, that is, if
and only if the unit morphism HomX(x, y) −→ disc(π0(HomX(x, y))) is
a homotopy equivalence for each pair of objects x, y ∈ X. But this is
so precisely when each hom-space HomX(x, y) is a 0-type (see Example
2.2), that is, precisely when X is 1-truncated.

Remark 3.9. For any quasi-category X, the unit morphism X −→
N(hoX) is an isofibration. Hence a quasi-category X is 1-truncated if
and only if the unit morphism X −→ N(hoX) is a trivial fibration.
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Recall that a category is a preorder if each of its hom-sets has at
most one element. A category is a preorder if and only if it is equivalent
to a poset (partially ordered set): the quotient of a preorder by the
congruence x ∼ y ⇐⇒ x ≤ y & y ≤ x defines an equivalent poset,
which we call its poset quotient; conversely, any category equivalent to a
preorder is evidently a preorder, and a poset is in particular a preorder.

Proposition 3.10 ([16, §26.2]). A quasi-category is 0-truncated if and
only if it is 1-truncated and its homotopy category is equivalent to a poset.
In particular, the nerve of a preorder is a 0-truncated quasi-category.

Proof. A Kan complex is a (−1)-type if and only if it is a 0-type and
its set of connected components has at most one element. Hence a
quasi-category X is 0-truncated if and only if it is 1-truncated and its
homotopy category is a preorder, that is, equivalent to a poset.

A quasi-category is (−1)-truncated if and only if it is empty or a
contractible Kan complex, that is, if and only if it is a (−1)-type: if
X is a nonempty (−1)-truncated quasi-category, then its hom-spaces
are contractible, and so the unique morphism X −→ ∆0 is surjective
on objects and a homotopy equivalence on hom-spaces, and is thus an
equivalence of quasi-categories, and hence a trivial fibration. Similarly,
one could define a quasi-category to be (−2)-truncated if it is a (−2)-type,
i.e. a contractible Kan complex.

We now proceed towards the main goal of this section, which is to
prove that the n-truncated quasi-categories are the fibrant objects of the
Bousfield localisation of the model structure for quasi-categories with
respect to the boundary inclusion ∂∆n+2 −→ ∆n+2. Our first step will
be to show that n-truncated quasi-categories can be characterised in
terms of a lifting property. To this end, it will be convenient to use an
alternative model for the hom-spaces of a quasi-category.

Recall that a morphism of simplicial sets f : X −→ Y is said to be a
right fibration if it has the right lifting property with respect to the horn
inclusion Λm

k −→ ∆m for every m ≥ 1 and 0 < k ≤ m (see [14, §2] or
[20, Chapter 2]). For each object x of a quasi-category X, one obtains by
the join and slice constructions of [14, §3] a right fibration X/x −→ X
whose domain is the slice quasi-category X/x (see [20, §1.2.9]). The slice
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quasi-category construction defines the right adjoint of an adjunction

∆0\sSet `

slice
//
sSet

−?∆0
oo

whose left adjoint sends a simplicial set U to the right cone of U , i.e.
the join U ?∆0 with base point ∆0 ∼= ∅ ?∆0 −→ U ?∆0. Thus, for each
k ≥ 0, a k-simplex of the slice quasi-category X/x is given by a (k + 1)-
simplex of X whose final vertex is x; the right fibration X/x −→ X
sends a k-simplex of X/x to the face opposite the last vertex of the
corresponding (k + 1)-simplex of X. (See [14, §3] and [20, §§1.2.8–9] for
further details.)

For each pair of objects x, y of a quasi-categoryX, the right hom-space
HomR

X(x, y) is defined by the pullback

HomR
X(x, y) //

��

X/y

��

∆0
x

// X

in the category of simplicial sets [20, §1.2.2]. Since the projection
X/y −→ X is a right fibration, it follows that the right hom-space
HomR

X(x, y) is a Kan complex (see [20, Proposition 1.2.2.3]). A k-simplex
of HomR

X(x, y) is given by a (k + 1)-simplex of X whose last vertex is y
and whose face opposite the last vertex is the degenerate k-simplex on
x.

Importantly, for each pair of objects x, y of a quasi-category X, there
is a homotopy equivalence HomR

X(x, y) ' HomX(x, y) between the right
hom-space and the hom-space (see [20, Corollary 4.2.1.8]). Hence a
quasi-category is n-truncated if and only if each of its right hom-spaces
is an (n− 1)-type.

The characterisation of n-truncated quasi-categories in terms of a
lifting property depends on the following lemma. Recall from Definition
2.6 that a simplicial set is said to be n-acyclic if it has the right lifting
property with respect to the boundary inclusion ∂∆m −→ ∆m for every
m > n.
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Lemma 3.11. Let f : X −→ Y be a right fibration of simplicial sets.
Then the following properties are equivalent.

(i) f has the right lifting property with respect to the boundary inclu-
sion ∂∆m −→ ∆m for every m > n.

(ii) For every 0-simplex y ∈ Y0, the fibre f−1(y) is an (n− 1)-type.

(iii) For every 0-simplex y ∈ Y0, the fibre f−1(y) is n-acyclic.

Proof. Since the fibres of a right fibration are Kan complexes, the
equivalence (ii) ⇐⇒ (iii) follows from Proposition 2.5. Furthermore,
since any pullback of a morphism satisfying the lifting property (i)
inherits this lifting property, we have the implication (i) =⇒ (iii).

It remains to prove the implication (iii) =⇒ (i). If n = −1, this
implication is precisely [20, Lemma 2.1.3.4], which states that a right
fibration whose fibres are contractible is a trivial fibration. In fact, the
proof of the cited result proves moreover that, for each k ≥ 0, if the
fibres of a right fibration each have the right lifting property with respect
to the boundary inclusion ∂∆k −→ ∆k, then the right fibration also has
the right lifting property with respect to that boundary inclusion. This
proves the implication (iii) =⇒ (i) for an arbitrary n ≥ −1.

By applying Lemma 3.11 to the right fibrations of the form X/x −→
X, we can characterise the n-truncated quasi-categories by the following
lifting property.

Proposition 3.12 ([16, §§26.1–3]). A quasi-category is n-truncated if
and only if it has the right lifting property with respect to the boundary
inclusion ∂∆m −→ ∆m for every m ≥ n+ 2.

Proof. By the homotopy equivalences between the hom-spaces and the
right hom-spaces of a quasi-category [20, Corollary 4.2.1.8], a quasi-
category X is n-truncated if and only if the right hom-space HomR

X(x, y)
is an (n− 1)-type for each pair of objects x, y ∈ X. We thus have that
a quasi-category X is n-truncated if and only if every fibre of the right
fibrationX/y −→ X is an (n−1)-type for every object y ∈ X. By Lemma
3.11, this is so if and only if the right fibration X/y −→ X has the right
lifting property with respect to the boundary inclusion ∂∆m −→ ∆m for
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everym > n and every y ∈ X. By adjointness (see [14, Lemma 3.6]), this
lifting property is satisfied if and only if X has the right lifting property
with respect to the pushout-join (∂∆m ?∆0)∪ (∆m ? ∅) −→ ∆m ?∆0 for
every m > n. But this pushout-join is none other than the boundary
inclusion ∂∆m+1 −→ ∆m+1 [14, Lemma 3.3]. Hence we have shown that
a quasi-category X is n-truncated if and only if it has the right lifting
property with respect to the boundary inclusion ∂∆m+1 −→ ∆m+1 for
every m > n, as required.

In the terminology of Definition 2.6, Proposition 3.12 states that a
quasi-category is n-truncated if and only if it is (n+ 1)-acyclic. Thus
we may deduce that the class of n-truncated quasi-categories inherits
the following properties from the class of (n+ 1)-acyclic simplicial sets.

Corollary 3.13. A quasi-category is n-truncated if and only if it has the
right lifting property with respect to every (n+1)-bijective monomorphism
of simplicial sets.

Proof. This is a consequence of Proposition 3.12 and Lemma 2.8.

Corollary 3.14. For every simplicial set A and n-truncated quasi-
category X, the internal hom simplicial set XA is an n-truncated quasi-
category.

Proof. We have by [15, Corollary 2.19] that XA is a quasi-category.
Hence by Proposition 3.12, XA is an n-truncated quasi-category if and
only if it is (n + 1)-acyclic. The result then follows from Corollary
2.10.

Remark 3.15. The result of Corollary 3.14 was proved by Lurie as [20,
Corollary 2.3.4.20]. Our proof of this result is more direct and elementary
than Lurie’s proof, which uses the corresponding result for n-categories
(in his sense) [20, Proposition 2.3.4.8] and the fact that any quasi-category
is equivalent to a minimal quasi-category [20, Proposition 2.3.3.8].

Corollary 3.16. A quasi-category X is n-truncated if and only if the
unit morphism X −→ coskn+1X is a trivial fibration.

Proof. This is a consequence of Proposition 3.12 and Lemma 2.11.
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In Propositions 2.5 and 3.12, n-types and n-truncated quasi-categories
were both characterised by the same lifting property. Hence we may
deduce the following corollary.

Corollary 3.17 ([16, §§26.1–3]). A Kan complex is an n-truncated
quasi-category if and only if it is an n-type.

Proof. By definition, every Kan complex is a quasi-category. Hence by
Proposition 3.12, a Kan complex is an n-truncated quasi-category if and
only if it is (n + 1)-acyclic, which is so, by Proposition 2.5, precisely
when it is an n-type.

Next, we deduce from Proposition 3.12 a further characterisation of
n-truncated quasi-categories as the quasi-categories that are local (see
(A.8)) with respect to the boundary inclusion ∂∆n+2 −→ ∆n+2 in the
model structure sSetJ for quasi-categories. As explained in Appendix
A, this will require a model for the derived hom-spaces of the model
category sSetJ, which we will obtain by Lemma A.12 from the Quillen
adjunction (3.18) below.

Let qCat and Kan denote the full subcategories of sSet consisting
of the quasi-categories and the Kan complexes respectively. By [15,
Theorem 4.19], the full inclusion Kan −→ qCat has a right adjoint
J : qCat −→ Kan, which sends a quasi-category X to its maximal sub
Kan complex J(X). By [15, Lemma 4.18], a simplex of X belongs to
the simplicial subset J(X) if and only if each of its 1-simplices is an
isomorphism in X. Note that, by [15, Proposition 4.27], the functor J
sends isofibrations to Kan fibrations.

Let X be a quasi-category. By [15, Corollary 5.11], there is an
adjunction

sSetop
J `

J(X−)
//
sSetK

X(−)
oo

(3.18)

whose right adjoint sends a simplicial set A to the Kan complex J(XA),
and whose left adjoint sends a simplicial set U to the full sub-quasi-
category X(U) of XU consisting of the morphisms of simplicial sets
U −→ X which factor through J(X), i.e. which send each 1-simplex of
U to an isomorphism in X. Moreover, by [15, Theorems 5.7, 5.10], this
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adjunction is a Quillen adjunction between (the opposite of) the model
structure sSetJ for quasi-categories and the model structure sSetK for
Kan complexes as indicated.

Hence, for each simplicial set A and quasi-category X, Lemma A.12
applied to the Quillen adjunction (3.18) implies that the Kan complex
J(XA) is a model for the derived hom-space Ho sSetJ(A,X) from A to
X in the model structure for quasi-categories. We may therefore deduce
the following lemma.

Lemma 3.19. A quasi-category X is local with respect to a morphism
f : A −→ B in the model structure for quasi-categories if and only if the
morphism J(Xf ) : J(XB) −→ J(XA) is a homotopy equivalence of Kan
complexes.

Proof. By definition (see Appendix A), a quasi-category X is local with
respect to a morphism f : A −→ B in the model category sSetJ if and
only if this morphism is sent to an isomorphism by the functor

Ho sSetJ(−, X) : Ho sSetop
J −→H .

Since X(∆0) ∼= X, Lemma A.12 implies that this functor is naturally
isomorphic to the derived right adjoint of the Quillen adjunction (3.18).
Therefore, since every object of sSetJ is cofibrant, a morphism of sim-
plicial sets is sent to an isomorphism by the functor Ho sSetJ(−, X) if
and only if it is sent to a homotopy equivalence of Kan complexes by
the right Quillen functor J(X−) : sSetop

J −→ sSetK, as required.

Remark 3.20. A Kan complex is local with respect to a given morphism
in the model structure for Kan complexes if and only if it is local with
respect to that morphism in the model structure for quasi-categories.
This can be seen as a consequence either of the fact that the model
structure for Kan complexes is a Bousfield localisation of the model
structure for quasi-categories (cf. [1, Lemma A.4]), or of the standard
result that for any simplicial set A and Kan complex X, the Kan complex
XA is a model for the derived hom-space from A to X in the model
category sSetK (see [12, Example 17.1.4]), which coincides with our
model for the derived hom-space from A to X in the model category
sSetJ.
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Remark 3.21. An alternative model for the derived hom-spaces of the
model category sSetJ involves the following adjunction (which we will
meet again in §5). Let k : ∆ −→ sSet denote the functor that sends
the ordered set [m] to the nerve of its groupoid reflection, i.e. the nerve
of the contractible groupoid with the set of objects {0, . . . ,m}. This
functor induces an adjunction

sSetJ `
k!

//
sSetK

k!oo

(3.22)

whose left adjoint is the left Kan extension of k : ∆ −→ sSet along the
Yoneda embedding ∆ −→ sSet. By [15, Theorem 6.22], this adjunction
is a Quillen adjunction between the model structures for quasi-categories
and Kan complexes as indicated. Note that, since k([0]) = ∆0, the right
adjoint functor k! sends a quasi-category to a Kan complex with the
same set of objects.

One can show by another application of Lemma A.12 that for each
simplicial set A and quasi-category X, the Kan complex k!(XA) is a
model for the derived hom-space from A to X in the model category
sSetJ, which is homotopy equivalent to the Kan complex J(XA) by [15,
Proposition 6.26]. For our purposes, either of these models J(XA) or
k!(XA) for the derived hom-space would suffice; but one must be chosen,
and we have chosen the former.

Using Lemma 3.19, we are now able to prove the following proposition.

Proposition 3.23. A quasi-category is n-truncated if and only if it is
local with respect to the boundary inclusion ∂∆n+2 −→ ∆n+2 in the model
structure for quasi-categories.

Proof. By Lemma 3.19, it is required to prove that a quasi-category X
is n-truncated if and only if the Kan fibration

J(Xbn+2) : J(X∆n+2) −→ J(X∂∆n+2) (3.24)

induced by the boundary inclusion bn+2 : ∂∆n+2 −→ ∆n+2 is a homotopy
equivalence of Kan complexes, or equivalently a trivial fibration.
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Let X be an n-truncated quasi-category. We will prove that the
morphism (3.24) is a trivial fibration. Since n ≥ −1, the boundary
inclusion ∂∆n+2 −→ ∆n+2 is 0-bijective, and so by [15, Lemma 5.9] (see
also [15, Corollary 5.11]) the following square is a pullback square.

J(X∆n+2)

��

// X∆n+2

��

J(X∂∆n+2) // X∂∆n+2

Hence it suffices to prove that the morphism X∆n+2 −→ X∂∆n+2 is a
trivial fibration. By adjointness, this is so if and only if X has the right
lifting property with respect to the pushout-product of the boundary
inclusion ∂∆m −→ ∆m with the (n + 1)-bijective boundary inclusion
∂∆n+2 −→ ∆n+2 for every m ≥ 0. But every such pushout-product is
an (n + 1)-bijective monomorphism, and so X has the desired lifting
property by Corollary 3.13. Therefore the morphism (3.24) is a trivial
fibration.

Conversely, let X be a quasi-category and suppose that the morphism
(3.24) is a trivial fibration. By Proposition 3.12, it remains to prove
that X has the right lifting property with respect to the boundary
inclusion ∂∆m −→ ∆m for every m ≥ n + 2. Since trivial fibrations
are surjective on 0-simplices, it suffices to prove that the morphism
J(Xbm) : J(X∆m) −→ J(X∂∆m) is a trivial fibration for every m ≥ n+2.

We prove by induction that the morphism J(Xbm) is a trivial fibration
for every m ≥ n+2. The base casem = n+2 of the induction is precisely
the assumption that the morphism (3.24) is a trivial fibration. Now
suppose m > n+ 2, and let 0 < i < m be an integer (which exists since
n ≥ −1). We then have a diagram of monomorphisms as on the left
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below,

∂∆m−1

bm−1
� �

// Λmi

�� him

��

∆m−1

δi //

// ∂∆m

bm

##

∆m

J(X∆m)

J(Xbm )
&&

J(Xδi )

&&

J(Xhim )

$ $

J(X∂∆m) //

��

J(X∆m−1)

J(Xbm−1 )
��

J(XΛmi ) // J(X∂∆m−1)

and hence a diagram of Kan fibrations as on the right above. In this
latter diagram, the morphism J(Xbm−1) is a trivial fibration by the
induction hypothesis, and hence so is its pullback. Since the morphism
him is an inner horn inclusion, the morphism Xhim is a trivial fibration,
and hence so is the morphism J(Xhim). It then follows from the two-of-
three property that the morphism J(Xbm) is a trivial fibration. This
completes the proof by induction.

As a special case of this result, we recover the following well-known
characterisation of n-types (cf. [12, Proposition 1.5.1]).

Corollary 3.25. A Kan complex X is an n-type if and only if it is local
with respect to the boundary inclusion ∂∆n+2 −→ ∆n+2 in the model
structure for Kan complexes.

Proof. By Remark 3.20, a Kan complex is local with respect to the
boundary inclusion ∂∆n+2 −→ ∆n+2 in the model structure for Kan
complexes if and only if it is local with respect to it in the model structure
for quasi-categories. Hence the result follows from Proposition 3.23 and
Corollary 3.17.

Remark 3.26. A Kan complex X is local with respect to the boundary
inclusion ∂∆0 = ∅ −→ ∆0 if and only if the unique morphism X ∼=
X∆0 −→ X∅ = ∆0 is a homotopy equivalence, that is, if and only if X
is contractible. Hence Corollary 3.25 holds for all n ≥ −2.

We may now apply Smith’s existence theorem (Theorem A.11) to
deduce the existence of the Bousfield localisation of the model structure
for quasi-categories whose fibrant objects are precisely the n-truncated
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quasi-categories. We break the statement of the following result into
two parts: the first part was stated without proof in [16, §26.5], and the
second part is new to this paper.

Theorem 3.27 ([16, §26.5]). There exists a model structure on the
category of simplicial sets whose cofibrations are the monomorphisms
and whose fibrant objects are the n-truncated quasi-categories. This
model structure is cartesian and left proper.

Theorem 3.28. The model structure of Theorem 3.27 is the Bousfield
localisation of Joyal’s model structure for quasi-categories with respect
to the boundary inclusion ∂∆n+2 −→ ∆n+2, and is combinatorial.

Proof. Since the model category sSetJ is left proper and combinatorial,
there exists by Theorem A.11 a Bousfield localisation of sSetJ whose
fibrant objects are precisely the quasi-categories that are local with
respect to the single morphism ∂∆n+2 −→ ∆n+2. By Proposition 3.23,
these fibrant objects are precisely the n-truncated quasi-categories. The-
orem A.11 further implies that this model structure is left proper and
combinatorial. The model structure is cartesian by Proposition A.7 and
Corollary 3.14, since sSetJ is a cartesian model category in which every
object is cofibrant.

Remark 3.29. In [16, §26.5], the model structure of Theorem 3.27 is
defined as the Bousfield localisation of the model structure sSetJ for
quasi-categories with respect to the (large) class of “weak categorical
n-equivalences” (defined therein as the morphisms of simplicial sets
satisfying the property stated in Lemma 4.1 below). However, our
identification of this model structure with the Bousfield localisation
of sSetJ with respect to the boundary inclusion ∂∆n+2 −→ ∆n+2, or
indeed with respect to any small set of morphisms, is not contained in
[16].

We will call the model structure of Theorem 3.27 the model structure
for n-truncated quasi-categories. Similarly, one can prove by Corollary
3.25 and Theorem A.11 that the n-types are the fibrant objects of the
Bousfield localisation of the model structure for Kan complexes with
respect to the boundary inclusion ∂∆n+2 −→ ∆n+2, as recalled in Remark
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2.14. Since every n-type is an n-truncated quasi-category by Corollary
3.17, this model structure for n-types is also a Bousfield localisation
of the model structure for n-truncated quasi-categories; indeed, the
following proposition implies that it is the Bousfield localisation of this
model structure with respect to the unique morphism ∆1 −→ ∆0 (cf.
Examples A.5 and A.9).

Proposition 3.30. A quasi-category is a Kan complex if and only if it
is local with respect to the unique morphism ∆1 −→ ∆0 in the model
structure for quasi-categories.

Proof. Let X be a quasi-category. By Lemma 3.19, it suffices to prove
that X is a Kan complex if and only if the induced morphism of Kan
complexes J(X) −→ J(X∆1) is a homotopy equivalence. To prove this,
consider the following commutative diagram of Kan complexes.

J(X)

""||

J(X)∆1
// J(X∆1)

In this diagram, the left-diagonal morphism is a homotopy equivalence,
since ∆1 −→ ∆0 is a homotopy equivalence. Hence, by the two-of-three
property, it remains to show that X is a Kan complex if and only if
the bottom morphism in this diagram is a homotopy equivalence. But
this bottom morphism is both a monomorphism and a Kan fibration,
since, by [15, Proposition 5.3], it is the image under the functor J of the
inclusion X(∆1) −→ X∆1 of the replete full sub-quasi-category of X∆1

consisting of the isomorphisms in X, which is both a monomorphism and
an isofibration. Hence the bottom morphism is a homotopy equivalence
if and only if it is surjective on objects, which is so precisely when every
morphism in the quasi-category X is an isomorphism, that is, precisely
when X is a Kan complex.

We have constructed the model structure for n-truncated quasi-
categories as the Bousfield localisation of the model structure for quasi-
categories with respect to the boundary inclusion ∂∆n+2 −→ ∆n+2.
However, as in Remark A.10, this model structure can also be described
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as the Bousfield localisation of the model structure for quasi-categories
with respect to any of a variety of alternative morphisms. To conclude
this section, we give one such alternative morphism. This will be derived
as an instance of a more general proposition, which we will prove by an
application of the following standard result.

Consider a commutative diagram of simplicial sets as displayed below,

X
f

//

p
��

Y

q
��

A

in which the morphisms p and q are Kan fibrations. A standard result
states that the morphism f is a weak homotopy equivalence if and only
if, for each 0-simplex a ∈ A0, the induced morphism between fibres
fa : p−1(a) −→ q−1(a) is a homotopy equivalence of Kan complexes.

Let Σ: sSet −→ sSet denote the (two-point) suspension functor,
that is, the composite of the left adjoint of the adjunction (3.3) with
the functor ∂∆1\sSet −→ sSet that forgets the base points. Since
the adjunction (3.3) is a Quillen adjunction, the suspension functor
preserves monomorphisms and sends weak homotopy equivalences to
weak categorical equivalences.

Proposition 3.31. Let f : A −→ B be a morphism of simplicial sets. A
quasi-category X is local with respect to the morphism Σ(f) : ΣA −→ ΣB
in the model structure for quasi-categories if and only if, for each pair of
objects x, y ∈ X, the hom-space HomX(x, y) is local with respect to the
morphism f : A −→ B in the model structure for Kan complexes.

Proof. Let f : A −→ B be a morphism of simplicial sets and let X be a
quasi-category. By Lemma 3.19, X is local with respect to the morphism
Σ(f) in sSetJ if and only if the morphism of Kan complexes

J(XΣ(f)) : J(XΣB) −→ J(XΣA) (3.32)

is a homotopy equivalence. By Lemma 3.19 and Remark 3.20, for each
pair of objects x, y of X, the hom-space HomX(x, y) is local with respect
to the morphism f in sSetK if and only if the morphism of Kan complexes

HomX(x, y)f : HomX(x, y)B −→ HomX(x, y)A (3.33)
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is a homotopy equivalence. Hence it is required to prove that the
morphism (3.32) is a homotopy equivalence if and only if the morphism
(3.33) is a homotopy equivalence for each pair of objects x, y of X.

From the commutative diagram of simplicial sets on the left below

∂∆1

(⊥,>)

��

(⊥,>)

��

ΣA
Σ(f)

// ΣB

J(XΣB) J(XΣ(f))
//

$$

J(XΣA)

zz

J(X ×X)

we obtain the commutative diagram on the right above, in which the
diagonal morphisms are Kan fibrations. By the standard result recalled
above, the morphism J(XΣ(f)) is a homotopy equivalence if and only
if, for each pair of objects x, y of X, the induced morphism between
the fibres over (x, y) is a homotopy equivalence. Therefore, the result
follows from the observation that, for each pair of objects x, y of X, this
induced morphism between the fibres is none other than the morphism
(3.33). This can be seen as follows.

For each simplicial set U , since the functor V 7→ XV sends pushouts
to pullbacks, the quasi-category XΣU is given by the pullback on the
right below.

HomX(x, y)U //

��

XΣU //

��

(X∆1)U

� �

∆0
(x,y)

// X ×X // (X ×X)U

Since the functor (−)U preserves limits, we see by the pasting lemma
for pullbacks that the fibre of the isofibration XΣU −→ X ×X over a
pair of objects (x, y) is the Kan complex HomX(x, y)U , and hence, upon
application of the limit preserving functor J , that this Kan complex is
also the fibre of the Kan fibration J(XΣU ) −→ J(X ×X) over (x, y). A
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further application of the pasting lemma to the diagram

HomX(x, y)B

��

HomX(x,y)f
// HomX(x, y)A //

��

∆0

(x,y)
� �

J(XΣB)
J(XΣ(f))

// J(XΣA) // J(X ×X)

shows that the morphism (3.33) is the pullback of the morphism (3.32),
seen as a morphism of simplicial sets over J(X×X), along the morphism
(x, y) : ∆0 −→ J(X ×X), as required.

By applying this proposition to the morphism ∂∆n+1 −→ ∆n+1, we
obtain an alternative characterisation of n-truncated quasi-categories as
local objects, and thus an alternative description of the model structure
for n-truncated quasi-categories as a Bousfield localisation of the model
structure for quasi-categories.

Corollary 3.34. A quasi-category is n-truncated if and only if it is
local with respect to the morphism Σ(∂∆n+1 −→ ∆n+1) in the model
structure for quasi-categories. Hence the model structure for n-truncated
quasi-categories is the Bousfield localisation of the model structure for
quasi-categories with respect to the morphism Σ(∂∆n+1 −→ ∆n+1).

Proof. By Corollary 3.25 (or Remark 3.26, if n = −1), a Kan complex
is an (n− 1)-type if and only if it is local with respect to the boundary
inclusion ∂∆n+1 −→ ∆n+1 in the model structure for Kan complexes.
Hence the result follows from Proposition 3.31.

4. Categorical n-equivalences

Throughout this section, let n ≥ 0 be an integer.
A morphism of simplicial sets is said to be a weak categorical n-

equivalence if it is a weak equivalence in the model structure for n-
truncated quasi-categories established in Theorems 3.27 and 3.28. Since
this model structure is a Bousfield localisation of the model structure
for quasi-categories, the class of weak categorical n-equivalences enjoys
the following characterisation.
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Lemma 4.1 ([16, §26.5]). A morphism of simplicial sets f : A −→ B is
a weak categorical n-equivalence if and only if the function

(Ho sSetJ)(f,X) : (Ho sSetJ)(B,X) −→ (Ho sSetJ)(A,X)

is a bijection for each n-truncated quasi-category X.

Proof. Since the weak categorical n-equivalences are the weak equiva-
lences in the model structure for n-truncated quasi-categories, which is
a Bousfield localisation of the model structure for quasi-categories, this
is an instance of Lemma A.2.

The main goal of this section is to prove that a morphism of quasi-
categories is a weak categorical n-equivalence if and only if it is a
categorical n-equivalence, in the sense of the following definitions. (We
reiterate that this result was stated without proof in [16, §26.6].)

Definition 4.2. If n ≥ 1, a morphism of quasi-categories f : X −→ Y
is said to be a categorical n-equivalence if it is essentially surjective on
objects, and if for each pair of objects x, y ∈ X, the induced morphism
of hom-spaces f = fx,y : HomX(x, y) −→ HomY (fx, fy) is a homotopy
(n− 1)-equivalence.

Let us first examine the lowest dimensional case of this definition.

Proposition 4.3. A morphism of quasi-categories is a categorical 1-
equivalence if and only if it is sent by the fundamental category functor
τ1 : sSet −→ Cat to an equivalence of categories.

Proof. Recall that the restriction of the fundamental category functor
to the full subcategory of quasi-categories is naturally isomorphic to the
homotopy category functor. Let f : X −→ Y be a morphism of quasi-
categories. By definition, f is essentially surjective on objects if and only
if the induced functor between homotopy categories ho(f) : hoX −→
hoY is essentially surjective on objects. By construction, the functor
ho(f) is fully faithful if and only if f is a homotopy 0-equivalence
on hom-spaces. Therefore the morphism of quasi-categories f is a
categorical 0-equivalence if and only if the functor ho(f) is an equivalence
of categories.
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Similarly, let us make the following definition (cf. Proposition 3.10).
Recall that the category Pos of posets is a reflective subcategory of
Cat; the poset reflection of a category A is the poset quotient of its
preorder reflection, where the latter is the preorder whose objects are
those of A and in which one has a ≤ b if and only if the hom-set A(a, b)
is nonempty. Thus one obtains a composite adjunction

Pos `
N

//
sSet

τp
oo

(4.4)

whose fully faithful right adjoint sends a poset to its nerve, and whose left
adjoint sends a simplicial set to the poset reflection of its fundamental
category.

Definition 4.5. A morphism of quasi-categories is said to be a cate-
gorical 0-equivalence if it is sent by the functor τp : sSet −→ Pos to an
isomorphism of posets.

Remark 4.6. Unpacking this definition, one finds that a morphism of
quasi-categories f : X −→ Y is a categorical 0-equivalence if and only if
it satisfies the following two properties:

(i) for each object z ∈ Y , there exists an object x ∈ X and a pair of
morphisms Fx −→ z and z −→ Fx in Y , and

(ii) for each pair of objects x, y ∈ X, the induced morphism

f : HomX(x, y) −→ HomY (fx, fy)

is a homotopy (−1)-equivalence.

If Y is a 0-truncated quasi-category, then any endomorphism in Y
is necessarily an isomorphism, and so a morphism of quasi-categories
f : X −→ Y satisfies property (i) if and only if it is essentially surjective
on objects.
Remark 4.7. To prevent a proliferation of cases, we have made the global
assumption n ≥ 0 in this section. The n = −1 case of the problem
of this section is easily dispensed with: since the model structure for
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(−1)-truncated quasi-categories coincides with the model structure for
(−1)-types, a morphism of simplicial sets is a weak categorical (−1)-
equivalence if and only if it is inverted by the functor π−1 : sSet −→
{0 < 1} that sends the empty simplicial set to 0 and every nonempty
simplicial set to 1.

Next, we establish a few useful properties of the class of categorical
n-equivalences.

Lemma 4.8. Let f : X −→ Y be a morphism of n-truncated quasi-
categories. Then the following properties are equivalent.

(i) f is an equivalence of quasi-categories.

(ii) f is a weak categorical n-equivalence.

(iii) f is a categorical n-equivalence.

Proof. The equivalence (i) ⇐⇒ (ii) is a consequence of the fact that
the model structure for n-truncated quasi-categories is a Bousfield local-
isation of the model structure for quasi-categories.

To prove the equivalence (i) ⇐⇒ (iii), recall that a morphism of
quasi-categories is an equivalence if and only if it is essentially surjective
on objects and a homotopy equivalence on hom-spaces, and that a
morphism between (n− 1)-types is a homotopy equivalence if and only
if it is a homotopy (n − 1)-equivalence. Since the hom-spaces of n-
truncated quasi-categories are (n − 1)-types, we see that a morphism
of n-truncated quasi-categories is an equivalence if and only if it is a
categorical n-equivalence (by Remark 4.6 if n = 0).

Lemma 4.9. Let f : X −→ Y and g : Y −→ Z be morphisms of quasi-
categories. If two of the morphisms f, g, gf are categorical n-equivalences,
then so is the third.

Proof. The class of categorical 0-equivalences was defined as the class
of morphisms of quasi-categories inverted by a functor, and therefore
satisfies the stated property.

Note that by the functoriality of the hom-space construction, the com-
posite morphism gf : X −→ Z is given on hom-spaces by the composite
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morphism

HomX(x, x′) f
// HomY (fx, fx′) g

// HomZ(gfx, gfx′). (4.10)

Suppose n ≥ 1. We must consider three cases. In the first, suppose
f and g are categorical n-equivalences. Since the class of essentially
surjective on objects morphisms of quasi-categories and the class of
homotopy (n− 1)-equivalences of Kan complexes are both closed under
composition (by Lemma 2.15), we have that the composite morphism
gf : X −→ Z is a categorical n-equivalence.

In the second case, suppose that g and gf are categorical n-equiv-
alences. To show that f is essentially surjective on objects, it suffices
to show that the functor ho(f) : hoX −→ hoY is essentially surjective
on objects. This follows from the assumptions (which hold since n ≥ 1)
that the functor ho(gf) is essentially surjective on objects and that the
functor ho(g) is fully faithful. Since gf is given on hom-spaces by the
composite (4.10), we have that f is a homotopy (n− 1)-equivalence on
hom-spaces by Lemma 2.15.

In the third case, suppose that f and gf are categorical n-equivalences.
Since gf is essentially surjective on objects, it follows that g is essentially
surjective on objects. To show that g is a homotopy (n− 1)-equivalence
on hom-spaces, let y, y′ be a pair of objects of Y . Since f is essentially
surjective on objects, there exist objects x, x′ ∈ X and isomorphisms
u : fx ∼= y and v : fx′ ∼= y′ in Y . Thus we have a commutative diagram
of quasi-categories as on the left below in which the vertical morphisms
are equivalences of quasi-categories (by the Quillen adjunction (3.18)),

Y
g

// Z

∂∆1

(y,y′)
;;

(u,v)
//

(fx,fx′)
##

Y (∆1)

Y (δ0)

OO

Y (δ1)

��

g(∆1)
// Z(∆1)

Z(δ0)

OO

Z(δ1)

� �

Y g
// Z

HomY (y, y′)
g

// HomZ(gy, gy′)

Hom
Y (∆1)(u, v)

Y (δ0)

OO

Y (δ1)

� �

g(∆1)
// Hom

Z(∆1)(gu, gv)

Z(δ0)

OO

Z(δ1)

��

HomY (fx, fx′) g
// HomZ(gfx, gfx′)

and which therefore induces a commutative diagram of Kan complexes as
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on the right above in which the vertical morphisms are homotopy equiva-
lences, and hence also homotopy (n− 1)-equivalences. Hence, by Lemma
2.15, the morphism g : HomY (y, y′) −→ HomZ(gy, gy′) is a homotopy
(n− 1)-equivalence if and only if the morphism g : HomY (fx, fx′) −→
HomZ(gfx, gfx′) is a homotopy (n − 1)-equivalence. But the latter
morphism is a homotopy (n− 1)-equivalence by Lemma 2.15, since the
composite morphism (4.10) and its first factor are homotopy (n − 1)-
equivalences by assumption.

By construction (3.4), the suspension ΣU of an n-skeletal simplicial
set U is (n+ 1)-skeletal (since it is a colimit of (n+ 1)-skeletal simplicial
sets). Hence the n-skeleta of the hom-spaces HomX(x, y) of a quasi-
category X depend only on the (n+ 1)-skeleton of X. This implies that
an (n+ 1)-bijective morphism of quasi-categories f : X −→ Y induces
n-bijective morphisms on hom-spaces f : HomX(x, y) −→ HomY (fx, fy).
We may therefore deduce the following lemma from Lemma 2.16.

Lemma 4.11. An (n + 1)-bijective morphism of quasi-categories is a
categorical n-equivalence.

Proof. Let f : X −→ Y be an (n + 1)-bijective morphism of quasi-
categories. Then f is a 0-bijection, and hence in particular (essentially)
surjective on objects (if n = 0, note that this implies property (i) of
Remark 4.6). Furthermore, for each pair of objects x, y of X, the induced
morphism on hom-spaces HomX(x, y) −→ HomY (fx, fy) is n-bijective
as above, and hence is a homotopy (n− 1)-equivalence by Lemma 2.16.
Therefore f is a categorical n-equivalence.

Following [16, §26.7], define a categorical n-truncation of a simplicial
set A to be a fibrant replacement of A in the model structure for n-
truncated quasi-categories, that is, an n-truncated quasi-category X
together with a weak categorical n-equivalence A −→ X. In the next two
propositions, we will prove that the (n+1)-coskeleton of a quasi-category
is a model for its categorical n-truncation (cf. [2, §1] or [7, §9.1], where
the (n+ 1)-coskeleton of a Kan complex is given as a model for its nth
Postnikov truncation). We will then use these results to prove the main
theorem of this section.
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Proposition 4.12. Let X be a quasi-category. Then its (n + 1)-
coskeleton coskn+1X is an n-truncated quasi-category, and the unit mor-
phism X −→ coskn+1X is a categorical n-equivalence.

Proof. First, to prove that coskn+1X is a quasi-category, it is required
to prove that it has the right lifting property with respect to the inner
horn inclusion hkm : Λm

k −→ ∆m for every m ≥ 2 and 0 < k < m. By
adjointness, this is so if and only if X has the right lifting property with
respect to the morphism skn+1(hkm) : skn+1Λm

k −→ skn+1∆m. Consider
the following three cases. If m ≤ n+ 1, then the morphism skn+1(hkm) is
the inner horn inclusion hkm, with respect to which X has the right lifting
property since it is a quasi-category. If m = n+ 2, then the morphism
skn+1(hkm) is isomorphic to the inclusion Λm

k −→ ∂∆m, with respect
to which X has the right lifting property, since it has this property
with respect to the composite Λm

k −→ ∂∆m −→ ∆m, since it is a quasi-
category. If m > n+ 2, then the morphism skn+1(hmk ) is an isomorphism,
with respect to which therefore X has the unique right lifting property.

Next, to show that the quasi-category coskn+1X is n-truncated, it suf-
fices to observe that the unit morphism coskn+1X −→ coskn+1coskn+1X
is an isomorphism (since coskn+1 is an idempotent monad), for then
coskn+1 is n-truncated by Corollary 3.16.

Finally, since the unit morphism X −→ coskn+1X is an (n + 1)-
bijective morphism of quasi-categories, it is a categorical n-equivalence
by Lemma 4.11.

Let J = k([1]) denote the nerve of the “free-living isomorphism”,
i.e. the nerve of the groupoid reflection of the ordered set {0 < 1}. By
[15, Proposition 6.18], for any simplicial set A and quasi-category X,
the hom-set (Ho sSetJ)(A,X) is in bijection with the set of J-homotopy
classes of morphisms A −→ X, where two such morphisms f, g belong
to the same J-homotopy class if and only if there exists a morphism
h : J × A −→ X such that h ◦ ({0} × id) = f and h ◦ ({1} × id) = g.

Proposition 4.13. Let A be a simplicial set. Then the unit morphism
A −→ coskn+1A is a weak categorical n-equivalence.

Proof. Let ηA : A −→ coskn+1A denote the unit morphism in question.
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By Lemma 4.1, it is required to prove that the function

(Ho sSetJ)(ηA, X) : (Ho sSetJ)(coskn+1A,X) −→ (Ho sSetJ)(A,X)

is a bijection for each n-truncated quasi-category X, which, without loss
of generality, we may assume to be (n+ 1)-coskeletal by Lemma 3.16.

Let X be an (n + 1)-coskeletal quasi-category. To show that the
function displayed above is injective, let f, g : coskn+1A −→ X be a pair
of morphisms of simplicial sets, and let h : J×A −→ X be a J-homotopy
from fηA to gηA. Then the morphism

J × coskn+1A ∼= coskn+1(J × A) coskn+1(h)
// coskn+1X ∼= X

defines a J-homotopy from f to g (where we have used that the func-
tor coskn+1 preserves products and that J is 0-coskeletal). Hence the
function is injective. To show that it is surjective, let f : X −→ Y be a
morphism of simplicial sets. Then the morphism

coskn+1X
coskn+1(f)

// coskn+1Y ∼= Y

defines an extension of f along the unit morphism ηA. Hence the function
is surjective, and is therefore a bijection.

We are now ready to prove the main theorem of this section.

Theorem 4.14 ([16, §26.6]). A morphism of quasi-categories is a weak
categorical n-equivalence if and only if it is a categorical n-equivalence.

Proof. This statement is true of morphisms of n-truncated quasi-categories
by Lemma 4.8. Let f : X −→ Y be a morphism of quasi-categories. In
the commutative diagram displayed below,

X
f

//

��

Y

��

coskn+1X coskn+1(f)
// coskn+1Y

the vertical morphisms are weak categorical n-equivalences by Proposi-
tion 4.13 and categorical n-equivalences by Proposition 4.12, and the
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bottom morphism is a morphism of n-truncated quasi-categories by
Proposition 4.12. Since the class of weak categorical n-equivalences
and the class of categorical n-equivalences both satisfy the two-of-three
property (the one since it is the class of weak equivalences of a model
category by definition, the other by Lemma 4.9), it follows that f inherits
from coskn+1(f) the property that it is a weak categorical n-equivalence
if and only if it is a categorical n-equivalence.

Remark 4.15. In [16, §26.6], it is incorrectly stated that a morphism of
quasi-categories is a (weak) categorical 0-equivalence if and only if it is
essentially surjective on objects and a homotopy (−1)-equivalence on
hom-spaces. This statement can be corrected by replacing the property
“essentially surjective on objects” by the weaker property (i) in Remark
4.6. For a counterexample, let C be the category freely generated by the
graph displayed below,

• // •oo

and let 1 −→ C be the functor corresponding to either of the two objects
of C. This functor is not essentially surjective on objects, but its poset
reflection is an isomorphism. Hence the nerve of this functor is an
example of a categorical 0-equivalence that is not essentially surjective
on objects.

5. Some Quillen equivalences

In this final section, we use the criteria proved at the end of Appendix A
to prove Quillen equivalences between the model categories of categories
and 1-truncated quasi-categories and between the model categories of
n-truncated quasi-categories and Rezk’s (n, 1)-Θ-spaces.

To begin, recall that the adjunction τ1 a N : Cat −→ sSet (3.5),
whose right adjoint sends a category A to its nerve NA and whose left
adjoint sends a simplicial set X to its fundamental category τ1X, is a
Quillen adjunction, and moreover a homotopy reflection (i.e. its derived
right adjoint is fully faithful), between the folk model structure for
categories (whose weak equivalences are the equivalences of categories)
and Joyal’s model structure for quasi-categories [15, Proposition 6.14].
Using Theorem A.14 and the results of §3, we can show that this
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adjunction is moreover a Quillen equivalence between the folk model
structure for categories and the model structure for 1-truncated quasi-
categories.

Theorem 5.1. The adjunction

Cat `

N
//
sSet

τ1oo

is a Quillen equivalence between the folk model structure for categories
and the model structure for 1-truncated quasi-categories.

Proof. By Theorem A.14, we must prove that the nerve of a category
is a 1-truncated quasi-category, and that, for any 1-truncated quasi-
category X, the unit morphism X −→ N(τ1X) is an equivalence of
quasi-categories. These both follow from Proposition 3.8.

Corollary 5.2 ([16, §26.6]). A morphism of simplicial sets is a weak
categorical 1-equivalence if and only if it sent by the functor τ1 : sSet −→
Cat to an equivalence of categories.

Proof. Since the functor τ1 is the left adjoint of a Quillen equivalence
by Theorem 5.1, and since every simplicial set is cofibrant in the model
structure for 1-truncated quasi-categories, this is an instance of the fact
that the left adjoint of a Quillen equivalence preserves and reflects weak
equivalences between cofibrant objects.

Recall the adjunction τp a N : Pos −→ sSet (4.4), whose fully
faithful right adjoint sends a poset to its nerve, and whose left adjoint
sends a simplicial set to the poset reflection of its fundamental category.
We now show that this adjunction is a Quillen equivalence between
the trivial model structure (i.e. the unique model structure whose weak
equivalences are the isomorphisms) on the category of posets and the
model structure for 0-truncated quasi-categories.

Theorem 5.3. The adjunction

Pos `

N
//
sSet

τp
oo
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is a Quillen equivalence between the trivial model structure for posets
and the model structure for 0-truncated quasi-categories.

Proof. To see that this adjunction is a Quillen adjunction between the
trivial model structure for posets and the model structure for quasi-
categories, it suffices to observe that each weak categorical equivalence
is sent by the functor τp to an isomorphism of posets. But this functor
is the composite of the functor τ1 : sSet −→ Cat, which sends each
weak categorical equivalence to an equivalence of categories, and the
poset reflection functor τp : Cat −→ Pos, which is easily shown to invert
equivalences of categories.

It remains to verify conditions (i) and (ii) of Theorem A.14. Firstly,
by Proposition 3.10, the nerve NA of a poset A is a 0-truncated quasi-
category, which verifies condition (i). Secondly, a 0-truncated quasi-
category X is in particular 1-truncated, and so by Proposition 3.8 the
unit morphism X −→ N(hoX) is an equivalence of quasi-categories.
But by Proposition 3.10, hoX is a preorder and hence N(hoX) is a
0-truncated quasi-category. This verifies condition (ii).

Corollary 5.4 ([16, §26.6]). A morphism of simplicial sets is a weak cat-
egorical 0-equivalence if and only if it is sent by the functor τp : sSet −→
Pos to an isomorphism of posets.

Proof. Since the functor τp is the left adjoint of a Quillen equivalence
by Theorem 5.3, and since every simplicial set is cofibrant in the model
structure for 0-truncated quasi-categories, this is another instance of the
fact that the left adjoint of a Quillen equivalence preserves and reflects
weak equivalences between cofibrant objects.

Recall that a categorical n-truncation of a simplicial set A is an n-
truncated quasi-categoryX together with a weak categorical n-equivalence
A −→ X.

Corollary 5.5 ([16, §26.7]). For each simplicial set A, the unit mor-
phism A −→ N(τ1A) is a categorical 1-truncation of A, and the unit
morphism A −→ N(τpA) is a categorical 0-truncation of A.

Proof. By Corollaries 5.2 and 5.4, it suffices to show that these unit
morphisms are sent to isomorphisms by the functors τ1 and τp respectively.
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In each case, this is an instance of the fact that each component of the
unit of an adjunction whose right adjoint is fully faithful is sent by the
left adjoint to an isomorphism.

Next, we prove, for each n ≥ −1, two Quillen equivalences between
the model categories of n-truncated quasi-categories and Rezk’s (n, 1)-Θ-
spaces. In [17], Joyal and Tierney established two Quillen equivalences

[∆op,Set] `
t!

//
[(∆×∆)op,Set]

t!oo

(5.6)

[(∆×∆)op,Set] `
i∗ 1 //

[∆op,Set]
p∗1oo

between Joyal’s model structure for quasi-categories and Rezk’s model
structure for complete Segal spaces on the category of bisimplicial sets
(defined in [21]). Suffice it to recall that the functor t! sends a simpli-
cial set A to the bisimplicial set t!(A) whose nth column t!(A)n is the
simplicial set k!(A∆n) (where k! denotes the right adjoint of the Quillen
adjunction (3.22)), that the functor i∗1 sends a bisimplicial set X to its
zeroth row X∗0, and that there are natural isomorphisms t!p∗1 ∼= id and
i∗1t

! ∼= id. For each complete Segal space X, we refer to the elements of
the set X00 as the objects of X; there is an evident bijection between the
objects of a quasi-category A and the objects of its associated complete
Segal space t!(A).

For each n ≥ −1, Rezk constructed in [22] a Bousfield localisation of
the model structure for complete Segal spaces, whose fibrant objects are
the complete Segal spaces X each of whose hom-spaces HomX(x, y) is
an (n− 1)-type [22, Proposition 11.20]. Rezk calls complete Segal spaces
with this property (n, 1)-Θ-spaces, but for convenience we will call them
n-truncated complete Segal spaces, and we will call this model structure
the model structure for n-truncated complete Segal spaces. Recall from
[21, §5.1] that for each pair of objects x, y of a complete Segal space X,
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the hom-space HomX(x, y) is defined to be the pullback

HomX(x, y) //

��

X1

(d1,d0)
��

∆0
(x,y)

// X0 ×X0

in the category of simplicial sets (where Xn denotes the nth column
of the bisimplicial set X). By comparison with the definition of the
hom-spaces of a quasi-category (3.2), one sees that there is a canonical
isomorphism

Homt!(A)(x, y) ∼= k!(HomA(x, y)) (5.7)
for each pair of objects x, y in a quasi-category A, since the right adjoint
functor k! preserves limits.

We now apply Theorem A.15 to prove that the two Quillen equiva-
lences (5.6) remain Quillen equivalences between the Bousfield localisa-
tions for n-truncated quasi-categories and n-truncated complete Segal
spaces. The following proposition shows that these Quillen equivalences
satisfy the hypotheses of that theorem.

Proposition 5.8. Let n ≥ −1 be an integer.

1. A quasi-category A is n-truncated if and only if the complete Segal
space t!(A) is n-truncated.

2. A complete Segal space X is n-truncated if and only if its underlying
quasi-category i∗1(X) is n-truncated.

Proof. (1) Let A be a quasi-category. For each pair of objects x, y ∈ A,
there is a homotopy equivalence Homt!(A)(x, y) ' HomA(x, y) by the
isomorphism (5.7) and [15, Proposition 6.26]. Hence the hom-spaces of A
are (n− 1)-types if and only if the hom-spaces of t!(A) are (n− 1)-types,
that is, A is an n-truncated quasi-category if and only if t!(A) is an
n-truncated complete Segal space.

(2) Let X be a complete Segal space. There is a span of weak
equivalences in the model structure for complete Segal spaces

X p∗1(i∗1X)oo // t!(i∗1X),
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where the left-pointing arrow is the counit of the Quillen equivalence
p∗1 a i∗1 and the right-pointing arrow is the transpose of the canonical
isomorphism t!(p∗1(i∗1X)) ∼= i∗1X under the Quillen equivalence t! a t!,
both of which are weak equivalences since X is fibrant. Hence X is
weakly equivalent to the complete Segal space t!(i∗1X), and so X is
n-truncated if and only if t!(i∗1X) is n-truncated, which by (1) is so if
and only if the quasi-category i∗1X is n-truncated.

Hence the adjunctions (5.6) satisfy the hypotheses of Theorem A.15,
and we may deduce the following theorem.

Theorem 5.9. For each integer n ≥ −1, the adjunctions

[∆op,Set] `

t!
//
[(∆×∆)op,Set]

t!oo

[(∆×∆)op,Set] `
i∗ 1 //

[∆op,Set]
p∗1oo

are Quillen equivalences between the model structure for n-truncated
quasi-categories on the category of simplicial sets and the model structure
for n-truncated complete Segal spaces on the category of bisimplicial sets.

Proof. By [17], these adjunctions are Quillen equivalences between the
model structures for quasi-categories and complete Segal spaces. For
each n ≥ −1, the model structures for n-truncated quasi-categories
and n-truncated complete Segal spaces are Bousfield localisations of the
former model structures, and so it remains to show that these adjunctions
satisfy the conditions of Theorem A.15. But this is precisely what was
shown in Proposition 5.8.

Remark 5.10. In [22, §11], Rezk defines the model structure for n-
truncated complete Segal spaces as the Bousfield localisation of the
model structure for complete Segal spaces with respect to the morphism
denoted therein by V [1](∂∆n+1 −→ ∆n+1). One can show that the left
adjoint functor t! sends this morphism to the morphism of simplicial
sets Σ(k!(∂∆n+1 −→ ∆n+1)). Since there is a natural weak homotopy
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equivalence id −→ k! [15, Theorem 6.22], and since the suspension functor
Σ sends weak homotopy equivalences to weak categorical equivalences,
it follows from Corollary 3.34 that the model structure for n-truncated
quasi-categories is the Bousfield localisation of the model structure for
quasi-categories with respect to the morphism Σ(k!(∂∆n+1 −→ ∆n+1)).
Hence one could alternatively prove Proposition 5.8(1) and that half of
Theorem 5.9 concerning the adjunction t! a t! by [12, Proposition 3.1.12]
and [12, Theorem 3.3.20] respectively.

To conclude, we combine two previous theorems to deduce a Quillen
equivalence between the folk model structure for categories and the
model structure for 1-truncated complete Segal spaces. The right adjoint
of this Quillen equivalence is the composite functor

t!N : Cat −→ [(∆×∆)op,Set],

which sends a category A to its classifying diagram [21, §3.5], which
is the bisimplicial set whose nth column is the nerve of the maximal
subgroupoid of the category A[n], and which was shown directly by Rezk
to be a complete Segal space [21, Proposition 6.1].

Theorem 5.11. The composite adjunction

Cat `

N
//
[∆op,Set]

τ1oo

`

t!
//
[(∆×∆)op,Set],

t!oo

whose right adjoint is Rezk’s classifying diagram functor, is a Quillen
equivalence between the folk model structure for categories and the model
structure for 1-truncated complete Segal spaces.

Proof. This adjunction is the composite of the Quillen equivalence of
Theorem 5.1 and the n = 1 case of one of the Quillen equivalences of
Theorem 5.9, and is therefore a Quillen equivalence.

A. Bousfield localisations

In this appendix, we recall some of the basic theory of Bousfield locali-
sations of model categories (mostly those results that we use which are
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difficult to find explicitly stated in the literature in the form we use
them), including two criteria for detecting Quillen equivalences between
Bousfield localisations. We assume familiarity with the basic theory of
model categories, such as is contained in [13, Chapter 1]; our approach
is particularly influenced by the insightful appendices [17, §7] and [15,
Appendix E].

We begin with the notion of a Bousfield localisation of a model
category (after [17, Definition 7.20], in contrast to [12, Definition 3.3.1],
where a Bousfield localisation is defined with respect to a given class of
morphisms). Recall that a model category is a locally small complete
and cocomplete category equipped with a model structure, which is
determined by its classes (C,W ,F) of cofibrations, weak equivalences,
and fibrations.

Definition A.1. A Bousfield localisation of a model structure (C,W ,F)
on a category M is a model structure (Cloc,Wloc,Floc) on the same
categoryM such that Cloc = C and W ⊆Wloc.

We will often denote the model category determined by a Bousfield
localisation of (the model structure of) a model categoryM byMloc,
and call the morphisms belonging to the classes Wloc and Floc local weak
equivalences and local fibrations respectively; the fibrant objects of the
model categoryMloc we will call local fibrant objects. It is immediate
from the definition that the adjunction

Mloc `

1M
//
M,

1Moo

whose left and right adjoints both are the identity functor on (the
underlying category of)M, is a Quillen adjunction. Hence every local
fibration and local fibrant object is in particular a fibration and a fibrant
object (in the model categoryM) respectively. Moreover, the derived
right adjoint of this Quillen adjunction is fully faithful, which is to
say that the Quillen adjunction is a homotopy reflection in the sense
of [15, Definition E.2.15] (the term homotopy localisation is used in
[17]); it follows that a morphism between local fibrant objects is a weak
equivalence if and only if it is a local weak equivalence [17, Proposition
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7.18]. Furthermore, it follows by a factorisation and retract argument
that a morphism between local fibrant objects is a fibration if and only
if it is a local fibration [17, Proposition 7.21].

The model category axioms imply that a morphism is a local fibration
if and only if it has the right lifting property with respect to the class
of morphisms C ∩Wloc, whose members we call local trivial cofibrations.
Hence a Bousfield localisation of a model category is determined by
its class Wloc of local weak equivalences. Alternatively, a Bousfield
localisation of a model category is determined by its class of local fibrant
objects, since this class determines the local weak equivalences by the
following argument (cf. [15, Proposition E.1.10] and [12, §3.5]). We
denote the homotopy category of a model categoryM by HoM; we will
typically not distinguish an object or morphism ofM from its image
under the localisation functorM−→ HoM.

Lemma A.2. LetMloc be a Bousfield localisation of a model category
M. A morphism f : A −→ B in M is a local weak equivalence if and
only if the function

(HoM)(f,X) : (HoM)(B,X) −→ (HoM)(A,X) (A.3)

is a bijection for each local fibrant object X.

Proof. A morphism f : A −→ B inM is a local weak equivalence if and
only if it is (sent to) an isomorphism in the homotopy category HoMloc,
which is so, by the Yoneda lemma, if and only if the function

(HoMloc)(f,X) : (HoMloc)(B,X) −→ (HoMloc)(A,X) (A.4)

is a bijection for each local fibrant object X (since every object of
HoMloc is isomorphic to a local fibrant object). By taking cofibrant
replacements in M, we may suppose f : A −→ B to be a morphism
between cofibrant objects. For each cofibrant object C and local fibrant
object X, the sets (HoMloc)(C,X) and (HoM)(C,X) are in bijection
with the sets of homotopy classes of morphisms C −→ X in the model
categories Mloc and M respectively. But these latter sets coincide,
since any cylinder object for C in the model category M is also a
cylinder object for C in the model category Mloc; hence there is a
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bijection (HoMloc)(C,X) ∼= (HoM)(C,X). The functions (A.3) and
(A.4) correspond under these bijections, and so one is a bijection if and
only if the other is.

Hence a Bousfield localisation of a model categoryM can equivalently
be defined as a model structure with the same underlying category and
the same class of cofibrations asM, but with fewer fibrant objects. This
alternative definition makes it easy to recognise Bousfield localisations,
as in the following example.

Example A.5. On the category sSet of simplicial sets, the model struc-
ture for Kan complexes is a Bousfield localisation of the model structure
for quasi-categories, since the cofibrations are the monomorphisms in
both model structures, and since every Kan complex is a quasi-category
(see [17, §1] for details). Hence a morphism of Kan complexes is a homo-
topy equivalence if and only if it is an equivalence of quasi-categories.

We may thus regard a Bousfield localisation of a given model category
as determined by its local fibrant objects. Given this perspective, the
following lemma will be found useful (cf. [15, Proposition E.2.23] and [12,
Proposition 3.3.15]). We say that two objects in a model categoryM
are weakly equivalent if they are isomorphic in the homotopy category
HoM, that is, if they are connected by a zig-zag of weak equivalences
inM.

Lemma A.6. LetMloc be a Bousfield localisation of a model category
M. A fibrant object of M is local fibrant if and only if it is weakly
equivalent inM to a local fibrant object.

Proof. The condition being obviously necessary, we prove its sufficiency.
Suppose X is a fibrant object ofM that is weakly equivalent to a local
fibrant object Y . Since both objects are fibrant inM, they are connected
by a span of weak equivalences X ←− Z −→ Y in which the object
Z is fibrant. Hence it suffices to consider the two cases in which (i)
there exists a weak equivalence X −→ Y , or (ii) there exists a weak
equivalence Y −→ X.

In case (i), take a factorisation of the weak equivalence X −→ Y into
a trivial cofibration X −→ W followed by a trivial fibration W −→ Y .
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Since a trivial fibration is in particular a local fibration, W is a local
fibrant object. Since X is fibrant, the trivial cofibration X −→ W has a
retraction, whence X is a retract of the local fibrant object W , and is
therefore local fibrant.

In case (ii), let X −→ X ′ be a local fibrant replacement of X. The
composite Y −→ X −→ X ′ is then a local weak equivalence between
local fibrant objects, and hence is a weak equivalence. It then follows
from the two-of-three property that X −→ X ′ is a weak equivalence,
and so X is local fibrant by case (i).

One can use the following criterion involving local fibrant objects to
determine when a Bousfield localisation of a cartesian model category is
cartesian, at least when every object is cofibrant. Recall that a model
categoryM is said to be cartesian (or cartesian closed [17, Definition
7.29]) if its underlying category is cartesian closed, its terminal object
is cofibrant, and the product functor −×− : M×M −→M is a left
Quillen bifunctor [13, Definition 4.2.1].

Proposition A.7. LetM be a cartesian model category in which every
object is cofibrant. A Bousfield localisation ofM is cartesian if and only
if the internal hom object XA is local fibrant for every object A and every
local fibrant object X ofM.

Proof. The condition is necessary since every object is cofibrant and the
internal hom functor of a cartesian model category is a right Quillen
bifunctor.

To prove sufficiency, note that any Bousfield localisation ofM inherits
the properties that the terminal object is cofibrant and that the pushout-
product of any two cofibrations is a cofibration; hence it remains to show
that the pushout-product of a local trivial cofibration with a cofibration
is a local trivial cofibration, or equivalently a local weak equivalence.

First, observe that for any local weak equivalence f : A −→ B and
any object C, the morphism f × C : A× C −→ B × C is a local weak
equivalence. This follows from Lemma A.2, since for any local fibrant
object X, the function (HoM)(B × C,X) −→ (HoM)(A × C,X) is
isomorphic to the function (HoM)(B,XC) −→ (HoM)(A,XC) by [13,
Theorem 4.3.2], and the latter function is a bijection by Lemma A.2
since XC is local fibrant by assumption.
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Now, let f : A −→ B be a local trivial cofibration and let g : C −→ D
be a cofibration. Then in the diagram

A× C A×g
//

f×C
��

A×D
j

�� f×D

��

B × C //

B×g ..

·
f×̂g

%%

B ×D

we have that the morphisms f × C, its pushout j, and f × D are
local trivial cofibrations, and hence by the two-of-three property for
local weak equivalences that the pushout-product f×̂g is a local trivial
cofibration.

Let us now recall an existence theorem for Bousfield localisations due
to Smith, which will enable us to recognise when a class of fibrant objects
in a model category is the class of local fibrant objects for a Bousfield
localisation of that model category. To state this theorem, it will be
helpful to first recall some results from [13, Chapter 5] concerning the
canonical enrichments of homotopy categories and derived adjunctions
over the classical homotopy category, that is, the homotopy category
Ho sSetK of the category of simplicial sets equipped with the model
structure for Kan complexes, which we denote by H . By [10, §IV.3] (see
also [13, Theorem 4.3.2]), H is a cartesian closed category, with terminal
object ∆0, and as such may be considered as a base for enriched category
theory (for which, see [18, Chapter 1]). We use underlines to indicate
H -enriched categories; in particular, we denote the self-enrichment of
H by H .

By [13, Theorem 5.5.3], for any model category M, its homotopy
category HoM admits a canonical enrichment over the cartesian closed
category H ; we denote this H -enriched category by HoM and refer
to its hom-objects as the derived hom-spaces of the model category
M. (Note that the H -enrichment of the homotopy category HoMop

defines an H -enriched category isomorphic to the opposite of HoM.)
Furthermore, by [13, Theorem 5.6.2], for any Quillen adjunction as on
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the left below,

M `
G

//
N

Foo

HoM `
R
G //

HoN
LFoo

its derived adjunction underlies an H -enriched adjunction between H -
enriched homotopy categories as on the right above. We refer to the
right adjoint of this H -enriched adjunction as the H -enriched right
derived functor of G.

Now, let S be a set of morphisms in a model categoryM. We say
that an object X ofM is S-local, or local with respect to S, if the induced
morphism between derived hom-spaces

HoM(f,X) : HoM(B,X) −→ HoM(A,X) (A.8)

is an isomorphism in H for each morphism f : A −→ B belonging to S
(cf. [12, Definition 3.1.4]). The following theorem gives sufficient condi-
tions for the existence of the (necessarily unique) Bousfield localisation
ofM whose local fibrant objects are the S-local fibrant objects ofM; if
it exists, we call this Bousfield localisation the Bousfield localisation of
M with respect to S, and denote it by LSM (cf. [12, Definition 3.3.1]).

Example A.9. It follows from Proposition 3.30 that the model structure
for Kan complexes on the category of simplicial sets is the Bousfield
localisation of the model structure for quasi-categories with respect to
the single morphism ∆1 −→ ∆0.

Remark A.10. The set of morphisms S may be thought of as a “pre-
sentation” of the Bousfield localisation LSM of M (if it exists). In
general, a Bousfield localisationMloc of a left proper (see below) model
category M admits many such presentations: in particular, one can
always take S to be the (large) set of local weak equivalences; if the
model categoryMloc is cofibrantly generated, one can take S to be a
small set of generating trivial cofibrations forMloc.

To state the existence theorem, we require the following technical
conditions. A model category is said to be left proper if any pushout
of a weak equivalence along a cofibration is a weak equivalence (see
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[12, §13.1]; any model category in which every object is cofibrant is left
proper), and is said to be combinatorial if it is cofibrantly generated and
its underlying category is locally presentable (see [8, §2]). Every model
category considered in this paper is both left proper and combinatorial.

Theorem A.11 (Smith). LetM be a left proper combinatorial model
category and let S be a small set of morphisms inM. Then there exists a
Bousfield localisation LSM ofM whose local fibrant objects are precisely
the S-local fibrant objects ofM. The model category LSM is left proper
and combinatorial.

Proof. See [4, Theorem 4.7]. Note that any Bousfield localisation of a
left proper model category is left proper: any local weak equivalence
admits a factorisation into a local trivial cofibration followed by a weak
equivalence, and hence, ifM is left proper, so too does any pushout of
a local weak equivalence along a cofibration.

To determine whether an object X of a model categoryM is local
with respect to some set of morphisms, one needs a model for the functor
HoM(−, X) : HoMop −→ H , which appeared in (A.8). In practice,
such models can be easily recognised with the help of (the dual of)
the following lemma, which implies that the derived right adjoint of a
Quillen adjunction F a G : Mop −→ sSetK is naturally isomorphic to
the functor HoM(−, X) : HoMop −→H if F (∆0) is weakly equivalent
to X inM.

Lemma A.12. Let

M `

G
//
sSetK

Foo

be a Quillen adjunction between a model categoryM and the category
of simplicial sets equipped with the model structure for Kan complexes.
For each object A ofM, the following are equivalent.

(i) The H -enriched right derived functor of G is H -naturally iso-
morphic to the H -enriched representable functor HoM(A,−) :
HoM−→H .
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(ii) The objects F (∆0) and A are weakly equivalent in the model
categoryM.

Proof. By the H -enriched derived adjunction LF a RG : HoM−→H
of the Quillen adjunction F a G, and since ∆0 is the terminal object of
the cartesian closed category H , there exist isomorphisms in H

(RG)X ∼= H (∆0, (RG)X) ∼= HoM((LF )∆0, X)

H -natural in X ∈ HoM. Since ∆0 is a cofibrant object of sSetK,
there exists an isomorphism (LF )∆0 ∼= F (∆0) in HoM. Hence the
H -enriched functor RG : HoM −→ H is represented by the object
F (∆0). The result then follows from the H -enriched Yoneda lemma.

We conclude this section with two criteria for detecting Quillen
equivalences between Bousfield localisations, which are stated in terms
of local fibrant objects. These criteria distill presumably standard
arguments; we apply them in §5 to prove the Quillen equivalences
mentioned in §1. First, we give a necessary and sufficient condition for
an adjunction to remain a Quillen adjunction after Bousfield localisation.
Proposition A.13. Let F a G : M −→ N be a Quillen adjunction
between model categories, and let Nloc be a Bousfield localisation of N .
The adjunction F a G : M−→ Nloc is a Quillen adjunction if and only
if the functor G sends each fibrant object of M to a fibrant object of
Nloc.

Proof. The condition is necessary since right Quillen functors preserve
fibrant objects. To prove the converse, it suffices by [17, Proposition 7.15]
to prove that F : Nloc −→M preserves cofibrations and that G : M−→
Nloc preserves fibrations between fibrant objects. The first holds since
N and Nloc share the same class of cofibrations and since F : N −→M
preserves cofibrations. The second holds since the hypothesis implies
that G sends each fibration between fibrant objects inM to a fibration
between local fibrant objects in N , which by [17, Proposition 7.21] is a
fibration in Nloc.

Recall that a Quillen adjunction F a G : M −→ N is said to be a
homotopy reflection if its derived right adjoint RG : HoM−→ HoN is
fully faithful [15, Definition E.2.15].
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Theorem A.14. Let F a G : M−→ N be a homotopy reflection, and
let Nloc be a Bousfield localisation of N . The adjunction F a G : M−→
Nloc is a Quillen equivalence if and only if the following conditions are
satisfied:

(i) G sends each fibrant object ofM to a fibrant object of Nloc, and

(ii) for every cofibrant fibrant object X of Nloc, there exists a fibrant
object A ofM and a weak equivalence X −→ GA in N .

Proof. Suppose that the adjunction F a G : M −→ Nloc is a Quillen
equivalence. Condition (i) holds by Proposition A.13. To prove condition
(ii), let X be a cofibrant fibrant object of Nloc. Then the composite
morphism

X
ηX // GFX

Gr // G(FX)f ,

where η is the unit of the adjunction F a G and r : FX −→ (FX)f is a
fibrant replacement of FX inM, is the component of the derived unit
of this Quillen equivalence at the cofibrant object X, and is therefore a
local weak equivalence between local fibrant objects, and hence also a
weak equivalence in N .

Conversely, suppose that the conditions (i) and (ii) hold. Condi-
tion (i) implies that the adjunction F a G : M −→ Nloc is a Quillen
adjunction by Proposition A.13. To show that this Quillen adjunction
is a Quillen equivalence, it suffices to show that its derived right ad-
joint RG : HoM−→ HoNloc is an equivalence of categories. Since the
original homotopy reflection is equal to the composite Quillen adjunction

M `

G
//
Nloc

Foo

`

1N
//
N ,

1Noo

we have that the composite of the functor RG : HoM−→ HoNloc with
the fully faithful functor R1N : HoNloc −→ HoN is fully faithful, and
hence that the functor RG : HoM−→ HoNloc is fully faithful. Since
every object of HoNloc is isomorphic to a cofibrant fibrant object of
Nloc, condition (ii) implies that the functor RG : HoM −→ HoNloc
is essentially surjective on objects, and therefore an equivalence of
categories.
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Finally, we give a necessary and sufficient condition for a Quillen
equivalence to remain a Quillen equivalence after Bousfield localisation.

Theorem A.15. Let F a G : M−→ N be a Quillen equivalence between
model categories, and letMloc and Nloc be Bousfield localisations ofM
and N respectively. The adjunction F a G : Mloc −→ Nloc is a Quillen
equivalence if and only if a fibrant object A of M is fibrant in Mloc
precisely when GA is fibrant in Nloc.

Proof. The composite Quillen adjunction

Mloc `

1M
//
M

1Moo

`
G

//
N

Foo

(A.16)

is a homotopy reflection, since it is a composite of homotopy reflections.
Hence the adjunction F a G : Mloc −→ Nloc is a Quillen equivalence
if and only if the homotopy reflection (A.16) satisfies the conditions of
Theorem A.14. It will therefore suffice to show that these conditions are
equivalent to that of the present theorem.

Suppose that the homotopy reflection (A.16) satisfies the conditions
(i) and (ii) of Theorem A.14, and let A be a fibrant object ofM. If A
is fibrant inMloc, then by condition (i), GA is a fibrant object of Nloc.
Conversely, suppose GA is a fibrant object of Nloc. Let (GA)c −→ GA be
a cofibrant replacement ofGA inN , chosen to be a trivial fibration. Then
(GA)c is a cofibrant fibrant object of Nloc, and so by condition (ii), there
exists a fibrant object B ofMloc and a weak equivalence (GA)c −→ GB
in N . Hence the objects GA and GB are weakly equivalent in N , and
since the derived right adjoint of the Quillen equivalence F a G : M−→
N is fully faithful, it follows that A and B are weakly equivalent inM.
Hence A is a fibrant object inMloc by Lemma A.6.

To prove the converse, suppose that a fibrant object A ofM is fibrant
inMloc precisely when GA is fibrant in Nloc. One half of this assumption
is precisely condition (i) of Theorem A.14. To verify condition (ii) of
that theorem, let X be a cofibrant fibrant object of Nloc. For any fibrant
replacement r : FX −→ (FX)f of FX inM, the composite morphism

X
ηX // GFX

Gr // G(FX)f
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gives the component at X of the derived unit of the original Quillen
equivalence, and is thus a weak equivalence in N . Hence G(FX)f is
weakly equivalent in N to the fibrant object X of Nloc, and is therefore
itself fibrant inNloc by Lemma A.6. The other half of our assumption now
implies that (FX)f is a fibrant object ofMloc, thus verifying condition
(ii).
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