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Résumé. Nous comparons la bicatégorie des spans et celle des bı̈ensembles
(aussi appelés bimodules, distributeurs ou profoncteurs) dans le contexte des
groupoı̈des. En particulier, nous construisons un pseudo-foncteur avec de
bonnes propriétés défini sur les spans et à valeurs dans les bı̈ensembles.
Nous en déduisons une application en théorie de la représentation axioma-
tique des groupes finis ; notamment, une nouvelle preuve et une amélioration
de l’identification, due à Ganter et Nakaoka, des foncteurs à bı̈ensembles de
Bouc avec une sous-catégorie réflexive des foncteurs de Mackey globaux. À
ce but, nous démontrons aussi un résultat de monadicité tensorielle pour les
catégories de foncteurs linéaires.
Abstract. We compare the bicategory of spans with that of bisets (a.k.a. bi-
modules, distributors, profunctors) in the context of finite groupoids. We con-
struct in particular a well-behaved pseudo-functor from spans to bisets. This
yields an application to the axiomatic representation theory of finite groups,
namely a new proof and a strengthening of Ganter and Nakaoka’s identifica-
tion of Bouc’s category of biset functors as a reflective subcategory of global
Mackey functors. To this end, we also prove a tensor-monadicity result for
linear functor categories.
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1. Introduction and results

The motivation behind this paper is to provide a new proof of a result of
Nakaoka [Nak16b] [Nak16a] identifying the tensor category of biset func-
tors as a full tensor ideal subcategory of global Mackey functors (see Corol-
lary 1.6 below, where we state the result in question after some recollec-
tions). In our approach, Nakaoka’s theorem arises as a formal consequence
of a ‘higher’ result of independent interest, comparing two bicategories whose
objects are, in both cases, finite groupoids:

(1) The bicategory of spans, denoted Span. In this bicategory, a 1-morphism
H → G between groupoids H,G is a span of functors H ← S → G,
and a 2-morphism is an equivalence class of diagrams

S

��

ww
' '

''
H G

S ′

gg 88

of functors and natural isomorphisms. Horizontal composition is com-
puted by forming iso-comma squares. See details in Construction 5.2.
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(2) The bicategory of bisets, denoted Biset. Here a 1-morphism H → G is
a finite G,H-biset (a.k.a. distributor, profunctor, bimodule, module, re-
lator), i.e. a finite-sets-valued functor Hop×G→ set, and 2-morphisms
are simply natural transformations of such functors. Horizontal compo-
sition is computed by taking tensor products (coends) of functors. See
details in Construction 5.6.

This is our comparison result, whose proof can be found in Section 5:

1.1 Theorem (Comparison of spans and bisets). There is a pseudo-functor
R : Span → Biset we call realization, which is the identity on objects (i.e.
finite groupoids) and ‘realizes’ a span H b← S

a→ G from H to G as the
coend

R(b, a) := G(a−,−)⊗S H(−, b−) :=
∫ s∈S

G(as,−)︸ ︷︷ ︸
R!(a)

×H(−, bs)︸ ︷︷ ︸
R∗(b)

.

Moreover, every biset is (canonically) isomorphic to the realization of a
span.

1.2 Remark. We are only interested in finite groupoids, but everything can
be easily extended to arbitrary ones. The ingredients of Theorem 1.1 ap-
pear to be well-known to experts, such as the adjunctions R!(u) a R∗(u)
or the ‘moreover’ part, and indeed the component functors RH,G between
Hom categories have been studied before in much detail; see e.g. [Bén00].
A closely related statement appears, without proof, as Claim 13 in [Hof12].
In fact a study of bisets (bimodules) between enriched categories in terms of
(co)spans is already carried out in [Str80], using the machinery of ‘fibrations
in bicategories’. Presumably, it should be possibly to unfold the layers of ab-
stractions in loc. cit. in order to derive Theorem 1.1 from the theory therein.
Our proof, by constrast, strives to remain as concrete as possible.

For our application to biset and Mackey functors, we don’t need the full
bicategorical strength of Theorem 1.1 but rather only its 1-categorical, lin-
earized shadow. Fix a commutative ring k and consider the 1-truncated and
k-linearized versions

Spk := kτ1(Span) and Bisk := kτ1(Biset)
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of Span and Biset, obtained by identifying isomorphic 1-morphisms and by
freely extending the resulting Hom abelian monoids to k-modules (Termi-
nology 6.1-6.2). By construction, Spk and Bisk are two k-linear additive
categories. This means their Hom sets are k-modules (in fact free of finite
type), their composition maps are k-bilinear, and they admit arbitrary finite
direct sums induced by the disjoint unions of groupoids.

The category of k-linear representations (i.e. the k-linear functor cate-
gory)

M := Rep Spk := Funk(Spk,k -Mod)

is, by definition, the category of global Mackey functors over k.

1.3 Remark. There are several versions of global Mackey functors; we re-
fer to [Del19] for an overview. This one is defined for all finite groups and
comes equipped with both inflation and deflation maps, besides induction,
restriction and isomorphism maps. The present definition in terms of group-
oids has appeared in [Gan13] and was reformulated in [Nak16b] in terms of a
certain 2-category S, which was later recognized in [Nak16a] to be biequiv-
alent to the 2-category of groupoids.

Similarly, the representation category

F := RepBisk := Funk(Bisk,k -Mod)

is easily recognized to be Bouc’s category of biset functors [Bou10] (see
Remark 6.8). Biset functors too can be understood as a variant of global
Mackey functors, similarly defined on all finite groups and equipped with
induction, restriction, inflation, deflation and isomorphism maps. Indeed,
they can be shown to be equivalent to Webb’s globally defined Mackey func-
tors [Web00, §8] for X and Y the class of all finite groups. It is thus natural
to compare the two notions,M and F .

After decategorifying and linearizing, Theorem 1.1 yields a full k-linear
functor

F := kτ1R : Spk −→ Bisk

which is the identity on objects. In such a situation, it follows easily that
precomposition with F induces a fully faithful functor

F ∗ : F ↪→M
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identifying F with a full reflexive k-linear subcategory ofM. This is pre-
cisely the embedding of Nakaoka’s theorem we had mentioned at the begin-
ning, and for which we have just given a transparent construction.

∗ ∗ ∗

There is more to this story. Both global Mackey functors and biset func-
tors form k-linear tensor categories, by which we mean symmetric monoidal
categories where the tensor functor −⊗− is k-linear in both variables (sim-
ilarly below, by tensor functor we will mean a strong symmetric monoidal
k-linear functor.) It is therefore natural to compare their tensor structures via
the embedding F ∗.

To this end, we first notice that both tensor products arise by Day con-
volution (Construction 3.8) from tensor structures on Spk and Bisk, both of
which are induced by the cartesian product of groupoids. Moreover, Spk and
Bisk are easily seen to be rigid, in fact every object is its own tensor dual
(Terminology 3.5). In such a situation we can make use of the following
general abstract theorem:

1.4 Theorem. Let F : C → D be any k-linear tensor functor between two
essentially small k-linear tensor categories. Consider the diagram

Rep C
F!

zz Free
%%

RepD
E

∼ //

F ∗

::

A -Mod

U
ee

consisting of the following standard categorical constructions:

• Rep C and RepD are the k-linear categories of representations, as
above, equipped with the respective Day convolution tensor products;

• F ∗ is the restriction functor along F and F! denotes its left adjoint,
which is a tensor functor; it follows that F ∗ is lax monoidal;

• A denotes the commutative monoid F ∗(1) in Rep C, whose multipli-
cation map is induced by the lax monoidal structure of F ∗ and the
(unique) multiplication 1 ⊗ 1

∼→ 1 of the tensor unit object 1 =
D(1D,−) of RepD;
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• A -Mod denotes the category of left A-modules in Rep C, equipped
with the tensor product − ⊗A − over A; we also have the forgetful
functor U and its left adjoint Free sending a C-representation M to
the free module A⊗M ;

• and where, finally, E is the Eilenberg-Moore functor comparing the
adjunction F! a F ∗ with the adjunction Free a U , i.e. E is the unique
functor such that U ◦ E = F ∗ and E ◦ F! ' Free.

Then:

(1) If F is essentially surjective and the tensor categories C andD are rigid,
E is an equivalence of k-linear categories.

(2) If moreover F is full, E is an equivalence of tensor categories. Also, the
functors F ∗ and U are fully faithful and they identify their (equivalent)
source tensor categories with the full essential image Im(F ∗) = Im(U)
as a tensor ideal in Rep C (meaning: if M ∈ Rep C and N ∈ Im(F ∗)
then M ⊗N ∈ Im(F ∗)).

This theorem collects and improves a few more or less known categorical
results. It may be understood as a ‘tensor monadicity’ criterion for quotient
functors of k-linear rigid tensor categories. The proof can be found in Sec-
tion 3, together with quick recollections on all constructions involved. As
illustration, let us point out an easy special case:

1.5 Example. If C is a commutative k-algebra, it can be viewed as a rigid
tensor k-linear category C with a single object, whose endomorphism alge-
bra is C. The multiplication of C also provides the tensor product of maps
a ⊗ b := ab, which defines a functor ⊗ : C × C → C by commutativity. If
f : C → D is a surjective morphism of commutative k-algebras, it can be
viewed as a functor F : C → D satisfying all the hypotheses of the theo-
rem. In this case, A is just the ring D seen as a monoid object in the tensor
category of C-modules. The theorem now simply says that the tensor cate-
gory of A-modules (M,ρ : A⊗CM →M), in the abstract Eilenberg-Moore
sense, inside the tensor category of C-modules, identifies with the tensor
ideal subcategory of D-modules, in the usual sense.

∗ ∗ ∗
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Now, in order to recover the results of [Nak16b] and [Nak16a] we simply
specialize Theorem 1.4 by taking F : C → D to be the k-linear tensor functor
Spk → Bisk obtained from the realization pseudo-functorR of Theorem 1.1.
We get:

1.6 Corollary (Biset functors vs global Mackey functors). There is a canon-
ical equivalence of tensor categories between:

(1) The tensor category of biset functors F in the sense of Bouc [Bou10],
that is, representations of the category of bisets equipped with Day con-
volution.

(2) The category of global Mackey functors M which are modules over
the global Green functor A = Bisk(1, F−), obtained by restricting the
Burnside biset functor along F : Spk → Bisk, equipped with the tensor
product over A.

Moreover, both categories identify canonically with the reflexive full tensor
ideal ofM of those global Mackey functors M satisfying the ‘deflative rela-
tion’

defGG/N ◦ infGG/N = idM(G/N)

for every normal subgroup N of a group G.

Details on the corollary’s proof will be given in Section 6.
We would like to stress the similarity between the above corollary and

the much older, and better known, results relating the category Mackk(G) of
Mackey functors for a fixed finite group G and the category coMackk(G) of
cohomological Mackey functors for G. Indeed, this comparison can be ob-
tained by the very same method, as follows. Recall that by Lindner [Lin76]
we may define

Mackk(G) = Rep Spk(G)

where Spk(G) is the k-linear category of finite left G-sets and isomorphism
classes of spans of G-maps. Recall also that by Yoshida’s theorem [Yos83]
we may define

coMackk(G) = RepPermk(G)

where Permk(G) denotes the category of finitely generated permutation kG-
modules.
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Implicit in Yoshida’s arguments, and made explicit e.g. by Panchadcharam-
Street [PS07], is the existence of a k-linear functor

Spk(G) −→ Permk(G)

sending a left G-set X to the permutation module k[X] and sending a span
X

α← S
β→ Y of G-maps to x 7→

∑
s∈α−1(x) β(s). This is easily seen to be

a tensor functor F satisfying all the hypotheses of Theorem 1.4. In this case
the theorem yields:

1.7 Corollary (Cohomological vs ordinary Mackey functors). For every fi-
nite group G, there is an equivalence of tensor categories between:

(1) The category RepPermk(G) of representations of permutation modules.

(2) The category of modules over the fixed-points Green functor FPk (also
known as H0(−;k)) inside the tensor category Mackk(G) of Mackey
functors for G, equipped with the tensor product over FPk.

Moreover, both categories identify canonically with the reflexive full tensor
ideal of those ordinary Mackey functors M for G which satisfy the ‘cohomo-
logical relation’

indHL ◦ resHL = [H : L] · idM(H)

for all subgroups L ≤ H ≤ G.

Details on this corollary’s proof will be given in Section 4.

1.8 Remark. Essentially the same way of comparing the various descriptions
of cohomological Mackey functors was already explained in [PS07, §10].
Our present exposition also makes explicit the identification of the associated
tensor structures.

1.9 Remark. This article is based on the second author’s PhD thesis. No-
tations and conventions have been adapted in order to agree with those of
the monograph [BD20] and the survey article [Del19], where groupoids and
spans are similarly used in order to compare various kinds of Mackey (1-
and 2-)functors.

Acknowledgements. We are grateful to Paul Balmer and an anonymous ref-
eree for useful comments on the manuscript and to Steve Lack for pointing
out to us the relevance of [Str80].
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2. Preliminaries on coends and linear coends

In this article we make extensive use of coends and their calculation rules,
both in the basic set-theoretic setting and in the linear setting over a commu-
tative ring. Coends vastly generalize the familiar tensor products of modules
over rings to more general (possibly enriched) functors. Heuristically, they
are the universal procedure for identifying a left and a right action of the
same functorial variable.

2.1 Recollection (Coends; [ML98, IX.6]). Consider a functorH : Cop×C →
Set into sets for some (essentially small) category C. The coend of H is a set
denoted ∫ c∈C

H(c, c) or just
∫ c

H

which comes equipped with canonical maps H(x, x) →
∫ c
H (for all x ∈

Obj C) forming a dinatural transformation and satisfying a suitable universal
property among all such. For our purposes, it will suffice to know that it can
be computed by the following coequalizer in Set:

∫ c∈C
H(c, c) = coeq

 ∐
(α : c′→c)∈Mor C

H(c, c′)
H(id,α)

//

H(α,id)
//

∐
c∈Obj C

H(c, c)


Thus an element of the coend is the equivalence class [x]c of some x ∈
H(c, c) for some object c ∈ C, for the equivalence relation generated by
setting [x]c = [x′]c′ whenever there is some morphism α ∈ C(c′, c) and some
y ∈ H(c, c′) such that H(α, id)(y) = x and H(id, α)(y) = x′. (Note that
if C is a groupoid the latter condition directly yields an equivalence relation,
without the need to generate one.)

The canonical maps are the evident ones coming with the equalizer.

We will need the following well-known (and easily verified) formulas:

2.2 Lemma (Fubini; [ML98, IX.8]). The coend of a functorH : (C1×C2)op×
(C1 × C2)→ Set can be computed one variable at a time, in either order:∫ (c1,c2)∈C1×C2

H '
∫ c1∈C1 ∫ c2∈C2

H '
∫ c2∈C2 ∫ c1∈C1

H .
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The isomorphisms are the identity on representatives x ∈ H(c1, c2, c1, c2).

2.3 Lemma (co-Yoneda). For every functor M : C → Set and every object
x ∈ C, there is an isomorphism∫ c∈C

C(c, x)×M(c) 'M(x)

natural in x, given by evaluation [α,m]c 7→ M(α)(m) and with inverse
given by m 7→ [idx,m]x.

∗ ∗ ∗

In Section 5, the above set-theoretical coends will be used to horizontally
compose bisets. However, most of the time we will work linearly over some
base commutative ring k, and in particular we will need to use the k-enriched
version of coends. This requires replacing the ‘base’ Cartesian category of
sets with the tensor category of k-modules.

Fix the commutative ring k.

2.4 Notation. We denote by k -Mod the category of all k-modules and k-
linear maps. It is a complete and cocomplete abelian category. It is also
a tensor category, i.e. a symmetric monoidal category, by the usual tensor
product −⊗k − over k.

2.5 Terminology. A k-linear category C is a category enriched on k-modules:
its Hom sets C(x, y) are equipped with the structure of a k-module and the
composition maps C(y, z) × C(x, y) → C(x, z) are k-bilinear. If C,D are
k-linear categories, a k-linear functor F : C → D is a functor F from C toD
such that its component maps F = Fx,y : C(x, y)→ D(x, y) are all k-linear.

2.6 Recollection (k-linear coends). By replacing Set with k -Mod and re-
quiring everything to be k-linear in Recollection 2.1, we get the notion of a
k-linear or k-enriched coend. Thus, concretely, for a k-linear category C and
a k-bilinear functor H : Cop × C → k -Mod (or equivalently a k-linear func-
tor H : Cop ⊗k C → k -Mod for the appropriate notion of tensor product of
k-categories), the k-linear coend of H , again denoted

∫ c
H or

∫ c∈C
H(c, c),

is the k-module computed by the same coend diagram as in Recollection 2.1

- 72 -



I. DELL’AMBROGIO AND J. HUGLO SPANS AND BISETS

but now taken in k -Mod. Hence a general element of
∫ c
H is now a finite

k-linear combination of classes [x]v (for v ∈ Obj C and x ∈ H(c, c)).
We will occasionally refer to such simple elements [x]v ∈

∫ c
H as gen-

erators. If H = F ⊗k G is an object-wise tensor product of two (or more)
functors, as will often be the case, we will write [x, y]v rather than the cum-
bersome [x⊗ y]v.
2.7 Remark. The Fubini Lemma 2.2 and the co-Yoneda Lemma 2.3 also
hold for k-linear coends, as k-linear isomorphisms, with the same proofs.
As the latter formula uses the tensor structure of the base category, it must
be adapted and now takes the form of an isomorphism∫ c∈C

C(c,−)⊗k M(c) 'M (2.8)

of k-linear functors C −→ k -Mod. (This is the special case F = IdC of a
k-linear left Kan extension as in Construction 3.2 below.)

3. Tensor-monadicity for functor categories

This section is dedicated to the proof of Theorem 1.4, and to recalling all the
relevant categorical constructions.

Fix throughout a commutative ring k. We will compute with k-linear
coends, as in Recollection 2.6.

3.1 Notation. Let C be a small k-linear category (one with only a set of
objects), or more generally, an essentially small one (one equivalent to a
small (sub-)category). Then we may consider its category of representations,
namely the category

Rep C := Funk(C,k -Mod)

of all k-linear functors into k-modules and natural transformations between
them. Note that Rep C is again a k-linear category and is abelian, complete
and cocomplete; its k-action, limits and colimits are taken in k -Mod, object-
wise on C.

3.2 Construction (Kan extensions). Let F : C → D be a k-linear functor be-
tween two essentially small k-linear categories. There is a restriction functor
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F ∗ : RepD → Rep C sending a k-linear functorM : D → k -Mod toM ◦F .
Evidently, F ∗ is k-linear and exact. Since k -Mod is complete and cocom-
plete, F ∗ admits both a left and a right adjoint:

Rep C
F! :=LanF

��

RanF =:F∗
��

RepD
F ∗

OO

This is guaranteed by the theory of Kan extensions ([ML98, X]), which
moreover provides explicit formulas for them. Recall e.g. that the left Kan
extension F! can be computed at eachM ∈ Rep C by the following (k-linear)
coend:

F!(M) =

∫ x∈D
D(Fx,−)⊗k M(x) : D −→ k -Mod

(see [ML98, X.7] as well as [Kel05, (4.25)] for the enriched version).

3.3 Construction (The Eilenberg-Moore adjunction). Recall (e.g. [ML98,
VI]) that every adjunction L : A� B :R gives rise to a monad A on the cat-
egoryA, that is a monoid A = (A, µ, η) in the endofunctor category End(A).
More precisely, as a functor we have A = R ◦ L; its multiplication is the
natural transformation µ = RεL : A ◦ A = RLRL =⇒ RL = A, where
ε : LR ⇒ IdB is the counit of the adjunction; and its unit map is the unit of
the adjunction, η : IdA ⇒ RL = A.

As with any such monad, we may define its Eilenberg-Moore category
A -ModA, whose objects are left modules (a.k.a. algebras) in A over the
monad. More precisely, an object of A -ModA is a pair (M,ρ) where M ∈
ObjA and ρ : AM → M is a map ρ : RL(M) → M in A satisfying the
usual associativity and unit axioms of a left action, expressed by commuta-
tive diagrams in A:

AAM

Aρ
��

µM // AM

ρ
��

AM
ρ
//M

M
ηM // AM

ρ
��

M

A morphism (M,ρ) → (M ′, ρ′) in A -ModA is a morphism ϕ : M → M ′
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preserving the actions:

AM

ρ

��

Aϕ
// AM ′

ρ′

��

M
ϕ
//M ′

There is an evident forgetful functor UA : A -ModA → A which simply for-
gets the actions ρ, as well as a left adjoint FA sending any object M ∈ A
to the free module (AM,µM : AAM → AM) and a morphism ϕ to Aϕ. The
adjunction (FA, UA) induces on A the same monad A = RL = UAFA. This
is in fact the final adjunction realizing A, in that there is a unique comparison
functor E = EA : B → A -ModA

A
L

�� FA $$

B
R

??

EA

// A -ModA

UA

dd

such that UA ◦ EA = R and FA = EA ◦ L. Concretely, E sends an object
N ∈ B to E(N) = (RN,RεN : ARN = RLRN → RN) and a map
ϕ : N → N ′ to Rϕ.

Note that if L and R are k-linear functors between k-linear categories,
then A -ModA is also a k-linear category and the forgetful, free module and
comparison functors are all k-linear.

3.4 Proposition. Let F : C → D be a k-liner functor between two essentially
small k-linear categories. Suppose that F is essentially surjective. Then the
adjunction F! : Rep C � RepD :F ∗ of Construction 3.2 is monadic, that is
the comparisonE : RepD ∼→ (F ∗F!) -ModRep C is a (k-linear) equivalence.

Proof. This is a consequence of the Beck monadicity theorem [ML98, VI.7].
In fact, F ∗ is an exact functor between two abelian categories and admits a
left adjoint. In this situation, the hypotheses of Beck monadicity reduce eas-
ily to F ∗ being faithful (see e.g. [CCZ15, Thm. 2.1]), and the latter follows
from the essential surjectivity of F . Indeed, if ϕ : N ⇒ N ′ is a natural trans-
formation such that F ∗ϕ = 0, then we have ϕFc = 0: NFc → N ′Fc for
every c ∈ C and therefore also ϕd = 0: Nd→ N ′d for all d ∈ D, by way of
some isomorphism Fc ' d and the naturality of ϕ.
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3.5 Terminology. By tensor category we always mean a symmetric monoidal
category ([ML98, XI]). We will write ⊗ and 1 (possibly with some decora-
tion) for the tensor functor and the tensor unit object. A k-linear tensor cat-
egory is a category which is simultaneously a tensor category and a k-linear
category and whose tensor functor−⊗− is k-linear in both variables. A ten-
sor category C is rigid if every object X admits a tensor dual X∨, meaning
that there is a (k-linear) isomorphism C(X ⊗ Y, Z) ' C(Y,X∨⊗Z) natural
in Y, Z ∈ C; in other words, the endofunctors X ⊗− and X∨ ⊗− on C are
adjoint. If C is rigid, then X 7→ X∨ extends canonically to an equivalence
C ' Cop of k-linear tensor categories.
3.6 Construction (The tensor category A -ModA). Let A = (A,m, u) be a
monoid in a tensor categoryA; thus we have a multiplicationm : A⊗A→ A
and unit u : 1 → A in C making the usual associativity and unit diagrams
commute. Then A := A ⊗ (−) : C → C is a monad on C with multiplica-
tion µ ⊗ − and unit η ⊗ −, and we may form the Eilenberg-Moore mod-
ule category A -ModA := A -ModA and the adjunction FA a UA of Con-
struction 3.3. If A is commutative (meaning of course that m = mσ where
σ : A ⊗ A ' A ⊗ A is the symmetry isomorphism of C) and A admits suf-
ficiently many coequalizers, then A -ModA inherits the structure of a tensor
category. Its tensor unit is the left A-module A, its tensor functor −⊗A − is
defined for all (M,ρ), (M ′, ρ′) ∈ A -ModA by the coequalizer

M ⊗ A⊗M ′
id⊗ρ

//

ρσ⊗id
//M ⊗M ′ //M ⊗AM ′ (3.7)

equipped with the evident induced left A-action. The unit, associativity and
symmetry isomorphisms for A -ModA are induced by those of A.

Note that if the tensor categoryA is k-linear then evidently so isA -ModA.
3.8 Construction (The Day convolution product; [Day70]). Let C be an es-
sentially small k-linear tensor category. The representation category Rep C
inherits from C a k-linear tensor structure, called Day convolution, which
can be characterized as the unique (closed k-linear) tensor structure −⊗C −
on Rep C which preserves colimits in both variables and which makes the
Yoneda embedding Cop → Rep C a tensor functor. The Day convolution of
M,N ∈ Rep C is computed by the (k-linear) coend

M ⊗C N =

∫ u,v∈C
C(u⊗ v,−)⊗k M(u)⊗k N(v) .
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The unit object in Rep C is the functor 1 := C(1,−) corepresented by the
unit object of C. The left unitor, right unitor, associator and symmetry of
the Day convolution product are obtained by combining, in the evident way,
those of C with some canonical identifications of coends (see e.g. [Hug19,
Prop. 1.2.16] for details).

3.9 Lemma. If the tensor category C is rigid, the Day convolution product
of Rep C can be computed by either one of the two coends

M ⊗C N '
∫ v∈C

M(v∨ ⊗−)⊗k N(v)

'
∫ u∈C

M(u)⊗k N(u∨ ⊗−)

where x∨ denotes the tensor-dual of an object x ∈ C.

Proof. At each c ∈ C, we define the first isomorphism to be the following
composite:

(M ⊗C N)(c) =

∫ u,v∈C
C(u⊗ v, c)⊗k M(u)⊗k N(v) (3.8)

'
∫ u,v∈C

C(u, v∨ ⊗ c)⊗k M(u)⊗k N(v) C rigid

'
∫ v∈C ∫ u∈C

C(u, v∨ ⊗ c)⊗k M(u)⊗k N(v) Fubini 2.2

'
∫ v∈C (∫ u∈C

C(u, v∨ ⊗ c)⊗k M(u)

)
⊗k N(v)

'
∫ v∈C

M(v∨ ⊗ c)⊗k N(v) co-Yoneda 2.8

The second-to-last isomorphism uses that⊗k preserves colimits of k-modules
in both variables. The second formula is proved similarly and will not be
needed.

If we trace a generator [f : u ⊗ v → c,m, n]u,v ∈ (M ⊗C N)(c) all the
way, we see that it corresponds to [M(f̃)(m), n]v where f̃ is the map

u ' u⊗ 1 //u⊗ v ⊗ v∨ f⊗id
//c⊗ v∨ ' v∨ ⊗ c

which also uses the symmetry of C.
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3.10 Construction (Lax right adjoints and projection map). Let us again con-
sider a general adjunction L : A� B :R with unit η and counit ε. Suppose
thatA and B are tensor categories and that the left adjoint L is a tensor func-
tor. The right adjoint R inherits from L the structure of a lax tensor functor,
that is, an (‘external’) multiplication λY,Y ′

R(Y )⊗R(Y ′)
λY,Y ′

//

η

��

R(Y ⊗ Y ′)

RL(R(Y )⊗R(Y ′)) ∼ //R(LR(Y )⊗ LR(Y ′))
R(ε⊗ε)

OO

(for all Y, Y ′ ∈ B) and a unit

ι : 1A
η
// RL(1A)

∼ // R(1B)

satisfying the same coherence constraints as for a tensor functor (i.e. the
‘strong’ case, when λ and ι are invertible).

As all lax tensor functors, R preserves monoids: If Y = (Y,m, u) is a
monoid in B, then R(Y ) inherits a monoid structure with multiplication and
unit

RY ⊗RY
λY,Y

// R(Y ⊗ Y ) Rm // RY and 1 ι // R1 Ru // RY .

By applying this to the unique monoid structure (1,m : 1 ⊗ 1
∼→ 1, id1) on

the tensor unit of B, we obtain a distinguished commutative monoid A :=
R(1) in A.

The lax structure on R also produces the projection map

πY,X : R(Y )⊗X id⊗η
//R(Y )⊗RL(X)

λY,LX
//R(Y ⊗ L(X)) (3.11)

(for all X ∈ A and Y ∈ B) which in many contexts, but not always, is an
isomorphism called projection formula.

3.12 Lemma ([BDS15, Lem. 2.8]). In the situation of Construction 3.10, the
map

π : A⊗X
π1,X

// R(L1⊗ LX) ' R(1⊗ LX) ' RL(X) ( for X ∈ A)

is always a morphism of monads onA, between the monad obtained from the
monoid A = R(1B) and the monad A = RL obtained from the adjunction
L a R.
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3.13 Example. Consider a k-linear functor F : C → D and the induced ad-
junction F! a F ∗ as in Construction 3.2. Suppose now that C,D are k-linear
tensor categories and that F is a tensor functor. It is a well-known general
fact that the left adjoint F! : Rep C → RepD is naturally a tensor functor
with respect to the Day convolution products (see e.g. [Hug19, Prop. 1.3.5]).
Everything in Construction 3.10 can be applied to L := F! a F ∗ =: R. In
particular F ∗ is a lax tensor functor. For future reference, its structure maps
are given at each c ∈ C by

ιc : (1Rep C)(c) = C(1, c) F //D(F1, F c) ' D(1, F c) = (F ∗1RepD)(c)

and (in the rigid case, the only one we will need) by [n, n′]u 7→ [n, n′]v=Fu

λN,N ′,c :
(
F ∗N ⊗C F ∗N ′

)
(c)

(3.9)
=

∫ u∈C
N(Fu∨ ⊗ Fc))⊗k N

′F (u)

(3.14)

−→
∫ v∈D

N(v∨ ⊗ Fc)⊗k N
′(v)

(3.9)
= F ∗(N ⊗D N ′)(c)

for all N,N ′ ∈ RepD (see [Hug19, Cor. 1.3.6]).

3.15 Proposition (Projection formula). Let F : C → D be a k-linear tensor
functor between essentially small rigid k-linear tensor categories C and D.
Consider the induced adjunction L = F! : Rep C � RepD :F ∗ = R with
its tensor structure as in Example 3.13. Then the projection formula holds,
that is the canonical map

πN,M : F ∗(N)⊗C M
∼−→ F ∗

(
N ⊗D F!(M)

)
of (3.11) is an isomorphism for all M ∈ Rep C and N ∈ RepD.
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Proof. For every object c ∈ C, we compute as follows (explanations below):

(F ∗N ⊗C M)(c) =

∫ v∈C
N(F (v∨ ⊗ c))⊗M(v)

'
∫ v∈C

N(Fv∨ ⊗ Fc)⊗M(v)

'
∫ v∈C (∫ d∈D

D(d∨, Fv∨)⊗N(d∨ ⊗ Fc)
)
⊗M(v)

'
∫ v∈C (∫ d∈D

D(Fv, d)⊗N(d∨ ⊗ Fc)
)
⊗M(v)

'
∫ d∈D

N(d∨ ⊗ Fc)⊗
(∫ v∈C

D(Fv, d)⊗M(v)

)
= F ∗

(
N ⊗D F!M

)
(c)

This successively uses: Lemma 3.9 for the Day convolution over C; the ten-
sor structure of F ; the co-Yoneda isomorphism (2.8) (applied to the functor
N((−)∨ ⊗ Fc) : Dop ' D → k -Mod to compute the value N(Fv∨ ⊗ Fc),
exploiting the fact that d 7→ d∨ is a self-inverse equivalence Dop ' D);
again the equivalence (−)∨ : Dop ' D; the Fubini Lemma 2.2 to exchange
the two coends; and finally, the definition of F! and Lemma 3.9 for the Day
convolution over D.

If we trace the fate of a generator [n,m]v ∈ (F ∗N ⊗M)(c) all the way,
for any n ∈ N(F (v∨ ⊗ c)), m ∈ M(v) and v ∈ C, we see that it maps
to [ñ, [idFv,m]v]d=Fv, where ñ ∈ N(Fv∨ ⊗ Fv) is the element matching n
under Fv∨ ⊗ Fc ' F (v∨ ⊗ c). This is easily seen to agree with the value of
[n,m]v under the canonical map πN,M , again computed by a direct inspection
of the definitions. Thus πN,M is invertible.

3.16 Corollary. If the tensor categories C and D are rigid, the canonical
morphism between monads on Rep C

π : A⊗ (−) := F ∗(1RepD)⊗C (−)
∼−→ F ∗F! =: A

is an isomorphism. In particular, it induces by precomposition an isomor-
phism

π∗ : A -ModRep C
∼−→ A -ModRep C

of their module categories, identifying the two Eilenberg-Moore adjunctions.
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Proof. Immediate from Lemma 3.12 and Proposition 3.15. Concretely, the
isomorphism π∗ sends an A-module (M,ρ) to the A-module (M,ρπ).

3.17 Remark. The special case of the projection formula used in Corol-
lary 3.16 is actually easy to see directly, since the relevant map π

A⊗C M =

∫ c∈C
D(1, F (c∨ ⊗−))⊗M(c)

∼−→
∫ c∈C

D(Fc, F−)⊗M(c) = F ∗F!M

is just induced by D(1, F (c∨ ⊗−)) ' D(1, F c∨ ⊗ F−) ' D(Fc, F−), the
isomorphisms given by the tensor structure of F and the tensor duality of D.

3.18 Lemma. If F : C → D is essentially surjective and full, then F ∗ is a
fully faithful embedding RepD ↪→ Rep C. An M : C → k -Mod belongs
to the (essential) image of F ∗ if and only if it factors (up to isomorphism)
through F , uniquely if so.

Proof. This is well-known, see e.g. [Hug19, Prop. 1.3.2] for a detailed proof.

Proof of Theorem 1.4. We finally have at our disposal all the ingredients of
the theorem and its proof. Let F : C → D be a k-linear tensor functor be-
tween essentially small k-linear rigid tensor categories, and consider all the
constructions as listed in the theorem and recalled above. (Since F is es-
sentially surjective, if C is rigid then D is also automatically rigid, see e.g.
[Hug19, Prop. 1.1.10] for a full proof.)

Consider the composite functor

EA : RepD EA // A -ModRep C
π∗

∼
// A -ModRep C (3.19)

of the Eilenberg-Moore comparison functor EA and the identification π∗ of
the categories of A-modules with that of A-modules, as in Corollary 3.16
(this uses rigidity). It sends N ∈ RepD to F ∗N ∈ Rep C equipped with the
A-action

ρ := F ∗(ε) ◦ π : A⊗C F ∗N ' F ∗F!F
∗N −→ F ∗N.
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If F is essentially surjective, EA is an equivalence by Proposition 3.4 and
therefore so is EA; this proves part (1) of the theorem. If moreover F is full,
the functors F ∗ and U are fully faithful by Lemma 3.18; this proves a third
of (2).

Under all these hypotheses, the remaining claims of part (2) on the tensor
structures follow from Proposition 3.20 below. This ends the proof of the
theorem.

3.20 Proposition. If F : C → D is full and essentially surjective and C and
D are rigid, then the equivalence EA of (3.19) is a (strong) tensor functor,
and the embeddings F ∗ and U identify these tensor categories with the full
tensor ideal subcategory Im(F ∗) = Im(U) of Rep C.

Proof. For N,N ′ ∈ D, let EA(N) = (F ∗N, ρ) and EA(N ′) = (F ∗N ′, ρ′)
denote the two images in A -Mod. Recall, from Construction 3.6 and Exam-
ple 3.13, the coequalizer defining − ⊗A − and the lax multiplication λN,N ′
of F ∗:

F ∗N ⊗C A⊗C F ∗N ′
id⊗ρ′

//

ρσ⊗id
// F ∗N ⊗C F ∗N ′

λN,N′

��

ω // F ∗N ⊗A F ∗N ′

λN,N′ω
−1 =: ϕN,N′tt

F ∗(N ⊗D N ′)

We claim that, under the hypotheses, λN,N ′ is invertible and so is the canon-
ical projection ω to the coequalizer. In particular, we obtain the dotted iso-
morphisms ϕN,N ′ . Indeed, writing as in (3.14) (thanks to rigidity), λN,N ′
sends [n, n′]u to [n, n′]Fu, and the inverse map sends [n, n′]v to [n, n′]u, for
any choice of u ∈ C with Fu ' v. To see why the latter works, assume
for simplicity that F is surjective on objects (i.e. replace D with the equiv-
alent strict image of F ). Now choose uv ∈ F−1(v) for each v ∈ D. The
resulting map (n, n′)v 7→ (n, n′)uv , call it θ, is well-defined on the classes
[n, n′]v; indeed, every map ψ ∈ D(v, v) testifying of an ‘elementary’ rela-
tion (n, n′)v ∼ (n, n′)v lifts to some ϕ ∈ C(uv, uv) by the fullness of F ,
showing [n, n′]uv = [n, n′]uv , and we may lift any zig-zag of such maps by
the surjectivity of F on objects. Clearly λN,N ′ ◦ θ = id. Moreover for ev-
ery u ∈ C we have F (u) = F (uFu), hence by the fullness of F we may lift
idFu to some map u→ uFu in C, which implies that θ ◦ λN,N ′ = id as well.
Thus λN,N ′ is invertible (and θ does not depend on the choices).
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As for ω, it is a general fact, neither requiring rigidity nor the hypotheses
on F , that λ factors through it (see [Hug19, Lemma 1.4.2]); as λ is invert-
ible and ω is always an epimorphism, we conclude that ω is also invertible.
Alternatively, the latter can also be checked directly in the rigid case.

Note that this does not mean that F ∗ is a strong tensor functor, because
the unit map F : C(1,−)→ D(F1, F−) ' D(1, F−) is still not necessarily
invertible. Still, the identity map F ∗(1RepD)→ U ◦EA(1RepD) is invertible,
and is also the unique A-linear morphism A = F ∗(1RepD) → EA(1RepD)
extending along the unit map 1Rep C → A of the monoidA, as one checks im-
mediately. Moreover, the morphisms ϕN,N ′ are automatically A-equivariant,
since the fullness and essential surjectivity of F imply that everyM ∈ Rep C
can have at most a unique A-module structure ([Hug19, Cor. 1.3.11]).

Altogether, we see that the maps ϕN,N ′ and the identity A → EA(1)
belong to A -ModRep C and equip EA with a strong tensor structure; the com-
mutativity of the coherence diagrams follows from that for the lax structure
of F ∗.

Finally, let us verify that Im(F ∗) = {M ∈ Rep C | ∃N s.t. M ' F ∗N}
is a tensor ideal. Notice that for all M ∈ Rep C

M ∈ Im(F ∗) ⇐⇒ the unit η : M → F ∗F!M is invertible
⇐⇒ the unit M ' 1⊗M → A⊗M is invertible,

the first equivalence because F ∗ is the inclusion of a full reflexive sub-
category, the second because the equivalence EA matches the two adjunc-
tions. We deduce for all M ∈ Im(F ∗) and N ∈ Rep C that M ⊗ N '
(A⊗M)⊗N ' A⊗ (M ⊗N), so that M ⊗N ∈ Im(U) = Im(F ∗). Thus
Im(F ∗) is a tensor ideal in Rep C.

3.21 Remark. A slightly weaker version of Theorem 1.4 is proved in [Hug19,
§1.4] by way of more explicit calculations. We do not know if the ridigity
hypothesis is necessary for EA to be an equivalence, nor if the fullness hy-
pothesis is necessary for EA to be a strong tensor functor (it is always a lax
one), as we have not looked for explicit counterexamples. On the other hand,
we don’t see any reason for the conclusions to hold otherwise, because the
projection formula of Proposition 3.15, in particular, may fail.
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4. Application: cohomological vs ordinary Mackey functors

In this section we derive Corollary 1.7 from the above abstract results. Al-
though this corollary is essentially well-known (see especially [PS07, §10]),
the present proof offers some insight because it immediately clarifies the re-
lation between ordinary and cohomological Mackey functors as tensor cate-
gories. Besides, it provides an easier and probably more familiar analogue
of our main application, Corollary 1.6.

Throughout this section, we fix a finite group G and a commutative
ring k.

4.1 Recollection (The span category of G-sets). Let G-set denote the cat-
egory of finite left G-sets. Then there is a category Spk(G) whose objects
are the same as those of G-set, and where a morphism X → Y is by defi-
nition an element of the Grothendieck group k⊗Z K0(G-set/X × Y ) (with
addition induced by coproducts) of the slice category G-set/X × Y . In par-
ticular, every morphism can be written as a finite k-linear combination of
isomorphism classes [α, β] of spans X α← S

β→ Y in G-set, where two

spans X α← S
β→ Y and X α′← S ′

β′→ Y are isomorphic if there exists an
isomorphism ϕ : S

∼→ S ′ making the following diagram of G-sets commute:

S

ϕ '
��

α
ww

β

''
X Y

S ′α′

gg

β′

88

A k-bilinear composition in Spk(G) is induced by taking pull-backs inG-set:

S ×Y T
γ̃yy β̃ %%

αγ̃

		

δβ̃

��

S

α~~ β %%

T

γyy δ   

X // Y // Z

(4.2)

It follows that Spk(G) is an essentially small k-linear category, where the
sum of two spans is induced by taking coproducts at the middle object S.
Moreover, Spk(G) is a k-linear rigid tensor category, with tensor product
⊗ induced by the categorical product X × Y of G-set and with tensor unit
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1 = G/G the one-point G-set. Every G-set is actually its own tensor dual,
by virtue of the natural equivalence G-set/X × Y ' G-set/Y ×X of slice
categories. See details e.g. in [Bou97].

4.3 Recollection (The category of permutation modules). We write Permk(G)
for the category of finitely generated permutation kG-modules, that is, the
full subcategory of those (left) kG-modules which admit a finite G-invariant
k-basis. Clearly this is an essentially small k-linear category. It is moreover
a k-linear tensor category, because it inherits the usual tensor product of
kG-modules (i.e. the tensor product ⊗ = ⊗k over k endowed with diagonal
G-action). Indeed, the trivial module 1 = k is a permutation kG-module,
and if the kG-modules M and N admit G-invariant bases X ⊂ M and
Y ⊂ N , respectively, then {x⊗y | (x, y) ∈ X×Y } is aG-invariant basis of
M ⊗N . As tensor category, Permk(G) is rigid: if M has invariant basis X ,
its tensor-dual module M∨ = Homk(M,k) has an invariant basis given by
the usual k-linear dual basis X∨ := {x∨ : y 7→ δx,y | x ∈ X}.
4.4 Definition (Mackey functors for G). The representation category

Mackk(G) := Rep Spk(G)

(cf. Notation 3.1) is by definition the category of (k-linear) Mackey functors
for G. Similarly, the category of cohomological Mackey functors for G is

coMackk(G) := RepPermk(G) .

Both are complete and co-complete abelian k-linear tensor categories, with
tensor structure provided by Day convolution (Construction 3.8) extended
from the rigid tensor structures on their respective source categories Spk(G)
and Permk(G), as described in Recollection 4.1 and Recollection 4.3.

4.5 Remark. Usually, the tensor product in Mackk(G) is denoted by M 2N
and called box product; and coMackk(G) is defined as a full subcategory of
Mackk(G) and only later identified (by Yoshida’s theorem) with the above
functor category.

4.6 Lemma (Yoshida’s functor). There is a well-defined k-linear tensor
functor

Yo: Spk(G) −→ Permk(G)
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sending a left G-set X to the permutation kG-module k[X] and sending

a span X
α← S

β→ Y of G-maps to the kG-linear map k[X] → k[Y ],
x 7→

∑
s∈α−1(x) β(s). Moreover, Yo is essentially surjective and full.

Proof. One can verify that Yo is well-defined by straightforward computa-
tions, but here is a more conceptual way to see it. First note that there is a
functor Yo? : G-set → k -Mod which sends X to k[X] and simply extends
a G-map k-linearly. There is also a functor Yo? : (G-set)op → k -Mod with
the same object-map but sending a G-map α : Y → X to the k-linear map
k[X] → k[Y ] such that x 7→

∑
y∈α−1(x) y for x ∈ X . Since k[X t Y ] '

k[X]⊕ k[Y ], and since the identity

Yo?(γ)Yo?(β) = Yo?(β̃)Yo
?(γ̃)

can be readily verified for an arbitrary pull-back square of G-sets (with no-
tations as in (4.2)), it follows by the universal property of the span category
([Lin76]; see also [BD20, App. A.5]) that there is a functor Ỹo : Sp(G) →
Permk(G) defined as Ỹo(X) = k[X] on G-sets and Ỹo([α, β]) = Yo?(β) ◦
Yo?(α) on spans of G-maps. (Here Sp(G) is the ‘plain’ span category, con-
structed as Spk(G) but with Hom sets simply given by the sets of isomor-
phism classes Sp(G)(X, Y ) = (G-set/X × Y )/' of objects.) Our functor
Yo is then the evident k-linear extension of Ỹo.

A permutation kG-module M is precisely one for which there exists an
isomorphism M ' k[X] for some G-set X , hence Yo is essentially surjec-
tive. It is a little harder to see that Yo is full, but it suffices to verify it for
two standard orbits X = G/H and Y = G/K, in which case it boils down
to the k-linear isomorphism

k[H\G/K]
∼−→ HomkG(k[G/H],k[G/K])

HxK 7−→
(
gH 7→

∑
[u]∈H/(H∩xK)

guxK
)

as in [Yos83, Lemma 3.1]; see [Hug19, Prop. 2.1.10] for the remaining de-
tails.

Proof of Corollary 1.7. As we have seen in Recollections 4.1 and 4.3, both
C := Spk(G) and D := Permk(G) are essentially small rigid k-linear tensor
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categories. Moreover, Yoshida’s functor F := Yo of Lemma 4.6 is a full and
essentially surjective k-linear tensor functor between them. Hence F : C →
D satisfies all the hypotheses of Theorem 1.4, from which we obtain most of
the claims of the corollary.

It remains only to clarify two points:

(1) The monoid A = F ∗(1) of Rep C = Mackk(G) from the theorem is the
fixed-point Mackey functor FPk.

(2) A Mackey functor M is cohomological if and only if it satisfies the co-
homological relations indHL ◦ resHL = [H : L] idM(H) for all subgroups
L ≤ H ≤ G.

Here for familiarity we have switched to the classical notations M(H) :=
M(G/H), indHL := M([G/L = G/L → G/H]) and resHL := M([G/H ←
G/L = G/L]), where G/L → G/H is the quotient G-map for two nested
subgroups L ≤ H ≤ G.

For (1) recall that, classically, FPk is the Mackey functor which assigns
to every orbit G/H the trivial kG-module k, whose restriction and conju-
gation maps are all identities, and whose induction maps indHL : k → k are
given by multiplication by the index [H : L]. It is a matter of straightforward
comparison to identify it with A = Permk(G)(k,Yo(−)) (if necessary, see
details in [Hug19, Lemma 2.2.15]).

For (2), the easiest way to see this is as in [TW95, Prop. 16.3] where, by
very easy explicit calculations, it is shown that a Mackey module over the
Green functor FPk is the same thing as a Mackey functor satisfying also the
cohomological relations.

4.7 Remark. Note that (2) amounts to saying that the kernel (on maps) of
Yoshida’s functor Yo is generated as a k-linear categorical ideal of Spk(G)
by the span-versions of the cohomological relations, namely (after comput-
ing the trivial pull-back) by

[G/H ← G/L→ G/H]− [H : L]idG/H for all L ≤ H ≤ G.

It is immediate to see that Yo kills these relations. To see that they actu-
ally generate the kernel of Yo, it suffices to inspect the standard presenta-
tion of Spk(G) in terms of restriction, conjugation and induction maps; the
necessary calculations are essentially a re-writing of the ones in [TW95,
Prop. 16.3] we mentioned above.

- 87 -



I. DELL’AMBROGIO AND J. HUGLO SPANS AND BISETS

5. The realization pseudo-functor

This section is dedicated to proving Theorem 1.1.
We retain the same standard notations and conventions for bicategories,

2-categories, pseudo-functors and allied notions as in [BD20, App. A] or
[Del19, §2]. We nonetheless provide here a few recollections for the reader’s
convenience. We denote by gpd the 2-category (= strict bicategory) of finite
groupoids, functors between them and (necessarily invertible) natural trans-
formations.

5.1 Terminology. Given two functors S a→ G
b← T between finite groupoids

and with common target (a ‘cospan’), we can build its iso-comma groupoid
a/b, whose objects are triples (s, t, γ) with s ∈ ObjS, t ∈ ObjT and γ ∈
G(a(s), b(t)). A morphism (s, t, γ) → (s′, t′, γ′) is a pair (ϕ, ψ) with ϕ ∈
S(s, s′) and ψ ∈ T (t, t′) and such that γ′a(ϕ) = b(ψ)γ. It is part of the
iso-comma square

(a/b)
p

||

q

""γ

⇓

∼
S

a ##

T

b{{
G

which also comprises two evident forgetful functors p, q and a tautological
natural isomorphism γ : ap ⇒ bq whose component at the object (s, t, γ) is
the map γ. The iso-comma square is the universal (in a strict 2-categorical
sense) such invertible 2-cell sitting over the given cospan.

5.2 Construction (The bicategory Span). There exists a bicategory Span con-
sisting of the following data. Its objects are all the finite groupoids. A 1-cell
H → G is a ‘span’ in gpd, that is a diagram

H Sboo a // G

of functors between finite groupoids. A 2-cell from the span H b← S
a→ G

to the span H b′← S ′
a′→ G is the isomorphism class of a diagram in gpd of
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the following form:
S
f

��

b

ww
β ⇓ ⇓α

a

''
H G

S ′
b′

gg

a′

88

(The orientation of the two 2-cells is merely a matter of convention.) Here,
two such diagrams are isomorphic if there exists a natural isomorphism be-
tween their 1-cell components f which identifies their 2-cells components
α and β. The horizontal composition of spans is defined by constructing an
iso-comma square in the middle:

(c/b)

p{{ q ""

dp





aq

��

T γ

⇓

d~~ c ##

S

b{{ a   

K // H // G

The horizontal composition of 2-cells, as well as the coherent associativity
and unitality isomorphisms, are all induced by the universal property of iso-
comma squares in a straightforward way. The identity span of G is IdG =
(G = G = G). See [BD20, § 5.1] for more details.

In the following, (−)co and (−)op denote, respectively, the operation of
formally reversing the direction of the 2-cells or of the 1-cells in a bicategory.

5.3 Construction (Canonical embeddings). There are two canonical pseudo-
functors (−)! : gpdco ↪→ Span and (−)∗ : gpdop ↪→ Span, embedding gpd
inside of Span in a way which is contravariant on 2-cells and on 1-cells,
respectively:

S ⇑α

a

��

a′

CCG 7−→ α! =


S

id ⇓ ⇓α
a

&&
S G

S a′

88


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H ⇓β
��

b

[[

b′

S 7−→ β∗ =


S

b

xx
β ⇓ ⇓idH G

Sb′

ff


(the above diagrams to be understood in gpd). Thus the embeddings map
functors a : S → G and b : S → H to spans a! = (S = S

a→ G) and
b∗ = (H

b← S = S), respectively, and natural isomorphisms α : a′ ⇒ a
and β : b ⇒ b′ to the depicted 2-cells. Note that these pseudo-functors are
not strict. Every 1-cell of Span is (isomorphic to) a composite a! ◦ b∗, and
similarly, every 2-cell [f, β, α] is a combination of α! and β∗. See [BD20,
Cons. 5.1.18, Rem. 5.1.19, Prop. 5.1.32] for details.

The key tool for defining the realization pseudo-functor R is the univer-
sal property of its source, the span bicategory:

5.4 Theorem (Universal property of Span). Suppose we are given a bicate-
gory B, two pseudo-functors

F! : gpd
co → B and F∗ : gpdop → B

and, for every functor u : H → G between finite groupoids, an (internal)
adjunction F!(u) a F∗(u) in B, with specified unit and counit. Assume the
following holds:

(a) On objects, F! and F∗ coincide: F!(G) = F∗(G) for all G.

(b) The adjunctions satisfy base-change, a.k.a. the Beck-Chevalley condi-
tion, for all iso-comma squares (Terminology 5.1). In other words, for
every iso-comma square in gpd as on the left

(a/b)
p

||

q

""γ

⇓

∼
S

a ##

T

b{{
G

 

FT

ε

⇓F(a/b)

F!q
99

FS

F∗p 99

η

⇓

F∗γ

⇓ FTF∗q

ee

FGF∗a

ee

F∗b

99

FS
F!a

99

(5.5)
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the mate constructed on the right is an isomorphism F!(q)F∗(p)
∼⇒

F∗(b)F!(a).

(c) For each 2-cell α : u ⇒ v in gpd, the 2-cells F!(α) and F∗(α) of B are
each other’s mate under the adjunctions F!(u) a F∗(u) and F!(v) a
F∗(v) (after a necessary inversion). Similarly, the coherent structure
isomorphisms of F! and F∗ are each other’s mates (in the only way
which makes sense).

Then the above data defines a pseudo-functor F : Span→ B by the compos-
ite

F
(
H

b← S
a→ G

)
:= F!(a) ◦ F∗(b)

for 1-cells and by the pasting

F




S
b

yy

a

%%f

��

H β ⇓ ⇓α G

S ′
b′

ee

a′

::


 :=

FH ⇓ F∗β

F∗b′ $$

F∗b

""

FS ⇓ F!α

F!f
##

F!a

""

FG

FS ′ ⇓ ε
F∗f
;;

FS ′
F!a
′

;;

for 2-cells. ThisF is, up to isomorphism, the unique pseudo-functor Span→
B such that F! ' F ◦ (−)! and F∗ ' F ◦ (−)∗.

gpdco

'(−)!
��

F!

��

Span F // B

gpdop

'(−)∗
OO

F∗

AA

Proof. This is a special case, and a slight rephrasing which emphasizes
the symmetry of the present situation, of the more general [BD20, Theo-
rem 5.2.1]. Indeed, by hypotheses (a) and (b) we can apply loc. cit. with
G = J = gpd to the pseudo-functorF∗. (To be precise, loc. cit. assumes that
the target bicategory is strict, so we should first replace B with a biequiva-
lent 2-category C; this has the effect that we can only obtain an isomorphism

- 91 -



I. DELL’AMBROGIO AND J. HUGLO SPANS AND BISETS

F∗ ' F ◦ (−)∗ rather than an equality; cf. [BD20, Theorem 5.3.7]). We
thus obtain an extension F : Span → B, constructed as in the theorem with
the only (possible) difference that, in the pasting defining the image of the
2-cell [f, β, α], the 2-cell F!(α) must be replaced by the mate

F!(a)
η
+3 F!(a)F∗(a′f)F!(a

′f)

F∗α
��

F!(a)F∗(a)F!(a
′f)

ε +3 F!(a
′f) ' F!(a

′)F!(f)

of F∗(α). This F is such that F∗ ' F ◦ (−)∗ and is unique up to an
isomorphism of pseudo-functors for this property. By its construction, it is
uniquely determined (on the nose) by the pseudo-functor F∗, the isomor-
phism F∗ ' F ◦ (−)∗, and by taking mates with respect to the given adjunc-
tions F!(u) a F∗(u) for all u.

It remains to see that we also have F! ' F ◦ (−)!, and that the dif-
ference in the definition of 2-cells is only apparent. These however are
straightforward consequences of the construction ofF together with hypoth-
esis (c).

We next recall our bicategory B of interest and proceed to introduce the
structure needed to apply the universal property of Span.

5.6 Construction (The bicategory Biset). There exists a bicategory Biset con-
sisting of the following data. Its objects are all finite groupoids. A 1-cell
U : H → G (a ‘finite left-G and right-H biset’, or ‘G,H-biset’ for short) is
a functor

U : Hop ×G −→ set

taking values in the category of finite sets. A 2-cell ϕ : U ⇒ V is a natural
transformation U ⇒ V . The horizontal composition of two composable
bisets V : K → H and U : H → G is given by the set-theoretical coend (see
Section 2)

U ◦ V = U ⊗H V :=

∫ h∈H
U(h,−)× V (−, h) : Kop ×G −→ G .

The identity 1-cell of a groupoidG is its Hom functor IdG = G(−,−) : Gop×
G → set. The horizontal composition of 2-cells is induced on the quotient
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sets in the evident way. The coherent associativity and unitality constraints
are the standard (evident) identifications of coends. See e.g. [Bor94, §7.8]
for details.

5.7 Notation. Let u : H → G be any functor of finite groupoids. We will
write

R!(u) := G(u−,−) : Hop ×G→ set

R∗(u) := G(−, u−) : Gop ×H → set

for the bisets H → G and G → H obtained by composing u with the Hom
functor of G in the two possible ways.

5.8 Lemma. The assignments u 7→ R!(u) and u 7→ R∗(u) of Notation 5.7
extend canonically to two pseudo-functors

R! : gpd
co → Biset and R∗ : gpdop → Biset

both of which act as the identity on objects (finite groupoids).

Proof. Let us specify this structure forR∗. By definition,R∗ sends a group-
oidG to itself and (contravariantly) a functor u : H → G to the bisetR∗(u) =
G(−, u−) : G → H . For a natural transformation α : u ⇒ v, we naturally
define the (covariant!) imageR∗(α) : R∗(u)⇒ R∗(v) to be the natural iso-
morphism G(−, u−) ⇒ G(−, v−) induced by α, by sending an element ξ
to α ◦ ξ. The assignment α 7→ R∗(α) defines a functor for each pair (H,G),
as required. The structure isomorphisms of the pseudo-functor are given by
the identity map unR∗ : IdR∗(G) = G(−,−) = R∗(IdG) for eachG as unitor,
and by the isomorphism funR∗

R∗(v) ◦ R∗(u) =
∫ h∈H

H(h, v−)×G(−, uh) ∼−→ G(−, uv−) = R∗(u ◦ v)

induced by composition, [ζ, ξ]h 7→ u(ζ)◦ξ, for any two composable functors
K

v→ H
u→ G; this map is clearly well-defined with inverse given by ξ 7→

[id, ξ]. The verification of the coherence axioms is straightforward and left
to the reader.
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Similarly forR!, a 2-cell α : u⇒ v is sent (contravariantly) to the natural
map G(v−,−) ⇒ H(u−,−) given by precomposition with α, that is ξ 7→
ξ ◦ α, and the structural isomorphism funR!

R!(u) ◦ R!(v) =

∫ h∈H
G(uh,−)×H(v−, h) ∼−→ G(uv−,−) = R!(u ◦ v)

is again simply given by composition: [ξ, ζ]h 7→ ξ ◦ u(ζ).

5.9 Lemma. For every u : H → G, there is an adjunction R!(u) a R∗(u)
in the bicategory Biset, with the natural transformations

ηu : IdH =⇒ R∗(u) ◦ R!(u) εu : R!(u) ◦ R∗(u) =⇒ IdG

ζ 7−→ [id, u(ζ)] [ξ′, ξ] 7−→ ξ′ξ

providing the unit and counit, respectively.

Proof. It is straightforward to verify that these are well-defined maps satis-
fying the zig-zag equations of an adjunction. For the latter, at each object
(g, h) ∈ Gop × H we may follow an element ξ ∈ R∗(u)(g, h) = G(g, uh)
through the composite

R∗(u)
'
��

G(g, uh)

��

ξ
_

��

3

IdH R∗(u)
η ◦ id

��

H(h, h)×G(g, uh)

��

[id, ξ]
_

��

R∗(u) R!(u) R∗(u)
id ◦ ε ��

G(uh, uh)×G(uh, uh)×G(g, uh)

��

[id, u(id), ξ]
_

��

R∗(u) IdG
'
��

G(uh, uh)×G(g, uh)

��

[id, u(id) ◦ ξ]
_

��

R∗(u) G(g, uh) id ◦ u(id) ◦ ξ = ξ

which is thus shown to be the identity map, as required. In the above display,
the middle column shows to which sets belong the representatives of the
coend elements displayed on the right-hand column, before quotienting. The
left and right unitors in Biset are induced by composition of maps, like ε,
with inverse given by insertion of an identity map.

The verification of the other zig-zag equation is similar.
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5.10 Lemma. For the adjunctions R!(u) a R∗(u) of Lemma 5.9, the mate
of every iso-comma square γ as in (5.5) is an invertible 2-cell in Biset.

Proof. This is another direct computation, although rather more involved.
Unfolding the construction of the mate R∗(γ)! : R!(q) ◦ R∗(p) ⇒ R∗(b) ◦
R!(a), we obtain the following composite natural transformation on the left-
hand side (where, as before, we omit the associativity constraints of Biset):

R!(q) R∗(p)
'
��

T (y, t)×S(s, x)

��

[τ, σ]
_

��

R!(q) R∗(p) IdS
id ◦ id ◦ η

��

T (y, t)×S(s, x)×S(s, s)

��

[τ, σ, id]
_

��

R!(q) R∗(p) R∗(a) R!(a)

id ◦ funR∗ ◦ id '
��

T (y, t)×S(s, x)×G(as, as)×G(as, as)

��

[τ, σ, id, id]
_

��

R!(q) R∗(ap) R!(a)

id ◦ γ ◦ id
��

T (y, t)×G(as, ax)×G(as, as)

��

[τ, a(σ), id]
_

��

R!(q) R∗(bq) R!(a)

id ◦ fun−1
R∗ ◦ id '

��

T (y, t)×G(as, bx)×G(as, as)

��

[τ, γa(σ), id]
_

��

R!(q) R∗(q) R∗(b) R!(a)

ε ◦ id ◦ id ��

T (y, t)×T (y, y)×G(as, by)×G(as, as)

��

[τ, id, γa(σ), id]
_

��

IdT R∗(b) R!(a)

'
��

T (y, t)×G(as, by)×G(as, as)

��

[τ, γa(σ), id]
_

��

R∗(b) R!(a) G(as, bt)×G(as, as) [b(τ)γa(σ), id]

At each object (s, t) ∈ Sop × T , we can follow the trajectory of an arbitrary
element [τ, σ]i ∈ (R!(q) ◦ R∗(p))(s, t), as indicated on the right-hand side.
Here (τ, σ) ∈ T (qi, t) × S(s, pi) for some object i = (x, y, γ : a(x) →
b(y)) ∈ (a/b), so that p(i) = x and q(i) = y. The structural isomorphism
funR∗ and its inverse are as in the proof of Lemma 5.8 (again, given by
composition and insertion of an identity).

It remains to see that the resulting map above∫ i∈(a/b)
T (qi, t)× S(s, pi) −→

∫ g∈G
G(g, bt)×G(as, g)

[τ, σ]i 7−→ [ b(τ)γa(σ) , id ]as
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is a bijection.
It is injective, because if [τ ′, σ′]i′ (for some i′ = (x′, y′, γ′)) is such that

we have [b(τ ′)γ′a(σ′), id] = [b(τ)γa(σ), id] in the target coend, then (using
thatG is a groupoid) there exists a ϕ : as→ as′ inG such that b(τ ′)γ′a(σ′)◦
ϕ = b(τ)γa(σ) and ϕ ◦ idas = idas, and therefore

b(τ ′)γ′a(σ′) = b(τ)γa(σ) .

The latter condition states precisely that the pair (τ ′−1τ, σ′σ−1) ∈ T (y, y′)×
S(x, x′) defines a map i → i′ in a/b, showing that [τ, σ]i = [τ ′, σ′]i′ in the
source coend.

To see the map is surjective, let (ζ, ξ) ∈ G(g, bt) × G(as, g) represent
an arbitrary element of the target coend. Then i := (s, t, ζξ : as → bt) is an
object of a/b and [id, id]i is an element of the source coend whose image is
[ζξ, id]as = [ζ, ξ]g.

5.11 Lemma. Consider the pseudo-functorsR! andR∗ of Lemma 5.8. Their
2-cell images, as well as their structural isomorphisms, are mates under the
adjunctions of Lemma 5.9 (after inverting).

Proof. Once again, a direct inspection of all definitions yields the result.
Explicitly, for every 2-cell α : u ⇒ v : H → G in gpd we must verify that
the left-hand side composite natural transformationR∗(u)⇒ R∗(v)

R∗(u)
'
��

G(g, uh)

��

ξ
_

��

IdH R∗(u)
η ◦ id

��

H(h, h)×G(g, uh)

��

[id, ξ]
_

��

R∗(v) R!(v) R∗(u)
id ◦R!(α) ◦ id ��

G(vh, vh)×G(vh, vh)×G(g, uh)
−◦αh

��

[id, id, ξ]
_

��

R∗(v) R!(u) R∗(u)
id ◦ ε ��

G(vh, vh)×G(uh, vh)×G(g, uh)

��

[id, αh, ξ]_

��

R∗(v) IdG
'
��

G(vh, vh)×G(g, vh)

��

[id, αhξ]_

��

R∗(v) G(g, vh) αhξ
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is equal toR∗(α). For every object (g, h) ∈ Gop×H , we can follow the fate
of (a representative of) an element ξ ∈ G(g, uh) as on the right-hand side,
and the resulting map ξ 7→ αhξ is indeed the component of F∗(α) at (g, h),
as defined.

Moreover, for any composable K v→ H
u→ G we must verify that the

following composite R∗(uv) ⇒ R∗(v) ◦ R∗(u) is the inverse fun−1R∗ of the
structure isomorphism of the pseudo-functorR∗:

R∗(uv)
'
��

ξ
_

��

IdK R∗(uv)
η ◦ id

��

[id, ξ]
_

��

R∗(v) R!(v) R∗(uv)
'
��

[id, id, ξ]
_

��

R∗(v) IdH R!(v) R∗(uv)
id ◦ η ◦ id ◦ id

��

[id, id, id, ξ]
_

��

R∗(v) R∗(u) R!(u) R!(v) R∗(uv)
id ◦ id ◦ funR!

◦ id
��

[id, id, id, id, ξ]
_

��

R∗(v) R∗(u) R!(uv) R∗(uv)
id ◦ ε ��

[id, id, id ◦ id, ξ]
_

��

R∗(v) R∗(u) IdG
'
��

[id, id, id ◦ ξ]
_

��

R∗(v) R∗(u) [id ◦ id, ξ]

At any (g, k) ∈ Gop × K, this amounts to inserting a number of identity
maps and composing twice, as indicated in the right-hand colunn, and the
resulting map ξ 7→ [id, ξ] is indeed the inverse of funR!

, as we have seen.
A similar verification, amounting to the counit ε : R!(IdG) ◦R∗(IdG)⇒

IdG and the left unitor in Biset agreeing, shows that the unitors ofR! andR∗
are mates.

Proof of Theorem 1.1. Apply Theorem 5.4 to the bicategory of bisets, B :=
Biset, the pseudo-functors F! := R! and F∗ := R∗ of Lemma 5.8, and the
adjunctions of Lemma 5.9. The hypotheses (a), (b) and (c) of the theorem
are satisfied by definition, by Lemma 5.10, and by Lemma 5.11 respectively.
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It remains to prove the ‘moreover’ part. Let U : Hop × G → set be
any biset. Then we can construct a span S(U) = (H

q← S(U)
p→ G) and

an isomorphism RS(U) ' U of bisets, as follows (cf. e.g. [Bén00, § 6.4]).
The groupoid S(U) has object-set ObjS(U) =

∐
(h,g)∈Hop×G U(h, g), and a

morphism from x ∈ U(h, g) to x′ ∈ U(h′, g′) is a pair (β, α) ∈ H(h, h′) ×
G(g, g′) such that U(id, α)(x) = U(β, id)(x′), with composition induced
from H and G. The functors q : S(U) → H and p : S(U) → G map an
object x ∈ U(h, g) ⊆ ObjS(U) to its ‘source’ h and ‘target’ g, respectively,
and a morphism (β, α) to β and α. The component at (h, g) ∈ Hop × G of
the natural isomorphismRS(U) ∼⇒ U is the evaluation map

(
R!(p)⊗S(U) R∗(q)

)
(h, g) =

∫ x∈S(U)

G(px, g)×H(h, qx)
∼−→ U(h, g)

sending [α, β]x 7→ U(β, α)(x), which is easily seen to be bijective and natu-
ral.

6. Application: biset functors vs global Mackey functors

In this section we derive Corollary 1.6 from our previous results. There is not
much left for us to do, in fact, besides recalling a few more details and putting
everything together. As before, fix a commutative ring k of coefficients.

6.1 Terminology. Let B be any bicategory. Its 1-truncation or classifying
category τ1B is the (ordinary) category with the same objects as B and with
morphisms the isomorphism classes of 1-morphisms of B. Any pseudo-
functor F : B → B′ induces a functor τ1F : τ1B → τ1B′ in the evident way,
by sending a class [f ] to [Ff ].
6.2 Terminology. A category is semi-additive if it is enriched over commu-
tative monoids (i.e. every Hom set is equipped with an associative unital
sum operation for which composition is bilinear) and if it admits arbitrary
finite direct sums (a.k.a. biproducts) X1 ⊕ · · · ⊕Xn of its objects, including
a zero object (empty direct sum) 0. If C is any semi-additive category, we
may construct a k-linear additive category kC, its k-linearization, with the
same objects and with Hom k-modules given by first group-completing the
monoid and then extending scalars: kC(X, Y ) := k⊗ZK0(C(X, Y )). There
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is an evident functor C → kC which is initial among functors to k-linear
additive categories. See e.g. [BD20, App. A.6].

6.3 Example. Similarly to Span, one may consider B = Span(G-set), the
bicategory of finiteG-sets, spans of maps inG-set, composed by taking pull-
backs, and morphisms of spans. Its 1-truncation τ1Span(G-set) is a well-
known semi-additive category, which already appeared as “Sp(G)” in the
proof of Lemma 4.6; the k-linearization of the latter is the category Spk(G)
of Recollection 4.1. Next, we apply the same constructions to spans and
bisets of groupoids.

6.4 Lemma. Consider the bicategories Span and Biset of Constructions 5.2
and 5.6. The disjoint sums of groupoids induce on their 1-truncations τ1Span
and τ1Biset the structure of semi-additive categories (Terminology 6.2).

Proof. The sum of any two (parallel) spansH b← S
a→ G andH b′← S ′

a′→ G

is given by the spanH
(b,b′)←− StS ′ (a,a

′)−→ G, and the zero span byH ← ∅ → G.
For bisets, the sum of U, V : Hop × G → set is the object-wise coproduct
U t V , and the zero biset is the constant functor ∅ : Hop × G → set. The
zero object is given in both cases by the empty groupoid, 0 = ∅. The direct
sum of two groupoids G1, G2 is given in Span and Biset, respectively (and
with notations as in Section 5) by

G1

(i1)!
// G1 tG2

(i2)∗
//

(i1)∗
oo G2

(i2)!
oo and G1

R!(i1)
// G1 tG2

R∗(i2)
//

R∗(i1)
oo G2

R!(i2)
oo (6.5)

i.e. by the canonical covariant and contravariant images of the two inclusions
i1 : G1 → G1 tG2 ← G2 : i2 in gpd. All verifications are straightforward.

(In fact, even before 1-truncating, (6.5) are direct sums in the bicate-
gorical sense; and the sum of 1-morphisms is actually a categorical direct
sum, so that the Hom categories are themselves semi-additive; cf. [BD20,
App. A.7] and [Del19, Prop. 3.15].) See [Hug19, § 4.3] for more details.

6.6 Notation. As in the introduction, we write

Spk := kτ1(Span) and Bisk := kτ1(Biset)

for the k-linearization (Terminology 6.2) of the 1-truncation (Terminology 6.1)
of the bicategories of spans and bisets. The former makes sense by Lemma 6.4.
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Then
M := Rep Spk and F := RepBisk

are, respectively, the category of global Mackey functors and of biset func-
tors.

6.7 Lemma. Both Spk and Bisk are rigid k-linear tensor categories, with
tensor products of objects and maps induced by the Cartesian product of
groupoids. In particular, we may equipM and F with the associated Day
convolutions.

Proof. The tensor product of two spans H b← S
a→ G and H ′ b′← S ′

a′→ G′ is

H ×H ′ S × S ′b×b′
oo

a×a′
// G×G′

and the tensor product of two bisets U : Hop×G→ set and U ′ : H ′op×G′ →
set is

(H ×H ′)op × (G×G′) ' (Hop ×G)× (H ′op ×G′) U×U
′
// set .

In both cases the unit object is the trivial group 1. The rest is similarly
straightforward. Again, consult [Hug19, § 4.3] for details if necessary.1

6.8 Remark. The usual definition of the category of biset functors does not
mention groupoids, only groups; cf. [Bou10]. More precisely, loc. cit. de-
fines F := RepBisk(grp), where Bisk(grp) ⊂ Bisk is the full subcategory
whose objects are groups. However, the latter inclusion functor is easily seen
to be the additive hull of Bisk(grp) and therefore it induces an equivalence
RepBisk

∼→ RepBisk(grp) of functor categories, whence the agreement of
the two definitions of biset functors (cf. [Del19, Rem. 6.5]). The Day con-
volution of biset functors and of global Mackey functors are studied, respec-
tively, in [Bou10, Ch. 8] and [Nak16a].

6.9 Lemma. The pseudo-functor R : Span→ Biset of Theorem 1.1 induces
an essentially surjective, full k-linear tensor functor kτ1R : Spk → Bisk.

1And again, both rigid tensor structures should be mere shadows of rigid tensor struc-
tures on the bicategories Span and Biset, in a suitable sense, but we have not pursued this.
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Proof. It is immediate from (6.5) that the induced functor τ1R : τ1Span →
τ1Biset is additive, i.e. preserves direct sums of objects and therefore also
the addition of maps (cf. [BD20, Rem. A.6.7] if necessary). In particular,
it extends uniquely to a k-linear functor kτ1R between the k-linearizations.
This is obviously surjective on objects, and it is full by the ‘moreover’ part
of Theorem 1.1.

It remains to see that kτ1R is symmetric monoidal. Indeed it is strictly
so through the identity maps 1 = 1 = R(1) andR(G)⊗R(G′) = G×G′ =
R(G ⊗ G′), because there are easily-guessed isomorphisms of bisets (cf.
[Hug19, Lem. 4.3.11])

R(a!b∗)⊗R(a′!b′∗)
∼−→ R(a!b∗ ⊗ a′!b′∗)

showing that the functors ⊗ ◦ (kτ1R× kτ1R) and kτ1R ◦ ⊗ are equal.

Proof of Corollary 1.6. By Lemmas 6.7 and 6.9, the categories C := Spk
and D := Bisk and the functor F := kτ1R : C → D satisfy all the hypothe-
ses of Theorem 1.4. This proves most of the claims of the corollary.

It remains to show that a global Mackey functor is (isomorphic to the
restriction of) a biset functor if and only if it satisfies the deflative rela-
tion, defGG/N ◦ infGG/N = idM(G/N), whenever N is a normal subgroup of
a group G. Here, for the sake of familiarity, we have used the classical nota-
tions defGG/N = M([G = G→ G/N ]) and infGG/N = M([G/N ← G = G])
for the deflation and inflation maps of a functor M ∈ M, where G→ G/N
is the quotient map.

Equivalently, we must show that the kernel of the realization functor
F = kτ1R is generated, as a k-linear categorical ideal of Spk, by the corre-
sponding differences of spans, i.e. (after computing the obvious iso-comma
square up to equivalence) by

[G/N ← G→ G/N ]− [G/N = G/N = G/N ] for all N �G .

While it is easy to see that these elements belong to the kernel (just com-
pute R([G/N ← G → G/N ]) ' G/N(−,−)), it is a priori not obvious to
show that they generate it. This can be achieved by comparing two explicit
presentations of Spk and Bisk, as done in the proof of [Del19, Thm. 6.9], to
which we refer. Alternatively, one may consult the – possibly less transpar-
ent but ultimately equivalent – calculations in [Gan13, App. A] or [Nak16b,
§ 6].
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6.10 Remark. Not every global Mackey functor satisfies the deflative rela-
tions, for instance the tensor unit 1 = Spk(1,−) does not; see [Nak16b,
§ 5.4]. As deflative Mackey functors form a tensor ideal, if the unit were
deflative so would everyone.
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