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Résumé. L’article définit les polynômes dans une bicatégorie M . Les poly-
nômes dans les bicatégories SpnC des spans dans une catégorie finiment
complète C coïncident avec les polynômes dans C comme définis par Nicola
Gambino et Joachim Kock, et par Mark Weber. Lorsque M est calibré, nous
obtenons une autre bicatégorie PolyM . Nous démontrons que les polynômes
dans M ont des représentations comme pseudofoncteurs M op Ñ Cat. En
utilisant des tabulations, nous produisons des calibrations pour la bicatégorie
des relations dans une catégorie régulière et pour la bicatégorie des distribu-
teurs entre catégories, en fournissant ainsi de nouveaux exemples de bicaté-
gories de “polynômes”.
Abstract. The paper defines polynomials in a bicategory M . Polynomi-
als in bicategories SpnC of spans in a finitely complete category C agree
with polynomials in C as defined by Nicola Gambino and Joachim Kock,
and by Mark Weber. When M is calibrated, we obtain another bicategory
PolyM . We see that polynomials in M have representations as pseudofunc-
tors M op Ñ Cat. Using tabulations, we produce calibrations for the bicat-
egory of relations in a regular category and for the bicategory of two-sided
modules (distributors) between categories thereby providing new examples
of bicategories of “polynomials”.
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R. STREET POLYNOMIALS AS SPANS

1. Introduction

Polynomials in an internally complete (= “locally cartesian closed”) cate-
gory E were shown by Gambino-Kock [9] to be the morphisms of a bicate-
gory. Weber [30] defined polynomials in any category C with pullbacks and
proved they formed a bicategory. While both these papers are quite beau-
tiful and accomplish further advances, I felt the need to better understand
the composition of polynomials. Perhaps what I have produced is merely a
treatment of polynomials for bicategory theorists.

The starting point was to view polynomials as spans of spans so that
composition could be viewed as the more familiar composition of spans us-
ing pullbacks; see Bénabou [3]. A polynomial from X to Y in a category C
is a diagram of the shapeX m2

ÐÝÝ E
m1
ÝÝÑ S

p
ÝÑ Y withm2 a powerful (= expo-

nentiable) morphisms in C . Such diagrams can be thought of as generalizing

spans: a span X
pm2,S,pq
ÝÝÝÝÝÑ Y amounts to the case where E “ S and m1 is

the identity. Our simple idea was to make the diagram more complicated by
including an identity thus:

X
m2
ÐÝÝ E

m1
ÝÝÑ S

1S
ÐÝ S

p
ÝÑ Y ,

resulting in a span

X
pm1,E,m2q
ÐÝÝÝÝÝÝ S

p1S ,S,pq
ÝÝÝÝÑ Y

of spans from X to Y .
Of course, the bicategory of spans does not have all bicategorical pull-

backs. Fortunately, polynomials are not general spans and sufficient pull-
backs can be constructed. Indeed, that is what Weber’s distributivity pull-
backs around a pair of composable morphisms in C construct. That con-
struction requires the use of powerful morphisms in C . Here we define a
morphism in a bicategory to be a right lifter when every morphism into its
codomain has a right lifting through it. For spans in C to be right lifters, one
leg must be powerful.

We introduce the term calibration for a class of morphisms, called neat,
in a bicategory; the technical use of this word comes from Bénabou [4] who
used it for categories. A bicategory with a distinguished calibration is called
calibrated. Polynomials in a calibrated bicategory M are spans with one
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R. STREET POLYNOMIALS AS SPANS

leg a right lifter and the other leg neat. This suffices for the construction
of a tricategory [10] of polynomials in M in which all the 3-morphisms
are invertible. However, for two reasons, we decided to centre attention
here on the bicategory PolyM obtained by taking isomorphism classes of
2-morphisms. One reason is that it covers our present examples, the other
is the possibility of iterating the construction without moving to higher level
categories.

A polynomic bicategory M is one in which the neat morphisms are all
the groupoid fibrations (see Section 3) in M . We prove that SpnC is poly-
nomic for any finitely complete C . In this case the polynomials are the
polynomials in C in the sense of Weber [30].

The bicategory RelE of relations in a regular category E is calibrated
by morphisms which are isomorphic to graphs of monomorphisms in E . In
Example 10.3 for E a topos, we give a reinterpretation of the bicategory of
polynomials in RelE as a Kleisli construction.

By providing a calibration for the bicategory Mod of two-sided modules
between categories, we obtain another example. Again, in Example 10.6, we
give a reinterpretation of the bicategory of polynomials in Mod as a Kleisli
construction.

It must be pointed out that the meaning of polynomial in a bicategory
is different from the meaning in Section 4 of Weber [30] which is about
polynomials in 2-categories. Weber is dealing with the 2-category as a Cat-
enriched category, taking the polynomials to be diagrams of the same shape
as in the case of ordinary categories, and accommodating the presence of
2-cells. In particular, if a category is regarded as a 2-category with only
identity 2-cells, then his polynomials in the 2-category are just polynomials
in the category. To define a polynomial, in the sense of this paper, in such
a 2-category would require the specification of a calibration on the category
and then a polynomial would reduce to a single morphism (called “neat”) in
that calibration.

I am grateful to the Australian Category Seminar, especially Yuki Mae-
hara, Richard Garner, Michael Batanin and Charles Walker, for comments
during and following my talks on this topic. I am also particularly grateful
to the diligent and insightful referee for suggesting important improvements,
mainly that I should add the detail to the previously vaguely expressed Ex-
amples 10.3 and 10.6; there are some facts involved that may be unfamiliar.
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2. Bipullbacks and cotensors

Recall that the pseudopullback (also called iso-comma category) of two
functors C

F
ÝÑ E

P
ÐÝ D is the category F {psP whose objects pC, α,Dq

consist of objects C P C and D P D with α : FC
–
ÝÑ PD, and whose mor-

phisms pu, vq : pC, α,Dq Ñ pC 1, α1, D1q consist of morphisms u : C Ñ C 1

in C and v : D Ñ D1 in D such that pPvqα “ α1pFuq. We have a universal
square of functors

F {psP

cod
��

dom // D

F
��

ks ξ
–

C
P

// E

(2.1)

containing an invertible natural transformation ξ.
A square

P

c
��

d // A

n
��

ks θ
–

B p
// C

(2.2)

in a bicategory A is a bipullback of the cospan A n
ÝÑ C

p
ÝÑ B when, for all

objects K of A , the induced functor

A pK,P q ÝÑ A pK,nq{psA pK, pq , u ÞÑ pdu, θu, cuq ,

is an equivalence of categories.
In a bicategory A , we writeA2 for the (bicategorical) cotensor (or power)

of A with the ordinal 2; this means that the category A pK,A2q is equivalent
to the arrow category of A pK,Aq, pseudonaturally in K P A . The identity
morphism in A pA2, A2q corresponds to a morphism (arrow)

A2

c

77

d

''
óλ A

in A pA2, Aq.

Example 2.1. For A “ V -Cat in the sense of [14], the V -category A2 is
the usual arrow V -category.
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Example 2.2. Recall (from [5] for instance) the definition of the bicate-
gory V -Mod of V -categories and their modules for a nice symmetric closed
monoidal base category V . The objects are V -categories. The homcate-
gories are defined to be the V -functor categories

V -ModpA,Bq “ rBop
b A,V s

whose objects m : Bop b A Ñ V are called modules from A to B. Com-
position is defined by the coends pn ˝ mqpc, aq “

şb
mpb, aq b npc, bq. Let

I˚2 denote the free V -category on the category 2. The cotensor of the V -
category A with the ordinal 2 in the bicategory V -Mod is the V -category
pI˚2q

op b A. This is because of the calculation

V -ModpK, pI˚2q
op
b Aq “ rI˚2b A

op
bK,V s

– rAop
bK,V 2

s

– rAop
bK,V s2

– V -ModpK,Aq2 .

Let B0 : 1 Ñ 2 be the functor 0 ÞÑ 1; it is right adjoint to ! : 2 Ñ 1. It
follows that c : A2 Ñ A in V -Mod is ppI˚!qop b Aq˚ : pI˚2q

op b A Ñ A.
In particular, when V “ Set, c is the module pr2 ˚ induced by the second
projection functor 2op ˆ AÑ A.

Remark 2.3. The phenomenon described in Example 2.2 has to do with the
fact that the pseudofunctor p´q˚ : V -Cat Ñ V -Mod, taking each V -functor
f : A Ñ B to the module f˚ : A Ñ B with f˚pb, aq “ Bpb, faq, preserves
bicolimits and V -Mod is self dual.

3. Groupoid fibrations

Let p : E Ñ B be a functor. A morphism χ : e1 Ñ e inE is called cartesian1

for p when the square (3.3) is a pullback for all k P E.

Epk, e1q
Epk,χq

//

p

��

Epk, eq

p

��

Bppk, pe1q
Bppk,pχq

// Bppk, peq

(3.3)

1Classically called “strong cartesian”
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Note that all invertible morphisms in E are cartesian. If p is fully faithful
then all morphisms of E are cartesian.

We call the functor p : E Ñ B a groupoid fibration when

(i) for all objects e P E and morphisms β : b Ñ pe in B, there exist a
morphism χ : e1 Ñ e in E and isomorphism b – pe1 whose composite
with pχ is β, and

(ii) every morphism of E is cartesian for p.

From the pullback (3.3), it follows that groupoid fibrations are conservative
(that is, reflect invertibility).

We call the functor p : E Ñ B an equivalence relation fibration or er-
fibration when it is a groupoid fibration and the only endomorphisms ξ :
x Ñ x in E which map to identities under p are identities. It follows (using
condition (ii)) that p is faithful. Note that if p is an equivalence then it is an
er-fibration.

Write GFibB for the 2-category whose objects are groupoid fibrations
p : E Ñ B, and whose hom categories are given by the following pseudop-
ullbacks.

GFibBpp, qq

��

// rE,F s

rE,qs

��

ks –

1
rps

// rE,Bs

(3.4)

So objects of GFibBpp, qq are pairs pf, φq where f : E Ñ F is a functor
and φ : qf ñ p is an invertible natural transformation. If φ is an identity
then pf, φq is called strict.

Let Gpd be the 2-category of groupoids, functors and natural transfor-
mations. Write HompBop,Gpdq for the 2-category of pseudofunctors (=
homomorphisms of bicategories [3]) T : Bop Ñ Gpd, pseudo-natural trans-
formations, and modifications [16].

Recall that the Grothendieck construction pr : oT Ñ B on a pseud-
ofunctor T : Bop Ñ Gpd is the projection functor from the category oT
whose objects are pairs pt, bq with b P B and t P Tb, and whose mor-
phisms pτ, βq : pt, bq Ñ pt1, b1q consist of morphisms β : b Ñ b1 in B
and τ : t Ñ pTβqt1 in Tb. This construction is the object assignment for a
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2-functor

o : HompBop,Gpdq ÝÑ GFibB (3.5)

which actually lands in the sub-2-category of strict morphisms. Note that the
pullback

Tb //

��

oT
pr

��

1
rbs

// B

is also a bipullback (see [12]); this suggests that we can reconstruct a pseud-
ofunctor T from a groupoid fibration p : E Ñ B by defining Tb to be the
pseudopullback of rbs : 1Ñ B and p.

Proposition 3.1. The 2-functor (3.5) is a biequivalence.

A category which is both a groupoid and a preorder is the same as an
equivalence relation; that is, a set of objects equipped with an equivalence
relation thereon. Let ER be the 2-category of equivalence relations, functors
and natural transformations. Note that the 2-functor Set Ñ ER taking each
set to the identity relation is a biequivalence. Write ERFibB for the full
sub-2-category of GFibB with objects the er-fibrations.

Proposition 3.2. The biequivalence (3.5) restricts to a biequivalence

o : HompBop,ERq
„
ÝÑ ERFibB ,

and so further restricts to a biequivalence

rBop, Sets
„
ÝÑ ERFibB .

Let E and B be bicategories. Baklović [2] and Buckley [6] say that a
morphism x : Z Ñ X in E is cartesian for a pseudofunctor P : E Ñ B
when the following square is a bipullback in Cat for all objects K of E .

E pK,Zq

P
��

E pK,xq
// E pK,Xq

P
��

ks –

BpPK,PZq
BpPK,Pxq

//BpPK,PXq

(3.6)
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A 2-cell σ : x1 ñ x : Z Ñ X in E is called cartesian for P when it
is cartesian (as a morphism of E pZ,Xq) for the functor P : E pZ,Xq Ñ
BpPZ, PXq. Note that all equivalences are cartesian morphisms and all
invertible 2-cells are cartesian.

Definition 3.3. A pseudofunctor P : E Ñ B is a groupoid fibration when

(i) for all X P E and f : B Ñ PX in B, there exist a morphism x :
Z Ñ X in E and an equivalence B » PZ whose composite with Px
is isomorphic to f ,

(ii) every morphism of E is cartesian for P , and

(iii) every 2-cell of E is cartesian for P .

A morphism p : E Ñ B in a tricategory T is called a groupoid fibration
when, for all objects K of T , the pseudofunctor T pK, pq : T pK,Eq Ñ
T pK,Bq is a groupoid fibration between bicategories.

Definition 3.4. A pseudofunctor F : A Ñ B is called conservative when

(a) if Ff is an equivalence in B for a morphism f in A then f is an
equivalence;

(b) if Fα is an isomorphism in B for a 2-cell α in A then α is an isomor-
phism.

A morphism f : A Ñ B in a tricategory T is conservative when, for all
objects K of T , the pseudofunctor T pK, fq : T pK,Aq Ñ T pK,Bq is
conservative.

Proposition 3.5. Groupoid fibrations are conservative.

Proof. If Px is an equivalence, we see from the bipullback (3.6) that each
functor E pK, xq is too. Since these equivalences can be chosen to be adjoint
equivalences, they become pseudonatural in K and so, by the bicategorical
Yoneda Lemma [23], are represented by an inverse equivalence for x. This
proves (a) in the Definition of conservative. Similarly, for (b), look at the
pullback (3.3) for the functor p “ pE pZ,Xq P

ÝÑ BpPZ, PXqq.

- 120 -



R. STREET POLYNOMIALS AS SPANS

For a pseudofunctor P : E Ñ B between bicategories, write B{P for
the bicategory whose objects are pairs pB f

ÝÑ PE,Eq, where E is an object
of E and f : B Ñ PE is a morphism of B, and whose homcategories are
defined by pseudopullbacks

B{P ppf, Eq, pf 1, E 1qq

d

��

c // E pE,E 1q

P
��

BpPE, PE 1q–��

Bpf,1q
��

BpB,B1q
Bp1,f 1q

//BpB,PE 1q

(3.7)

Write E {E for B{P in the case P is the identity pseudofunctor of E . There
is a canonical pseudofunctor JP : E {E Ñ B{P taking the object pX u

ÝÑ

E,Eq to pPX Pu
ÝÝÑ PE,Eq.

Proposition 3.6. The pseudofunctor P : E Ñ B between bicategories sat-
isfies condition (i) in the Definition 3.3 of groupoid fibration if and only if
JP : E {E Ñ B{P is surjective on objects up to equivalence. Also, P : E Ñ
B satisfies condition (ii) if and only if the effect of JP : E {E Ñ B{P on
homcategories is an equivalence. Condition (iii) is automatic if all 2-cells in
E are invertible.

Example 3.7. Each biequivalence of bicategories is a groupoid fibration.

Example 3.8. Let H be an object of the bicategory B. Write B{H for the
bicategory B{P where P is the constant pseudofunctor 1 Ñ B at H . The
“take the domain” pseudofunctor

dom : B{H Ñ B (3.8)

is a groupoid fibration. For, it is straightforward to see that the canonical
pseudo-functor pB{Hq{pB{Hq Ñ B{dom is a biequivalence, so it remains
to prove each 2-cell

σ : pg, ψq ñ pf, φq : pA
a
ÝÑ Hq Ñ pB

b
ÝÑ Hq
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in B{H is cartesian for (3.9). The condition for a 2-cell is pbσqψ “ φ. Take
another 2-cell τ : ph, θq ñ pf, φq in B{H (so that pbτqθ “ φ) and a 2-cell
υ : h ñ g in B such that συ “ τ . Then we have pbσqpbυqθ “ pbσυqθ “
pbτqθ “ φ “ pbσqψ with bσ invertible. So pbυqθ “ ψ. We conclude that
υ : ph, θq ñ pg, ψq is a 2-cell in B{H , as required.

Note that (3.8) is not a local groupoid fibration in general; that is, the
functor doma,b : B{HpA

a
ÝÑ H,B

b
ÝÑ Hq Ñ BpA,Bq is generally not a

groupoid fibration.

Example 3.9. Apparently more generally, let f : H Ñ K be a morphism in
the bicategory B. Write

f˚ : B{H Ñ B{K (3.9)

for the pseudofunctor which composes with f . On applying Example 3.8
with B and H replaced by B{K and H

f
ÝÑ K, up to biequivalence we

obtain this example.

Proposition 3.10. Up to biequivalence, pseudofunctors of the form (3.8)
are precisely the groupoid fibrations P : E Ñ B for which the domain
bicategory has a terminal object. Moreover, if such a P has a left biadjoint,
it is a biequivalence.

Proof. Let T be a terminal object of E . Make a choice of morphism !E :
E Ñ T for each object E of E . Then the pseudofunctor

ĴP : E ÝÑ B{PT , E ÞÑ pPE
P !E
ÝÝÑ PT q

is a biequivalence over B; it is a tripullback of the biequivalence JP along
the canonical B{PT Ñ B{P . So P is biequivalent to (3.8) with H “ PT .

For the second sentence, if we suppose the dom of (3.8) has a left biad-
joint then it preserves terminal objects. The bicategory B{H has the termi-
nal object 1H : H Ñ H . So H “ dompH

1H
ÝÑ Hq is terminal in B. So dom

is a biequivalence.

4. Spans in a bicategory

Spans in a bicategory A with bipullbacks (= iso-comma objects) will be
recalled; compare [23] Section 3.
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A span from X to Y in the bicategory A is a diagram X
u
ÐÝ S

p
ÝÑ Y ; we

write pu, S, pq : X Ñ Y . The composite of X u
ÐÝ S

p
ÝÑ Y and Y v

ÐÝ T
q
ÝÑ Z

is obtained from the diagram

P
pr1

��

pr2

��

S –
ðù

u

��

p

��

T
v

��

q

��

X Y Z

(4.10)

(where P is the bipullback of p and v) as the span X
upr1
ÐÝÝ P

qpr2
ÝÝÑ Z. A

morphism pλ, h, ρq : pu, S, pq Ñ pu1, S1, p1q of spans is a morphism h : S Ñ
S 1 in M equipped with invertible 2-cells as shown in the two triangles below.

S

h
��

u

xx

p

&&

λ–
ð

ρ–
ð

X S1
u1

oo

p1
// Y

(4.11)

A 2-cell σ : h ñ k : pu, S, pq Ñ pu1, S1, p1q between such morphisms is a
2-cell σ : hñ k : S Ñ S 1 in M which is compatible with the 2-cells in the
triangles in the sense that λ “ λ1.u1σ and ρ1 “ p1σ.ρ. We write SpnA pX, Y q
for the bicategory of spans from X to Y .

Composition pseudofunctors

SpnA pY, Zq ˆ SpnA pX, Y q ÝÑ SpnA pX,Zq

are defined on objects by composition of spans (4.10) and on morphisms by
using the universal properties of bipullback.

In this way, we obtain a tricategory SpnA . The associator equivalences
are obtained using the horizontal and vertical stacking properties of pseudop-
ullbacks. The identity span on X has the form p1X , X, 1Xq and the unitor
equivalences are obtained using the fact that a pseudopullback of the cospan
X

f
ÝÑ Y

1Y
ÐÝ Y is given by the span X 1X

ÐÝ X
f
ÝÑ Y equipped with the

canonical isomorphism 1Y f – f – f1X in A .
For e : X Ñ Y in A , let e˚ “ p1X , X, fq : X Ñ Y . Notice that

e˚ “ pe,X, 1Xq : Y Ñ X is a right biadjoint for e˚ in the tricategory
SpnA .

- 123 -



R. STREET POLYNOMIALS AS SPANS

Proposition 4.1. Let A be a finitely complete bicategory. The following
conditions on a span pu, S, pq from X to Y in A are equivalent:

(i) the morphism pu, S, pq : X Ñ Y has a right biadjoint in the tricate-
gory SpnA ;

(ii) the morphism u : S Ñ X is an equivalence in A ;

(iii) the morphism pu, S, pq : X Ñ Y is equivalent in SpnA to f˚ for some
morphism f in A ;

(iv) the morphism pu, S, pq : X Ñ Y is a groupoid fibration in the tricate-
gory SpnA .

Proof. The equivalence of (i), (ii) and (iii) is essentially as in the case where
A is a category; see [7]. We will prove the equivalence of (ii) and (iv). Put
S “ SpnA to save space. Using Proposition 3.10 and the fact that the span
K

pr1
ÐÝÝ KˆX

pr2
ÝÝÑ X is a terminal object in the bicategory SpK,Xq, we see

that the pseudofunctor PK :“ SpK,Xq
SpK,p˚u˚q
ÝÝÝÝÝÝÑ SpK,Y q is a groupoid

fibration if and only if the canonical pseudofunctor JPK in the diagram (4.12)
is a biequivalence.

SpK,Xq
SpK,u˚q

xx

JPK

**

» +3

SpK,Sq
JSpK,p˚q

// SpK,Y q{ppr1, K ˆ S, ppr2q

(4.12)

However, we see easily that JPK does factor up to equivalence as shown in
(4.12) where JSpK,p˚q is a biequivalence. So p˚u˚ : X Ñ Y is a groupoid
fibration if and only if SpK, u˚q is a biequivalence for all K; that is, if and
only u is an equivalence in A .

Remark 4.2. (a) In fact (ii) implies (iv) in Proposition 4.1 requires no
assumption on the bicategory A . For, it is straightforward to check
(compare Example 3.9) that p˚ : SpnA pK,Sq Ñ SpnA pK,Y q is a
groupoid fibration for all K; this does not even require bipullback in
A since we only need the hom bicategories of SpnA .
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(b) Given that p˚ is a groupoid fibration, we can prove the converse (iv)
implies (ii) by noting that p˚u˚ is a groupoid fibration if and only if
u˚ is (compare (i) of Proposition 5.2). So, provided SpnA pK,Y q has
a terminal object (as guaranteed by the finite bicategorical limits in
A ), we deduce that u˚ is a biequivalence using Proposition 3.10 and
u˚ % u˚.

Remark 4.3. If C is a finitely complete category (regarded as a bicategory
with only identity 2-cells) then the tricategory SpnC has only identity 3-
cells; it is a bicategory. We are interested in spans in such a bicategory
A “ SpnC . The problem is that bipullbacks do not exist in this kind of A
in general. Hence we must hone our concepts to restricted kinds of spans in
A .

5. More on bipullbacks and groupoid fibrations

In Section 4, we defined groupoid fibrations in a tricategory. This applies in a
bicategory A regarded as a tricategory by taking only identity 3-cells. Then
the 2-cells in each A pA,Bq are invertible (identities in fact) so condition
(iii) of Definition 3 is automatic.

Proposition 5.1. Suppose p : E Ñ B is a morphism in a bicategory A for
which E2 and B2 exist. Then p : E Ñ B is a groupoid fibration in A if and
only if the square

E2

p2

��

c // E

p

��

ks –

B2
c

// B

is a bipullback.

Proof. Since all concepts are defined representably, it suffices to check this
for the bicategory A “ Cat where the bipullback of c and p is the comma
category B{p. So the square in the Proposition is a bipullback if and only if
the canonical functor jp : E2 Ñ B{p is an equivalence. We have the result
by looking at Proposition 3.6 in the bicategory case.

Proposition 5.2. Suppose A is a bicategory.
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(i) Suppose r – pq with p a groupoid fibration in A . Then r is a groupoid
fibration if and only if q is.

(ii) In the bipullback (2.2) in A , if p is a groupoid fibration then so is d.

(iii) Suppose (2.2) is a bipullback in A and p is a groupoid fibration. For
any square

K

v
��

u // A

n
��

ks ψ

B p
// C

(5.13)

in A with ψ not necessarily invertible, there exists a diagram

K

h
��

v

xx

u

&&

λ
ð

ρ–
ð

B Pc
oo

d
// A ,

(5.14)

(with λ invertible if and only if ψ is) which pastes onto (2.2) to yield ψ.
This defines on objects an inverse equivalence of the functor from the
category of such pλ, h, ρq to the category of diagrams (5.13) obtained
by pasting onto (2.2).

Proof. These are essentially standard facts about groupoid fibrations, es-
pecially (i) and (ii). For (iii) we use the groupoid fibration property of p
to lift the 2-cell ψ : nu ñ pv to a 2-cell χ : w ñ v with an invert-
ible 2-cell ν : nu ñ pw such that ψ “ ppχqν. Now use the bipullback
property of (2.2) to factor the square ν : nu ñ pw as a span morphism
pσ, h, ρq : pw,K, uq Ñ pc, P, dq pasted onto (2.2). Then λ is the composite
of σ and χ.

The next result is related to Proposition 5 of [22].

Proposition 5.3. In the bipullback square (2.2) in the bicategory A , if p is a
groupoid fibration and n has a right adjoint n % u then c has a right adjoint
c % v such that the mate θ̂ : dv ñ up of θ : ndñ pc is invertible.
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Proof. Let ε : nu ñ 1C be the counit of n % u. By the groupoid fibration
property of p, there exists χ : w ñ 1B and an invertible τ : nupñ pw such
that ppχqτ “ εp. By the bipullback property of (2.2), there exists a span
morphism

B

v

��

up

xx

w

&&

λ–
ð

ρ–
ð

A P
d

oo
c

// B

whose pasting onto θ is τ . Then c % v with counit cv
ρ´1

ùùñ w
χ
ùñ 1B and we

see that θ̂ “ ρ is invertible.

Proposition 5.4. Suppose C is a category with pullbacks. Then the pseudo-
functor p´q˚ : C Ñ SpnC takes pullbacks to bipullbacks.

Proof. Let the span pp, P, qq : AÑ B be the pullback of the cospan pf, C, gq
in C . Consider a square

X

pr,T,sq
��

pu,S,vq
// A

f˚
��

ks ψ
–

B g˚
// C

in SpnC . The isomorphism ψ amounts to an isomorphism h : pu, S, fvq Ñ
pr, T, gsq of spans. In particular, fv “ gsh, so, by the pullback property,
there exists a unique t : S Ñ P such that pt “ v and qt “ sh. Then we have
a morphism of spans

X

pu,S,tq
��

pr,T,sq

xx

pu,S,vq

&&

λ–
ð

ρ–
ð

B Pq˚
oo

p˚
// A

in which λ is h : pu, S, qtq Ñ pr, T, sq and ρ is an identity.
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6. Lifters

Let M be a bicategory.
We use the notation

Y

n

��

K

rifpn,uq
88

u
&&

$��

Z

(6.15)

to depict a right lifting rifpn, uq (see [27]) of u through n. The defining
property is that pasting a 2-cell v ùñ rifpn, uq onto the triangle to give a
2-cell nv ùñ u defines a bijection.

A morphism n : Y Ñ Z is called a right lifter when rifpn, uq exists for
all u : K Ñ Z.

Example 6.1. Left adjoint morphisms in any M are right lifters (since the
lifting is obtained by composing with the right adjoint).

Example 6.2. Composites of right lifters are right lifters.

Example 6.3. Suppose M “ SpnC with C a finitely complete category. If
f : AÑ B is powerful (in the sense of [25], elsewhere called exponentiable,
and meaning that the functor C {B Ñ C {A, which pulls back along f , has
a right adjoint Πf ) in C then f˚ : B Ñ A is a right lifter. The formula is
rifpf˚, pv, T, qqq “ pw,U, rq where

pU
pw,rq
ÝÝÝÑ K ˆBq “ Π1Kˆf pT

pv,qq
ÝÝÑ K ˆ Aq .

Example 6.4. Suppose m “ pm1, E,m2q is a morphism in M “ SpnC
with C a finitely complete category. Then m is a right lifter if and only ifm1

is powerful. The previous Examples imply “if”. Conversely, we can apply
the Dubuc Adjoint Triangle Theorem (see Lemma 2.1 of [25] for example)
to see that M pK,m1

˚q has a right adjoint for all K because M pK,mq –
M pK,m2˚qM pK,m1

˚q and the unit of m2˚ % m2
˚ is an equalizer. Taking

K to be the terminal object, we conclude that m1 is powerful.
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Example 6.5. Let E be a regular category and let RelE be the locally or-
dered bicategory of relations in E as characterized in [7]. The objects are the
same as for E and the morphisms pr1, R, r2q : X Ñ Y are jointly monomor-
phic spans X r1

ÐÝ R
r2
ÝÑ Y in E . Let SubX “ RelE p1, Xq be the partially

ordered set of subobjects of X P E . If f : Y Ñ X is a morphism of E
then pulling back subobjects of X along f defines an order-preserving func-
tion f´1 : SubX Ñ SubY whose right adjoint, if it exists, is denoted by
@f : SubY Ñ SubX . A similar analysis as in the span case yields that
pr1, R, r2q : X Ñ Y is a right lifter in RelE if and only if @r1 exists.

Proposition 6.6. Suppose (2.2) is a bipullback in M with p a groupoid fi-
bration. If n is a lifter then so is c and, for all morphisms b : K Ñ B, the
canonical 2-cell

d ˝ rifpc, bq ùñ rifpn, p ˝ bq

is invertible.

Proof. For all K P M , we have a bipullback square

M pK,P q

M pK,cq

��

M pK,dq
//M pK,Aq

M pK,nq

��

ks –

M pK,Bq
M pK,pq

//M pK,Cq

in Cat with M pK, pq a groupoid fibration and M pK,nq % rifpn,´q. By
Proposition 5.3, M pK, cq has a right adjoint, so that c is a lifter, and M pK, dqrifpc,´q –
rifpn,´qM pK, pq. Evaluating this last isomorphism at b we obtain the iso-
morphism displayed in the present Proposition.

7. Distributivity pullbacks

We now recall Definitions 2.2.1 and 2.2.2 from Weber [30] of pullback and
distributivity pullback around a composable pair pf, gq of morphisms in a
category C .

X
p
//

q

��

Z
g
// A

f

��

Y r
// B

(7.16)
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A pullback pp, q, rq around Z g
ÝÑ A

f
ÝÑ B is a commutative diagram (7.16)

in which the span pq,X, gpq is a pullback of the cospan pr, B, fq in C .
A morphism t : pp1, q1, r1q Ñ pp, q, rq of pullbacks around pf, gq is a

morphism t : Y 1 Ñ Y in C such that rt “ r1. For such a morphism,
using the pullback properties, it follows that there is a unique morphism
s : X 1 Ñ X in C such that ps “ p1 and qs “ tq1.2 This gives a category
PBpf, gq. It is worth noting, also using the pullback properties, that the
commuting square qs “ tq1 exhibits the span ps,X 1, q1q as a pullback of the
cospan pq, Y, tq.

The diagram (7.16) is called a distributivity pullback around pf, gq when
it is a terminal object of the category PBpf, gq.

Y

p˚q˚

��

r˚
// B

f˚

��

ks
–

Z g˚
// A

(7.17)

Proposition 7.1. Let Z g
ÝÑ A

f
ÝÑ B be a composable pair of morphisms in a

category C with pullbacks. The diagram (7.16) is a pullback around pf, gq
in the category C if and only if there is a square of the form (7.17) in the
bicategory SpnC . The diagram (7.16) is a distributivity pullback around
pf, gq in C if and only the diagram (7.17) is a bipullback in SpnC .

Proof. Passage around the top and right sides of (7.17) produces the pullback
span of the cospan Y r

ÝÑ B
f
ÐÝ A. Passage around the left and bottom sides

produces the left and top sides of (7.16). That these passages be isomorphic
says (7.16) is a pullback.

Suppose (7.16) is a distributivity pullback. We will show that (7.17) is a
bipullback. Take a square of the form

K

u˚v˚

��

s˚t˚
// B

f˚

��

ks
–

Z g˚
// A

(7.18)

2Rather than the single t, Weber’s definition takes the pair ps, tq as the morphism of
pullbacks around pf, gq although he has a typographical error in the condition rt “ r1.
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in SpnC . This square amounts to a diagram

S

a
��

u //

v

~~

Z
g
// A

f
��

K T
t
oo

s
// B

in C in which the right-hand region is a pullback around pf, gq. By the
distributivity property, there exists a unique pair ph, kq such that the diagram

S

h
��

a //

u

~~

T
s

  

k
��

Z Xp
oo

q
// Y r

// B

commutes; moreover, the square is a pullback. Thus we have a span mor-
phism

K

pt,T,kq
��

u˚p˚

xx

s˚t˚

&&

λ–
ð

ρ–
ð

Z Y
p˚q˚

oo
r˚

// B

which pastes onto (7.17) to yield (7.18); in fact ρ is an identity. To prove the
bipullback 2-cell property, suppose we have span morphisms e : pv1, S1, u1q Ñ
pv, S, uq and j : pt1, T 1, s1q Ñ pt, T, sq such that composing the first with
g˚ is the composite of the second with f˚. Then, in obvious notation, j :
pu1, a1, s1q Ñ pu, a, sq is a morphism in PBpf, gq. By the terminal property
of pp, q, rq, we have k1 “ kj. This gives the span morphism j : pt1, T 1, k1q Ñ
pt, T, kq which is unique as required.

Conversely, suppose (7.17) is a bipullback. We must see that pp, q, rq is
terminal in PBpf, gq. Take another object pp1, q1, r1q of PBpf, gq. We have
the square

Y 1

p1˚q
1˚

��

r1˚
// B

f˚

��

ks
–

Z g˚
// A
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which allows us to use the bipullback property to obtain a span morphism

pp1˚q
1˚, Y 1, r1˚q Ñ pp˚q

˚, Y, r˚q

in SpnC which is compatible with the squares. Since the span Y 1 Ñ Y
in this morphism composes with r˚ to be isomorphic to r1˚, we see that it
has the form k˚ for some k : Y 1 Ñ Y in C . Thus we have our unique
k : pp1, q1, r1q Ñ pp, q, rq in PBpf, gq.

8. Polynomials in calibrated bicategories

Recall from [3] Section 7 that the Poincaré category ΠK of a bicategory
K has the same objects as K , however, the homset ΠK pH,Kq is the set
π0pK pH,Kqq of undirected path components of the homcategory K pH,Kq.
Composition is induced by composition of morphisms in K . The classify-
ing category ClK of K is obtained by taking isomorphism classes of mor-
phisms in each category K pH,Kq. If K is locally groupoidal then ΠK is
equivalent to ClK .

We adapt Bénabou’s notion of “catégorie calibrée” [4] to our present
purpose.

Definition 8.1. A class P of morphisms, whose members are called neat
(“propres” in French), in a bicategory M is called a calibration of M when
it satisfies the following conditions

P0. all equivalences are neat and, if p is neat and there exists an invertible
2-cell p – q, then q is neat;

P1. for all neat p, the composite p ˝ q is neat if and only if q is neat;

P2. every neat morphism is a groupoid fibration;

P3. every cospan of the form

S
p
ÝÑ Y

n
ÐÝ T ,
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with n a right lifter and p neat, has a bipullback (8.19) in M with p̃
neat.

P

ñ
��

p̃
// T

n
��

ks θ
–

S p
// Y

(8.19)

A bicategory equipped with a calibration is called calibrated.
Notice that the class GF of all groupoid fibrations in any bicategory M

satisfies all the conditions for a calibration except perhaps the bipullback
existence part of P3 (automatically p̃ will be a groupoid fibration by (ii) of
Proposition 5.2).

A bicategory M is called polynomic when GF is a calibration of M .

Definition 8.2. Let M “ pM ,Pq be a calibrated bicategory. A polynomial
pm,S, pq from X to Y in M is a span

X
m
ÐÝ S

p
ÝÑ Y

in M with m a right lifter and p neat. A polynomial morphism pλ, h, ρq :
pm,S, pq Ñ pm1, S1, p1q is a diagram

S

h
��

m

xx

p

&&

λ
ð

ρ–
ð

X S1
m1

oo

p1
// Y

(8.20)

in which ρ (but not necessarily λ) is invertible. By part (i) of Proposition 5.2
we know that h must be a groupoid fibration. (Indeed, by condition P1,
h is neat; this is not really needed and is the only use made herein of the
“only if” in P1.) We call pλ, h, ρq strong when λ is invertible. A 2-cell
σ : h ñ k : pm,S, pq Ñ pm1, S1, p1q is a 2-cell σ : h ñ k : S Ñ S 1 in
M compatible with λ and ρ. By Proposition 3.5, we know that σ must be
invertible. Write PolyM pX, Y q for the Poincaré category of the bicategory
of polynomials from X to Y so obtained.

We write h “ rλ, h, ρs : pm,S, pq Ñ pm1, S1, p1q for the isomorphism
class of the polynomial morphism pλ, h, ρq : pm,S, pq Ñ pm1, S1, p1q. We
also write λh and ρh when several morphisms are involved.
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Proposition 8.3. If C is a finitely complete category then the bicategory
SpnC is polynomic.

Proof. Take a cospan S p
ÝÑ Y

n
ÐÝ T in SpnC with p a groupoid fibration and

n “ pn1, F, n2q a lifter. By Proposition 4.1, we can suppose p is actually p˚
for some p : S Ñ Y in C . From Example 6.4, we know that n1 is powerful.
Form the pullback span S f

ÐÝ P
g
ÝÑ F of the cospan S p

ÝÑ Y
n2
ÐÝ F in C . By

Proposition 5.4, we have a bipullback

P

f˚
��

g˚
// F

pn2q˚
��

ks –

S p˚
// Y .

Since n1 is powerful, Proposition 2.2.3 of Weber [30] implies we have a
distributivity pullback

V
a //

q

��

P
g
// F

n1

��

W r
// T

around pn1, gq. By Proposition 7.1, we have the bipullback

W

a˚q˚

��

r˚
// T

pn1q
˚

��

ks
–

P g˚
// F

in SpnC . Paste this second bipullback on top of the first to obtain a bipull-

back of the cospan S p˚
ÝÑ Y

pn2q˚pn1q
˚

ÐÝÝÝÝÝÝ T as required.

The class of equivalences in any bicategory is a calibration. In Sec-
tion 10, we will provide an example of a calibration strictly between equiv-
alences and GP.

In a calibrated bicategory M , polynomials can be composed as in the
diagram (8.21); this is made possible by Example 6.2, Proposition 6.6, con-
dition P3 and the “if” part of condition P1. Identity spans are also identity
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polynomials.

P

–θ
ðù

ñ

��

p̃

��

S
m

��
p
��

T

n
��

q

��

X Y Z

(8.21)

Indeed, this composition of polynomials is the effect on objects of functors

˝ : PolyM pY, Zq ˆ PolyM pX, Y q ÝÑ PolyM pX,Zq . (8.22)

The effect on morphisms is defined using part (iii) of Proposition 5.2 as
follows. Take morphisms h : pm,S, pq Ñ pm1, S1, p1q and k : pn, T, qq Ñ
pn1, T 1, q1q. We have a square

P

hñ
��

kp̃
// T 1

n1

��

ks ψ

S 1
p1

// Y

in which
ψ “ pn1kp̃

λkp̃
ùùñ np̃

θ–
ùñ pñ

ρhñ–
ùùùñ p1hñq .

Now we use Proposition 5.2 to obtain, in obvious primed notation, a diagram

P

`
��

hñ

xx

kp̃

&&

σ
ð

τ–
ð

S 1 P 1
ñ1

oo

p̃1
// T 1

which leads to the polynomial morphism

ppλhñqpm
1σqq, `, pq1τqpρkp̃q : pmñ, P, qp̃q ÝÑ pm1ñ1, P 1, q1p̃1q

whose isomorphism class is the desired

k ˝ h : pn, T, qq ˝ pm,S, pq Ñ pn1, T 1, q1q ˝ pm1, S1, p1q .
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Proposition 8.4. There is a bicategory PolyM of polynomials in a cali-
brated bicategory M . The objects are those of M , the homcategories are
the PolyM pX, Y q. Composition is given by the functors (8.22). The vertical
and horizontal stacking properties of bipullbacks provide the associativity
isomorphisms.

We write PolysM for the sub-bicategory of PolyM obtained by restrict-
ing to the strong polynomial morphisms.

Example 8.5. If C is a finitely complete category then the bicategory PolySpnC
is biequivalent to the bicategory denoted by PolyC in Gambino-Kock [9]
and by PolypC q in Walker [28]. Moreover, PolysSpnC is biequivalent to
Walker’s bicategory PolycpC q. Note that the isomorphism classes h of poly-
nomial morphisms have canonical representatives of the form f˚ (since each
span pu, S, vq : U Ñ V with u invertible is isomorphic to p1U , U, v u´1q).

Proposition 8.6. If the bicategory M is calibrated then, for each K P M ,
there is a pseudofunctor HK : PolyM ÝÑ Cat taking the polynomialX m

ÐÝ

S
p
ÝÑ Y to the composite functor

M pK,Xq
rifpm,´q
ÝÝÝÝÝÑ M pK,Sq

M pK,pq
ÝÝÝÝÑ M pK,Y q .

The 2-cell h : pm,S, pq Ñ pn, T, qq in PolyM is taken to the natural trans-
formation obtained by the pasting

M pK,Sq

M pK,hq

��

M pK,pq

))

M pK,Xq

rifpm,´q
55

rifpn,´q ))

λ̂�� M pK,Y qM pK,ρq��

M pK,T q
M pK,qq

55

where λ̂ is the mate under the adjunctions of the natural transformation
M pK,λq : M pK,nqM pK,hq ñ M pK,mq.

Proof. We will show that polynomial 2-cells

α : pλh, h, ρhq ñ pλ1, h1, ρ1q : pm,S, pq Ñ pn, T, gq
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are taken to identities. Since

M pK,λq “
´

M pK,nqM pK,hq
M pK,nqM pK,αq
ùùùùùùùùùñ M pK,nqM pK,h1q

M pK,λ1q
ùùùùùñ M pK,mq

¯

,

it follows that

λ̂ “
´

M pK,hqrifpm,´q
M pK,αqrifpm,´q
ùùùùùùùùùñ M pK,h1qrifpm,´q

λ̂1

ùñ rifpn,´q
¯

.

Using this and that ρ1 “ pgαqρ, we have the identity

pgλ̂qpρ rifpm,uq “ pgλ̂1qpρ1 rifpm,uq : f rifpm,uq ùñ g rifpm,uq

induced by α as claimed.
That HK is a pseudofunctor follows from Proposition 6.6.

We can put somewhat more structure on the image of the pseudofunctor
HK . Recall the definition (for example, in [21] Section 3) of the 2-category
V -Act of V -actegories for a monoidal category V .

Composition in M yields a monoidal structure on the category VK “

M pK,Kq and a right VK-actegory structure on each category HKX “

M pK,Xq:

´ ˝ ´ : M pK,Xq ˆM pK,Kq ÝÑ K pK,Xq .

We can replace the codomain Cat of HK in Proposition 8.6 by VK-Act.
To see this, we need a VK-actegory morphism structure on each functor

HKpm,S, pq “ p rifpm,´q : M pK,Xq Ñ M pK,Y q .

However, for each a P VK and u P M pK,Xq, we have the canonical
mrifpm,uqa

$a
ùñ uawhich induces a 2-cell rifpm,uqañ rifpm,uaq. Whisker-

ing this with p : S Ñ Y , we obtain the component at pu, aq of a natural
transformation:

M pK,Xq ˆ VK

p rifpm,´qˆ1VK
��

´˝´
//M pK,Xq

p rifpm,´q

��

+3

M pK,Y q ˆ VK ´˝´
//M pK,Y q .
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The axioms for an actegory morphism are satisfied and each HKpm,S, pq is
a 2-cell in VK-Act.

In fact, we have a pseudofunctor

H : PolyM ÝÑ HompM op,Actq

where Act is the 2-category of pairs pV ,C q consisting of a monoidal cate-
gory V and a category C on which it acts.

9. Bipullbacks from tabulations

Tabulations in a bicategory, in the sense intended here, appeared in [7] to
characterize bicategories of spans.

For any bicategory M , we write M˚ for the sub-bicategory obtained
by restricting to left adjoint morphisms. For each left adjoint morphism
f : X Ñ Y in M , we write f˚ : Y Ñ X for a right adjoint.

Definition 9.1. The bicategory M is said to have tabulations from the ter-
minal when the following conditions hold:

(i) the bicategory M˚ has a terminal object 1 with the property that,
for all objects U , the unique-up-to-isomorphism left-adjoint morphism
!U : U Ñ 1 is terminal in the category M pU, 1q;

(ii) for each morphism u : 1 Ñ X in M , there is a diagram (9.24), called
a tabulation of u, in which p : U Ñ X is a left adjoint morphism and
such that the diagram

M pK,Uq

M pK,pq

��

// 1

ru!K s

��

λ +3

M pK,Xq
1MpK,Xq

//M pK,Xq ,

(9.23)

where the natural transformation λ has component pw ρuw
ÝÝÑ u!Uw

u!
ÝÑ

u!K at w P M pK,Uq, exhibits M pK,Uq as a bicategorical comma
object in Cat.
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U
!U

��

p

  
ks ρu

1 u
// X

(9.24)

Remark 9.2. (a) The bicategorical comma property of the diagram (9.23)
implies p is an er-fibration in M .

(b) Notice that condition (ii) in this Definition does agree with combined
conditions T1 and T2 in the definition of tabulation in [7] for mor-
phisms with domain 1. This is because all left adjoints K Ñ 1 are
isomorphic to !K using condition (i) of our Definition.

(c) Using (b) and Proposition 1(d) of [7], we see that the mate p!˚U ñ u
of ρu : p ñ u!U is invertible. Let us denote the unit of the adjunction
!U % !˚U by ηU : 1U ùñ !˚U !U . So we can replace u up to isomorphism
by p!˚U and ρu by pηU .

(d) If M has tabulations from the terminal and we have a morphism p :
U Ñ X such that (9.23) has the bicategorical comma property with
u “ p!˚U : 1 Ñ X and ρu “ pηU then p is a left adjoint. This is because
a tabulation of u : 1 Ñ X does exist in which the right leg is a left
adjoint and the comma property implies the right leg is isomorphic to
pe for some equivalence e.

(e) Another way to express the comma object condition (9.23) is to say
(9.25) is a bipullback for λ̂w “ λw “ ppw

ρuw
ÝÝÑ u!Uw

u!
ÝÑ u!Kq.

M pK,Uq

λ̂
��

! // 1

ru!K s

��

M pK,Xq2
cod

//M pK,Xq

(9.25)

Let Tab be the class of morphisms p : U Ñ X in M which occur in a
tabulation (9.24).

Theorem 9.3. The class Tab is a calibration for any bicategory M which
has tabulations from the terminal.
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Proof. We must prove properties P0–P3 for a calibration. Property P0 is
obvious. For P1, take V q

ÝÑ U
p
ÝÑ X with p P Tab. By (c) and (d) of

Remark 9.2, p can be assumed to come from the tabulation of u “ p!˚U . If q
is to come from a tabulation it must be of v “ q!˚V . If pq is to come from a
tabulation it must be of w “ pq!˚V “ pv. Contemplate the following diagram
in which the λ̂ comes from v.

M pK,V q

λ̂
��

! // 1

rq!˚V !K s

��

M pK,Uq2
cod

//

M pK,pq2

��

M pK,Uq

M pK,pq

��

M pK,Xq2
cod

//M pK,Xq

By Remark 9.2(a), p is a groupoid fibration; incidentally, this gives P2. So
the bottom square is a bipullback (see Proposition 5.1). Therefore, the top
square is a bipullback if and only if the pasted square is a bipullback. By
Remark 9.2(d) and (e), this says q P Tab if and only if pq P Tab. This
proves P1.

It remains to prove P3. We start with a cospan Z p
ÝÑ C

m
ÐÝ B with m a

right lifter and p P Tab. Put z “ p!˚Z : 1 Ñ C and tabulate y “ rifpm, zq :
1 Ñ B as y “ r !˚Y for r : Y Ñ B in Tab. Using the tabulation property of
Z, we induce n and invertible θ as in the diagram (9.26) in which the triangle
containing $ exhibits the right lifting rifpm, zq.

Y

–θ
ùñ

!Y

&&

n
��

r

��

ùñ

Z
!Z //

p
��

1

z
��

B m
// C

gηZ
ùñ

“

Y
rηY
ùñ

!Y //

r

��

1

z

��

y

��

B m
// C

$
ùñ

(9.26)

It is the region containing θ in (9.26) that we will show is a bipullback. For
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all K P M , we must show that the left-hand square in the diagram

M pK,Y q

M pK,rq

��

M pK,nq
//M pK,Zq //

M pK,pq

��

– +3

1

rz!K s

��

λ +3

M pK,Bq
M pK,mq

//M pK,Cq
1MpK,Cq

//M pK,Cq

is a bipullback. However, the right-hand square has the comma property. So
the bipullback property of the left-hand square is equivalent to the comma
property of the pasted diagram. However, using (9.26), we see that the pasted
composite is equal to the pasted composite

M pK,Y q

M pK,rq

��

// 1 //

ry!K s

��

λ +3

1

rz!K s

��

r$!K s +3

M pK,Bq
1MpK,Bq

//M pK,Bq
M pK,mq

//M pK,Cq

Here, the left-hand square has the comma property and y!K is the value of
the right adjoint rifpm,´q to M pK,mq at z!K . So the pasted composite
does have the comma property, as required.

10. Calibrations of SpnC , of RelE and of Mod

If C is a category with finite limits, its terminal object 1 clearly has the
property (i) in the definition of tabulations from the terminal. Then, from
Remark 9.2 and [7], we know that SpnC has tabulations from the terminal.

A span from 1 to X has the form p!, U, pq : 1Ñ X for some p : U Ñ X
in C . A tabulation of the span is provided by the diagram

U
!U˚

��

p˚

!!
ks ρu

1
p!,U,pq

// X .

It follows that Tab consists of spans of the form p˚ for some morphism p in
C . Using Proposition 4.1, we deduce:
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Proposition 10.1. For the bicategory SpnC of spans in a finitely complete
category C , Tab “ GF.

With this, Theorem 9.3 provides another proof of Proposition 8.3.

Here is the result in the case of bicategories of relations.

Proposition 10.2. The bicategory RelE of relations in a regular category E
has tabulations from the terminal. Moreover the calibration Tab of RelE
consists of those relations isomorphic to p˚ for some monomorphism p in E .

Proof. The existence of tabulations was shown in [7]. The right leg of a
tabulation of p!, R, pq : 1 Ñ X is of course p : R Ñ X which must be a
monomorphism for the span p!, R, pq to be a relation.

With this and Example 6.5, we obtain a different notion of “polynomi-
als” in a regular category; again they are the morphisms of a bicategory
PolyRelE .

Example 10.3. An elementary topos E admits two basic constructions, the
power object (or relation classifier) PX and the partial map classifier rX;
see [15, 11]. Both define object assignments for monads on E . There is
a distributive law dX : P rX Ñ ĄPX between the two monads. We claim
that, for a topos E , the classifying category of PolyRelE is equivalent to the
opposite of the Kleisli category E

ČPp´q for the composite monad X ÞÑ ĄPX .
To see this, we need some detail on the monads involved.

The (covariant) power endofunctor P on E is defined on morphisms u :
X Ñ Y by direct image Du : PX Ñ PY . The partial map classifier takes
u to ru : rX Ñ rY corresponding to the partial map u : rX Ñ Y which is u
with X as domain of definition. The unit σ : 1E ùñ P for the monad P
has components σX : X ùñ PX corresponding to the identity relation on
X . Similarly, the unit η : 1E ùñ

Ąp´q for the monad Ąp´q has components
ηX : X ùñ rX corresponding to the identity partial map on X .

Rather than examine the multiplications for these monads, we take the
“no iteration” or “mw-” point of view (see [19, 1, 20, 17]) from which the
Kleisli bicategory is easily obtained. For P , the extra data needed are func-
tions

E pX,PY q ÝÑ E pPX,PY q ;
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they take X f
ÝÑ PY to the supremum-preserving extension PX f 1

ÝÑ PY of f
along σX . The Kleisli category for P is the classifying category ClRelE of
the bicategory of relations in E . For Ąp´q, the extra data needed are functions

E pX, rY q ÝÑ E p rX, rY q ;

they take X f
ÝÑ rY to the bottom-preserving extension rX

f1
ÝÑ rY of f along

ηX . The Kleisli category for Ąp´q is the classifying category ClParE of the
bicategory ParE of partial maps in E : it is the subbicategory of SpnE whose
morphisms are restricted to those spans X i

ÐÝ U
f
ÝÑ Y for which the left leg

i is a monomorphism.
To give a distributive law dX : P rX Ñ ĄPX is equally to give an exten-

sion pP of the monad P to a monad on the Kleisli category ClParE of Ąp´q.
Indeed, we can extend P to a pseudomonad pP on ParE . We use the facts
that P preserves pullbacks of monomorphisms along arbitrary morphisms
and that the square

U
i //

σU
��

X

σX
��

PU
Di

// PX

is a pullback when i is a monomorphism. These imply that we can define pP
on objects to be P and on partial maps by

pPpX i
ÐÝ U

f
ÝÑ Y q “ pPX Di

ÐÝ PU Df
ÝÑ PY q

to obtain a pseudofunctor, and that X 1X
ÐÝ X

σX
ÝÝÑ PX provides a pseudo-

natural unit. Again, rather than a multiplication for pP , we supply the functor

ParE pX,PY q ÝÑ ParE pPX,PY q , pX i
ÐÝ U

f
ÝÑ PY q ÞÑ pPX Di

ÐÝ PU f 1
ÝÑ PY q .

The Kleisli category E
ČPp´q of the composite monad ĆPp´q on E is the clas-

sifying category for the Kleisli bicategory pParE q
pP of the pseudomonad pP

on ParE .
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The claim at the beginning of this example will follow after we see that
PolyRelE is biequivalent to the opposite of pParE q

pP . To see this, notice that
the objects of the two bicategories are the same: they are the objects of E .
Also, we have the pseudonatural equivalence

PolyRelE pX,Cq » ParE pC,PXq

of hom categories under which the polynomial X
pa1,A,a2q
ÐÝÝÝÝÝ Z

p1Z ,Z,pq
ÝÝÝÝÝÑ C

corresponds to the partial map C p
ÐÝ Z

a
ÝÑ PX where a classifies the relation

pa1, A, a2q.
What remains is to see that span composition of polynomials transports

to Kleisli composition. We shall write for the case E “ Set and appeal
to topos internal logic to justify the argument in general. First we look at
composition in PolyRelE . So that we can make use of the notation in the
construction of pseudopullback in (9.26), we look at the following span com-
posite.

Y
Ď

r
  

N

��

Z

Ď

p

��

A

~~

B
Ď

q
  

M
~~

X C D

The object Y and relation N are obtained from the subobjects Z Ď C and
B Ď D, and relations A and M . Referring to (9.26), we see that

Y “ tb P B : bMc implies c P Zu

and N is the restriction of the relation M . Now we look at composition of
the corresponding morphisms in the Kleisli bicategory; this is given by the
diagram

Q
pr2

""

pr1

}}

B

m
!!

q

~~

PZ
a1

##
Dp||

D PC PX
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in which the diamond is a pullback while m and a classify the relations M
and A. We therefore have an isomorphism

Q “ tb P B : mpbq Ď Zu – Y

under which q ˝ pr1 and a1 ˝ pr2 transport to q ˝ r and the classifier of A ˝N .
Incidentally, using this biequivalence, we can view the pseudofunctor

HK of Proposition 8.6 as a pseudofunctor

pParE qop
pP
ÝÑ Ord

into ordered sets taking C p
ÐÝ Z

a
ÝÑ PX to the order-preserving function

RelE pK,Xq
rifpa,´q
ÝÝÝÝÑ RelE pK,Zq

p˝´
ÝÝÑ RelE pK,Cq

whose value at a relation ps1, S, s2q : K Ñ X is the relation pc, a{s, p ˝ dq :
K Ñ C as in the diagram

a{s
p˝d

xx

d
��

c // K

s

��

ď +3

C Z a
//

p
oo PX

in which the square has the comma property and s classifies the relation
ps1, S, s2q.

Next we look at the bicategory Mod “ V -Mod, where V “ Set; see
Example 2.2.

Proposition 10.4. The bicategory Mod has tabulations from the terminal.

Proof. We need to check the validity of conditions (i) and (ii) defining the
having of tabulations from the terminal. Since the terminal object 1 of Cat is
Cauchy complete (idempotents split) [18], every left-adjoint module K Ñ 1
is isomorphic to !K˚ : K Ñ 1 where !K : K Ñ 1 is the unique functor. The
module !K˚, as a functor 1op ˆK Ñ Set, is constant at a one-point set. So
condition (i) holds.
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For condition (ii), take a module u : 1 Ñ X regarded as a functor
u : Xop Ñ Set. Form the comma category U of u as in the square

U

p

��

// 1

rus

��

ρu +3

X yonX
// rXop, Sets .

(10.27)

The natural transformation in the square has components ρux : Xpx, p´q Ñ
ux which reinterprets as a 2-cell

U
!U˚

��

p˚

  
ks ρu

1 u
// X

in Mod. In fact, we see that U p
ÝÑ X is ou in the sense of Proposition 3.2. So

ou!K˚ is Kop ˆ U
1Kopˆp
ÝÝÝÝÑ Kop ˆX . Using Proposition 3.2, we see that the

comma construction ModpK,Xq{ru!K˚s is biequivalent to

ERFibpKop
ˆXq{pKop

ˆ U
1Kopˆp
ÝÝÝÝÑ Kop

ˆXq „ ERFibpKop
ˆ Uq

and, again by Proposition 3.2, this is biequivalent to ModpK,Uq, as required
for the comma property of diagram (10.27).

Corollary 10.5. The bicategory Mod is calibrated by Tab. All morphisms
are right lifters and, up to equivalence, the neat morphisms are those of the
form p˚ : E Ñ B where p is a discrete fibration.

A polynomial from X to Y in Mod is therefore a span X m
ÐÝ E

p
ÝÑ Y

where m is a module from E to X and p is a discrete fibration. The module
m is equivalent to a functor E ÝÑ PshX , so, as we see from page 312
of [24], the polynomial is equivalent to a parametric right adjoint functor
PshX ÝÑ PshY . As pointed out by Weber, in Remark 2.12 of [29], this is
equivalent to a polynomial X d

ÐÝ D
c
ÝÑ E

p
ÝÑ Y in the category Cat where

X
d
ÐÝ D

c
ÝÑ E is a two-sided discrete fibration and p is a discrete fibration.
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Example 10.6. The bicategory PolyMod is biequivalent to the opposite
of the Kleisli bicategory for the composite X ÞÑ Famop

rXop, Sets of the
colimit-completion pseudomonad and the product-completion pseudomonad
(modulo obvious size issues).

To see this, note that the coproduct completion FamX of a category X
can be efficiently described, in the terminology of Section 4 of [13], as the
lax comma object

FamX

forget
��

! // 1

X
��

λ //

Set
Ă

// Cat

so that functors f : Y Ñ FamX are in 2-natural bijection with pairs pf̃ , φq
where f̃ : Y Ñ Set is a functor and φ : f̃ ù Z!Y is a lax natural transfor-
mation. The Grothendieck fibration construction transforms such pf̃ , φq into
a commutative triangle

E

q
��

pf̂ ,qq
// X ˆ Y

pr2
{{

Y

for which the data are a discrete opfibration q : E Ñ Y and an arbitrary
functor f̂ : E Ñ X; as Lawvere pointed out early in the decade of the
1970s, we might think of this as a 2-dimensional partial map pq, f̂q : Y Ñ X
between categories. This gives a pseudonatural equivalence of categories

rY,FamXs » 2ParpY,Xq

The product completion of X is FamopX :“ FampXopqop. Objects
pI, xq of FamopX are functors x : I Ñ X from a small discrete category
(set) I to X , Morphisms pu, ξq : pI, xq Ñ pJ, yq are diagrams in Cat of the
form

I

x
��

Juoo

y
��

θ +3

X .
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Functors f : Y Ñ FamopX correspond, up to equivalence, to spans Y p
ÐÝ

E
g
ÝÑ X where p is a discrete fibration; we shall call such a span a 2-

dimensional partial opmap from Y to X . This gives a pseudonatural equiv-
alence of categories

rY,FamopXs » 2ParopoppY,Xq . (10.28)

While there is a size problem with Famop as a monad on Cat, we do have
what would be its Kleisli bicategory, namely, 2Parop whose objects are small
categories, whose homs are the categories 2ParoppY,Xq, and whose compo-
sition is that of spans. There is also a size problem with Psh as a monad

X
k
ÝÑ Y ÞÑ rXop, Sets

Dk“lanpkop,´q
ÝÝÝÝÝÝÝÝÑ rY op, Sets

on Cat but we do have its Kleisli bicategory Mod whose objects are small
categories, whose homs are given by ModpY,Xq “ rXop ˆ Y, Sets, and
composition is that of modules (see Example 2.2). Modulo the size problem,
the monad Psh extends to a monad yPsh on 2Parop: this is one way of seeing
that we have a distributive law B : PshFamop

ùñ FamopPsh. The value of
yPsh at a 2-partial opmap Y p

ÐÝ E
g
ÝÑ X is

rY op, Sets
Dp
ÐÝ rEop, Sets

Dg
ÝÑ rXop, Sets . (10.29)

There are several things to be said about this most of which are better un-
derstood by looking at the equivalent span where presheaves are replaced by
discrete fibrations:

DFibY
p˚
ÐÝ DFibE

g˚
ÝÑ DFibX .

Here g˚ : DFibE Ñ DFibX is defined on the discrete fibration r : F Ñ E
by factoring the composite g ˝ r : F Ñ X as g ˝ r “ s ˝ j where j : F Ñ F 1

is final and s : F 1 Ñ X is a discrete fibration; this uses the comprehensive
factorization of functors described in [26, 25]. In particular, p˚prq “ p ˝ r
since the composite is already a discrete fibration. It follows that, if p : E Ñ
X is a discrete fibration then so is p˚ : DFibE Ñ DFibX . Also, if further,
the left square

F
g

//

q

��

E

p

��

Y
f

// X

DFibF
g˚

//

q˚

��

DFibE

p˚

��

DFibY
f˚

// DFibX
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is a pullback, then so is the right square. Using this, we conclude that (10.29)
is again a 2-partial opmap and that yPsh is a pseudofunctor. To see that the
unit for the monad Psh, which is given by Yoneda embedding yX : X Ñ

PshX , lifts to 2Parop, we must see that yX seen as a 2-partial opmap, is
pseudonatural in X P 2Parop; this follows from the fact that, for all discrete
fibrations p : E Ñ X , the square

E
E{´

//

p

��

DFibE

p˚

��

X
X{´

// DFibX

is a pullback, which is another form of the Yoneda Lemma. Rather than
examine the multiplication for yPsh, as in Example 10.3, we take the “no
iteration” or “mw-” point of view. We need to supply functors

P : 2ParoppC,PshXq ÝÑ 2ParoppPshC,PshXq . (10.30)

An object of the domain is a span C p
ÐÝ Z

g
ÝÑ PshX where p is a discrete

fibration. Define

PpC
p
ÐÝ Z

g
ÝÑ PshXq “ pPshC

p˚
ÐÝ PshZ

ḡ
ÝÑ PshXq

where ḡ “ lanpyZ , gq is the colimit-preserving extension of g. Thus the
composite of D q

ÐÝ B
m
ÝÑ PshC and C

p
ÐÝ Z

g
ÝÑ PshX in the Kleisli

bicategory p2ParopqyPsh of the pseudomonad yPsh is the following composite
of spans in Cat.

Y
n

$$

r

||

B
m

""

q

~~

PshZ
ḡ

%%

Dp

zz

D PshC PshX

Suppose the left square in diagram (10.31) is in Mod and the right is in CAT.

K

h
��

t˚
// B

m
��

–

θ +3

Z p˚
// C

K

h
��

t // B

m
��

–

φ +3

PshZ
Dp

// PshC

(10.31)
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An easy evaluation shows that isomorphisms θ are in bijection with isomor-
phisms φ. It follows that Y , r and n agree with the construction in (9.26)
and we have the biequivalence

PolyModop
» p2ParopqyPsh

from which we obtain the claim of this example’s first paragraph.
Incidentally, using this biequivalence, we can view the pseudofunctor

HK of Proposition 8.6 as the pseudofunctor

p2Paropq
op
yPsh
ÝÑ Cat

taking the morphism Y
p
ÐÝ S

m
ÝÑ Psh to the functor

rK,PshXs ÝÑ rK,PshY s , ` ÞÑ ¯̀ (10.32)

where
p¯̀kqy “

ÿ

sPSy

PshXpms, `kq

for k P K, for y P Y and for Sy the fibre of p : S Ñ Y over y.

——————————————————–
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