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Résumé. Les catégories intégrales forment une sous-classe des catégories
pré-abéliennes, ces dernières ayant été initialement étudiées par Rump en
2001. Dans la première partie de ce travail, on détermine si certaines catégo-
ries d’espaces vectoriels topologiques et bornologiques sont intégrales. En-
suite, on prouve que la classe des catégories intégrales n’est pas contenue
dans la classe des catégories quasi-abéliennes, et qu’il existe des catégories
semi-abéliennes ni intégrales, ni quasi-abéliennes. Enfin, on trouve une nou-
velle caractérisation des catégories quasi-abéliennes, en utilisant la propriété
des sommes admissibles, récemment considérée par Brüstle, Hassoun et Tat-
tar. On note qu’une classe de catégories additives non-abéliennes, jouant un
rôle très important en analyse fonctionnelle, satisfait à cette propriété.
Abstract. Integral categories form a sub-class of pre-abelian categories
whose systematic study was initiated by Rump in 2001. In the first part
of this article we determine whether several categories of topological and
bornological vector spaces are integral. Moreover, we establish that the class
of integral categories is not contained in the class of quasi-abelian categories,
and that there exist semi-abelian categories that are neither integral nor quasi-
abelian. In the last part of the article we show that a category is quasi-abelian
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if and only if it has admissible intersections, in the sense considered recently
by Brüstle, Hassoun and Tattar. This exhibits that a rich class of non-abelian
categories having this property arises naturally in functional analysis.
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1. Introduction

Since the 1960s there has been much research on additive, non-abelian cat-
egories. This has led to the development of a spectrum of classes of categor-
ies ranging from pre-abelian to abelian. Our goal in this note is to explain
the following diagram:

pre-abeliansemi-abelianquasi-abelian

integralabelian

•BAN

•NOR
•FRE
•HD-TVS •

HD-LCS •
NUC •
FN •
FS

•
FH

B̂c ÛBc Bc
•

SNOR

•

TVS

•

LCS

H

C/[XR]

•

BOR

•

BAN×BOR

•

LB

•

COM

Figure 1: A graphic summary of the categories studied in this article.

We focus on the concrete examples from functional analysis and repres-
entation theory that appear therein. We refer the reader to §§2–4 for precise
definitions.

A pre-abelian category is an additive category in which every morph-
ism has a kernel and a cokernel. Within the class of pre-abelian categories,
one defines the following notions. Semi-abelian categories are the ones in
which the canonical morphism between the coimage and image is always
both monic and epic, but not necessarily an isomorphism as one would ex-
pect in an abelian category. Quasi-abelian categories are the ones in which
kernels are stable under pushout and cokernels are stable under pullback. On
the other hand, integral categories are the ones in which monomorphisms are
stable under pushout and epimorphisms are stable under pullback. One can
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check that the implications

quasi-abelian

abelian semi-abelian pre-abelian

integral

(∗)

are relatively straightforward; see e.g. Rump [32]. A conjecture of Raı̆kov,
which has been solved in the negative, was that the converse of (∗) holds;
see Remark 3.7.

Despite recent progress on integral categories, which appears to be pre-
dominantly in algebra (see Remark 2.7), the question if there exist integral
categories that are not quasi-abelian seems to date to be open. We answer
this positively; see Corollary 3.6. With an idea communicated to the authors
by J. Wengenroth, we also prove that the class of semi-abelian categories is
not merely the union of the classes of integral and quasi-abelian categories;
see Theorem 3.8. Furthermore, we systematically investigate integrality for
many examples found in the functional analyst’s category theory toolbox;
see Theorems 3.1–3.5, 4.1 and 4.2. As a consequence of these results, we
derive that most of the categories in Figure 1 have neither enough projectives
nor enough injectives; see Theorem 5.3.

Non-abelian categories appear in abundance in functional analysis and
have applications for instance in the theory of partial differential equations;
see Wengenroth [43], and Frerick and Sieg [9], and the references therein.
Indeed, as can be seen from Figure 1, most of the categories we study here
are quasi-abelian but not abelian. However, this is still enough intrinsic
structure to conduct homological algebra as Schneiders [39] did. He also
observed that on each quasi-abelian category the class of all kernel-cokernel
pairs forms an exact structure in the sense of Quillen [30] (see also Yoneda’s
‘quasi-abelian S -categories’ [45]). In contrast to the internal structure of a
category, like pre-, semi- and quasi-abelian, an exact structure is extrinsic.

In studying lengths of objects in exact categories, Brüstle, Hassoun, Lang-
ford and Roy [3, Exam. 6.9] showed that an analogue of the classic Jordan-
Hölder property can fail for an arbitrary exact category; see also Enomoto
[8]. Motivated partly by this, Brüstle, Hassoun and Tattar [4] have recently
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considered additive categories with a mix of intrinsic and extrinsic struc-
tures. More specifically, they consider pre-abelian categories equipped with
an exact structure that has ‘admissible intersections’; see §6. Building on
their groundwork, we show in Theorem 6.1 that this property is satisfied if
and only if the category is quasi-abelian, thereby giving a new characterisa-
tion for quasi-abelian categories.

2. A reminder on pre-abelian categories

We recall some definitions of additive categories more general than abelian
ones. For more details we refer the reader to [32]. Recall that an additive
category is called pre-abelian if every morphism has a kernel and a cokernel.

For the remainder of this section, let A be a pre-abelian category.

Definition 2.1. [32, p. 167] If each morphism f : A → B in A can be ex-
pressed as f = i ◦ p for some monomorphism i and some cokernel p, then
A is said to be left semi-abelian. Dually, if each morphism f can be written
as f = i ◦ p for some kernel i and some epimorphism p, then A is said to be
right semi-abelian. If A is both left and right semi-abelian, then it is called
semi-abelian.

Definition 2.2. Let X be a class of morphisms inA. We say that X is stable
under pullback if, in any pullback square

A B

C D

a

b PB c

d

a is in X whenever d is in X . Being stable under pushout is defined dually.

Definition 2.3. [32, p. 168] If cokernels in A are stable under pullback,
then A is called left quasi-abelian. Dually, if kernels in A are stable under
pushout, then A is called right quasi-abelian. If A is both left and right
quasi-abelian, then it is called quasi-abelian.

We note here that different authors, in particular Palamodov [25, 26] and
Raı̆kov [31], have used the above notions in different senses. For example,
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we follow Palamodov in the use of ‘semi-abelian’; see also Kopylov and
Wegner [18] for different characterisations. In the non-additive setting, this
same name is used to describe a category that is pointed Barr-exact proto-
modular, admitting binary coproducts; see Janelidze, Márki and Tholen [16].
We refer to the introductions of [38], [18], and [44] for historic references.

Definition 2.4. [32, p. 168] If epimorphisms inA are stable under pullback,
then A is called left integral. Dually, if monomorphisms in A are stable
under pushout, then A is called right integral. If A is both left and right
integral, then it is called integral.

Certain relationships between the categories defined above can then be
established.

Proposition 2.5. [32, p. 169, Cor. 1]

(i) If A is a left (respectively, right) quasi-abelian category, then it is left
(respectively, right) semi-abelian.

(ii) If A is a left (respectively, right) integral category, then it is left (re-
spectively, right) semi-abelian.

It follows then that the classes of quasi-abelian and integral categories
are both contained in the class of semi-abelian categories.

Proposition 2.6. [32, Prop. 3 and p. 173, Cor.] Suppose A is semi-abelian.

(i) The category A is left quasi-abelian if and only if it is right quasi-
abelian.

(ii) The category A is left integral if and only if it is right integral.

We conclude this section with the following remark on integral categor-
ies.

Remark 2.7. Although Rump introduced the name ‘integral’ for a category,
such categories were known to Bănică and Popescu [1]. By extending results
of [1], Rump proved that a pre-abelian category is integral if and only if it
admits a faithful embedding into an abelian category which preserves kernel-
cokernel pairs; see [32, Prop. 7]. In particular, he observed that the class of
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simultaneously monic and epic morphisms in an integral category admits a
calculus of fractions in the sense of Gabriel and Zisman [10], and hence the
(canonical) localisation of the category at this class is an abelian category.
This is one reason why integral categories have gained popularity among
representation theorists:

(i) Rump [33, 34, 35, 36] himself showed, among other things, that the
torsion-free class of a hereditary torsion theory in an abelian category
is integral.

(ii) Buan and Marsh [5] showed that, for a certain triangulated category C
and a rigid object R ∈ C, the quotient category C/[XR], where XR =
Ker HomC(R,−), is integral. From this they proved that the canonical
localisation of C/[XR] is a module category over (EndC R)op.

(iii) By introducing hearts of twin cotorsion pairs on triangulated categor-
ies, Nakaoka [22] generalised this construction of C/[XR]. He showed
that the heart is always semi-abelian and gave a sufficient condition
for it to be integral. A condition for the heart to be quasi-abelian was
given by Shah [40]. Furthermore, analogous concepts have been stud-
ied by Liu [19] for exact categories, and by Liu and Nakaoka [20], and
Hassoun and Shah [13] for extriangulated categories (in the sense of
Nakaoka and Palu [23]).

3. Categories of topological vector spaces

In this section we look at categories of topological vector spaces. The ob-
jects of such a category are pairs (X, τ), where X is a vector space and τ
is a topology on X that makes the vector space operations continuous. The
morphisms are continuous linear maps. For unexplained notation from func-
tional analysis we refer the reader to Meise and Vogt [21].

Our first result extends Rump’s observation [32, §2.2] that the topological
abelian groups form an integral category.

Theorem 3.1. Let k ∈ {R,C} be fixed. The categories

(i) SNOR of semi-normed spaces;
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(ii) LCS of (Hausdorff and non-Hausdorff) locally convex spaces; and

(iii) TVS of (Hausdorff and non-Hausdorff) topological vector spaces

over k, each furnished with linear and continuous maps as morphisms, are
quasi-abelian and integral.

Proof. It is well-known that all three categories are quasi-abelian; see e.g.
[39, Prop. 3.2.4], Prosmans [28, Prop. 2.1.11] and [9, Exam. 4.14]. In
SNOR, LCS and TVS the kernel of a morphism f : X → Y is the inclusion
f−1(0)→ X , where f−1(0) is furnished with the induced topology. Denote
by ran f the range of f . Then the cokernel of f is the quotient Y → Y/ ran f
with the quotient topology; see e.g. [39, Lem. 3.2.3], [28, Prop. 2.1.8] and
[9, Exam. 2.14]. Thus, f is monic if and only if f is injective, and f is epic
if and only if f is surjective. Since pushouts and pullbacks compute algeb-
raically precisely as in Mod k, the two conditions in Definition 2.4 hold.

Our second result exhibits a collection of quasi-abelian categories that
are not integral. This is due to the Hausdorff property that we require below.
Although all categories in Theorem 3.2 are full subcategories of TVS, their
cokernels and thus pushouts compute algebraically differently than in Mod k.
Theorem 3.2 extends Rump’s results [32, §2.2] on Hausdorff topological
abelian groups.

Theorem 3.2. Let k ∈ {R,C} be fixed. The categories

(i) BAN of Banach spaces;

(ii) NOR of normed spaces;

(iii) FRE of Fréchet spaces;

(iv) HD-LCS of Hausdorff locally convex spaces;

(v) HD-TVS of Hausdorff topological vector spaces;

(vi) NUC nuclear spaces;

(vii) FN of nuclear Fréchet spaces;

(viii) FS of Fréchet-Schwartz spaces; and
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(ix) FH of Fréchet-Hilbert spaces

over k, each furnished with linear and continuous maps as morphisms, are
quasi-abelian but not (left or right) integral.

Proof. Again, it is well-known that these categories are quasi-abelian; see
e.g. Prosmans [27, Prop. 3.1.7], [39, Prop. 3.2.17], [28, Prop. 4.4.5] and
[28, Prop. 3.1.8] for direct proofs for the first four. The most efficient ap-
proach, however, is to establish explicitly that HD-TVS is quasi-abelian,
which can be achieved with a slight modification of the proofs just cited.
In doing so, one observes that given a morphism f : X → Y in HD-TVS,
its kernel is the inclusion f−1(0) → X , and its cokernel is the quotient
Y → Y/ran f . These spaces are endowed with the subspace and the quotient
topology, respectively. Since the defining properties for the other categor-
ies, like Banach, normed, Fréchet, etc., are inherited by closed subspaces
and quotients by closed subspaces1, these categories reflect the kernels and
cokernels of HD-TVS. From this it follows that all these categories are also
quasi-abelian by, for example, [9, Prop. 4.20].

By Propositions 2.5 and 2.6, left integrality is equivalent to right integ-
rality for all categories in our list; thus, below we show that they all are not
right integral. For this we bear in mind that in all nine categories, a morph-
ism is monic if and only if it is injective. This follows from our observations
above about kernels in these categories.

(i)–(v): Consider the Banach spaces

c0 =

ß
x = (xj)j∈N ∈ kN

∣∣∣∣ lim
j→∞

xj = 0

™
and

`1 =

®
x ∈ kN

∣∣∣∣∣ ‖x‖1 =
∞∑
j=1

|xj| <∞
´

of null sequences and of absolutely summable sequences, respectively. Here,
c0 is endowed with the supremum norm given by ‖x‖∞ = supj∈N |xj| and
`1 is endowed with the 1-norm ‖ ·‖1 indicated above. The field k is endowed
with the absolute value as a norm. We denote by i : `1 → c0 the inclusion

1For the not-so-explicitly-studied categories in (vi)–(ix), this can be found in [21, Prop.
28.6, Prop. 24.18 and Rmk. 29.15].
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and by Σ: `1 → k the map that sends a sequence to its sum. Now we
put P = (c0⊕ k)/ ran [ i

9Σ], where c0⊕ k carries the product topology, the
closure is taken in c0⊕ k, and P is furnished with the quotient topology. We
denote by p : c0⊕ k → P the quotient map, and by i1 : c0 → c0⊕ k and
i2 : k → c0⊕ k the inclusion maps. We claim that in all five categories the
diagram

`1 c0

k P

Σ

i

p◦i1

p◦i2

is a pushout square, and that i is a monomorphism but p ◦ i2 is not.
Since the pushout of i along Σ is the cokernel of

[ i
9Σ

]
: `1 → c0⊕ k, our

initial remarks establish the first claim and imply that for the second claim it
is enough to show that p ◦ i2 is not injective. In order to achieve this we will
establish that (p ◦ i2)(1) = 0 in P . Applying the definition of p ◦ i2, we see
that we need to show that[

0
1

]
∈
{[

i
9Σ

]
(x)
∣∣ x ∈ `1

}
holds. For this we define a sequence (xn)n∈N in `1 as follows. For positive
integers n and j we put xnj = −1/n whenever 1 6 j 6 n, and xnj = 0
otherwise. Since for each n only finitely many entries of

xn = (−1/n,−1/n, . . . ,−1/n, 0 . . . )

are non-zero, we get (xn)n∈N ⊆ `1. In view of ‖xn‖∞ = 1/n and i(xn) = xn

we see that (i(xn))n∈N converges to 0 in c0. On the other hand, we have∣∣1− (−Σ(xn))
∣∣ =

∣∣1 +
n∑

j=1

−1/n
∣∣ = 0

for every n. Whence, (−Σ(xn))n∈N converges to 1 in k and
[ 0

1

]
∈ ran [ i

9Σ], as
desired.

(vi)–(ix): Since nuclear Fréchet spaces are Fréchet-Hilbert and Fréchet-
Schwartz by [21, Lem. 28.1 and Cor. 28.5], we construct a pushout diagram
like in the first part of the proof but with all spaces being nuclear Fréchet.
As a locally convex space is simultaneously Banach and nuclear if and only
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if it is of finite dimension, we need nuclear replacements for c0 and `1. First,
consider the space kN of all sequences, which carries the topology of point-
wise convergence given by |x|m = sup16j6m |xj|. Secondly, let

s =

®
x ∈ kN

∣∣∣∣∣ ∀m ∈ N : ‖x‖m =
∞∑
j=1

jm|xj| <∞
´

be the space of rapidly decreasing sequences, which is endowed with the
topology generated by the semi-norms (‖·‖m)m∈N. Both spaces are nuclear2.
Since |x|m 6 ‖x‖m and |Σ(x)| 6 ‖x‖m hold for every m ∈ N and every
x ∈ s, the inclusion i′ : s → kN and the summation Σ′ : s → k are both
well-defined and continuous. The space P ′ = (kN ⊕ k)/ ran [ i′

9Σ′ ] and the
quotient map p′ : kN ⊕ k → P ′ are defined analogously to the first part.

Our observations at the beginning of this proof imply that the following
holds in all four categories. Firstly, the pushout of i′ along Σ′ is given by the
cokernel of

[ i′

9Σ′
]
, and thus precisely by P ′. Secondly, i′ is monic. Therefore

the diagram

s kN

k P ′

Σ′

i′

p′◦i′1

p′◦i′2

is a pushout. By employing the same sequence (xn)n∈N as in the first part,
we can see that p′ ◦ i′2 is not monic.

We now consider two examples of categories that are neither semi-abelian
nor integral. Both are full subcategories of HD-LCS; the first reflects the
kernels and the second the cokernels of HD-LCS. However, in the first one
cokernels compute differently than in HD-LCS, and in the second the kernels
do.

Theorem 3.3. Let k ∈ {R,C} be fixed. The category COM of complete
Hausdorff locally convex spaces over k, furnished with linear and continu-
ous maps as morphisms, is right quasi-abelian but neither left semi-abelian
nor right integral.

2This follows from [21, Prop. 28.16], because both s = λ1((jm)j,m) and kN =
λ∞((1{1,...,m}(j))j,m) are from the class of Köthe echelon spaces.
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Proof. The category COM reflects kernels of HD-LCS, and thus a morphism
f : X → Y in COM is monic if and only if it is injective. To compute the
cokernel

Y →◊�Y/ran f

of f in COM, one must take a completion. From this it was derived in [18,
Exam. 4.2] that COM is not left semi-abelian. If, on the other hand, we go
through the first example in the proof of Theorem 3.2, but in the category
COM, we see that P is already complete since we are dealing with Banach
spaces. The diagram constructed in the proof of Theorem 3.2 is thus also a
pushout in COM, and hence COM is not right integral.

It remains to see that COM is right quasi-abelian. We remark that by [28,
Prop. 4.1.10 and Cor. 2.1.9], a morphism in COM is a kernel if and only if
it is injective and open onto its range. Notice that this implies automatically
that ran f is closed; see [28, Rmk. 4.1.11(i)]. Let f : X → Y be a kernel and
g : X → Z be an arbitrary morphism. We put now Q = (Y ⊕Z)/ran [ g

9f ].
Notice that the pushout of f along g taken in COM factors through the
pushout taken in HD-LCS. Thus, there is a diagram

X Y

Z Q

Z Q̂

g

f

q◦i2

i

i◦q◦i2

in which the outer rectangle is the pushout in COM and the upper square is
the pushout in HD-LCS. Here, i2 : Z → Y ⊕ Z is the inclusion, q : Y ⊕
Z → Q is the quotient map and i : Q → Q̂ is the inclusion of Q into its
completion. Since HD-LCS is quasi-abelian, q ◦ i2 is a kernel in HD-LCS,
and thus injective and open onto its range; see [28, Cor. 3.1.5]. Since i is an
isomorphism onto its range, we see that i ◦ q ◦ i2 is injective and open onto
its range, too. Thus, it is a kernel in COM, and we are done.

Theorem 3.4. Let k ∈ {R,C} be fixed. The category LB of countable Haus-
dorff locally convex inductive limits of Banach spaces over k, furnished with
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linear and continuous maps as morphisms, is left quasi-abelian but neither
right semi-abelian nor left integral.

Proof. The category LB reflects cokernels of HD-LCS, and thus a morphism
f : X → Y is epic in LB if and only if it has dense range. Forming the kernel

f−1(0)[ → X

of f requires endowing f−1(0) with a possibly strictly finer topology; see
Wegner [42, Proof of Prop. 14]). The proof in [42] shows that LB is left
semi-abelian but not semi-abelian—and therefore necessarily not right semi-
abelian.

Furthermore, LB is left quasi-abelian, as noted without proof already
in [18, p. 540]. Indeed, first observe that since LB reflects cokernels of
HD-LCS, and since every cokernel is the cokernel of its own kernel, all coker-
nels of LB are surjective. Conversely, if f : X → Y is a surjective morphism
in LB, then it satisfies the universal property of a cokernel. Assume now that
f is a cokernel and let g : Z → Y be an arbitrary morphism in LB. Then the
pullback of f along g is

[g 9f ]−1(0)[ Z

X Y

i2

i1

PB g

f

which is algebraically the pullback taken in Mod k. Thus, we see that i1 is
surjective and hence a cokernel in LB by the argument just above.

Finally, we use that BAN is a subcategory of LB, in order to show that the
latter is not left integral. Since BAN is not left integral by Theorem 3.2, we
can find a pullback diagram in BAN such that the bottom morphism is epic
but the top one is not. Since for a Banach space X and a closed subspace
U ⊆ X , the topology of U [ coincides with the topology induced by X ,
this diagram is also a pullback in LB. From this we see that LB is not left
integral.

In view of Proposition 2.5, we note that it follows from Theorem 3.3 that
COM cannot be left quasi-abelian or left integral. Similarly, using Theorem
3.4, LB cannot be right quasi-abelian or right integral.

- 341 -



S. HASSOUN, A. SHAH
AND S.-A. WEGNER

INTEGRAL CATEGORIES
AND THE A.I. PROPERTY

So far we have witnessed that there exist examples of quasi-abelian cat-
egories that are not integral. Next we give an example of an integral category
that is not quasi-abelian. This establishes that the class of integral categories
is not contained in the class of quasi-abelian ones. To the knowledge of the
authors this seemed to be previously unknown. Notice that the cokernels ap-
pearing below have no closure in the denominator, since we deal here again
with a category whose objects are in general not Hausdorff.

Theorem 3.5. Let k ∈ {R,C} be fixed. The category BOR of bornological
(Hausdorff and non-Hausdorff) locally convex spaces over k, furnished with
linear and continuous maps as morphisms, is integral but neither left nor
right quasi-abelian.

Proof. The category BOR reflects cokernels in LCS. Analogously to LB, the
kernel of a morphism f : X → Y is the inclusion f−1(0)BOR → X , where the
‘associated bornological topology’ of f−1(0)BOR can be strictly finer than the
topology induced by X; see Sieg and Wegner [41, Exam. 4.1]. We thus get
that f is monic if and only if f is injective, and that f is epic if and only if
f is surjective. Consequently, pushouts and pullbacks compute algebraically
precisely as in Mod k. Similarly to Theorem 3.1 we conclude that BOR is
integral.

A counterexample constructed by Bonet and Dierolf in [2] (see [41,
Exam. 4.1]) shows that BOR is not left quasi-abelian. However, by Propos-
ition 2.6, BOR cannot be right quasi-abelian either as BOR is semi-abelian
by Proposition 2.5. Note that it was known already that BOR is semi-abelian
but not quasi-abelian, cf. Remark 3.7.

Corollary 3.6. The class of integral categories is not contained in the class
of quasi-abelian categories.

We recall the connection between Raı̆kov’s conjecture and the category
BOR.

Remark 3.7. Recall from §1 that Raı̆kov’s conjecture states that a category
is semi-abelian if and only if it is quasi-abelian. It was posed around 1970
and answered negatively some 30 years later. Disproving it brought together
aspects from algebra and analysis. The category BOR is one of the first two
counterexamples given in the literature that falsify it. The other of these is
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due to Rump [37, Exam. 1] and is a category of the form A-proj, where
A is a tilted algebra of Dynkin-type E6. We refer to [38] for historical de-
tails on Raı̆kov’s conjecture, and to [44] for an extended survey on why the
conjecture must naturally fail from the analytic point of view.

We conclude this section on a related note. All the examples of semi-
abelian categories we have studied so far (and even those we will see in §4)
are either integral or quasi-abelian. Therefore, it is natural to ask if there ex-
ists a semi-abelian category which is neither integral nor quasi-abelian. The
authors would like to kindly thank J. Wengenroth for proposing a method
to obtain a positive answer to this question. Indeed, he suggested that the
product categoryA×B of a non-integral categoryA and a non-quasi-abelian
category B would give such an example. This would ensureA×B is neither
integral nor quasi-abelian. On the other hand, choosingA and B so that they
are semi-abelian in their own right ensures A× B is also semi-abelian.

Theorem 3.8. There exist semi-abelian categories that are neither integral
nor quasi-abelian. In particular, the product category BAN×BOR is an
example of such a category.

Proof. Let A denote a semi-abelian category that is not integral (e.g. BAN)
and let B denote a semi-abelian category that is not quasi-abelian (e.g. BOR).
Consider the product categoryA×B. The objects ofA×B are pairs (A,B),
where A ∈ obj(A) and B ∈ obj(B), and morphisms in A × B are pairs
(f, g), where f is a morphism in A and g is a morphism in B.

It is straightforward to check that A × B is additive and pre-abelian. In
particular, (co)kernels in A × B are constructed component-wise; for ex-
ample, the kernel of (f, g) is

(ker f, ker g) : (Ker f,Ker g)→ (A,B)

for f ∈ HomA(A,A′) and g ∈ HomB(B,B′).
As observed in [32, pp. 167–168], a pre-abelian category is semi-abelian

if and only if the parallel morphism h∼ : Coimh→ Imh (that is, the canon-
ical morphism from the coimage to the image) of a morphism h is both monic
and epic. It is easy to show that (f, g) is monic (respectively, epic) if and only
if f, g are monic (respectively, epic) in their respective categories. Thus,
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since A,B are both semi-abelian, the parallel morphism (f, g)∼ = (f∼, g∼)
of (f, g) is both monic and epic, and hence A× B is semi-abelian.

Since A is not integral, but is semi-abelian, it cannot be left or right
integral by Proposition 2.6. Therefore, as A is not left integral, there is a
pullback square

P A2

A1 A

f ′
2

f ′
1

PB f2

f1

in A, where f1 is an epimorphism but f ′1 is not. Since kernels in A × B are
constructed component-wise, it follows that pullbacks are also determined
by their components. Hence, we have the pullback square

(P, 0B) (A2, 0B)

(A1, 0B) (A, 0B)

(f ′
2,0)

(f ′
1,0)

PB (f2,0)

(f1,0)

inA×B, where 0B is the zero object in B. Moreover, as f1 ∈ HomA(A1, A)
and 0 ∈ HomB(0B, 0B) are both epic, we see that (f1, 0) is epic; and (f ′1, 0)
cannot be epic since f ′1 is not. Consequently, A × B is not left integral and
hence not integral.

Similarly, one can show that A × B is not quasi-abelian, and this con-
cludes the proof.

4. Categories of bornological vector spaces

Below we consider categories of bornological vector spaces, in the sense
introduced by Buchwalter [6] and Hogbe-Nlend [14, 15]. We follow the
notation of Prosmans and Schneiders [29], and consider categories whose
objects are pairs (X,BX) where X is a k-vector space and BX is a convex
bornology. Their morphisms are the so-called bounded linear maps f : X →
Y , i.e. linear maps for which f(B) ∈ BY holds whenever B ∈ BX . See [29,
§1] for more details. Notice that the term ‘bornological’ in this section has a
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different meaning than in Theorem 3.5. Here the bornology is an additional
structure on a vector space, whereas in §3 being bornological is a property
that a locally convex space either enjoys or not.

We start again with identifying a category that is both quasi-abelian and
integral.

Theorem 4.1. Let k ∈ {R,C}. The category Bc of (separated and non-
separated) bornological vector spaces over k, furnished with bounded linear
maps as morphisms, is quasi-abelian and integral.

Proof. By [29, Prop. 1.8] the category is quasi-abelian. By [29, Prop. 1.5],
for a morphism f : X → Y the kernel is the inclusion map f−1(0)→ X and
the cokernel is the quotient map Y → Y/ ran f . Here, f−1(0) is endowed
with the induced bornology and Y/ ran f with the quotient bornology; see
[29, Def. 1.4]. One can now proceed as in the proof of Theorem 3.1.

The other two categories that are usually studied in the context of borno-
logies are both quasi-abelian, but neither of them is integral.

Theorem 4.2. Let k ∈ {R,C}. The categories

(i) ÛBc of separated bornological vector spaces; and

(ii) B̂c of complete bornological vector spaces,

over k, furnished with bounded linear maps as morphisms, are quasi-abelian
but neither left nor right integral.

Proof. By [29, Prop. 4.10 and Prop. 5.6] both categories are quasi-abelian.
If f : X → Y is a morphism in either one of the two categories, then its
cokernel is given by the quotient map Y → Y/ran f ; see [29, Prop. 4.6
and Prop. 5.6]. The closure ran f is given as the intersection of all closed
subspaces U of Y containing ran f . A subspace U is closed if limits of
sequences in U that converge in X belong to U ; see [29, Def. 4.3]. Finally,
convergence is defined as follows: (xn)n∈N ⊆ X converges to x ∈ X if there
exists an absolutely convex set B ∈ BX , such that (xn)n∈N converges to x in
the normed space

XB = (spanB, ‖ · ‖B) where ‖x‖B = inf {λ > 0 | x ∈ λB } ;
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see [29, Def. 4.1].
Assume now that X = (X, ‖ · ‖) is a Banach space that we furnish with

the bornology B of norm-bounded sets; see, for example, [15, p. 21]. Then
(X,B) is an object of both ÛBc and B̂c. Moreover, a sequence (xn)n∈N ⊆ X
converges in norm to x ∈ X if and only if (xn)n∈N converges to x with
respect to B. Indeed, if (xn)n∈N converges to x in norm, then we choose
B to be the unit ball of X and in view of (X, ‖ · ‖) = (XB, ‖ · ‖B) we get
convergence in bornology. Conversely, if (xn)n∈N converges to x in some
XB for B ∈ B absolutely convex, we conclude that (xn)n∈N converges to
x in norm from the fact that the inclusion (XB, ‖ · ‖B) → (X, ‖ · ‖) is
continuous; see [21, p. 282].

Now consider the maps i : `1 → c0 and Σ: `1 → k from the proof of
Theorem 3.2 in ÛBc. This is possible by the above and since continuous linear
maps between Banach spaces send bounded sets to bounded sets. In view of
the first part of this proof the pushout of i along Σ in ÛBc is given by

`1 c0

k P

Σ

i

q◦i1

q◦i2

where P = (c0⊕ k)/ran [ i
9Σ] coincides, as a vector space, with the space P

from the proof of Theorem 3.2. Thus, in the above diagram, i is injective
and q ◦ i2 = 0. By [29, Prop. 4.6], in ÛBc the kernel of a morphism is the
preimage of zero endowed with the induced bornology. Thus, i is monic but
its pushout is not.

To complete the proof it is enough to observe that the preceding para-
graph can be repeated verbatim for B̂c.

5. Projectives and injectives

Projective objects in an arbitrary category generalise the notion of projective
modules arising in algebra. As such, they have become important objects of
study in homological algebra. However, suitable notions of projectivity have
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also been studied in the categories we have seen so far. We focus on pro-
jectivity and leave the dual notions related to injectivity to the reader. Let A
be a locally small category. An object P ∈ A is called projective if, for every
epimorphism f : X → Y the induced map HomA(P, f) : HomA(P,X) →
HomA(P, Y ) is surjective. We say A has enough projectives if for each
A ∈ A there is an epimorphism P → A with P projective.

In addition to the above, the following concept has been introduced by
Osborne [24], in order to address the fact that in non-abelian categories the
classes of epimorphisms and cokernels do not coincide.

Definition 5.1. [24, Def. 7.52] Let A be a pre-abelian category. An object
P ∈ A is called quasi-projective if, for every cokernel f : X → Y , the map
HomA(P, f) is surjective. We sayA has enough quasi-projectives if for each
A ∈ A there is a cokernel P → A with P quasi-projective.

We now use a connection between the notions of §2 and the ones just in-
troduced, in order to derive some interesting consequences of our main res-
ults. For Proposition 5.2(i) notice that in [32] the phrase ‘has strictly enough
projectives’ is equivalent to the phrase ‘has enough quasi-projectives’ that
we use here.

Proposition 5.2. Suppose A is a pre-abelian category.

(i) [32, Prop. 11] If A has enough quasi-projectives (respectively, quasi-
injectives), then A is left (respectively, right) quasi-abelian.

(ii) [5, Prop. 3.9] If A has enough projectives (respectively, injectives),
then A is left (respectively, right) integral.

Suppose A is a pre-abelian category. Although being projective implies
being quasi-projective, having enough projectives does not necessarily imply
having enough quasi-projectives for A; see [24, pp. 242–243]. In particular,
this means that the conclusion of Proposition 5.2(i) cannot be included in the
conclusion of Proposition 5.2(ii).

Theorem 5.3. The following statements hold.

(i) The categories BAN, NOR, FRE, HD-LCS, HD-TVS, NUC, FN, FS,
FH, ÛBc and B̂c have neither enough projectives nor enough injectives.
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(ii) The category BOR has neither enough quasi-projectives nor enough
quasi-injectives.

(iii) The category COM has neither enough quasi-projectives, nor enough
projectives, nor enough injectives.

(iv) The category LB has neither enough quasi-injectives, nor enough pro-
jectives, nor enough injectives.

Proof. (i): Let

A ∈ {BAN,NOR,FRE,HD-LCS,HD-TVS,NUC,FN,FS,FH } .

Then A is quasi-abelian by Theorem 3.2, and so semi-abelian by Propos-
ition 2.5. Thus, left integrality is equivalent to right integrality for A by
Proposition 2.6. But A is not integral by Theorem 3.2, and so cannot have
either enough projectives or enough injectives by Proposition 5.2. For A ∈
{ ÛBc, B̂c} one can argue analogously by employing corresponding results
from §4.

(ii): Similar to (i), using Theorem 3.5.
(iii): The category COM is neither left quasi-abelian, nor left integral,

not right integral by Theorem 3.3. Thus, by Proposition 5.2, COM can have
neither enough quasi-projectives, nor enough projectives, nor enough inject-
ives.

(iv): Similar to (iii), using Theorem 3.4.

We mention that for some of the quasi-abelian categories we have seen so
far, it has been previously established whether or not they have enough quasi-
projectives or quasi-injectives. Indeed, BAN, FRE and LCS have enough
quasi-injectives; see [43, Thm. 2.2.1]. Moreover, Bc, ÛBc and B̂c have enough
quasi-projectives; see [29, Prop. 2.13, Prop. 4.11 and Prop. 5.8]. Finally, LCS
does not have enough quasi-projectives; see Geı̆ler [11].

We remark also that in the references just cited, the term ‘projective’ is
used to mean what we call quasi-projective. Furthermore, in a quasi-abelian
category, an object is quasi-projective if and only if it is ‘projective’ in the
sense of Bühler [7, Def. 11.1].

We refer the reader to Figure 1 for a graphic summary of all the examples
that we have studied in this article.
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6. The admissible intersection property

Let A be a pre-abelian category. We say that A has admissible intersec-
tions if there exists an exact structure E on A such that for any admissible
monomorphisms c : B� D and d : C � D, in the pullback diagram

A B

C D

a

b PB c

d

in A, the morphisms a and b are also admissible monomorphisms. This
property was introduced by Hassoun and Roy in [12] and has been recently
considered by Brüstle, Hassoun and Tattar in [4, §4], where they showed
that if A has admissible intersections, then A is quasi-abelian. We prove
here that the converse also holds, and hence together a new characterisation
of quasi-abelian categories is established. For the convenience of the reader,
and with the kind permission of the authors of [4], we also include their part
of the proof below.

Theorem 6.1. (Brüstle, Hassoun, Shah, Tattar, Wegner) A pre-abelian cat-
egory A is quasi-abelian if and only if it has admissible intersections.

Proof. (=⇒) Let A be a quasi-abelian category. Endowing it with the class
E of all kernel-cokernel pairs in A yields an exact category (A, E) as A is
quasi-abelian; see [39, Rmk. 1.1.11]. The class of admissible monomorph-
isms in (A, E) is thus precisely the class of kernels inA. Let c : B� D and
d : C � D be arbitrary admissible monomorphisms in (A, E), i.e. c, d are
kernels. Then in the pullback diagram

A B

C D

a

b PB c

d

the morphisms a and b are also kernels in A by the dual of Kelly [17, Prop.
5.2]. That is, a, b are admissible monomorphisms, and we see that A has
admissible intersections.
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(⇐=) Conversely, suppose A has admissible intersections and let E be
an exact structure on A witnessing this. We claim that E coincides with
the class of all kernel-cokernel pairs in A. Assume for contradiction that
A

f→ B
g→ C is a kernel-cokernel pair not belonging to E . Then the morph-

isms [ 1
g ] : B → B ⊕ C and [ 1

0 ] : B → B ⊕ C are both sections, and thus
admissible monomorphisms. The pullback of these two morphisms is given
by

A B

B B ⊕ C

f

f PB

[
1
g

]
[

1
0

]
Thus, we conclude that f is an admissible monomorphism since A has ad-
missible intersections. Contradiction. Hence, E must contain all kernel-
cokernel pairs, and so every (co)kernel is admissible. Finally, using the ax-
ioms for an exact category (see e.g. [7, Def. 2.1]), we see that in A kernels
are stable under pushout and cokernels are stable under pullback, i.e. A is
quasi-abelian.
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21, 2000.

- 352 -

http://users.belgacom.net/fprosmans/dea.pdf
http://users.belgacom.net/fprosmans/dea.pdf


S. HASSOUN, A. SHAH
AND S.-A. WEGNER

INTEGRAL CATEGORIES
AND THE A.I. PROPERTY

[30] D. Quillen. Higher algebraicK-theory. I. In H. Bass, editor, Algebraic
K-Theory I. Proceedings of the Conference Held at the Seattle Research
Center of Battelle Memorial Institute, August 28 – September 8, 1972,
pages 85–147. Springer, Berlin, 1973.

[31] D. A. Raı̆kov. Semiabelian categories. Dokl. Akad. Nauk SSSR,
188:1006–1009, 1969.

[32] W. Rump. Almost abelian categories. Cah. Topol. Géom. Différ.
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