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1. Introduction

The notion of multi-pointed category has in recent years been intro-
duced and studied as a setting where certain pointed and non-pointed
contexts of interest in Categorical and Universal Algebra can be treated
simultaneously. A multi-pointed category is simply a category C equipped
with an ideal N of morphisms in the sense of Ehresmann [6], i.e. a
collection of morphisms in C such that fg ∈ N whenever f ∈ N or
g ∈ N . The pointed context is captured by taking N to be the class
of zero morphisms in a pointed category, while non-pointed settings,
which are referred to as the total context, are captured by choosing
N to be the class of all morphisms of a category. This has allowed
the unification and extension of various results and characterizations
known in pointed and non-pointed Categorical Algebra to the context
of multi-pointed categories. First, in the article [12] the authors in-
troduced the notion of a multi-pointed category with a good theory of
ideals and unified results from the realm of ideal determined categories,
on one hand, and Barr-exact Goursat categories, on the other. Next,
in [11], notions of permutability of equivalence relations in multi-pointed
categories were introduced and studied in connection with certain di-
agrammatic characterizations, known for regular subtractive categories
and Goursat categories. Furthermore, in [10] the authors considered
generalizations of homological lemmas, such as the 3 × 3 Lemma and
the Short Five Lemma. In non-pointed contexts the appropriate notion
of exact sequence is that of exact fork, which is a sequence consist-
ing of a kernel pair together with its coequalizer. Then, in a more
general multi-pointed context, the pertinent notion becomes that of a
star-exact sequence, which unifies the pointed and non-pointed versions,
and allows for the aforementioned multi-pointed homological lemmas.
Finally, in [14] the notion of 2-star-permutable category was studied as
a common extension of both regular subtractive and regular Mal’tsev
categories and characterizations of these categories via diagrams such
as regular pushouts were generalized to a multi-pointed context. In the
present note we want to add to this list a characterization of projective
covers of regular 2-star-permutable multi-pointed categories.

There has been a lot of interest and work carried out in the litera-
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ture on obtaining characterizations for the projective covers of various
types of regular categories. The first result of this kind appears already
in the work of Freyd in [7] in connection with his construction of the
free abelian category on a given (pre-)additive one. About 3 decades
later, Carboni and Vitale gave beautiful constructions for free regular
and exact categories. Since abelian categories are in particular exact,
these constructions can be used to recover in a nice conceptual manner
the aforementioned one by Freyd, as well as other results on abelian
categories (see [19]). One important feature of these regular and exact
completions is that they apply to any category which is merely weakly
lex, i.e. which is only required to have weak finite limits [5]. Then it
turns out that any such category C appears as a projective cover inside
both its regular completion and its exact completion and, furthermore,
that a free exact category is the exact completion of any one of its
projective covers. Such and other motivations have led various authors
to establish characterizations for the projective covers of regular and
exact categories that are extensive [15], Mal’tsev [19], protomodular,
semi-abelian [8], unital, subtractive [13], Goursat [18] and others.

In this note we look at regular Mal’tsev and regular subtractive cat-
egories as special cases of the notion of 2-star-permutable category, fol-
lowing the line of research in [11], [14]. The aim here is to obtain a char-
acterization of the projective covers of 2-star-permutable multi-pointed
categories, thus unifying and subsuming the known characterizations in
the Mal’tsev [19] and subtractive [13] settings. To accomplish this we
first prove that 2-star-permutability is equivalent to a certain symme-
try property of reflexive relations (3.2, 3.4), which specializes to known
characterizations in both the total and pointed contexts. In the total
context it becomes the well-known statement [4] that a regular category
is Mal’tsev if and only if every reflexive relations in it is symmetric, while
in the pointed context it says that a regular category is subtractive if
and only if every reflexive relation in it is 0-symmetric [1, 16]. We then
introduce the appropriate “weakening” of this symmetry property in the
context of multi-pointed categories with only weak finite limits and weak
kernels (3.8) and prove that this weakened property gives the desired
characterization of projective covers (3.12). This result yields, in par-
ticular, a characterization of when the regular completion and the exact
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completion of a category with weak finite limits are 2-star-permutable.
Finally, we apply the result to the case of varieties of universal alge-
bras which have a non-empty set of constants, allowing us to recover
the syntactic conditions defining E-subtractive varieties in the sense of
Ursini [20].

Acknowledgments: The author would like to acknowledge with
gratitude Professor Marino Gran for numerous helpful conversations
and suggestions on the topic and presentation of this paper. He also
thanks the referee for useful comments that improved the quality of the
paper.

2. Preliminaries

2.1 Regular categories and relations

A finitely complete category E is called regular when every kernel
pair in E has a coequalizer and moreover regular epimorphisms in E are
stable under pullbacks. Equivalently, E is regular if it admits (regu-
lar epi, mono) factorizations of morphisms and these are stable under
pullback.

A relation R from X to Y in any finitely complete category is a
subobject 〈r0, r1〉 : R � X × Y . When Y = X we will say that R is a

relation on X and also denote this by a parallel pair R
r0 //

r1
// X . The

opposite relation R◦ is the relation given by 〈r1, r0〉 : R � Y ×X. Any
morphism f : X → Y can be considered as a relation by identifying it
with its graph 〈1X , f〉 : X � X × Y . Then we will write f ◦ to denote
the opposite of the latter relation.

In the context of a regular category E [2] it is possible to define a
composition of relations which, moreover, is associative. If R is a re-
lation from X to Y and S is a relation from Y to Z, then we denote
their composition by SR, which is a relation from X to Z. The diag-
onal relations ∆X = 〈1X , 1X〉 : X � X × X act as identities for the
composition of relations on either side. Furthermore, if a relation R is
given by the subobject 〈r0, r1〉 : R � X × Y , then we can write it as
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R = r1r
◦
0 in the above notation.

If Eq(f) denotes the kernel pair of a morphism f : X → Y , then as
a relation on X we have Eq(f) = f ◦f .

Let f : X → Y be a morphism and S be a relation on Y . We
denote by f−1(S) the inverse image of the relation S along f , which is
the relation on X defined as the pullback of the subobject S � Y × Y
along the morphism f × f : X ×X → Y × Y . Then in the calculus of
relations we have that f−1(S) = f ◦Sf .

2.2 Projective covers

Let E be a category with a full subcategory C. We say that C is a
projective cover of E if the following two conditions hold:

• Every object of C is a regular projective in E .

• For every object E ∈ E there exists a regular epimorphism P � E
with P ∈ C.

A regular epimorphism P � E with P ∈ C is called a C-cover of E.
Even if E has limits of some type, C will in general only have weak

limits of that type. So if E has finite limits (e.g. if it is regular), then C
will be weakly lex, i.e. will have all weak finite limits. To construct the
weak limit of a diagram in C one first constructs the actual limit in the
ambient category E and then one takes a C-cover of the latter limit.

Finally, every weakly lex category C appears as a projective cover
inside both its regular completion Creg and its exact completion Cex in
the sense of [5].

2.3 Multi-pointed categories and stars

We first recall here some basic notions introduced in [12].
A multi-pointed category is a pair (C,N ) consisting of a category

C and a distinguished class N of morphisms in C which is an ideal.
The latter, as mentioned in the introduction, means that for any pair
of arrows f : X → Y and g : Y → Z in C, either f ∈ N or g ∈ N
implies that gf ∈ N . The elements of N are usually referred to as null
morphisms.
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We will often by abuse say that C is a multi-pointed category and
suppress the ideal N if there is no possibility of confusion. Before mov-
ing on, let us recall here the main examples of multi-pointed categories
that we shall consider.

• A simple first example of multi-pointed category is obtained by
taking any category C and defining N to be the collection of all
morphisms in C. This class of examples is known as the total
context.

• A second example of importance arises when C is pointed (i.e. has
a zero object) andN is defined as the collection of zero morphisms,
i.e. the morphisms that factor through the zero object. This
general class of examples is referred to as the pointed context.

• The previous example can in fact be seen as a special case of a
more general class of multi-pointed categories, the so called proto-
pointed context introduced in [12]. This refers to a category C in
which every object has a smallest subobject and where a morphism
f : X → Y is defined to be a null morphism precisely when it fac-
tors through the smallest subobject of Y . In the case of a variety
V of universal algebras these morphisms are exactly those whose
image is the subalgebra EY of Y generated by the constants. This
latter situation has been called the algebraic proto-pointed context
in [11] and is actually the motivation for the term “multi-pointed”.
Indeed, a proto-pointed category is the category-theoretic notion
that corresponds to varieties with potentially more than one con-
stant, such as unital rings and Heyting algebras, just as that of
pointed category corresponds to varieties possessing a unique con-
stant.

An N -kernel of a morphism f : X → Y is a morphism k : K →
X such that fk ∈ N and which is universal with this property, i.e.
whenever fg ∈ N there is a unique morphism u such that ku = g.
Note that k is then necessarily a monomorphism. Observe also that in
the total context the N -kernels are just identities, while in the pointed
context we obtain the usual notion of kernel.
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In the more general proto-pointed setting the kernel of f is generally
the inverse image of the smallest subobject of Y , which in the algebraic
case becomes precisely the subalgebra of X consisting of those elements
that map to the subalgebra generated by the constants in Y . So for
example, if f : X → Y is a morphism in the proto-pointed category
Heyt of Heyting algebras, then the N -kernel of f is the subalgebra
{x ∈ X|f(x) = 0∨ f(x) = 1}. Similarly, if f lives in the category Ring
of unitary rings, then its kernel in the above sense is {x ∈ X|(∃n ∈
Z)f(x) = n ·1}. Note how the latter is indeed a subring of X and hence
defines a subobject in the category Ring, whereas the ordinary kernel
does not.

Since we shall have occasion to deal with categories that only have
weak finite limits, we will also correspondingly require the notion of
weak N -kernel of a morphism f : X → Y . This is defined as N -
kernels above, but by only requiring existence of the factorization, not
necessarily uniqueness.

If N -kernels exist for all morphisms in C, then we shall say that C
is a multi-pointed category with kernels. Similarly for weak N -kernels.

We also record here for future use the following basic observation on
the behavior of N -kernels under pullback. For the sake of completeness,
we also give the easy proof.

Lemma 2.1. Consider the following pullback square in a multi-pointed
category (C,N ).

K ′
k′ //

g′

� �

X

g

��

K
k
// Y

If k is the N -kernel of some f : Y → Z, then k′ is the N -kernel of
fg : X → Z.

Proof. Let h : A → X be such that fgh ∈ N . Then, since k is the
N -kernel of f , there exists a unique u : A → K such that ku = gh.
Now the universal property of the pullback gives a unique v : A → K ′

such that g′v = u and k′v = h. Finally, note that k′ is monomorphic
because k is monomorphic.
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A pair of morphisms r = (r0, r1) : R ⇒ X is called a star if r0 ∈
N . When it is moreover jointly monomorphic, we say that it is a star
relation. In the total context this just defines a relation in the ordinary
sense, whereas in the pointed case it is a relation whose first projection
is zero. However, a more motivating example can be identified in the
proto-pointed setting of the category Ring of unitary rings. Given any
ideal I ⊆ A inside the unitary ring A, we have an associated star relation
RI on A defined by RI := ⋃

n∈Z
{n} × (n + I). This star relation clearly

uniquely determines the ideal I, but furthermore has the advantage that
it is a subalgebra of A×A and hence lives in the category Ring, while
the ideal I itself generally does not.

Given a relationR on an objectX represented by the jointly monomor-
phic pair r = (r0, r1) : R ⇒ X and assuming N -kernels exist, we de-
fine the star of R to be the relation R∗ on X represented by the pair
(r0k0, r1k0) where k0 : K0 → R is the N -kernel of r0. Equivalently, one
could say that R∗ is the largest subrelation of R which is a star. In par-
ticular, when R = Eq(f) is the kernel pair of a morphism f : X → Y ,
then R∗ = Eq(f)∗ is called the star-kernel of f .

In the context of a regular multi-pointed category it is possible to
use the usual calculus of relations to develop a calculus of star relations,
as is done in [11]. We shall not really need much of this though. We
just record here the fact that, given relations R, S on an object X, we
have that (RS)∗ = RS∗.

Finally, we record an observation on how the star of a relation on an
object X can be computed as a certain pullback involving the N -kernel
κX : KX � X of the identity 1X : X → X. Observe that this is just
a generalization of the fact that the 0-class of a relation R � X × X
in a pointed category can be computed as the pullback of that relation
along 〈0, 1〉 : X → X ×X. Since the more general statement does not
appear in the literature, we also provide a proof.

Lemma 2.2. Consider a relation R
r0 //

r1
// X in the multi-pointed cate-

gory (E ,N ) with kernels. Then the N -kernel k0 of r0 is obtained as the
following pullback.
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K0 //
k0 //

��

〈r0,r1k0〉
��

R� �

〈r0,r1〉
��

KX ×X //κX×1X

// X ×X

where κX : KX � X is the N -kernel of the identity 1X : X → X.

Proof. We consider the N -kernel k0 : K0 � R of r0 and we will show
that there is a pullback square as indicated.

First, observe that r0k0 ∈ N implies that there is a r0 : K0 → KX

such that κXr0 = r0k0, giving the indicated morphism K0 → KX ×X
in the above commutative diagram.

Now assume that f = 〈f0, f1〉 : Z → KX × X and g : Z → R are
such that (κX × 1X)f = 〈r0, r1〉g. Then r0g = κXf0 and r1g = f1.
Since κX ∈ N , the first of these implies that r0g ∈ N and hence there
exists a unique h : Z → K0 such that k0h = g. Then also 〈r0, r1k0〉h =
〈r0h, r1k0h〉 = 〈r0h, r1g〉 = 〈f0, f1〉 = f , where r0h = f0 follows because
κXr0h = r0k0h = r0g = κXf0 and κX is monomorphic.

3. 2-star-permutable categories

Let us recall the definition of 2-star-permutability from [11].

Definition 3.1. Let C be a regular multi-pointed category with kernels.
We say that C is 2-star-permutable if for any two effective equivalence
relations R, S on an object X ∈ C we have RS∗ = SR∗.

In the total context, since the star of any relation is that relation
itself, the definition says that effective equivalence relations are per-
mutable, which yields precisely the regular Mal’tsev categories [4].

In the case of a pointed variety of universal algebras, the star of
a relation R on X is the subrelation R∗ = {(0, x) ∈ X × X|(0, x) ∈
R}. More generally, in any pointed context, the star of the relation
〈r0, r1〉 : R � X × X is the relation 〈0, c〉 : C � X × X where
c : C � X is the 0-class of R, i.e. where the mono c : C � X is given
by c = r1 ker(r0). Thus, the above definition says precisely that effective
equivalence relations are 0-permutable and this is known to characterize
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regular subtractive categories (see [16], [11] and [1] for the varietal case).

We first want to present an equivalent characterization of 2-star-
permutability in terms of a symmetry property of reflexive relations.
The symmetry property in question will be the following.

Definition 3.2. Let E be a multi-pointed category with kernels and

R
r0 //

r1
// X a relation in E. We say that R is left star-symmetric if

R∗ ≤ (R◦)∗. We say that it is star-symmetric if R∗ = (R◦)∗, i.e. if both
R and R◦ are left star-symmetric.

Observe that in the pointed context left star-symmetry becomes the
usual notion of left 0-symmetry, i.e. the statement that R satisfies
the implication (0, x) ∈A R =⇒ (x, 0) ∈A R for any generalized
element x : A→ X of X. In an algebraic proto-pointed setting it is the
implication (e, x) ∈A R =⇒ (x, e) ∈A R for every e ∈ EX , where EX
is the subalgebra generated by the constants. In the total context on
the other hand, R being left star-symmetric just means that R ≤ R◦,
which is to say that R is a symmetric relation in the ordinary sense. In
particular, in this case left star-symmetry and star-symmetry become
equivalent.

Indeed, note more generally that for any generalized elements x, y :
A → X in E we have that (x, y) ∈A R∗ precisely if (x, y) ∈A R and
x ∈ N . Thus, R being left-star symmetric is saying that whenever
(n, y) ∈A R with n ∈ N , then also (y, n) ∈A R.

We will need the following lemma, from [11], for the proof of our
next proposition.

Lemma 3.3. For any morphism f : X → Y and every relation S on Y
in a multi-pointed category we have (f−1(S))∗ = (f−1(S∗))∗.

We can now present new equivalent characterizations of 2-star-permutability
using the notion of star-symmetry. In fact, this allows us to also deduce
that 2-star-permutability is equivalent to having the equality RS∗ =
SR∗ for any two equivalence relations R, S on the same object, not just
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effective ones. This does not seem to have appeared in the literature
before.

Proposition 3.4. For a regular multi-pointed category C with kernels
the following are equivalent:

1. C is 2-star-permutable.

2. For any two equivalence relations R, S on an object X ∈ C we
have RS∗ = SR∗.

3. Every reflexive relation E in C is left star-symmetric, i.e. E∗ ≤
(E◦)∗.

4. Every reflexive relation E in C is star-symmetric, i.e. E∗ = (E◦)∗.

Proof. 1. =⇒ 4. Let E
e0 //

e1
// X be a reflexive relation with diagonal

δ : X → E. Set R := Eq(e0) = e◦0e0 and S := Eq(e1) = e◦1e1, so
that both R and S are effective equivalence relations on E. Observe
that δ−1(SR) = δ◦e◦1e1e

◦
0e0δ = e1e

◦
0 = E and δ−1(RS) = δ◦e◦0e0e

◦
1e1δ =

e0e
◦
1 = E◦. Now using the assumption (1) and 3.3 we have

RS∗ = SR∗ =⇒ (RS)∗ = (SR)∗

=⇒ δ−1((RS)∗) = δ−1((SR)∗)
=⇒ δ−1((RS)∗)∗ = δ−1((SR)∗)∗

=⇒ δ−1(RS)∗ = δ−1(SR)∗

=⇒ (E◦)∗ = E∗.

4. =⇒ 2. Consider the reflexive relation E := SR on X. Then we
have E∗ = (E◦)∗ =⇒ (SR)∗ = (RS)∗ =⇒ SR∗ = RS∗.

2. =⇒ 1. Clear.
3. ⇐⇒ 4. Clear by considering both reflexive relations E and

E◦.

It should be observed that conditions (3) and (4) above can be for-
mulated in any finitely complete multi-pointed category (C,N ) with
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kernels, thus enlarging the class of categories for which the notion of 2-
star-permutability can be considered to include non-regular ones. This
generalizes the fact that the notion of Mal’tsev category can be for-
mulated as a finitely complete category where every reflexive relation
is symmetric [4], as well as the fact that subtractive categories can be
defined as pointed finitely complete categories where every reflexive re-
lation is 0-symmetric [16]. The following definition therefore appears
pertinent.

Definition 3.5. A multi-pointed category (C,N ) is said to be star-
Mal’tsev if every reflexive relation in C is left star-symmetric. Equiva-
lently, if every reflexive relation in C is star-symmetric.

With this terminology, 3.4 says that a regular multi-pointed category
is 2-star-permutable if and only if it is star-Mal’tsev.

We now want to characterize the projective covers of 2-star-permutable
regular multi-pointed categories, or, in other words, of regular star-
Mal’tsev categories. In doing so, the following notion will play a key
role. It is the appropriate adaptation of the notion of star-symmetry to
the context of a multi-pointed category with only weak finite limits and
weak kernels.

Definition 3.6. Let (C,N ) be a weakly lex multi-pointed category with

weak N -kernels. A graph G
g0
//

g1
// X in C is said to be left star-symmetric

if , given weak N -kernels k0 : K0 → G and k1 : K1 → G of g0 and g1
respectively, there exists a σ : K0 → K1 such that the following diagram
serially commutes

K0
g0k0

&&g1k0
&&

σ // K1

g1k1
xx

g0k1

xx

X

i.e. such that g1k1σ = g0k0 and g0k1σ = g1k0 both hold. We say that it

is star-symmetric if both G and its opposite graph G
g1
//

g0
// X are left

star-symmetric.
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In other words, a graph G is left star-symmetric if a “weak star” of
G factors through a weak star of the opposite graph. Note also that
the definition does not depend on the chosen weak N -kernels because
any two weak N -kernels of the same morphism factor through each
other. Furthermore, it is clear that when G is a relation and N -kernels
exist the definition says precisely that G∗ ≤ (G◦)∗, i.e. that G is a left
star-symmetric relation.

Remark 3.7. It is easy to see that in the total context we get the usual
definition of a symmetric graph, since both N -kernels are identities in
this case. In the pointed context one of the two commutativities required
above becomes trivial because g0k0 = 0 = g1k1 and we obtain the notion
of a left 0-symmetric graph.

We now introduce the categories that will appear in our characteriza-
tion of the projective covers of 2-star-permutable categories. These are
the multi-pointed categories with weak finite limits and weak kernels
which satisfy the appropriate “weakening” of the star-Mal’tsev prop-
erty. Our terminology is inspired by that of Rosický-Vitale in [19] for
the total context.

Definition 3.8. We will say that a weakly lex multi-pointed category C
with weak kernels is star-G-Mal’tsev if every reflexive graph in C is left
star-symmetric. Equivalently, if every reflexive graph is star-symmetric.

In what follows, we will be considering regular categories E together
with a projective cover C of E . We are thus interested in how ideals of
morphisms in the projective cover are related to ideals of morphisms in
the ambient regular category. A thorough analysis of this situation is
contained in [9], from which we now borrow and record below the main
points that will be of use in the remainder of this paper.

First, if N is an ideal of morphisms in the regular category E , then
we denote by NC the restriction of N to C. It is then clear that NC is
an ideal in C.

Second, if we are given an ideal N in the projective cover C, then we
define N E to be the collection of morphisms f : X → Y in E for which
there exists a commutative square
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P n //

p
����

Q

q
��� �

X
f
// Y

where p and q are regular epimorphisms and n ∈ N . It is again not
hard to check that N E is an ideal in E .

Lemma 3.9. [9] Let E be a regular category having a projective cover
C.

1. For any ideal N in E, if E has N -kernels, then C has weak NC-
kernels, which can be computed by taking a projective cover of the
domain of the N -kernel in E.

2. For any ideal N in C, the category C has weak N -kernels if and
only if E has N E-kernels.

3. For any ideal N in C we have (N E)C = N .

4. For any ideal N in C, regular epimorphisms are N E-saturating in
E (see 3.11).

Before presenting our characterization, we find it useful to isolate
the following fundamental observation.

Lemma 3.10. Let C be a projective cover of the regular multi-pointed

category (E ,N ) with kernels. Consider a graph G
g0
//

g1
// X in C with its

image factorization 〈g0, g1〉 = G
q
// // R //

〈r0,r1〉
// X ×X in E. Then

G is a left star-symmetric graph if and only if R is a left star-symmetric
relation.

Proof. Consider N -kernels ki : Ki → R of ri, for i = 0, 1. Form the
pullbacks below for i = 0, 1 and then take C-covers εi : Pi � K ′i.
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K ′i
vi // //

� �

k′i
��

Ki��

ki

��

G q
// // R

By 2.1 we know that k′i : K ′i � G is the N -kernel of riq = gi. Thus, we
have that ui := k′iεi : Pi → G is a weak N -kernel of gi in C for i = 0, 1
by 3.9.

Assume first that R is left star-symmetric, so that there exists a
morphism σ : K0 → K1 such that r1k1σ = r0k0 and r0k1σ = r1k0. By
projectivity of P0 and the fact that v1ε1 is a regular epimorphism, there
exists a morphism σ̃ : P0 → P1 making the following diagram commute.

P0
v0ε0 // //

σ̃

��

K0
r0k0

))r1k0
))σ

��

X

P1 v1ε1
// // K1

r1k1

55

r0k1

55

Now we have

g1u1σ̃ = r1qk
′
1ε1σ̃

= r1k1v1ε1σ̃

= r1k1σv0ε0

= r0k0v0ε0

= r0qk
′
0ε0

= g0u0

and similarly
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g0u1σ̃ = r0qk
′
1ε1σ̃

= r0k1v1ε1σ̃

= r0k1σv0ε0

= r1k0v0ε0

= r1qk
′
0ε0

= g1u0

proving that G is left star-symmetric.

Conversely, assume that G is left star-symmetric. This means that
there exists a σ : P0 → P1 such that g1u1σ = g0u0 and g0u1σ = g1u0.
We can then again calculate as follows:

r1k1v1ε1σ = r1qk
′
1ε1σ

= g1k
′
1ε1σ

= g1u1σ

= g0u0

= r0qk
′
0ε0

= r0k0v0ε0

r0k1v1ε1σ = r0qk
′
1ε1σ

= g0k
′
1ε1σ

= g0u1σ

= g1u0

= r1qk
′
0ε0

= r1k0v0ε0

This means that the square below commutes and so we obtain the in-
dicated morphism σ̃ because v0ε0 is a regular epimorphism and 〈r1k1, r0k1〉
is monomorphic, being the star of the relation R◦.

- 417 -



V. Aravantinos-Sotiropoulos Projective Covers

P0
v0ε0 // //

v1ε1σ

��

K0��

〈r0k0,r1k0〉

��

σ̃

xx

K1 // 〈r1k1,r0k1〉
// X ×X

The commutation of the bottom triangle is precisely left star-symmetry
of R.

In order to prove our main result, we will need to impose an ad-
ditional condition on the regular category E regarding the behavior of
regular epimorphisms with respect to N -kernels. This condition is fa-
miliar from the literature (see [9,11,14]) and is indeed mild enough that
it includes all examples of interest. We now proceed to introduce the
necessary notions.

Consider any objectX in the multi-pointed category (E ,N ). We will
denote by κX : KX � X the N -kernel of the identity morphism 1X .
Observe that by definition the generalized elements of KX correspond
precisely to the generalized elements of X that are in N . Hence, KX

should be thought of as consisting of the “trivial elements” of the object
X. Indeed, in the algebraic proto-pointed setting KX is exactly what
we have earlier in the text denoted by EX , namely the subalgebra of X
generated by the constants of the theory.

Now given any morphism f : X → Y in E , we have a uniquely
induced morphism f̃ : KX → KY making the following square commute.

KX

f̃
��

//
κX // X

f
��

KY
//
κY

// Y

Then we can introduce the following definition.

Definition 3.11. A morphism f : X → Y in a multi-pointed category
(E ,N ) is called saturating if the induced morphism f̃ : KX → KY is a
regular epimorphism.
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Note that in the pointed context all morphisms are saturating, since
KX = 0 for any object X. The same holds in any algebraic proto-
pointed setting, since every element e ∈ X which is generated by con-
stants is preserved under all homomorphisms f : X → Y . Furthermore,
it is not hard to see that regular epimorphisms are saturating in any
proto-pointed context, not just the varietal one. In the total context,
on the other hand, it is clear that the saturating morphisms are exactly
the regular epimorphisms. In fact, that all regular epimorphisms are
saturating is precisely what we shall require below.

Now we can present the main result of this note.

Theorem 3.12. Let C be a projective cover of the regular multi-pointed
category with kernels (E ,N ) and assume regular epimorphisms in E are
saturating. Then (E ,N ) is 2-star-permutable if and only if (C,NC) is
star-G-Mal’tsev.

Proof. Assume first that E is 2-star-permutable and consider any re-

flexive graph G
g0
//

g1
// X in C with splitting δ : X → G. Consider its

image factorization 〈g0, g1〉 = G
q
// // R //

〈r0,r1〉
// X ×X in the reg-

ular category E . Then the relation R on X is reflexive as well, since
riqδ = giδ = 1X for i = 0, 1. Since E is 2-star-permutable, we know by
3.4 that R must be star-symmetric. Now 3.10 implies that G is (left)
star-symmetric.

Conversely, assume that (C,NC) is star-G-Mal’tsev. Consider any

reflexive relation E
e0 //

e1
// X in E . We want to show that E is left star-

symmetric.
Take a C-cover p : X̃ � X of X and consider the inverse image

relation E ′ := p−1(E). i.e. form the following pullback
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E ′ //
〈e′0,e

′
1〉 //

q

����

X̃ × X̃

p×p
�� ��

E //
〈e0,e1〉

// X ×X
Now again take a C-cover ε : G� E ′ and set g0 := e′0ε and g1 := e′1ε, so

that we have a graph G
g0
//

g1
// X̃ in C. Observe that the relation E ′ is

reflexive, being the inverse image of a reflexive relation. It follows that
the graph G is also reflexive. Indeed, if δ′ : X̃ → E ′ is the diagonal
of E ′, then by projectivity of X̃ we can lift to a δ̃ : X̃ → G such that
εδ̃ = δ′ and then giδ̃ = e′iεδ̃ = e′iδ

′ = 1X̃ for i = 0, 1.
Now consider N -kernels ki : Ki → E of ei and k′i : K ′i → E of e′i

in E for i = 0, 1. We then have induced morphisms ui : K ′i → Ki such
that kiui = qk′i. We claim that the ui are regular epimorphisms.

K ′i //
k′i //

ui

����

E ′

q
����

Ki
//

ki

// E

To see this for u0 we consider the following two commutative di-
agrams. In the first one the right-hand square is a pullback by con-
struction, while the left-hand square is a pullback by 2.2. In the second
diagram we know only that the right-hand square is a pullback, again
by 2.2.

K ′0 //
k′0 //

〈e′0,e
′
1k
′
0〉
� �

E ′
q

// //
��

〈e′0,e
′
1〉
��

E��

〈e0,e1〉
��

KX̃ × X̃ κX̃×1
X̃

// X̃ × X̃
p×p

// // X ×X

K ′0
u0 // //

〈e′0,e
′
1k
′
0〉
� �

K0 //
k0 //

〈e0,e1k0〉
��

E��

〈e0,e1〉
��

KX̃ × X̃ p̃×p
// // KX ×X κX×1X

// X ×X
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Since (p × p)(κX̃ × 1X̃) = (κX × 1X)(p̃ × p), we deduce that the
outer rectangle in the second diagram is a pullback. Then by the usual
pullback-cancellation property we have that the left-hand square is a
pullback as well. But since both p and p̃ are regular epimorphisms, so
is p̃× p, since E is regular, and hence we deduce that the pullback u0 is
a regular epimorphism.

By the assumption that C is star-G-Mal’tsev, the reflexive graph G is
left star-symmetric and so by 3.10 its image relation E ′ is also left star-
symmetric. Thus, there exists a σ′ : K ′0 → K ′1 such that e′1k′1σ′ = e′0k

′
0

and e′0k′1σ′ = e′1k
′
0.

Finally, consider the commutative square below.

K ′0
u0 // //

u1σ′

��

K0

〈e0k0,e1k0〉

��

σ

xx

K1 // 〈e1k1,e0k1〉
// X ×X

Since u0 is a regular epimorphism and 〈e1k1, e0k1〉 is monomorphic (be-
ing the star of the relation E◦), we get the indicated factorization
σ : K0 → K1, which shows that E is left star-symmetric. Thus, by
3.4 it follows that E is 2-star-permutable.

The above result yields a characterization of when the regular and
exact completion (in the sense of [5]) of a weakly lex multi-pointed
category are 2-star-permutable.

Corollary 3.13. Let (C,N ) be a weakly lex multi-pointed category with
weak kernels. Then (Creg,N Creg) is 2-star-permutable if and only if
(C,N ) is star-G-Mal’tsev.

Proof. C appears as a projective cover inside Creg. Then 3.12 indeed
applies to give the result because by 3.9 we know that Creg has N Creg -
kernels, regular epimorphisms in Creg areN Creg -saturating and (N Creg)C =
N .

In the exact same way we get the corresponding result about the
exact completion Cex.
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Corollary 3.14. Let (C,N ) be a weakly lex multi-pointed category with
weak kernels. Then (Cex,N Cex) is 2-star-permutable if and only if (C,N )
is star-G-Mal’tsev.

Remark 3.15. We should comment here on how 3.12 extends the char-
acterizations of projective covers for regular Mal’tsev categories, due to
Rosicky-Vitale [19], and for regular subtractive categories, due to Gran-
Rodelo [13].

For the Mal’tsev case, it is immediately clear from the definitions
that we obtain exactly the same characterization as in [19], i.e. our
star-G-Mal’tsev categories are exactly the G-Mal’tsev ones introduced
therein. Note that in that paper G-Mal’tsev is initially defined by re-
quiring that every reflexive graph be both symmetric and transitive,
but this is equivalent to just requiring symmetry and that is in fact
implicitly proved in [19].

In the pointed context, it is not immediate from the definitions that
our star-G-Mal’tsev, which we should probably call 0-G-Mal’tsev in this
case, yields the w-subtractive categories of Gran-Rodelo [13]. Of course,
since both characterize projective covers of the same class of regular
categories, they turn out to be equivalent, since any weakly lex category
can always be considered a projective cover of its regular completion.
On the other hand, a direct proof of the equivalence of the two notions
is also not too hard to construct.

Now suppose we are in an algebraic proto-pointed context and that
the set of constants of the variety is nonempty. It was proved in [11] that
in this case 2-star-permutability is equivalent to a priori more general
properties such as 3-star-permutability and the symmetric saturation
property, but also to the syntactic condition defining E-subtractive vari-
eties in the sense of [20]. We would like to conclude this note by showing
how the equivalence with the latter notion can also directly be obtained
from our characterization in terms of star-symmetry.

Corollary 3.16. Let V be a variety of universal algebras and let EV 6= ∅
be its algebra of constants (i.e. the free V-algebra on the empty set).
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Then V is 2-star-permutable if and only if the following syntactic con-
dition holds:

For every e ∈ EV there exists a binary term se(x, y) such that
se(x, x) = e and se(x, e) = x.

Proof. Suppose 2-star-permutability holds and fix any e ∈ EV. We then

consider a graph F (x, y)
g0
//

g1
// F (x) between free algebras on 2 and 1

generator respectively, where g0, g1 are defined by setting g0(x) = x,
g0(y) = e and g1(x) = g1(y) = x. This graph is reflexive, since it
is clearly split by the map δ : F (x) → F (x, y) defined by δ(x) = x.
Since free algebras are projective, we can apply 3.12 (i.e. C here is the
full subcategory of free algebras) to deduce that this graph must be
star-symmetric.

Now we have (e, x) = (g0(y), g1(y)), so by the star-symmetry we
must also have (x, e) = (g0(se), g1(se)) for some se(x, y) ∈ F (x, y).
Thus, x = g0(se(x, y)) = se(x, e) and e = g1(se(x, y)) = se(x, x).

Conversely, suppose we have binary terms se(x, y) for all e ∈ EV
with the indicated properties. We will show that any reflexive relation
R � X ×X in the variety V is left star-symmetric.

Indeed, assume that (e, x) ∈ R for some e ∈ EX and x ∈ X. Since
R is reflexive, we also have (x, x) ∈ R. By compatibility with the
operations we then must have (se(x, e), se(x, x)) ∈ R, i.e. that (x, e) ∈
R. This concludes the proof.

As particular examples of E-subtractive varieties one has the cate-
gories Ring of unitary rings, as well as the categories Heyt, Bool of
Heyting and Boolean algebras respectively. These are all in fact already
Mal’tsev, but of course one also has examples of subtractive varieties
which are not, such as that of implication algebras [17].

Remark 3.17. Since our main result is stated for any regular category,
without requiring exactness, it can equally well be applied to quasi-
varieties of universal algebras, since these are still regular categories.
This encompasses further interesting examples, such as the category
RedRng of reduced rings, i.e. unitary rings R satisfying (∀x ∈ R)(∀n ≥
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1)(xn = 0 =⇒ x = 0). As a non-Mal’tsev example here one has the
quasi-variety of BCK algebras (see [3], for example).
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