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Résumé. Nous montrons comment la fibration ( )0 : CatE → E des
catégories internes à E est munie de deux types de structures partielle-
ment liées à des concepts protomodulaires et mal’tseviens, et nous en ex-
plicitons quelques conséquences. Cela mène, entre autres, à la notion de
catégorie Schreier-spéciale qui détermine une sous-catégorie protomodulaire
de chaque fibre CatY E.
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Introduction

Given any finitely complete category E, the fibration ( )0 : GrdE → E of
internal groupoids in E is known to have a strong structural property [3]: any
fiberGrdYE above the object Y in E is protomodular [3] and thus a Mal’tsev
category, on the model of the fiber Grd1E above the terminal object 1 which
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is nothing but the categoryGpE of internal groups in E. Nothing comparable
did exist for the fibration ( )0 : CatE→ E of internal categories whose first
structural properties were, strictly speaking, investigated in [2] more than
thirty years ago, the notion of internal categories having been initiated, long
before, in the pionnering work of C. Ehresmann [16].

But in [12, 13] was introduced a new structural aspect of the category
Mon of monoids with the notion of Schreier split epimorphism and the as-
sociated notion of partial protomodularity (see Definition 3.1). Since Mon
is nothing but the fiber Cat1, the main aim of this work was to investigate
whether it was possible to extend this result to any fiber CatY and CatYE;
in other words, this aim was to identify a class ΣY of split epimorphisms in
the fibers CatYE which would imply a partial protomodularity inside them.
This is done in Section 3.1 with the extension of the notion of Schreier split
epimorphism to internal functors, and this leads to the notion of Schreier
special category (see Definition 4.4) which determines protomodular sub-
categories of the fibers CatYE.

Unexpectedly, a more global property of the fibration ( )0 : CatE → E
did emerge during this investigation, but, this time, related to the notion of
partial mal’tsevness (see Theorem 1.4) from which a spectacular Mal’tsev
type consequence is drawn: when E is regular, given any pullback in CatE:

X•
x• // //

f•
��

X ′•
f ′•
��

Y• y•
// //

s•

OO

Y ′•

s′•

OO

where y• is a fully faithful functor above a regular epimorphism y0 in E and
(f ′•, s

′
•) is any split epimorphism in a fiber of the fibration ( )0, then the

upward square is necessarily a pushout, see Proposition 1.5.
Now, what is probably the most surprising in the whole process is the

following observation: in the fiber Cat1 = Mon, the notion of Schreier epi-
morphism is not intrinsic to Mon, clearly refereing to a non-homomorphic
retraction of a given homomorphism. However, enlarging the definition to
the whole category Cat, we get to a notion which is intrinsically bound to
Cat, and even more surprisingly, it is intrinsically bound to its 2-categorical
nature; and this, of course, remains valid for CatE, see Proposition 3.6.

Finally, in the last section, we shall complete the observations of [6, 8]
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about the affine groupoids (and their directions) in showing that they are
stable under weak equivalences between groupoids; namely, under a specific
class of functors which are cartesian with respect to the fibration ( )0.

The article is organized along the following lines: Section 1) is devoted
to recalls about the basics on internal categories and culminates with the first
structural observation, Theorem 1.4, from which we draw a short observa-
tion about the composition and the permution of some equivalence relations
in the (non-regular) context of CatE. Section 2) introduces the structural
concept of Mal’tsev fibration hidden behind this theorem and investigates
its consequences. Section 3) is dealing with the partial protomodularity of
the fibers CatYE and culminates with the second structural observation:
Theorem 3.5. Section 4) explicitely describes some consequences of this
partial protomodularity. In particular, if the protomodular Schreier-core of
Cat1 = Mon is the category Gp of groups, the protomodular Schreier-core
of CatY does not consist in the only groupoids with Y as set of objects, see
Definition 4.4. All the results of this article as far as this point have been
pre-published in [9]. Finally, Section 5) brings some precisions about the
fibration GrdE→ E relatively to the class of affine groupoids.

1. Internal categories

1.1 Basics

In this article any category E will be supposed finitely complete, and any
pullback of an identity map will be chosen as being an identity map. We shall
use a 3-truncated simplicial notation [21] for any internal category (including
all the degeneracy maps which do not appear in the following diagram):

X• : X3

dX•4 //
dX•3

//
//

dX•1
//

dX•0

//

X2

dX•2 //
dX•1

//

dX•0

//
X1

dX•1 //

dX•0

//
X0sX•0

oo

where X2 (resp. X3) is obtained by the pullback of d0 along d1 (resp. d0

along d2), and for any internal functor as well. We denote by CatE the
category of internal categories in E, and by ( )0 : CatE → E the forgetful
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functor associating with any internal category X• its ”object of objects” X0.
The category CatE is finitely complete since, by commutation of limits, it
is easy to see that the finite limits in CatE are built levelwise in E. So, the
forgetful functor ( )0 is left exact.

The functor ( )0 is actually a fibration whose cartesian maps are the
internal fully faithful functors and whose maps in the fibers are the internal
functors which are ”identities on objects” (ido-functors for short).

It is clear that the fiber Cat1E above the terminal object 1 is nothing but
the category MonE of internal monoids in E. Any fiber CatYE above an
object Y , with Y 6= 1, has an initial object with the discrete equivalence
relation ∆Y and a terminal one with the indiscrete one∇Y . So, the left exact
fully faithful functor ∇ : E → CatE admits the fibration ( )0 as left adjoint
and makes the pair (( )0,∇) a fibered reflection in the sense of [2]. A functor
f• is then cartesian if and only if the following left hand side square is a
pullback in CatE, or, equivalently the right hand side one is a pullback in E:

X•
f• //

��

Y•

��

X1
f1 //

(d0,d1)
��

Y1

(d0,d1)
��

∇X• ∇f•

// ∇Y• X0 ×X0f0×f0

// Y0 × Y0

As for any left exact fibration, we get:

Proposition 1.1. 1) The cartesian functors are stable under pullbacks.
2) Given any commutative square in CatE where both x• and y• are

cartesian functors:
X•

x• //

f•
��

X ′•
f ′•
��

Y• y•
// Y ′•

then it is a pullback:
1) if and only if its image by ( )0 is a pullback
2) in particular when f• and f ′• are ido-functors.

Given any ido-functor f• : X• → Y•, the following left hand side pull-
back inside the fiber CatYE above Y will be called its kernel; it only retains
the endomorphisms in X• which are sent on identities in Y•; the pullback on
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the right hand side, introducing the kernel of the terminal map in the fiber
CatYE, only retains what is called the endosome (EndX)• of the internal
category X•, namely the internal monoid in the slice category E/Y consist-
ing in the only endomorphisms of X•:

(Kerf)•
//(ker f)• //

��

X•

f•
��

(EndX)•
//(εX)• //

(ρX)•
��

X•

��
∆Y

//
0Y•

//

OO

Y• ∆Y
//

0Y
//

(σX)•

OO

∇Y

1.2 Natural transformations

We know thatCatE is actually underlying a 2-category with the notion of in-
ternal natural transformations between internal functors: in simplicial terms,
they are just homotopies between the 3-truncated simplicial morphisms that
are the internal functors. The cartesianness of the 1-arrows fits well with
the 2-cells: an internal functor f• : X• → Y• is fully faithful if and only if,
given any natural transformation γ : f•.g• ⇒ f•.g

′
•, there is a unique natural

transformation γ̄ : g• ⇒ g′• such that γ• = f•.γ̄•. We have even better:

Proposition 1.2. A split epimorphism (f•, s•) : X• � Y• in CatE is carte-
sian if and only if it is a strict left inverse equivalence, namely it is such that
there is a natural isomorphism γ• : 1X• ⇒ s•.f• satisfying f•.γ• = 1f• and
γ•.s• = 1s• (which implies immediately f•.s• = 1Y•):

⇐ X•s•.f• ��
f•

// Y•
s•oo

Proof. Suppose f• : X• → X• cartesian and split by s•. Accordingly, from
the identity natural isomorphism between f• and f• = f•.s•.f•, we get a
natural isomorphism γ : 1X• ⇒ s•.f• such that 1f• = f•.γ•. From that we
get f•.(γ•.s•) = f•.s• = 1Y• , whence: f•.s• = 1Y• .

Conversely, suppose we have a left inverse equivalence given by a natural
isomorphism γ• : 1X• ⇒ s•.f•. Starting with any natural transformation τ• :
f•.g• ⇒ f•.g

′
•, the natural transformation τ̄• = (γ•g

′
•)
−1.s•τ•.γ•g• : g• ⇒ g′•

is the unique one such that f•.τ̄• = τ•
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In a way, the above proposition shows how the cartesian split epimor-
phisms in CatE capture, as soon as level 1, a hidden invertible aspect of the
2-categorical level of the category CatE.

1.3 The regular context

In this section we shall suppose that E is a regular category [1]. We shall
recall the effect of this further property on the fibration ( )0, see [2]. The
category CatE is certainly not itself a regular category; we already know
how much characterizing the regular epimorphisms in Cat is complicated.
However we can assert about ( )0 two very interesting and strong properties:

Proposition 1.3. Let E be a regular category. Then:
1) any fiber CatYE is a regular category;
2) any cartesian functor f• : X• → Y• above a regular epimorphism f0 in E
is a pullback stable regular epimorphism in CatE.

Proof. 1) Since E is regular, the regular epimorphisms are stable under prod-
ucts in E, and in any slice category E/Y . So, the regular epimorphisms
f• : X• → Y• in the fiber CatYE are levelwise epimorphisms in E: namely
they are such that f0 = 1Y , and the pair (f1, f2) is a pair of regular epimor-
phisms. So, the fiber CatYE is immediately a regular one.

2) From the above characterization of cartesian maps, when f0 is a reg-
ular epimorphism in E, so is f1 as a pullback of the regular epimorphism
f0 × f0. From that, by commutation of limits, so is f2. So, again, we get a
levelwise regular epimorphism is E. Now, let h• : X• → Z• be any functor
annihilating the kernel equivalence relation R[f•]. This implies that h0 and
h1 annihilate the kernel equivalence relations R[f0] and R[f1]. Since f0 and
f1 are regular epimorphisms in E, we get unique factorizations h̄0 : Y0 → Z0

and h̄1 : Y1 → Z1 such that h̄0.f0 = h0 and h̄1.f1 = h1. Since f1 is a
regular epimorphism, the pair (h̄0, h̄1) produces a morphism between the
underlying reflexive graphs. On the other hand, this pair induces a map
h̄2 : Y1 ×0 Y1 → Z1 ×0 Z1. We check that (h̄0, h̄1) is actually underlying an
internal functor (i.e. internally respects the composition of morphisms) by
composition with the regular epimorphism f2. So, the functor f• : X• → Y•
is a regular epimorphism in CatE. Clearly, when E is a regular category,
this kind of functor is stable under pullbacks in CatE.
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1.4 First structural observation

We reached our first (from two) main structural observation (which was al-
ready made for the category GrdE of groupoids in E (Proposition 1 in [6])):

Theorem 1.4. Any commutative square of split epimorphisms in CatE:

X•
x• //

f•
��

X ′•σ•
oo

f ′•
��

Y•
y• //

s•

OO

Y ′•τ•
oo

s′•

OO

where both x• and y• are cartesian and both f• and f ′• are ido-functors is
such that the pair (s•, σ•) of subobjects of X• in CatE is jointly extremally
epic, or, in other words, is such that their supremum as subobjects of X• is
nothing but 1X• .

Proof. First observe that, according to Proposition 1.1, this square is nec-
essarily a pullback in CatE. On the other hand, thanks to the Yoneda em-
bedding, it is enough to check the assertion in Cat. According with the
notations of the previous proposition, consider, for any map φ, the following
commutative diagram in the category X•:

a
γ•(a)//

φ
��

σ•x•(a)

σ•x•(φ)
��

b
γ•(b)
// σ•x•(b)

Since the isomorphism γ•(a) comes from 1x•(a) and the pair (s•, s
′
•) is a pair

of ido-functors (i.e. the objects of X• (resp. X ′•) and Y• (resp. Y ′•) coincide),
this isomorphism is nothing but the image by s• of the isomorphism γ•(a) in
the category Y•. Consequently any subcategory U• of X• containing Y• and
X ′• contains γ•(a), γ•(b) and σ•x•(φ); so, it contains φ.

Inspired by the knowledge of the Mal’tsev processes, we get the following:
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Proposition 1.5. Let E be a regular category. Any pullback in CatE:

X•
x• // //

f•
��

X ′•
f ′•
��

Y• y•
// //

s•

OO

Y ′•

s′•

OO

where y• is a cartesian regular epimorphism and (f ′•, s
′
•) a split epimorphic

ido-functor is such that the upward square is a pushout.

Proof. Apply Proposition 2.4 below.

1.5 A short remark about the composition of relations in CatE

The category Cat (and a fortiori CatE even if E is regular) is not a regular
one; so it is not possible in general to compose internal relations. Let us call
ido (resp. cartesian) equivalence relation any equivalence relation (d0, d1) :
R• ⇒ X• such that d0 (and thus d1) is an ido-functor (resp. a cartesian one).

Proposition 1.6. Given any category E, let (R•, S•) be any pair of an ido
and a cartesian equivalence relation on X• in CatE. Then:
1) R• ∩ S• = ∆X•;
2) R• and S• are composable and permute.

Proof. By the Yoneda embedding it is enough to show that in Set. The first
point is a consequence of the fact that if a parallel pair (φ, ψ) : x⇒ x′ ∈ X•
is in R• ∩ S•, the fact that dS•0 is cartesian implies φ = ψ. Now consider the
square construction R•�S• given by the largest double equivalence relation
on X• produced from R• and S• in CatE:

R•�S•

�� ��

//
// S•oo

dS•0
��

dS•1
��

R•
dR•0

//

dR•1 //

OO

X•

OO

oo
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Then 1) implies that the canonical factorization R•�S• → R•×X• S• to the
following pullback is a monomorphism:

R• ×X• S•

��

// S•//oo

dS•0
��

R•
dR•1 //

OO

X•

OO

oo

So, according to Theorem 1.4, it is an isomorphism, whence 2).

2. Mal’tsev fibration

In this section, we shall make explicit some formal aspects of the previous
property of the fibered reflection (( )0,∇).

A category E is said to be a Mal’tsev one [14, 15], when any reflexive
relation is an equivalence relation. This is a categorical characterization of
the Mal’tsev varieties, namely those ones which produce a Mal’tsev term,
i.e. a ternary term p satisfying p(x, y, y) = x = p(y, y, x) [19]. In [4] was
produced the following characterization:

Theorem 2.1. For any category E, the following conditions are equivalent:
1) E is a Mal’tsev category;
2) given any pullback of split epimorphisms in E:

X

f

��

x // X ′

f ′

��

σ
oo

Y

s

OO

y // Y ′

s′

OO

τ
oo

the pair (s, σ) of subobjects of X is jointly extremally epic.

So, it is legitimate to introduce the following:

Definition 2.2. A fibration U : C → D is said to be a Mal’tsev fibration
when it it is left exact and such that any square of split epimorphism:

X

f

��

x // X ′

f ′

��

σ
oo

Y

s

OO

y // Y ′

s′

OO

τ
oo
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where both x and y are cartesian maps and both f and f ′ are inside a fiber
is such that the pair (s, σ) of subobjects of X is jointly extremally epic,

Now, according to Theorem 1.4, our first structural observation becomes:
the fibered reflection (( )0,∇) is a Mal’tsev one. On the model of what
happens for Mal’tsev categories we get the following characterization we
shall need later on:

Lemma 2.3. A left exact fibration U : C → D is a Mal’tsev one if and only
if, for any square of split epimorphisms where y is cartesian and f ′ inside a
fiber:

W

f̌
��

x̌ // X ′

f ′

��

σ̌
oo

Y

š

OO

y // Y ′
s′

OO

τ
oo

the induced factorization (f̌ , σ̌) : W → X is an extremal epimorphism.

We can now easily generalize a well-known Mal’tsev type process with
the following:

Proposition 2.4. Let U : C → D be a Mal’tsev fibration. Suppose, in
addition, that D is a regular category and that any cartesian map in C above
a regular epimorphism in D is a regular epimorphism in C. Then:
1) this class Θ of regular epimorphisms in C is stable under pullbacks;
2) given such a regular epimorphism h : Y � Y ′ and any pullback in C:

X
g // //

f
��

X ′

f ′

��
Y

h
// //

s

OO

Y ′
s′

OO

where (f ′, s′) is a split epimorphism inside a fiber, the upward square is a
pushout.

Accordingly, pulling back the split epimorphisms in the fibers along the
regular epimorphism h in C is a fully faithful process.

Proof. The first point is straightforward as soon as the fibration is left exact.
Now, since h is a cartesian regular epimorphism in C, so is g. Consider any
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pair (ḡ, k) of maps in C:

Z

R[g]
dg1

//

dg0 //

R(f)
��

Xoo

ḡ

55

g
// //

f

��

X ′

f ′

��

γ

88

R[h]
dh1

//

dh0 //

R(s)

OO

Yoo
h
// //

s

OO

Y ′

OO
k

AA

such that h.k = ḡ.s (∗). Complete the diagram with the horizontal kernel
equivalence relations. Now, it is clear that we shall get the desired dotted
factorization γ if and only if the map ḡ coequalizes the pair (dg0, d

g
1). The left

hand side squares are pullbacks, since so is the right hand side one. Accord-
ingly, the pair (R(s), sg0) is jointly extremally epic. So, the coequalization in
question can be checked by composition with sg0 (straightforward) and with
R(s), which is a direct consequence of (∗).

The pulling back in question is clearly faithful since it is pulling back
along pullback stable regular epimorphisms. As for the fullness, consider
the following diagram where the two quadrangles are pullbacks of split epi-
morphisms in the fibers along the cartesian regular epimorphism h in C and
where m is any morphism of split epimorphisms:

X
m
!!f

��

g // // X ′

f ′

��

n
""

X̄
f̄

��

q̄ // // X̄ ′

��
Y

h
// //

s

OO

s̄

DD

Y ′

s′

OO

s̄′

BB

The commutative square of split epimorphims being a pullback, the upward
square towards X ′ is a pushout; so, the map m produces the desired dotted
factorization n.

When we have a cartesian split epimorphism the result if even stronger:

Proposition 2.5. Let U : C → D be a Mal’tsev fibration. Then, given any
cartesian split epimorphism (h, t) : V � W in C, pulling back along it
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the split epimorphisms in the fibers of U is a process which is ”saturated on
subobject”.

Proof. This means that, given any subobject m of (f̄ ′, s̄′) = h∗(f̄ , s̄) in the
fiber above U(V ):

X ′ "" m
""f ′

��

X̄ ′

f̄ ′

��

h̄ // // X̄
f̄

��
V

h
// //

s′
OO

s̄′

CC

W
s̄

DD

there is a subobject n of (f̄ , s̄) in the fiber above U(W ) such that h∗(n) = m.
For that, complete the diagram with the kernel equivalence relations R[h],
R[h̄] and R[h̄.m]. The factorization R(m) between the two last ones is then
a monomorphism.

R[h̄.m]

R(f ′)

��

%%
R(m)

%% δ1
//

δ0 //
X ′   

m
  

oo

f ′

��

R[h̄]

~~

dh̄1

//

dh̄0 //
X̄ ′oo

f̄ ′

��

h̄ // // X̄

f̄

��
R[h]

R(s′)

OO

dh1

//

dh0 //

>>

Voo
h

// //

s′
OO

s̄′

CC

W
s̄

EE

The left hand side quadrangles indexed by 0 and 1 are pullbacks since so
is the right hand side one. In the context of a Mal’tsev fibration, the left
hand side commutative vertical squares are pullbacks as well: indeed, since
R(m) is a monomorphism, it is also the case for the factorization τ of the
left hand side vertical square indexed by 0 to the pullback of (f ′, s′) along
the split epimorphism (dh0 , s

h
0); but this τ is an extremal epimorphism as well

by Lemma 2.3, since the fibration is a Mal’tsev one; so this factorization τ
is an isomorphism, and the vertical left hand side square indexed by 0 is a
pullback.
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Now, the following downward left hand side diagram is underlying a
discrete fibration between equivalence relations:

R[h̄.m]

R(f ′)

��

δ1
//

δ0 //
X ′oo

f ′

��

h′ // // X

f

��

t′
oo

R[q]

R(s′)

OO

dh1

//

dh0 //
Voo h // //

s′

OO

W

s

OO

t
oo

Then, by Lemma 2.2 in [7], the above right hand side pullback along t gives
to t′ a retraction h′ above h which is the quotient of the equivalence rela-
tion R[h̄.m]; accordingly, n = t∗(m) produces the monomorphism we were
looking for.

3. Schreier split epimorphims in the fibers CatYE

3.1 Schreier split epimorphims

It is clear that all the previous results concerning the fibered reflection ( )0 :
CatE → E remain valid for its restriction ( )0 : GrdE → E to the internal
groupoids in E. One main structural fact estalished for this last fibration is
the following one: any fiber GrdYE is protomodular [3], as is Grd1E =
GpE the category of internal groups in E. This property does not hold in the
fibers CatYE, see MonE. The aim of this section is to show that, however,
any fiber CatYE keeps one fraction of this property: it is only protomodular
with respect to a certain class ΣY of split epimorphisms, on the model of
what is shown for the categories Mon of monoids in [12] and MonE of
internal monoids in E in [13].

In the category Mon of monoids, a split epimorphism (f, s) : A � B
is said to be a Schreier one if, for any b ∈ B, the map µb: Ker f → f−1(b)
defined by µb(k) = k · s(b) is bijective [20]. This defines a class Σ of split
epimorphims in Mon which makes this category Σ-protomodular [12, 10],
where:

Definition 3.1. A pointed category E is said to be Σ-protomodular, when,
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given any split epimorphism (f, s) ∈ Σ, the following pullback:

Kerf //
ker f //

��

X

f
��

1 // 0Y
//

OO

Y

s

OO

is such that the pair (s, ker f) of subobjects of X is jointly extremally epic,
namely is such that the supremum of this pair of subobjects is 1X .

This definition extends the notion of pointed protomodular category [3]
where the previous property holds for any split epimorphism in E, the major
examples of such categories being the category Gp = Grd1 of groups. Re-
call the following observation which produces a global characterization of
the Schreier split epimorphisms in Mon [12]:

Proposition 3.2. A split epimorphism (f, s) : X � Y in Mon is a Schreier
one if and only if there is a set-theoretical retraction q : X → Kerf to the
homomorphic inclusion ker f :

Kerf //ker f
//

��

X

f
��

q

��

1 // 0Y
//

OO

Y

s

OO

which, in addition, is such that, for all x ∈ X , we get q(x) · sf(x) = x and,
for all (k, y) ∈ Kerf × Y , we get q(k · s(y)) = k.

From that, it is not difficult to extend this definition to any fiber CatYE:

Definition 3.3. Let (f•, s•) : X• � Y• be any split epimorphic ido-functor
in the fiber CatYE. It is called a Schreier split epimorphism when there is a
retraction q1 : X1 → (Kerf)1 of (ker f)1 in E:

(Kerf)1
//

(ker f)1

//

��

X1

f1
��

q1

��

Y //
sY•0

//

OO

Y1

s1

OO
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such that: 1) dX•0 .(ker f)1.q1 = dX•1 , 2) dX•1 .(s1f1, q1) = 1X1 and:
3) q1.d

X•
1 .(s1 ×Y (ker f)1) = pK0 : (Kerf)1 ×Y Y1 → (Kerf)1.

The set-theoretical translations of these three equations are:
1) for any map φ : a → b in the category X•, we get an endomap map:
q1(φ) : b→ b in (Kerf)1 such that φ = q1(φ).s1f1(φ);
2) for any pair (ψ, α) of arrows in Y1×(Kerf)1 with d1(ψ) = d0(α) = d1(α),
we get: q1(α.s1(ψ)) = α.

In other words, we get a Schreier split epic ido-functor when, given any
pair (a, b) of objects in the category X•, the monoid of endomorphisms on b
belonging to the kernel of this functor f• produces a special kind of action
on the subsets of Hom(a, b) whose elements have a same image by f•, an
action which will be more precisely understood in Proposition 3.6. We shall
denote by ΣY the class of Schreier split epimorphisms in the fiber CatYE.
This class has good stability properties:

Proposition 3.4. In CatYE, the class ΣY is stable under pullbacks and un-
der composition. It is ”point-congruous”: namely, it is stable under prod-
ucts and under finite limits inside the category Pt(CatYE) of split epimor-
phims in CatYE.

Here is now our second structural fact:

Theorem 3.5. Any fiber CatYE is ΣY -protomodular, i.e. it is such that,
given any Schreier split epic ido-functor (f•, s•) : X• → Y•, the following
pullback in CatYE:

(Kerf)•
//(ker f)• //

��

X•

f•
��

∆Y
//
0Y•

//

OO

Y•

s•

OO

makes jointly extremally epic the pair (s•, (ker f)•) of subobjects of X•.

Proof. Thanks to the Yoneda embedding, we are allowed to check it in the
set-theoretical environment, and it is quasi-immediate. Consider the follow-
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ing diagram in the category X• for any map φ : a→ b:

a
s•f•(φ) // b

q1(φ)��
a

φ
// b

It is commutative by the axiom 1, so that any subcategory of X• containing
(ker f)• and s• is equal to X•.

3.2 Back again to the 2-categorical nature of CatE

In this section, we shall show how, actually, the notion of Schreier split epi-
morphisms is, again in a hidden way, related to the 2-categorical dimension
of CatE. More than that, this notion, which is not intrinsic to MonE by the
presence of the non-homomorphic retraction q, becomes intrinsic, and more
precisely intrinsic to this 2-dimensional aspect, when it is contextualized in
CatE.

A functor f• : X• → Y• in Cat is a cofibration, when, given any pair
(a, ψ) ∈ X0 × Y1 with d0(φ) = f0(a), there is a universal map with domain
a above it in X1, which is called the cocartesian map above ψ. It is a split
cofibration when the choice of these universal maps is enforced. In [22], it
is shown that the split (co-)fibrations above Y• in CatE are clearly internally
defined, as being the algebras of a left exact monad on the slice category
CatE/Y• which explicitely uses the natural transformations (via the notion
of ”comma category”) and, therefore, is wholly based on the 2-categorical
nature of CatE.

Now consider a ido-functor f• : X• → Y•; if, in addition it is a split
cofibration in Cat, the choice of the cocartesian maps determines an actual
functorial splitting s• : Y• → X• of f• which is such that any map s1(ψ) is
the chosen cocartesian above ψ.

Proposition 3.6. Let (f•, s•) : X• � Y• be a split epimorphism in a fiber
CatYE. The following conditions are equivalent:
1) it is a Schreier split epimorphism in CatYE;
2) it is an internal split ido-cofibration in CatE.

Proof. Let us check it in the set-theoretical environment. Suppose it is a
Schreier split epimorphism. Start with a map ψ : a → b ∈ Y1; we are
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going to show that s1(ψ) : a → b is a cocartesian map above ψ. So, let
φ : a → c be a map in X1 with a factorization f1(φ) = χ.ψ in Y1. Then,
with the map q1(φ).s1(χ) : b → c, we get the unique map in X1 such that
φ = (q1(φ).s1(χ)).s1(ψ) and f1(q1(φ).s1(χ)) = χ.

Conversely suppose it is an internal split ido-cofibration. Since s1(ψ) is
cocartesian, it determines, for any map φ : a → b ∈ X1 above ψ a unique
factorization q1(φ) : b → b such that f1(q1(φ)) = 1a and q1(φ).s1(ψ) =
φ; the first equality insuring that q1(φ) is in (Kerf)1 and the second one
insuring Axiom 1). Axiom 2) is then straighforward.

By duality, let us define by Σop
Y the class of split ido-fibrations in CatYE.

It is clear that this class is stable under pullback, point-congruous and makes
the fiber CatYE a Σop

Y -protomodular category as well.

4. Outcomes of the partial protomodularity of CatYE

So, any fiber CatYE inherites all the properties of a Σ-protomodular cate-
gory, see [10]. Here, we shall develop some of them. The first one is the
following:

Proposition 4.1 ([10]). Any fiber CatYE is a ΣY -Mal’tsev category; i.e.
when the split epimorphism (f ′•, s

′
•) is a Schreier one, any pullback of split

epimorphisms in CatYE:

X•
x• //

f•
��

X ′•σ•
oo

f ′•
� �

Y•
y• //

s•

OO

Y ′•τ•
oo

s′•

OO

is such that the pair (s•, σ•) of subobjects of X• is jointly extremally epic.

Then let us introduce the following:

Definition 4.2. Let Σ be any class of split epimorphims in a category E.

A reflexive relation R on an object X: R

dR1 //

dR0

// XsR0
oo is said to be a Σ-one,

when the split epimorphism (dR0 , s
R
0 ) is in Σ, a morphism f : X → Y is
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said to be Σ-special when its kernel equivalence relation R[f ] is a Σ-one.
An object X is said to be Σ-special when the terminal map τX : X → 1 is
Σ-special or, equivalently, when its indiscrete equivalence relation ∇X is a
Σ-one. The same kind of definition can be extended to reflexive graphs, and
to internal categories and groupoids.

Warning: a split Σ-special morphism belongs to Σ, but the converse is
not necessarilty true: a split epimorphism belonging to Σ is not necessarily
Σ-special. In Mon, the natural preorder on the commutative monoid N of
intergers is an emblematic example of a reflexive and transitive Schreier re-
flexive relation [12]. More generally, any preorder on a group G provides us
with an example of a reflexive and transitive Schreier relation in Mon. We
shall denote by SPoMon the category of Schreier preordered monoids and
order-preserving homomorphisms.

Theorem 4.3 ([10]). Suppose the class Σ is stable under pullback and E is
a Σ-Mal’tsev category. Then any reflexive (resp. reflexive and symmetric)
Σ-relation is transitive (resp. an equivalence relation). When, in addition,
Σ is point congruous, the full subcategory SP/Y of the slice category E/Y
whose objects are the Σ-special morphims is a Mal’tsev category. It is the
case, in particular of the Σ-core, namely the full subcategory ΣE] of E whose
objects are Σ-special.

When E is Σ-protomodular and Σ is point congruous, then SP/Y and
ΣE] are protomodular.

InMon, the core associated with the class of Schreier split epimorphisms
is the protomodular subcategoryGp of groups [12]. In this section, inter alia,
we shall characterize the objects of the protomodular core associated with
the class ΣY in the fiber CatYE.

First, given any category Y•, its terminal map in the fiber Y• → ∇Y is a
monomorphism if and only if Y• is a preorder on Y . Since any monomor-
phism is necessarily ΣY -special, then any internal preorder on Y , seen as an
internal category in E, lies in the ΣY -core.

A reflexive relation R on a category X• is given by a reflexive relation
on each Hom(a, b) which is stable under composition in X•. It is a Schreier
reflexive relation if and only if for any pair (ψ, χ) of parallel arrows between
a and b, we have ψRχ if and only if there is a unique map φ : b → b such
that 1bRφ and χ = φ.ψ.
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Accordingly, an equivalence relation R on a category X• is a Schreier
one if and only if:
1) for any object a, the class 1̄a is a subgroup of Enda;
2) the left action of the group 1̄b on any Hom(a, b) 6= ∅ is free and the
classes of the equivalence relation R on Hom(a, b) coincide with the orbits
of this action. Whence the following definition which characterizes those
categories which are in the protomodular ΣY -core (resp. the Σop

Y -core):

Definition 4.4. An internal category Y• is called Schreier special (respec-
tively Schreier opspecial) when:
1) the endosome (EndY )1 � Y is a group in E/Y ; in other words, any
endomorphism in Y• is an automorphism;
2) the natural left action (resp. right action) of this group on the object
dY•1 : Y1 → Y (resp. dY•0 : Y1 → Y ) in the slice category E/Y is simply
transitive in this slice category.

Accordingly, as expected, the groupoids are Schreier-special (respec-
tively Schreier opspecial) categories, but they are not the only ones, since, as
we just saw, such is any preorder. On the other hand, the core, being proto-
modular, is a Mal’tsev category. Accordingly there is an intrinsic notion of
affine object when this object is endowed with a (unique) internal Mal’tsev
operation. A Schreier special category is an affine object in the protomodu-
lar core if and only if the group defined in 1) is an abelian one. In this way,
any preorder appears as an affine Schreier special category.

We shall now briefly introduce some easy processes to produce Schreier
split epimorphisms and Schreier special categories in the set-theoretical con-
text.

Let Y be any set and Y• any category with Y as set objects. Then, by the
Grothendiek construction, any functor F• : Y• → Mon produces a Schreier
split epimorphism (U•, S•) : (FY )• � Y• where the set objects of (FY )0

is Y , and where a map a → b in (FY )1 is given by a pair (ψ, α) with
ψ : a → b ∈ Y1 and α ∈ F (b) and where the composition in the category
(FY )• is given by: (ψ′, α′).(ψ, α) = (ψ′.ψ, α′ · F (ψ′)(α)). The identity
map on the object a in (FY )0 = Y is given by (1a, 0F (a)); then we set
U•(ψ, α) = ψ and S•(ψ) = (ψ, 0F (b)).

Now, in the same way, starting with any functor F̄• : Y• → SPoMon,
and denoting by F• : Y• → Mon the associated functor which forgets the
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preorders, then F̄• produces a Schreier preorder on the category (FY )•, by
(ψ, α) ≤ (ψ′, α′) if and only if ψ′ = ψ and α ≤ α′. This is the case, in
particular, when F̄ is chosen as the constant functor on the monoid N.

Proposition 4.5. Let Y• be a Schreier special category and F• : Y• → Gp
any functor, then the category (FY )• is a Schreier special category as well.
Accordingly, when T is a preorder on the set Y , any category (FT)• of this
kind is a Schreier special category. It is affine as soon as the functor F takes
its values in the category Ab of abelian groups.

Proof. Since Y• is a Schreier special category, any HomY•(a, a) is a group.
On the other hand, the restriction of the functor F• to this group produces a
group homomorphism Fa : HomY•(a, a) → Aut(F (a)). Then, being noth-
ing but the semi-direct product F (a)oHomY•(a, a), any Hom(FY )•(a, a) is
a group.

Now let ((ψ, x), (χ, y)) be a parallel pair of morphims between a and b in
(FY )•. Since Y• is a Schreier special category, there is a unique inversible
map α : b → b such that α.ψ = χ. Then the map (α, y · F (α)(x−1)) in
Hom(FY )•(b, b) is the unique one such that: (α, y · F (α)(x−1)).(ψ, x) =
(χ, y). The last assertion is straightforward once recalled that any preorder
is an affine Schreier special category.

In this way, any group homomorphism h : G → G′, seen as a functor:
{0 → 1} → Gp gives rise to a Schreier special category with two objects
which is neither a preorder, nor a groupoid. It is an affine object in the
protomodular core when both G and G′ are abelian.

We shall close this section by just recalling two important consequences
of the ΣY -protomodularity of the fibers CatYE, and we shall refer to [10]
and [5] for the details:
1) any regular epic ΣY -special ido-functor f• : X• � Y• in CatYE is the
cokernel of its kernel;
2) there is, in CatYE, an intrinsic notion of abelian ΣY -equivalence relation
R. When, in addition, the ground category E is exact, we can associate with
any ΣY -special ido-extension f• : X• � Y• having an abelian kernel equiv-
alence relation an internal abelian group A• � Y• in (CatYE)/Y• called
the direction of this extension f•. Furthermore the set ExtA•(Y•) of isomor-
phism classes of such extensions above Y• with a given direction A• � Y•
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is canonically endowed with an abelian group structure via a construction
generalizing the classical Baer sum.

5. Some p recisions about the fibration GrdE→ E

When E is regular, the base-changes of the fibration CatE→ E along a reg-
ular epimorphism f : X � Y in E are fully faithful, and thus conservative,
since the cartesian maps above regular epimorphisms in E are pullback sta-
ble regular epimorphisms in CatE; it is a fortiori the case for the same kind
of base-changes of the fibration GrdE→ E.

In this section we shall show that, for GrdE, the base-changes along a
morphism h : U → X in E partially keep a conservative aspect, provided
that the objects U and X have same support, and the ground category E is
efficiently regular (and a fortiori exact), see Theorem 5.7 and Proposition
5.13 below. For that we need the following:

Definition 5.1 ([8]). A category E is said to be efficiently regular when it is
regular and such that any equivalence relation T on an object X which is a
subobject i : T � R[f ] of an effective equivalence relation by an effective
monomorphism (i.e. an equalizer) i is itself effective.

This notion is clearly stable under slicing and coslicing. The categories
GpTop and AbTop of topological groups and topological abelian groups are
examples of efficiently regular categories which are not exact ones.

5.1 Connected and aspherical internal groupoids

From now on, in this section, we shall suppose that the category E is at
least regular. In such a category, the support of an object X is the subobject
J � 1 determined by the canonical decomposition of the terminal map
τX : X → 1. Accordingly, an object X is said to have a global support when
the terminal map τX : X → 1 is a regular epimorphism.

Then, since any fiber GrdYE is a regular category as well, any groupoid
has a support in its fiber: X• � SuppX• � ∇X0 , and this support is an
equivalence relation in E. Let us recall the following:

Definition 5.2 ([6]). A groupoid X• is said to be connected when it has a
global support in the fiber GrdX0E; it is said to be aspherical, when, in
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addition, it object of objects X0 has a global support in E. When the equiv-
alence relation SuppX• has a quotient map γX• in E, its codomain, denoted
by π0(X•), is called the internal object of the ”connected components” of
the groupoid X•. Then clearly γX• is the coequalizer of the pair (dX•0 , dX•1 )
in E.

In Set a groupoid X• is aspherical when X0 6= ∅ and the groupoid X•
is connected in the usual sense. The connected groupoids are stable under
the base-changes f ∗ of the fibration GrdE → E. Aspherical ones are stable
only when the domain of f has a global support.

5.2 Affine internal groupoids

Now, observe that, given any internal groupoidX• in E, the object (dX•0 , dX•1 ) :
X1 → X0×X0 in the slice category E/(X0×X0) (which is nothing but the
level 1 of the terminal functorX• → ∇X in the fiberGrdX0E) is canonically
endowed with an associative Mal’tsev operation p defined (in set-theorerical
terms) by p(φ, χ, ψ) = φ.χ−1.ψ for any triple of parallel maps in X•. This
Mal’tsev operation will be a keypoint in the development below. Observe
moreover that: (∗) p(φ.β, χ.β, ψ.β) = p(φ, χ, ψ).β and p(γ.φ, γ.χ, γ.ψ) =
γ.p(φ, χ, ψ).

Definition 5.3. The groupoid X• is said to be affine in E when the ternary
operation p is autonomous or, equivalently, when p is underlying an internal
functor p• : X• ×0 X• ×0 X• → X• in the fiber GrdX0E.

The same notion was introduced under the name of abelian groupoid in
[6], but we do prefer now affine, since the above second assertion exactly
means that X• is an affine object in the protomodular (whence Mal’tsev)
fiber GrdX0E. Any equivalence relation is an affine groupoid.

Proposition 5.4. Given any fully faithful (=cartesian) functor f• : X• → Z•,
the groupoid X• is affine as soon as so is Z•. If, in addition, f• is split, X•
is affine if and only if so is Z•. When the category E is regular, the same
equivalence holds for any cartesian regular epimorphism f•.

Proof. The first point is straightforward, and the second too, since when a
cartesian functor f• is split, its splitting s• is cartesian as well. Let us go to
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the third one. Let f• : X• � Z• be any cartesian regular epimorphism and
X• an affine groupoid. Then consider the following diagram in E:

R2[(d0, d1)]

d1

��
pX

%%

R2(f1) // //

d2

��
d0

��

R2[(d0, d1)]

d1

��
d2

��
pZ

xx

d0

��
R[(d0, d1)]

R(f1) // //

d1

��
d0

��

R[(d0, d1)]

p1

��

p0

��
X1

OO

f1 // //

(d0,d1)

��

Z1

(d0,d1)

��

OO

X0 ×X0 f0×f0

// // Z0 × Z0

The lower commutative square is a pullback since f• is cartesian. Accord-
ingly so are the upper ones. Since f0 is a regular epimorphism, so are f1

and the factorizations R(f1) and R2(f1). Clearly the Mal’tsev operations p
commute with any functor f•. Now, when pX is autonomous (=X• affine),
so is pZ since R2(f1) is a regular epimorphism; so, Z• is affine.

5.3 The direction of an affine aspherical groupoid

In Set, given an affine groupoid X•, all the maps φ : x → x′ produce the
same group homomorphism α 7→ φ.α.φ−1 between the groups Endx and
Endx′ . When, in addition, this groupoid is aspherical all these groups Endx
are isomorphic; so, by the choice of an object x0 and of a map φx : x → x0

for all x, we get a canonical equivalence of categories X• ' Endx0; in this
way, the (=any) abelian group Endx0 becomes a meaningful invariant of this
affine aspherical groupoid X•.

We are now going to recall from [6] how to define this invariant, called
the direction of the aspherical affine groupoid X•, in an internal way. For
that, we shall need the following kind of anatomical decomposition of what
is an internal groupoid X• which will consist in showing that the upper hor-
izontal part of the following diagram is again an internal groupoid resulting
of what we shall call:
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the canonical action of the groupoid X• on its endosome (EndX)•:

X1 ×0 R[(dX•0 , dX•1 )]

X1×0dR0

��

d̄X•2 //
d̄X•1

//

d̄X•0

//
R[(dX•0 , dX•1 )]

dR0

��

δX•0

//

δX•1 //

(EndX)1σX•
0
oo

(ρX)1

��

q // // dX•

��
X1 ×0 X1

dX•2 //
X1×0sR0

OO

dX•1
//

dX•0

//
X1

sR0

OO

dX•0

//

dX•1 //

X0sX•0
oo

τX
//

(σX)1

OO

1

0

OO

Proof. In the central part of this diagram, given any parallel pair (φ, ψ) ∈
R[(dX•0 , dX•1 )] of morphisms of X•, we set δX•1 (φ, ψ) = ψ.φ−1. It is then
straightforward to check that the downward square with horizontal maps in-
dexed by 1 is a pullback, and then that sX•0 induces the retraction of δX•1

defined by σX•0 (α) = (1d0(α), α). Being a pullback, this square transfers the
group structure in the slice category E/X0 given by the endosome (EndX)•
to a group structure on the object dR0 in E/X1 which is given by (φ, ψ) ◦
(φ, χ) = (φ, p(ψ, φ, χ)).

Now let us set: δX•0 (φ, ψ) = φ−1.ψ. Then the downward and upward
squares with horizontal maps indexed by 0 do commute as well, as shown
by the following diagram:

xφ−1.ψ 99

ψ
//

φ //

x′ ψ.φ−1
gg

This makes the map δX•0 satisfy the first axiom of an action of the groupoid
X• on the split epimorphism ((ρX)1, (σX)1). Furthermore this map δX•0 re-
spects the group laws of the slice categories since:
δX•0 (φ, ψ)◦δX•0 (φ, χ) = (φ−1.ψ)◦(φ−1.χ)) = φ−1.ψ.φ−1.χ = φ−1.p(ψ, φ, χ);
while: δX•0 ((φ, ψ) ◦ (φ, χ)) = δX•0 (φ, p(ψ, φ, χ)) = φ−1.p(ψ, φ, χ).
So, the map δX•0 satisfies the first axiom of an action of the groupoid X• on
the endosome group (EndX)•.

We are going to show now that it satisfies the second axiom of an ac-
tion, namely that, in the diagram above, we get δX•0 .d̄X•0 = δX•0 .d̄X•1 , where
d̄X•0 (γ, (φ, ψ)) = (γ, φ−1.ψ.γ). So:
δX•0 .d̄X•0 (γ, (φ, ψ)) = δX•0 (γ, φ−1.ψ.γ) = γ−1.φ−1.ψ.γ;
and: δX•0 .d̄X•1 (γ, (φ, ψ)) = δX•0 (φ.γ, ψ.γ) = γ−1.φ−1.ψ.γ.
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This makes the upper horizontal diagram a groupoid (we shall denote by
EndX•) since the action in question is produced above a groupoid. So, the
vertical downward and upward maps produce a split epic functor. This func-
torial situation is coherent with the vertical group structure on (EndX)•:
since d̄X•0 ((γ, (φ, ψ)) ◦ (γ, (φ, ψ′))) = d̄X•0 (γ, (φ, p(ψ, φ, ψ′))
= (γ, φ−1.p(ψ, φ, ψ′).γ);
and: d̄X•0 (γ, (φ, ψ)) ◦ d̄X•0 (γ, (φ, ψ′)) = (γ, φ−1.ψ.γ) ◦ (γ, φ−1.ψ′.γ)
= (γ, p(φ−1.ψ.γ, γ, φ−1.ψ′.γ)) = (γ, p(φ−1.ψ.γ, φ−1.φ.γ, φ−1.ψ′.γ)).
By the identities (∗) given at the beginning of tis section, we get the desired
equality between the two previous terms.

The quickest way to make emerge this anatomical decomposition is to
see it as underlying the double category whose double arrows are the com-
mutative squares in X•:

x

α

��

φ // x′

β
� �

x
φ

// x′

(which can be identified up to isomorphism with the parallel pair (φ, β.φ) ∈
R[(dX•0 , dX•1 )]) and where the vertical and horizontal compositions are clear.
These double arrows are the arrows of the groupoid EndX• having the en-
domap α as domain and the endomap β as codomain.

Now, let us suppose that, in addition, the groupoid X• is connected, and
let us consider the right hand side quadrangled pullback above the projection
p1 : X0 ×X0 → X0:

X0 × (EndX)1

p̌0

+ +

��

X0×p1

''

R[(dX•0 , dX•1 )]

∂
77 77

dR0

��

δX•0

//

δX•1 //
(EndX)1

oo

gg

q // //

(ρX)1

��

dX•

��

X0 ×X0

OO

p0

))

p1

) )
X1

sR0

OO

dX•0

//

dX•1 //

55 55

X0
oo

ii

// //

(σX)1

OO

1

0

OO
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Since, in the lower left hand side part of this diagram, the square indexed
by 1 is a pullback the factorization ∂ : R[(dX•0 , dX•1 )]→ X0 × (EndX)1 in-
duced by the regular epimorphism (dX•0 , dX•1 ) : X1 � X0 ×X0 is a regular
epimorphism as well; as such ∂ is the quotient of its kernel equivalence re-
lation R[∂]. In set-theoretical terms we get ∂(φ, ψ) = (d0(ψ), dX•1 (φ, ψ)) =
(d0(φ), dX•1 (φ, ψ)). So, in categorical terms, we get ∂ = (dX•0 .dR0 , δ

X•
1 ) =

(dX•0 .dR1 , δ
X•
1 ).

Lemma 5.5. In any category E, the kernel equivalence relationR[∂] is noth-
ing but the Chasles equivalence relation Ch[p] on the object R[(dX•0 , dX•1 )]
associated with the associative Mal’tsev operation p : R2[(dX•0 , dX•1 )]→ X1.
We get the inclusion R[∂] ⊂ R[δX•0 ] if and only if the groupoid X• is affine.

Proof. Given any associative Mal’tsev operation p on a set X , recall from
[5] that it induces an equivalence relation Ch[p] on X × X defined by
(x, z)Ch[p](x′, z′) if x′ = p(x, z, z′). Thanks to the Yoneda embedding it
is enough to check our assertion in Set. Starting with two pairs (φ, ψ) and
(φ′, ψ′) of parallel arrows in X•, such that ∂(φ, ψ) = ∂(φ′, ψ′), these pairs
have same domain and codomain, and are such that ψ.φ−1 = ψ′.(φ′)−1. This
last point holds if and only: if φ′ = φ.ψ−1.ψ′ = p(φ, ψ, ψ′); whence our first
point.

Two pairs (φ, ψ) and (φ′, ψ′) of parallel arrows in the groupoid X• are
such that δX•0 (φ, ψ) = δX•0 (φ′, ψ′) if and only if φ−1.ψ = (φ′)−1.ψ′, namely
φ′ = ψ′.ψ−1.φ = p(ψ′, ψ, φ). So that R[∂] ⊂ R[δX•0 ] if and only p(φ, ψ, ψ′)
= p(ψ′, ψ, φ), namely if and only if the groupoid X• is affine.

Proposition 5.6. Let E be a regular category and X• an internal connected
affine groupoid. Then, in the above diagram, there is a factorization p̌0

above p0 such that p̌0.∂ = δX•0 . The pair (p̌0, X0 × p1) is then underly-
ing the equivalence relation SuppEndX•, and we get a discrete fibration
SuppEndX• → ∇X0 .

Suppose now E is efficiently regular, and X• is aspherical. Then the
equivalence relation SuppEndX• admits a quotient dX• which makes the
right hand side square a pullback and provides dX• with an internal abelian
group structure. This abelian group dX• is called the direction of the as-
pherical affine groupoid X•.

This construction functorially extends to any ido-functor f• : X• → Z•
between aspherical affine groupoids in E in a way which makes the following
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square a pullback:

(EndX)•
qX• // //

(Endf)•
��

dX•

df•
��

(EndZ)• qZ•
// // dZ•

Accordingly, df• is an isomorphism if and only if so is (Endf)•

Proof. By the previous lemma, as soon as X• is an affine groupoid, we get
R[∂] ⊂ R[δX•0 ]. If X• is connected, the map ∂ is a regular epimorphism,
whence the factorization p̌0 in question. Since the quadrangled square in-
dexed by 1 is a pullback and ∇X0 is a relation, so is (p̌0, X0 × p1). Ac-
cordingly, this relation is underlying the equivalence relation SuppEndX•
which, then, is endowed with a discrete fibration SuppEndX• → ∇X0 . Ac-
cordingly the inclusion i : SuppEndX• � ((ρX)1)−1(∇X0) is split in E
and consequently a regular monomorphism in E, so that, when E is effi-
ciently regular, SuppEndX• has a quotient dX• which, by the Barr-Kock
Theorem in regular categories, makes the above right hand square a pull-
back.

It remains to show that dX• is endowed with an abelian group structure.
First, it is clear that when the groupoid X• is affine the endosome group
(EndX)• is abelian. Now consider the following extention of the previous
diagram by the kernel equivalence relations of the vertical maps:

R[dR0 ]

d1

��
d0

��
◦
��

R(δX•0 )

//

R(δX•1 )
//
R[(ρX)1]oo

◦
��

R(q) // //

d1

��
d0

��

dX• × dX•
p1

��
◦

xx

p0

��
R[(dX•0 , dX•1 )]

OO

dR0
��

δX•0

//

δX•1 //
(EndX)1

oo

OO

q // //

(ρX)1

��

dX•

��

OO

X1

sR0

OO

dX•0

//

dX•1 //
X0

oo // //

(σX)1

OO

1

0

OO

Since the lower right and side square is a pullback, such are the upper right
hand side ones; and consequently the factorization R(q) is a regular epimor-
phism. We showed that the maps δX•0 and δX•1 did respect the group structures
◦. Accordingly they produce the right hand side vertical dotted factorization
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◦ which gives the abelian group structure to dX•. The last assertion is then
straightforward.

We can now assert the first result we were aiming to:

Theorem 5.7. Let E be an efficiently regular category and h : U → X a
morphism such that U andX have same support in E. Given any ido-functor
f• : X• → Z• between connected affine groupoids, if h∗(f•) : h∗(X•) →
h∗(Z•) is an isomorphism, then so is f•.

Proof. Let h = m.h̄ be the canonical decomposition of h into a regular
epimorphism and a monomorphism. Since, by Proposition 1.3.2, the base
change h̄∗ is certainly conservative, it is enough to prove our assertion when
m : U � X is a monomorphism.

Let us denote by J � 1 the common support of U and X . This J is
the common quotient of the equivalence relations ∇X and ∇U . In particular
the connected groupoids X• and Z• in E become aspherical groupoids in the
category F = E/J which is efficiently regular as well. All the diagrams
in E involved by our assertion actually lie in F and they are preserved by
the left exact forgetful functor F → E which is obviously conservative and
which preserves and reflects the regular epimophisms. So, we can now work
without any restriction in the category F.

We know that any fiberGrdY F is protomodular [3]. This fiber being reg-
ular as well, an ido-functor f• : X• → Z• between connected groupoids is
an isomorphism if and only if the functor (Endf)• is itself an isomorphism.
If, moreover, the two groupoids are aspherical and affine, then, thanks to the
previous proposition, this condition is equivalent to: df• is an isomorphism.
So, our assumption is equivalent to: dm∗(f•) is an isomorphism. Now, con-
sider the following diagram in F, where U and X have a global support:

(End(m∗X))1

(ρ(m∗X))1

��

//̃m // (EndX)1
q // //

(ρX)1

��

dX•

��
U

(σ(m∗X))1

OO

τU
//

// m // X
τX // //

(σX)1

OO

1

0

OO

Since the map m∗(X•) � X• is cartesian, the left hand side square is a
pullback. And since U has a global support, we get dm∗X• = dX•; so, we
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get dm∗f• = df• as well. Accordingly, df• is an isomorphism, which implies
that so is f•.

5.4 Internal weak equivalences and affine groupoids

Let f• : X• → Z• be any functor in GrdE. Consider the following left and
side pullback in E:

Af0

δ0
��

φ0 // Z1

dZ•1 //

dZ•0
��

Z0

X0

σ0

OO

f0

// Z0

sZ•0

OO

Definition 5.8. Let E be a regular category. An internal functor f• : X• →
Z• is said to be essentially surjective when the upper horizontal map dZ•1 .φ0

is a regular epimorphism in E. It is said to be a weak equivalence, when, in
addition, it is fully faithful (i.e. ( )0-cartesian).

Given any essentially surjective functor f• : X• → Z•, the objects X0

and Z0 have necessarily same support. The essentially surjective functors
(resp. the weak equivalences) are stable under composition; when g•.f• is
essentially surjective, so is g•.

The 2-category CatE is actually a strongly representable 2-category in
the sense of [17]: namely, for any internal category Z•, there is a universal
natural transformation with codomain Z•:

ComZ•

(δ̄Z0 )•

⇓
//

(δ̄Z1 )•

// Z•

where (ComZ)0 is Z1 and (ComZ)1 is the internal object of the ”commu-
tative squares” in Z•, i.e. it is obtained as the object R[dZ•1 ] determined by
the kernel equivalence relation of the map dZ•1 : Z2 → Z1 in E. We get
a common section (σ̄Z0 )• of the pair ((δ̄Z0 )•, (δ̄

Z
1 )•) from the identity natu-

ral transformation 1Z• ⇒ 1Z• . Internal groupoids are characterized among
internal categories by the following:

Lemma 5.9. [2] An internal category Z• is groupoid if and only if the split
epimorphism ((δ̄Z0 )•, (σ̄

Z
0 )•) (resp. ((δ̄Z1 )•, (σ̄

Z
0 )•)) is cartesian in CatE.
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Now consider the following left hand side pullback in GrdE:

Af•

(δ̄f0 )•
��

φ• // ComZ•
(δ̄Z1 )• //

(δ̄Z0 )•
��

Z•

X•

(σ̄f
0 )•

OO

f•
// Z•

(σ̄Z
0 )•

OO

Straightforward are the following observations:

Lemma 5.10. 1) The split epimorphism ((δ̄f0 )•, (σ̄
f
0 )•) is cartesian. 2) We

get f• = ((δ̄Z1 )•.φ•).(σ̄
f
0 )•. Accordingly, 3) the functor f• is cartesian if and

only if so is the functor (δ̄Z1 )•.φ•.

When the category E is an exact one, any equivalence relation SuppX•
has a quotient which is nothing but the internal object π0(X•) of the ”con-
nected components” of the groupoid X•. This construction produces a left
adjoint to the fully faithful functor ∆ : E→ GrdE. Basic is the following:

Lemma 5.11. Let E be an exact category. Given any parallel pair (f•, g•)
of functors between groupoids, we get π0(f•) = π0(g•) as soon as we have
a natural transformation α : f• ⇒ f ′•.

Proof. Given any natural transformation α : f• ⇒ g•, the map α0 : X0 →
Z1 underlying this natural transformation is such that dZ•0 .α0 = f0 and
dZ•1 .α0 = g0, so that the coequalizer γZ• : Z0 � π0(Z•) of the pair (dZ•0 , dZ•1 )
coequalizes the pair (f0, g0) as well, which implies π0(f•) = π0(g•).

More meaningful are following ones:

Lemma 5.12. Let E be an exact category. 1) When the functor f• is fully
faithful (=cartesian), then π0(f•) is a monomorphism. 2) The functor f•
is essentially surjective if and only if π0(f•) is a regular epimorphism. So,
when f• is a weak equivalence, then π0(f•) is an isomorphism.

Proof. When f• is fully faithful, then SuppX• = f−1
0 (SuppZ•), so that

π0(f•) is a monomorphism.
It is clear that, as soon as f0 is a regular epimorphism, π0(f•) is a regular

epimorphism. Suppose f• is essentially surjective. The functor φ• : Af• →
ComZ• determines a natural transformation α : f•.(δ̄

f
0 )• ⇒ (δ̄X1 )•.φ•. So,
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we get π0(f•).π0((δ̄f0 )•) = π0((δ̄Z1 )•.φ•). Now, when f• is essentially surjec-
tive, the map π0((δ̄Z1 )•.φ•) is a regular epimorphism since dZ•1 .φ0 is a regular
epimorphism; accordingly, so is f•. Conversely, suppose that the map π0(f•)
is a regular epimorphism. Then consider the following diagram built from
the vertical functor f•:

X1

f1

��

ηX• // // SuppX•

Supp(f•)

��

d0

//

d1 //
X0

qX• // //oo

f0

��

π0(X•)

π0(f•)

����

Af0

φ0

��

η̄ // // Σ
d̄0

??

d̄1

// //

ψ

��

P

φ����

;; ;;

Z1 ηZ•
// // SuppZ•

d0

//

d1 //
Z0 qZ•

// //oo π0(Z•)

where φ is the pullback of the regular epimorphism π0(f•) along the regular
epimorphism qZ• , so that φ is a regular epimorphism; and where ψ is the
pullback of f0 along d0. These pullbacks produce a factorization d̄1 : Σ→ P
above d1, which by commutation of limits makes the upper upward right
hand side quadrangle a pullback as well. Accordingly, since qX• is a regular
epimorphism, so is d̄1. Finally, let φ0 be the pullback of ψ along the regular
epimorphism ηZ• so that: 1) η̄ is a regular epimorphism and 2) the map d̄0.η̄
is nothing but the map δ0 of the diagram defining Af0 in the definition of an
essentially surjective functor. Now dZ•1 .φ0 = d1.ηZ• .φ0 = d1.ψ.η̄ = φ.d̄1.η̄,
where these three last maps are regular epimorphisms. So, dZ•1 .φ0 is a regular
epimorphism, and the functor f• is essentially surjective.

Whence the second important result we were aiming to:

Proposition 5.13. Let E be an exact category. Consider any weak equiva-
lence f• : X• → Z•. Then X• is affine if and only if Z• is affine. In this
case these groupoids are both aspherical in the slice category E/Q where
Q = π0(Z•), and they have same direction in E/Q.

Accordingly, when Z• is affine, then the groupoid Z• is an equivalence
relation if and only if so is X•.

Proof. In any category E, when f• : X• → Z• is fully faithful, then X• is
affine (resp. an equivalence relation) as soon as so is Z•.
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Conversely, suppose that X• is affine. According to Lemma 5.10.1, so is
the groupoid Af•. When f• is fully faithful, so is the functor ψ• = (δ̄Z1 )•.φ•.
But ψ0 is a regular epimorphism in E. Then, according to Proposition 5.4,
the groupoid Z• is affine, since so is Af•.

Since f• is a weak equivalence, π0(f•) is an isomorphism, and conse-
quently all the diagrams involved by our situation lie in the slice category
E/π0(Z•) where the groupoids X• and Z• become aspherical; so that, being
affine, they get a direction in this exact slice category. It remains to show
that these directions are the same. For that consider the following diagram:

(EndX)1

(ρX)1

��

(Endf)1// (EndZ)1
qZ // //

(ρZ)1

��

dZ•

��
X0

(σX)1

OO

// //

f0 // Z0
// //

(σZ)1

OO

π0(Z•)

0

OO

The right hand side square is a pullback by definition. The left hand side one
is a pullback since f• is fully faithful. So the whole rectangle is a pullback;
and since the long lower horizontal map is a regular epimorphism, this rect-
angle defines the direction of the aspherical affine groupoidX•. Accordingly
dX• = dZ•.

Now, suppose Z• is affine; then X• is affine. Saying that X• is an equiv-
alence relation is saying that its direction in the slice category E/π0(Z•) is
trivial, namely the terminal object. According to the first part of the proposi-
tion, so is the direction of Z•, which, in turn, means that Z• is an equivalence
relation.

The Theorem 5.7 and the last part of the previous proposition are of
particular interest in the Mal’tsev and Gumm categories, where any groupoid
is affine, see [8], [18] and [11].
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