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Résumé. Nous étudions le concept de structure de Galois et epimorphisme
de Galois dans un contexte général. Notamment, une structure de Galois pour
un épimorphisme π : M → B dans une catégorie C est l’action d’un groupe
objet qui munit M d’une structure d’espace homogène dans la catégorie rel-
ative CB .
Abstract. We discuss the concept of Galois structure and Galois epimor-
phism in a general setting. Namely, a Galois structure for an epimorphism
π : M → B in some category C is the action of a group object that gives to
M the structure of principal homogeneous space in the relative category CB .
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1. Introduction

From its very starting point in the theory of polynomial equations with one
variable [12], Galois theory proposes a systematic use of the principal ho-
mogeneous structure of the space of solutions of an equation. This idea was
systematically applied by E. Vessiot [29] in his general approach to differ-
ential Galois theory. Today there are several Galois theories, with different
domains of application.

It is clear that there is some common mathematical core within all these
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theories. This is usually explained through analogy. Most texts dedicated to
several Galois theories develop them separately, establish some bridges, and
point out these analogies between them, as in the book of R. and D. Douady
[9].

There is a categorical approach to Galois theory initiated by Grothendieck
([14], see [10] for a more accessible exposition) and continued in [1] (see
also [16] ). This theory is further developed by Dubuc [11] and culminated
by Joyal-Tierney [17]. A different approach to Galois theory is considered
by G. Janelidze and F. Bourceux ([15], see also [2], chapter 5). This categor-
ical Galois theory does not cover some natural incarnations of Galois theory,
as differential Galois theory [25]. The main difference between Grothedieck
approach and ours is the following: we do not see the Galois group as a set-
theoretical group acting on an object but as a group object of the category.
This line of thinking is inspired by some facts of differential Galois theory.
For instance, the Galois group of a strongly normal extension [20] is an al-
gebraic group defined over the constants, which can be seen as a particular
kind a group object in the category of differential algebraic varieties. Some
years ago A. Pillay generalized E. Kolchin’s theory of strongly normal ex-
tensions [26]. A generalized strongly normal extension is a differential field
extension whose group of automorphisms admits a natural structure of dif-
ferential algebraic group, that is, a group object in the category of differential
algebraic varieties.

Our framework also explains how some Galois theories are naturally ex-
tended. Most of them allow Galois structures (Definition 2.7) with Galois
groups in some specific class of group objects in a category. By modifying
the category, or by extending the class of possible Galois groups we obtain
different extensions of Galois theory. For instance, classical Galois theory
extends to Hopf-Galois theory by allowing a broader class of group objects.

We give some examples of how the proposed general definitions apply
to the cases of classical Galois theory (algebraic and topological), and dif-
ferential Galois theory. Then we explore the category of foliated smooth
manifolds. Epimorphims in such category are partial Ehresmann conec-
tions. When examining Galois structures there naturally appear G-invariant
connections. This is not surprising, G-invariant connections were in fact in-
troduced in the context of Galois theory by E. Vessiot in the beggining to
20th century: they are the so-called automorphic systems appearing in [29].
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We prove uniqueness of the Galois group for the irreducible case, Theorem
4.3. Finally we compare the real smooth and the complex algebraic cases.

2. General definitions

2.1 Split of groupoid actions

Let us consider C a category with binary products, kernels of pairs of mor-
phisms, and a final object {?}. Thus, there are also fibered products (pull-
backs) as well as finite limits. We may define group objects and groupoid
objects in C.

Let G be a group object in C. For each object X , the set G(X) =
Hom(X,G) of X-elements of G is a group. An action of G in an object
M is a morphism,

α : G×M →M,

satisfying α ◦ (µ × IdM) = µ ◦ (IdG × α) and α ◦ ((eG ◦ πM) × IdM) =
IdM .1 The action α induces a group morphism α : G({?}) → Aut(M),
g 7→ α ◦ 〈g ◦ πM , IdM〉.

From the action α we can form the action groupoid GnM ⇒ M , with
objects of objects M and object of arrows G nM . The source map is the
projection π2 onto the second factor M , and the target map is α. In terms of
sets and elements, we have:

s(g, x) = x, t(g, x) = α(g, x), (h, gx) ◦ (g, x) = (hg, x).

Definition 2.1. We say that a groupoid object G ⇒ M splits in C if there
is an action α : G ×M → M an action of a group object and a groupoid
isomorphism ϕ : G nM

∼−→ G. In such a case, we say that G is a splitting
group, α is a splitting action and ϕ is a splitting morphism for G in C.

Example 2.2. Let us remark that it is not in general possible to recover the
group G from the action groupoid G nM . For instance, in the category of
sets, let us consider two free and transitive actions of Z4 and K4 in a setX =
{p1, p2, p3, p4} of four elements. Since the actions are free and transitive we

1Where eG represent the identity eG : {?} → G and πM represents the unique morphism
πM : M → {?}.
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have that the action groupoid is, in both cases, the total equivalence realtion
X ×X . Therefore we have groupoid isomorphism:

K4 nX ∼ // X ×X Z4 nX∼oo

(σ, p) // (p, σ · p), (p, τ · p) (τ, p)oo

Thus, a split groupoid object may have different realizations as an action
groupoid.

2.2 Normal epimorphisms

Let us recall that an action of a group (set) G in an object X is a group mor-
phism φ : G→ Aut(X). We say that q : X → Y is a categorical quotient of
the action of G in X if:

1. For all g ∈ G, q ◦ φ(g) = q. In other words, q is G-invariant.

2. For all morphisms f : X → Z such that for all g ∈ G f ◦φ(g) = f (i.e.
f is G-invariant) there exists a unique f̄ : Y → Z such that f̄ ◦ q = f .

Categorical quotients are epimorphisms and are unique up to isomor-
phims. Let us consider π : M → B an epimorphism in C. The group group
AutB(M) acts on M .

Definition 2.3. We say that π is normal if it is the categorical quotient of M
by the action of the group (set) AutB(M).

Some categorical approaches to Galois theory rely in the notion of strict
epimorphism ([1, I.10.2] see also [18, Def. 5.1.6]).

Definition 2.4. Let π : M → B be an epimorphism.

(a) A morphism f : M → Z is π-compatible if for any pair of morphisms
x, y : X ⇒M such that π ◦ x = π ◦ y also f ◦ x = f ◦ z.

(b) π is a strict epimorphism if for any π-compatible f there is a unique
f̄ : B → Z such that f = f̄ ◦ π.

Proposition 2.5. Let π : M → B be an epimorphism in a category C.
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(a) If π is normal then it is strict.

(b) Assume that any arrow with codomain M is invertible. Then, if π is
strict π is normal.

Proof. Let us consider an object Z an the composition map

π∗ : Hom(B,Z)→ Hom(M,Z).

The image of π∗ consists of π-compatible morphisms. Moreover, let us as-
sume that f : M → Z is π-compatible. Then, for any σ ∈ AutB(M) we
have π ◦ σ = π ◦ IdM and therefore f ◦ σ = f . It means that π-compatible
morphisms are invariant under the action of AutB(M). In general we have
a chain,2

π∗(Hom(B,Z)) ⊆ {π-compatible morphisms} ⊆ Hom(M,Z)AutB(M).

Let us note the following:

(i) The epimorphism π is normal if and only if for any Z we have the
equality between the first and third members of the chain.

(ii) The epimorphism π is strict if and only if for any Z we have the equal-
ity between the first and second members of the chain.

(a) Assume π normal. Then the three members of the above chain coincide.
In particular, any π-compatible morphism factorizes.
(b) Assume that π is strict. We need to prove that any AutB(M) invariant
morphism f : M → Z is π-compatible. Let a, b : X ⇒ M be a pair of
morphisms such that π ◦ a = π ◦ b. Since f is AutB(M) invariant we have
f = f ◦ (b ◦ a−1) and from this f ◦ a = f ◦ b. Hence f is π-compatible.

Remark 2.6. Let us recall that the notions of regular and effective epimor-
phism.

(a) An epimorphism q : Y → X is said to be regular if it is the coequalizer
of a pair of morphisms Z ⇒ Y → Z.

2Here Hom(M,Z)AutB(M) stands for the set of AutB(M)-invariant morphisms in
Hom(M,Z)AutB(M).
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(b) An epimorphism q : Y → X is said to be effective if it has a kernel
pair and it is the coequalizer of a congruence of its kernel pair KPq ⇒
Y → X .

In a general category we have:

effective =⇒ regular =⇒ strict .

Moreover, in a category with pullbacks it is known that strict epimorphisms
are effective. Therefore a normal epimorphism in a category with pullbacks
is effective. If additionally, as stated in Proposition 2.5 (b), the epimorphism
π : M → B satisfies that any arrow with codomain M is invertible, then π is
normal if and only if it is effective. This equivalence between effectiveness
and normality seems to be a key aspect in classical Galois theory.

2.3 Galois structures

The kernel pair of π, KPπ = M ×B M ⇒M , is a congruence (equivalence
relation) inM , and therefore a grupoid object in C. We set the source (s) and
target (t) maps to be the first and second projection respectively. It represents
the endomorphisms of M over B in the following sense: let KPπ(M) be the
set of sections of the source map (s); the composition with the target map
yields a bijection.

KPπ

s
||

t
""

KPπ(M) ∼ // EndB(M)

M
t◦σ //

σ
22

M σ
∼ // t ◦ σ

Let us consider an splitting action α : G×M →M of KPπ. The splitting
isomorphism is necessarily

〈π2, α〉 : GnM
∼−→ KPπ (g, x) 7→ (x, α(g, x)),

which is completely determined by α. In other words, an splitting action of
KPπ is an action that gives π : M → B the structure of principal homoge-
neous space modeled over G×B → B in the relative category CB of arrows
over B.
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Let us note that the splitting action α induces a bijection between G(M)
and KPπ(M) and therefore a bijection,

G(M)
∼−→ EndB(M), g 7→ αg = α ◦ 〈g, IdM〉.

However, such bijection is not compatible with the composition. We have

αg ◦ αh = α ◦ 〈g, IdM〉 ◦ α ◦ 〈h, IdM〉 = α ◦ 〈g ◦ αh, αh〉

on the other hand,
αgh = α ◦ 〈g, αh〉.

It follows that, if g = g ◦αh then, αgh = αg ◦αh. We see that this is satisfied
if g ∈ G(B), given that αh ∈ EndB(M) induces the identity in B. For
normal epimorphisms this condition is optimal, as G(M)AutB(M) = G(B).
We have thus,

G(M) ∼ // EndB(M)

G({?}) � � // G(B) �
�

//

OO

AutB(M)

OO

where the maps in the lower row are injective group morphisms.

Definition 2.7. Let π : M → B be an epimorphism in C. A Galois structure
for π is an splitting action α : G ×M → M for KPπ such that the induced
group morphism

G({?}) ∼−→ AutB(M), g 7→ αg

is an isomorphism.

Definition 2.8. We say that an epimorphism π : M → B of C is Galois if
satisfies the following conditions:

(i) it is normal;

(ii) it admits a unique (up to isomorphism) Galois structure.

We call Galois group of π the group object Galπ appearing in the unique
Galois structure.
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Note that if α is a Galois structure for π then we have isomorphisms,

G({?}) ∼−→ G(B)
∼−→ AutB(M).

Given an splitting action α for KPπ as a groupoid object in C we may
define an splitting action

α̃ : (G×B)×B M →M, ((g, b), x) 7→ α(g, x),

for KPπ as a groupoid object in CB. In some cases, a splitting action may fail
to be a Galois structure in the category C but be so in the relative category
CB of arrows over B.

Example 2.9. Let Set be the category of sets and π : M → B be a surjective
map. In any case KPπ splits in SetB, and any splittig action is a Galois
structure. The group object acting is a family of groups indexed by B and
acting freely and transitively on the fibers of π. It is Galois if and only if the
fibers have 1, 2 or 3 points.

However, KPπ splits in Set if and only if all fibers of π have exactly
the same cardinal. Finally, π is Galois in Set if and only if it is a bijection,
otherwise we may have the uniqueness for the Galois structure, but G $
AutB(M).

Example 2.10. Let Mnf be the category of smooth manifolds with smooth
maps. By direct examination of the definition we have that a an splitting
action for a submersion π : M → B is an structure of a principal bundle for
some structure Lie group G. The splitting actions is far from being unique,
moreover, G represents a very small part of AutB(M).

2.4 Galois correspondence

Let us recall that a congruence (internal equivalence relation) in M is a sub-
object of M × M having the reflexive, symmetric and transitive property.
We say that a congruence R ⊆ M ×M is effective if it is the kernel pair
of an effective epimorphism. The class of an effective epimorphism up to
isomorphisms of the codomain is called an effective quotient. We have then
a diagram:

R ⇒M →M/R.
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The class Rel(M) of effective of congruences in M is partially ordered.
For two congruences represented by monomorphisms i : R ↪→ M ×M and
i′ : R′ ↪→ M × M we say that R ≤ R′ if there is j : R ↪→ R′ such that
i′ ◦ j = i. Analogously the class Quot(M) of effective quotients of M is
ordered. For two effective quotients represented by effective epimorphisms
q : M → Z and q′ : M → Z ′ we say q ≥ q′ if q′ is q-compatible, so that
there is p : Z → Z ′ such that p ◦ q = q′. There is a natural bijective Galois
connection between Rel(M) and Quot(M) of effective quotients ofM given
by the adjunctions:

KP: Quot(M)→ Rel(M), (q : M → Z) 7→ KPq = M ×Z M,

coeq: Rel(M)→ Quot(M), R 7→ (q : M →M/R).

The quotient by a group action α : G ×M → M is also understood in
the above terms. We have M/G = coeq(α, π2) if such coequalizer exists
in C. Under suitable assumptions on the existence and nature of quotients
by group actions, the general Galois connection gives rise to the classical
Galois correspondence.

Theorem 2.11. Let π : M → B be a Galois epimorphism. Let us assume
the following:

(a) any subgrupoid object of the action groupoid Galπ nM is of the form
H nM where H is a subgroup object of Galπ;

(b) for any subgroup object H ⊆ Galπ it does exists the effective quotient
M/H .

Then the following sentences hold:

(i) The assignation:

H ⊆ G ; qH : M →M/H,

establishes an order reversing bijective correspondence between the
partially ordered class Sub(G) of subgroup objects of G and the par-
tially ordered class Quot≥π(M) of intermediate effective quotients of
M .
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(ii) Let us consider any effective intermediate quotient q : M → Z with
corresponding subgroup H ⊆ Galπ. The restriction of the Galois
structure α to H ×M is a Galois structure for q.

Proof. (i) It is clear that the assignation reverses order, for H ⊆ H ′ we have
qH ≥ q′H . In order to see that it is bijective, let us construct its inverse
correspondence. Let q : M → Z be a representative of an effective quotient
with q ≥ π. The kernel pair KPq is an effective congruence in M and
KPq ≤ KPπ. The splitting isomorphim establishes an isomorphism of KPq

with a subgroupoid object of Galπ nM which, by condition (a), is of the
form Hq nM for a subgroup object Hq depending on q. We have that the
effective epimorphism q : M → Z is equivalent to qHq : M →M/Hq. Then
we have:

H ; qH ; H, q ; Hq ; q.

(ii) It is enough to note that the splitting isomorphism 〈π2, α〉 maps H nM
onto KPq.

3. Classical Galois theory

3.1 Covering spaces

Let Top be the category of topological spaces. A covering map π : M → B,
with M and B connected, is a Galois cover if π × IdM : M ×B M → M
is a trivial covering space. There is a Galois theory for covering spaces,
analogous to classical Galois theory (see, for instance [19]).

Theorem 3.1. Let π : M → B be a surjective local homeomorphism with
M and B connected. The following are equivalent:

(a) π is a Galois cover.

(b) π is a Galois in Top.

(c) KPπ splits in Top.

In any case, the Galois group object is Galπ = AutB(M) with the discrete
topology.
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Proof. (c) ⇒ (a). Let us assume that there is an splitting isomorphism
ϕ : G ×M ∼−→ M ×B M . Then we have that the projection on the second
factor G × M → M is a local homeomorphism. Thus, G is discrete and
M ×BM →M is a trivial cover. It follows that π is a Galois cover. We also
have (b)⇒ (c).

Let us see (a)⇒ (b). We assume that M ×B M → M is a trivial cover,
thus there is a trivialization,

G×M ∼
ϕ

//

π̄
$ $

M ×B M
π1

yy

M

with G a discrete topological space. Let us check that there is a group struc-
ture on G such that it is isomorphic to AutB(M) and ϕ is the action of
AutB(M) in M .

For each g ∈ G let us consider the map σ(g) : M → M defined by
the formula σ(g)(x) = π2(ϕ(g, x)). It is a continuous map that induces the
identity on B and thus, an automorphism of M over B. On the other hand,
let σ be an automorphism of M over B. Then, the map x 7→ ϕ−1(x, σ(x))
is a section of π̄. Since π̄ is trivial, then there is a unique g in G such that
ϕ−1(x, σ(x)) = (g, x). We define this g to be g(σ). It is easy to check
that those bijections inverse of each other. With the group operation in G
induced by σgh = σg ◦ σh then we have that ϕ is a splitting morphism and
thus π admits a Galois structure, where the action of G in M is isomorphic
to that of AutB(M) endowed with the discrete topology, and thus unique.

Let us discuss the normality of π. In this context, it means that the action
of AutB(M) is transitive on the fibers. Let m1, m2 be two points of M in
the same fiber. Let g be the element of G such that ϕ(g,m1) = (m1,m2).
Then, it is clear that σ(g)(m1) = m2.

Note that Galois covers are under the hypothesis of Theorem 2.11. The
subgroupoids of GnM are of the form HnM with H a subgroup of G and
the quotient M/H exists in Top. We obtain the well known correspondence
between intermediate coverings and subgroups of G.
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3.2 Algebraic Galois extensions

Let Cmm be the category of commutative rings with unit. The dual category
Cmmop is the category of affine schemes.

Let us consider an extension of rings i : K ↪→ L. The dual map
i∗ : Spec(L) → Spec(K) is an epimorphism in Cmmop. In this case the
kernel pair is Spec(L ⊗K L) ⇒ Spec(L) where the source and target maps
are the dual of the canonical embeddings a 7→ a⊗ 1 and a 7→ 1⊗ a respec-
tively.

Group objects is Cmmop are commutative Hopf algebras. Thus, split-
ting actions in Cmmop are the already known Hopf-Galois structures, in the
sense of Chase and Sweedler [7]. It is well known that Hopf-Galois struc-
tures are not unique in general.

Let us revisit classical Galois theory. Let us consider i to be a finite
extension of fields. Classically, it is called a Galois extension if it satisfies
one of the following equivalent conditions (see [27] pp. 140-141):

(a) L is separable and normal3 over K.

(b) |AutK(L)| = dimKL.

(c) L⊗K L (with L-algebra structure given by the embedding a 7→ a⊗ 1)
is a finite trivial4 L-algebra.

Let us consider i : K ↪→ L a Galois extension, and let G be AutK(L).
Then, it is well known that the trivialization of L ⊗K L can be realized as a
split. We have the trivial finite L-algebra Maps(G,L) and an isomorphism:

ϕ : L⊗K L
∼−→ Maps(G,L) =

∏
g∈G

L, a⊗ b 7→ fa⊗b,

where fa⊗b(g) = g(a)b. Now we have that Maps(G,L) = Maps(G,K)⊗K
L. Thus, in the dual category we have that the map,

ϕ∗ : Spec(Maps(G,K))×K Spec(L)
∼−→ KPi∗ ,

3It is clear that our categorical definition of normality coincides, in this context, with the
classical definition LAutK(L) = K.

4A finite trivial L-algebra is an L-algebra isomorphic to a direct product of a finite
number of copies of L,

∏
i∈I L.

12
- 461 -

André
Rectangle
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is a splitting isomorphism of the groupoid KPi∗ . Noting that Maps(G,K) =
Maps(G,Z) ⊗Z K we see that the splitting isomorphism can be defined in
the category Cmmop and not only in the relative category Cmmop

K . We may
state the following result.

Proposition 3.2. Let us consider i : K ↪→ L a finite separable field exten-
sion, and i∗ : Spec(L) → Spec(K) its dual morphism. The following are
equivalent:

(a) i : K ↪→ L is a Galois extension.

(b) i∗ is Galois in Cmmop.

(c) i∗ is Galois in Cmmop
K .

In such a case, ifG = AutK(L), there is a natural action ofG inL⊗KL such
that (L⊗KL)G is a HopfK-algebra canonically isomorphic to Maps(G,K).

Let us fix a Galois extension i : K ↪→ L with group G. Let H be a
subgroup of G. Then, we realize the field of invariants LH as the equalizer,
LH → L ⇒ L ⊗LH L. Therefore, in the dual category Spec(LH) appears
as the effective quotient of Spec(L) by the action of the group object H .
Moreover, since G n Spec(L) is the spectrum of a L-trivial algebra, we
have that any subgroupoid is of the form H n Spec(L). We are under the
hypothesis of Theorem 2.11, which in this particular case gives the classical
Galois correspondence between intermediate field extensions and subgroups.

4. Foliated manifolds

4.1 Smooth foliated manifolds

Let FMn be the category of smooth manifolds endowed with regular folia-
tions. Objects are pairs (M,D) where M is a smooth manifold and D is an
involutive linear subbundle of TM . Morphisms f : (M,D) → (M ′,D′) are
smooth maps f : M → M ′ such that for all p ∈ M the differential dpf in-
duces a linear epimorphism from Dp to D′p. This implies that f maps leaves
of D onto leaves of D′ by local submersions. A manifold B admits two triv-
ial structures of foliated manifold (B, TB), with only a leaf B and (B, 0B)
with point leaves.
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BLÁZQUEZ-SANZ, MARÍN & RUIZ GALOIS THEORIES

Let (G,DG) be a group object in FMn. It is clear that G is a Lie group.
The existence of the identity element implies that the map,

({?}, 0?)→ (G,DG), ? 7→ e,

is a morphism of foliated manifolds, so that rank(DG) ≤ rank(0?) = 0. It
follows DG = 0G. By abuse of notation we write G instead of (G, 0G). If is
also clear that an action of G in (M,D) to the category of foliated manifolds
is an action of G in M by symmetries of D. That is, for any p ∈ M and
g ∈ G dpLg(Dp) = Dgp.

A flat Ehresmann connection in a submersion π : M → B is an involu-
tive subbundle F ⊂ TM such that for each p ∈M the differential dpπ is an
isomorphism of Fp with Tπ(p)B. We say that a foliated manifold (M,F) is
irreducible if it contains a dense leaf. Let us first analyze the case in which
the basis M has a trivial structure of foliated manifold.

Proposition 4.1. Let π : (M,F)→ (B, TB) be an epimorphism of foliated
manifolds with rank(F) = dim(B). Then π is a submersion and F is a flat
Ehresmann connection.

Proof. For all p ∈ M we have that dpπ maps Fp onto TpB. Therefore dpπ
is surjective for all p ∈ M and π is a submersion. It is clear that F is a flat
Ehresmann connection.

Proposition 4.2. Let π : (M,F) → (B, TB) be a epimorphism of irre-
ducible foliated manifolds with rankF = dimB. The following are equiva-
lent.

(a) KPπ splits in FMn.

(b) π is Galois in FMn.

(c) There is a Lie groupG acting onM such that π is a principalG-bundle
and L is a G-invariant connection.

(d) The above, with a unique G.

In such a case G is Aut(B,TB)(M,F).
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Proof. Cases (a) and (c) are equivalent from the very definition of splitting
action. It is also clear that (b) and (d) are equivalent. It remains to prove that
(c) implies (d). Let us consider two principal structures β : M × H → M
and α : M ×G→M such that F is simultaneously G and H-invariant. Let
us see that these actions are conjugated by a Lie group isomorphism.

Let L be a dense leaf in M . We consider in L its intrinsic structure as
smooth manifold, so that the projection L → B is an étale map with arc-
connected Hausdorff domain. Let us note that M and B are necessarily con-
nected. Let x be any point of L; there is a unique h ∈ H such that α(x, g) =
β(x, h). Let L′ be the leaf of F passing through α(x, g) = β(x, h). Let us
denote Rα

g and Rβ
h the right translations by g and h respectively. Then, Rα

g |L
and Rβ

h|L are homeomorphisms of L into L′ that project onto the identity on
B. They coincide on the point x, and thus they are the same, Rα

g |L = Rβ
h|L.

Maps Rα
g and Rβ

h are smooth and they coincide along the dense subset L,
thus they are equal. Finally, the map G → H that assigns to each g the
only element h such that α(x, g) = β(x, h) is a group isomorphism. It is
defined by composing and inverting smooth maps, so that, it is a Lie group
isomorphism conjugating the actions α and β.

Moreover, the same argument proves that any automorphism
ϕ ∈ Aut(B,TB)(M,F) must be a translation by an element of G.

The same idea can be generalized to the case in which the foliated struc-
ture of the basis is not trivial, but irreducible. Let π : M → B be a manifold
submersion, and D a foliation in M . Let us recall that a flat D-connection
(or a flat partial connection in the direction of D) is a foliation F in M that
for all p ∈ M the differential dpπ maps Fp isomorphically onto Dp. Note
that a flat Ehresmann connection is the same that a flat TB-connection.

As in Proposition 4.1 if π : (M,F) → (B,D) is an submersion of foli-
ated manifolds with rankF = rankD then F is a flat D-connection.

Theorem 4.3. Let π : (M,F) → (B,D) be a epimorphism of irreducible
foliated manifolds with rankF = rankD. The following are equivalent.

(a) KPπ splits in FMn.

(b) π is Galois in FMn.
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(c) There is a Lie groupG acting onM such that π is a principalG-bundle
and D is a D-partial G-invariant connection.

(d) The above, with a unique G.

In such a case G is Aut(B,D)(M,F).

Proof. Let us consider L a dense leaf of F . Then π(L) is a dense leaf of D.
We may proceed as in the proof of Proposition 4.2 replacing the role of B
by π(F).

4.2 Galois correspondence

From now on let π : (M,F)→ (B,D) be a Galois submersion of irreducible
foliated manifolds with rankF = rankD with Galois groupG. Let us check
that we are under the hypothesis of Theorem 2.11.

Proposition 4.4. Any object subgroupoid of the action groupoidGn(M,F)
is of the form H n (M,F) with H a Lie subgroup of G.

Proof. Let (G,D′) ⇒ (M,D) be a subgroupoid object of the action groupoid.
Then G is a Lie subgroupoid of G nM and if (g, p) ∈ G implies that the
{g} × Lp ⊂ G where Lp is the leaf of F through p.

Let L be a dense leaf of F . Note that for any g ∈ G and p ∈M the poinf
(g, p) is an accumulation point of {g} × L. Therefore if (g, p) ∈ G implies
{g} × L ⊆ G and therefore {g} ×M ⊆ G. It follows that G = S ×M for
some submanifold S ⊆ G. From the groupoid composition and inversion it
follows that S = H a Lie subgroup of G.

By a G-manifold we mean a manifold X endowed with a left action of
G. To any G-manifold X it corresponds an associated bundle with fiber X ,

M ×G X → B

defined as the quotient of the direct product M × X by the equivalence
relation (pg, x) ∼ (p, gx) for all p ∈ M , g ∈ G, x ∈ X . The G-invariant
D-connection induces an associated D-connection F ×G 0X which is the
projection on M ×G X of the direct product F ×G 0X . We have that,

(M ×G X,F ×G 0X)→ (B,D)
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is an epimorphism of foliated manifolds and F × 0X is a flat Ehresmann
D-connection. In particular if H is a Lie subgroup of G and X = G/H is
an homogeneous G-space we have,

M ×G (G/H) = M/H

and the induced associated D-connection is just the projection of F onto
M/H . Therefore, in this case, Theorem 2.11 gives us a Galois correspon-
dence between Lie subgroups of G and associated D-connections in associ-
ated bundles whose fibers are homogeneous G-spaces.

4.3 Galois structures over (B,D)

Let us discuss Galois structures in the relative category FMn(B,D) whose
objects are smooth maps of foliated manifolds (Z,DZ)→ (B,D). A group
bundle G → B is a smooth bundle by Lie groups, where composition,
inversion and identity depends smoothly on the base point. A group D-
connection inG→ B is aD-connectionD inG such that leaves are compati-
ble with composition. Linear bundles and linear D-connections are the most
usual examples of group bundles and group connections. Group bundles
over B endowed with group D-connections are group objects in FMn(B,D).
They are the smooth geometric counterpart of differential algebraic groups
of finite dimension discussed by Buium in [5].

In the case of trivial foliated structure in the basis, group objects are
locally Lie groups after change of basis, as the following result explains.

Proposition 4.5. Let B be simply connected, and q : (G,L) → B a group
bundle with group connection (and therefore a group object in FMn(B,TB)).
Let x be a point inM andGx the fiber ofG over x, then (G,L) ' (Gx, {0})×
(B, TB).

Proof. The argument is local, so we have to see that for each x ∈ B there is
a neighborhood U of x such that (G|U ,L|U) ' (Gx, {0})× (U, TU). If this
is the case, for each homotopy class of a path γ connecting x and y in B we
have a group isomorphism γ∗ : Gx → Gy. If B is simply connected, those
homotopy classes are unique for each y and the isomorphisms γ∗ give us the
trivialization of the group connection.
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BLÁZQUEZ-SANZ, MARÍN & RUIZ GALOIS THEORIES

In fact, there are neighborhoods U of x in B, Vx of ex (the identity ele-
ment) in Gx, and V of ex in G, and a decomposition V ' U × Vx, such that
the horizontal leaves of L in V have the form {gx} × U for fixed g ∈ Vx.

Let us see that, for each hx ∈ Gx the leaf F of L that passes through hx
projects onto U . We may also assume that we take U small enough so that
each connected component of G|U contains exactly one connected compo-
nent ofGx. Let y be an accumulation point of q(F) inside U . Let us consider
hy an element in Gy in the same connected component of G|U than hx. Then
there is a leaf F ′ of L|U passing through hx. Let U ′ be q(F ′) which is an
open subset that intersects q(F). By successive composition of F ′ with the
leafs of L in V |U ′ we have that the connected component of G|′U containing
hy decomposes in leaves of L. In particular, F ∩ G|U ′ is part of a leaf of
such a decomposition. Finally, y ∈ q(F). We have seen that q(F) is an open
subset that contains all its accumulation points inside U , so that q(F) = U .
Thus, G|U decomposes in leaves of L.

For the non-simply connected case, the classification of group connec-
tions may follow a similar path to the classification of linear connections.
Classes of group connections may be given by classes of representations of
the fundamental group Π1(x,B) into the group Aut(Gx) of automorphisms
of the fiber. In the case of simply connectedB there is no distinction between
Galois structures in FMn or in FMn(B,TB).

Corollary 4.6. LetB be simply connected and let π : (M,L)→ (B, TB) be
a submersion of foliated manifolds with rankL = dim B. Then KPπ splits
in FMn if and only if it splits in FMn(B,TB).

In the non-simply connected case, non trivial irreducible linear connec-
tions give us examples of splitting actions in the relative category. For in-
stance, we may take, B = S1 × S1. We take G = R × B and D =
〈∂θ + u∂u, ∂φ + αu∂u〉 where u is the coordinate in R and α is an irra-
tional number. Then, we have (G,D) → (B, TB) is a group bundle with
an irreducible group connection, locally isomorphic to the trivial additive
bundle. The action of G on itself is an splitting action in FMn(B,TB).
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4.4 Foliated complex algebraic varieties

Let FVar be the category of complex regular foliated varieties. Objects are
(M,D) where M is a complex variety and D is an involutive Zariski closed
linear subbundle of TM . A foliated variety is called irreducible if it has a
Zariski dense leaf, or equivalently, it does not have rational first integrals
(except locally constant functions). Group objects in FVar are complex
algebraic groups.

In this category, we can state Galois theory exactly in a way totally anal-
ogous to what has been done in FMn.

Theorem 4.7. Let π : (M,F) → (B,D) be a submersion of irreducible
foliated varieties with rankF = rankD. The following are equivalent.

(a) KPπ splits FVar.

(b) π is Galois in FVar.

(c) There is an algebraic group G acting on M such that π is a principal
G-bundle and D is a D-partial G-invariant connection.

(d) The above, with a unique G.

In such a case G is Aut(B,D)(M,L).

Proof. Totally analogous to the proofs given in Proposition 4.2 and Theorem
4.3.

It is interesting to make the connection of this Galois theory with differ-
ential algebra. Let us fix π : (M,L) → (B,D) a Galois submersion of irre-
ducible foliated varieries with Galois group G and rankF = rankD = r.
Let us note that, by elimination, it is always possible to find a system of com-
muting rational vector fields ~D1, . . . , ~Dr that span D on the generic point of
B. Let us fix ∆B = ( ~D1, . . . , ~Dr). We have that the field of rational func-
tions (C(B),∆B) is a differential field whose field of constants is C.

The D-connection F induce lifts of the rational vector fields ~Dj to F-
horizontal rational vector fields ~Fi in M that span F on the generic point of
M . We set ∆M = (~F1, . . . , ~Fm) so that (C(M),∆M) is also a differential
field whose field of constants is C. Since the projection of ~Fj is ~Dj we have
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that π∗ : (C(B),∆B) ↪→ (C(M),∆M) is an differential field extension. We
have the following geometric characterization of strongly normal extensions
due to Bialynicki-Virula.

Proposition 4.8 ([3], in [4] p. 18). Let (K,∆) ↪→ (F,∆′) be a differential
field extension with K relatively algebraically closed in F and algebraically
closed field of constants C = K∆ = F∆′ . The following are equivalent:

1. It is strongly normal in the sense of Kolchin.

2. There are a connected algebraic group G over C and a K-variety W
such that:

(a) W is a principal homogeneous space modeled over GK = G×C
Spec(K).

(b) The field of rational functions in W is F .

(c) The group G acts faithfully on F by differential automorphisms
fixing K.

Moreover the pair (G,W ) is uniquely determined up to isomorphism and we
have G(C) = Aut∆(F/K).

This geometric characterization immediately yields the following.

Proposition 4.9. Let π : (M,L) → (B,D) a Galois submersion of irre-
ducible foliated varieries with Galois group G, and ∆B, ∆M as above. As-
sume any of the following equivalent hypothesis:

1. C(B) is relatively algebraically closed in C(M);

2. π : M → B has connected fibers;

3. G is connected.

The differential field extension:

π∗ : (C(B),∆B) ↪→ (C(M),∆M)

is a strongly normal extension in the sense of Kolchin with Galois group G.
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Proof. Let us consider: MB = M×B SpecC(B) andGB = M×C SpecC(B)
as C(B)-varieties. The splitting isomorhism:

M ×C G
∼−→M ×B M

changes of basis to an isomorphism of C(B)-varieties,

MB ×C(B) GB
∼−→MB ×C(B) MB

And therefore MB is a principal homogenous space over GB. The field of
rational functions in MB is also C(M). For any g ∈ G we have a field
automorphism,

R∗g : C(M)→ C(M)

that fixes C(B) and the derivations ~Fj in ∆M . This gives an inclusion,

G→ Aut∆(C(M)/C(B)), g 7→ R∗g

and we conclude by Bialynicki-Virula’s Proposition 4.8.

Remark 4.10. The applications to differential algebra seem to go further.
There have been several generalizations of differential Galois theory theory
[26, 6] and a geometric characterization of strongly normal extensions [21,
22] which is very much in the flavour of Definition 2.7. We expect upcoming
research clarifying how all those theories relate with the framework proposed
here.
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BLÁZQUEZ-SANZ, MARÍN & RUIZ GALOIS THEORIES
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