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Résumé. Nous montrons comment définir les biproduits à isomorphismes
près dans une catégorie sans la supposer enrichie. Cette définition redonne la
notion usuelle dès que la catégorie admet un enrichissement approprié ou que
tous les biproduits binaires existent, donnant ainsi une généralisation mod-
este mais stricte de la notion. Nous caractérisons aussi l’existence de tous les
biproduits pour une catégorie donnée en termes d’une adjonction ambidextre.
Enfin, nous donnons quelques nouveaux exemples de biproduits au sens de
cette définition.
Abstract. We show how to define biproducts up to isomorphism in an arbi-
trary category without assuming any enrichment. The resulting notion coin-
cides with the usual definitions whenever all binary biproducts exist or the
category is suitably enriched, resulting in a modest yet strict generalization
otherwise. We also characterize when a category has all binary biproducts in
terms of an ambidextrous adjunction. Finally, we give some new examples of
biproducts that our definition recognizes.
Keywords. Biproducts, zero morphisms.
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1. Introduction

Given two objects A and B living in some category C, their biproduct –
according to a standard definition [4] – consists of an object A⊕B together
with maps
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A
pA

iA
A⊕B

iB

pB
B

such that

pAiA = idA pBiB = idB

pBiA = 0A,B pAiB = 0B,A

and
idA⊕B = iApA + iBpB.

For us to be able to make sense of the equations, we must assume that
C is enriched in commutative monoids. One can get a slightly more general
definition that only requires zero morphisms but no addition – that is, en-
richment in pointed sets – by replacing the last equation with the condition
that (A⊕B, pA, pB) is a product of A and B and that (A⊕B, iA, iB) is their
coproduct. We will call biproducts in the first sense additive biproducts and
in the second sense pointed biproducts in order to contrast these definitions
with our central object of study – a pointless generalization of biproducts
that can be applied in any category C, with no assumptions concerning en-
richment. This is achieved by replacing the equations referring to zero with
the single equation

iApAiBpB = iBpBiApA, (1)

which states that the two canonical idempotents on A ⊕ B commute with
one another.

After surveying some basic properties of zero morphisms, we prove that
biproducts thus defined behave as one would expect, e.g. that they are de-
fined up to unique isomorphism compatible with the biproduct structure, and
that the notion agrees with the other definitions whenever C is appropriately
enriched. We also show how to characterize them in terms of ambidextrous
adjunctions. Both pointed biproducts and the pointless definition studied
here add only a modest amount of generality to additive biproducts, for one
can show that if C has all binary biproducts, then C is uniquely enriched in
commutative monoids. However, when C does not have all biproducts nor
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zero morphisms, some biproducts recognized by the pointless definition can
exist, and we conclude with some examples of this.

Various generalizations of biproducts have been considered before. How-
ever, often one assumes a lot of structure from the categories in question,
with the goal being a well-behaved notion of an infinite direct sum that is not
required to be a product nor a coproduct. Examples of this include [1, 2, 5].
In contrast to these, we develop a notion requiring no additional structure on
our category while still retaining the universal properties.

2. Preliminaries on zeroes

Definition 2.1. A morphism a : A → B is constant if af = ag for all
f, g : C → A. Coconstant morphisms are defined dually and a morphism is
called a zero morphism if it is both constant and coconstant. A category has
zero morphisms if for every pair of objects A and B there is a zero morphism
A→ B.

We recall the definition of a partial zero structure on a category from [3].

Definition 2.2. A partial zero structure on a category C consists of a non-
empty class of morphisms Z = {zA,B : A → B} indexed by some ordered
pairs of objects of C, subject to the following requirement: for every zA,B ∈
Z ,f : C → A and g : B → D, the class Z also contains a map zC,D : C →
D and it equals gzA,Bf .

In general, neither zero morphisms between two objects nor partial zero
structures on a category are unique – for instance, in the category •⇒ • both
parallel maps are zero morphisms and form partial zero structures. However,
if A has a zero endomorphism, then for any B there is at most one zero map
A→ B. We list some basic properties of these below.

Proposition 2.3. (i) If A has a zero endomorphism, then for any B there
is at most one zero map A → B. In particular, if A → B is zero and
there exists a map B → A, then the zero map A→ B is unique.

(ii) A morphism is a zero morphism iff it is part of a partial zero structure.
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(iii) The union of partial zero structures Zi is a partial zero structure pro-
vided that the partial zero structures agree on overlaps, i.e. ziA,B =

zjA,B whenever ziA,B ∈ Zi and zjiA,B

(iv) The class of all morphisms of the form fzg where z is a zero endomor-
phism forms a partial zero structure provided it is not empty.

(v) A category has zero morphisms iff it is enriched in pointed sets, in
which case this enrichment is unique.

Proof. For (i), assume that f, g : A ⇒ B and h : A → A are zero. Then
f = f id = fh = gh = gid = g. The claim after “in particular” follows
from the fact that if f : A → B is zero and g : B → A is arbitrary, then gf
is a zero endomorphism on A.

To prove (ii), assume first that f is a zero morphism. Then morphisms of
the form gfh define a partial zero structure. Conversely, if zA,B is part of a
zero structure, then gzA,Bf = zC,D = g′zA,Bf

′ for all f, f ⇒ C → A and
g, g′ ⇒ B → D, showing that zA,B is a zero morphism.

(iii) follows straight from the definitions.
Finally, we consider (iv). Note that by (i) this collection picks at most

one map A → B for any A and B, whence the claim follows now from (ii)
and (iii).

(v) is well-known but also follows readily from (i)-(iv).

3. Main results

We start with the new, enrichment-free definition of a biproduct.

Definition 3.1. A biproduct of A and B in C is a tuple (A⊕B, pA, pB, iA, iB)
such that (A ⊕ B, pA, pB) is a product of A and B, (A ⊕ B, iA, iB) is their
coproduct, and the following equations hold:

pAiA = idA

pBiB = idB

iApAiBpB = iBpBiApA

In the context of Definition 3.1, equation (1) could be replaced by alter-
native equivalent conditions. We list some of them below.
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Lemma 3.2. Assume that (A ⊕ B, pA, pB) is a product of A and B, (A ⊕
B, iA, iB) is their coproduct, pAiA = idA and pBiB = idB. Then the follow-
ing are equivalent:

(i) (A⊕B, pA, pB, iA, iB) is the biproduct of A and B, i.e. the equation

iApAiBpB = iBpBiApA

holds as well

(ii) The maps pAiB and pBiA are zero morphisms.

(iii) The maps pAiB and pBiA are both constant.

(iv) The map pAiB is coconstant and pBiA is constant.

Proof. We begin by proving that (i) implies (ii). We first observe that pBiA
is coconstant. This follows from the fact that the diagram

A A A⊕B B C

A⊕B B

A⊕B B A⊕B A A⊕B

A A⊕B B

pA

pB

pA

iA pB

iB

idA

iA

iB pA iA

iA

iB
h

iA pB f

pB

g

commutes, where h is the cotuple [gpBiA, f ]. Replacing the roles of A and
B proves that pAiB is coconstant as well. Since Definition 3.1 is self-dual,
the maps pAiB and pBiA are also constant and hence zero, establishing that
(i) implies (ii).

Condition (ii) clearly implies (iii) and (iv), so it suffices to show that
either of them implies (i). Assuming (iii), it suffices to prove that both sides
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of equation (1) agree when postcomposed with the product projections, and
by symmetry it suffices to postcompose only with pA. Doing so to the left
hand side results in pAiBpB whereas the right hand side yields pAiBpBiApA.
These are equal as pAiB is constant.

Finally, let us assume (iv) and postcompose both sides of equation (1)
with the product projections. When postcomposing with pB we get pBiApA
and pBiApAiBpB which are equal as pBiA is constant. When postcompos-
ing with pA we are left to show that pAiBpB and pAiBpBiApA are equal,
which we do by precomposing with the coproduct injections. When we pre-
compose with iA both sides yield pAiBpBiA, whereas precomposing with iB
results in the maps pAiB and pAiBpBiApAiB, which are equal since pAiB is
coconstant.

Corollary 3.3. If C has all binary biproducts, then it has zero morphisms.

Proof. Combine Lemma 3.2 and Proposition 2.3.

Given Lemma 3.2, it is easy to check that whenever C has zero mor-
phisms biproducts and pointed biproducts coincide. Any pointed biprod-
uct is a biproduct in the sense of Definition 3.1, since iApAiBpB = 0 =
iBpBiApA. Conversely, let (A⊕B, pA, pB, iA, iB) be a biproduct in the sense
of Definition 3.1 in a category with zero morphisms. Now by Lemma 3.2
and Proposition 2.3 we have pBiA = 0A,B, as desired, and similarly pAiB =
0B,A. If C is enriched in commutative monoids, then biproducts coincide
with additive biproducts just because pointed biproducts and additive biprod-
ucts coincide whenever C is enriched in commutative monoids.

This shows that whenever all binary biproducts exist, the ordinary def-
initions suffice just fine. Moreover, every biproduct in the sense of Defini-
tion 3.1 is a pointed biproduct in a suitable subcategory.

Proposition 3.4. Assume that an object A admits a zero endomorphism.
Consider the full subcategory C0(A) of C consisting of those objects B that
admit a map to and from A. Then this subcategory has zero morphisms and
any biproduct A⊕B in the sense of Definition 3.1 in C is a pointed biproduct
in C0(A).

Proof. As zero morphisms are closed under composition, the category C0(A)
has zero morphisms and hence is enriched in pointed sets by 2.3. Moreover
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A⊕ B is still a biproduct in the sense of Definition 3.1 as C0(A) is full and
contains A,B and A ⊕ B. Hence the discussion preceding this proposition
shows that A⊕B is a pointed biproduct in C0(A).

Note that assuming a zero endomorphism on A is not a genuine restric-
tion, as it follows from the existence of any biproduct A ⊕ B. As pointed
biproducts are well-known to be unique up to isomorphism, so are biprod-
ucts in the sense of Definition 3.1.

Corollary 3.5. The biproduct of A and B, if it exists, is unique up to unique
isomorphism compatible with the biproduct structure.

Using Proposition 3.4, one can then proceed to check that biproducts in
our sense work just like one would expect. For example, Definition 3.1 and
other results of this section generalize from the binary case to the biproduct
of an arbitrary-sized collection of objects, and one can easily show that if
A⊕B and (A⊕B)⊕C exist, then (A⊕B)⊕C satisfies the axioms for the
ternary biproduct of A,B,C. Similarly, one can show that for f : A → C
and g : B → D we have f + g = f × g whenever the biproducts A⊕B and
C ⊕D exist.

One might take Proposition 3.4 to mean that no generality is added.
While the added generality is relatively modest indeed, some care needs to
be taken as the converse of Proposition 3.4 does not hold in general, i.e. a
(pointed) biproduct in C0(A) need not be a biproduct in C. This is because
the inclusion C0(A) → C might fail to preserve products or coproducts.
For a deliberately constructed example of this, consider the category Vectk
of vector spaces over a field k. First add a new initial object A freely to
this category, and then add a new morphism f : A → k ⊕ k subject to the
equation gf = 0 whenever g is not monic, resulting in a category C. Now
0: k⊕ k → k⊕ k is still a zero endomorphism and k⊕ k is still a biproduct
in C0(k) ∼= Vectk, but no longer in C: the pair (0A,k, 0A,k) factors via k⊕k
both via 0: A→ k and via f .

Recall that an ambiadjoint to a functor F : C→ D is a functor D : D→
C that is simultaneously both left and right adjoint to F .

Theorem 3.6. C has biproducts iff the diagonal ∆: C → C × C has an
ambiadjoint (−)⊕(−) such that the unit (iA, iB) : (A,B)→ (A⊕B,A⊕B)
of the adjunction (−) ⊕ (−) a ∆, is a section of the counit (pA, pB) : (A ⊕
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B,A⊕B)→ (A,B) of the adjunction ∆ a (−)⊕(−), i.e. (pA◦iA, pB◦iB) =
(idA, idB) for A,B ∈ C.

Proof. The implication from left to right is routine. For the other direction,
a right adjoint to the diagonal is well-known to fix binary products, and du-
ally, a left adjoint fixes binary coproducts. Thus it remains to check that the
required equations governing pA, pB, iA and iB are satisfied. By naturality,
the diagram

A A⊕B B

A A⊕ C C

iA pB

iA pC

idA fidA ⊕ f

commutes for any f . Thus pBAiA is coconstant and by duality it is constant,
so it is zero. By symmetry this holds also for pAiB. As (pA ◦ iA, pB ◦ iB) =
(idA, idB) by assumption, the result follows from Lemma 3.2.

4. Examples

Given the results of the previous section, genuinely new examples must be in
categories that have neither all binary biproducts nor zero morphisms. One
flavor of examples stems from objects that admit few maps in and out of
them.

Definition 4.1. An object A of a category is called subterminal if for any
object B there is at most one morphism B → A.

Proposition 4.2. If an object A is subterminal both in C and in Cop, then
(A, id, id, id, id) is the biproduct A⊕ A in C.

• In Set (or indeed any topos) the biproduct ∅⊕∅ exists and is the empty
set.

• In any preorder A⊕B exists if and only if A ∼= B.

- 236 -



M. KARVONEN BIPRODUCTS WITHOUT POINTEDNESS

• In the category of fields and ring homomorphisms Proposition 4.2 tells
us that F ⊕ F exists and is isomorphic to F whenever F is a prime
field.

However, not all novel examples fall under Proposition 4.2.

• Let C be any category with biproducts, and let D be any non-empty
category. Then in the coproduct category CtD, the biproduct A⊕B
exists whenever A,B ∈ C. More concretely, in Ab t Set the binary
biproduct of any two abelian groups exists and is computed just as in
Ab, even though Ab t Set lacks zero morphisms.

• A function f : (X, dX) → (Y, dY ) between metric spaces is non-
expansive if dX(x, y) ≥ dY (f(x), f(y)) for all x, y ∈ X . It is contrac-
tive if there is some c ∈ [0, 1) such that cdX(x, y) ≥ dY (f(x), f(y))
for all x, y ∈ X . Let Met be the category of metric spaces and non-
expansive maps, and let Con be the category of contractions. More
specifically, let N denote the monoid of natural numbers. Then Con
is the full subcategory of [N,Met] with objects given by contractive
endomorphisms. In Con, the terminal object is ! : {∗} → {∗}, and for
any s in Con, the biproduct s⊕! exists if and only if s has a (necessar-
ily unique) fixed point.

• Let C be the category of commutative and cancellative semigroups,
that is, of sets equipped with a binary operation + that is associative,
commutative, and furthermore satisfies the implication x + y = x +
z ⇒ y = z. Given objects A and B of C, the biproduct A⊕ B exists
iff either both A and B are empty, or if both A and B have a neutral
element, in which case A⊕B can be constructed just as in Ab.
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