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Résumé. Nous montrons d’abord que les dérivateurs peuvent être vus comme
des modèles d’une 2-esquisse projective homotopique appropriée. Après
avoir discuté de la λ-présentabilité locale homotopique de la 2-catégorie des
dérivateurs, pour un certain cardinal régulier approprié λ, comme application
nous montrons que les dérivateurs de petite présentation sont des objets λ-
présentables homotopiques.
Abstract. We show first that derivators can be seen as models of a suitable
homotopy limit 2-sketch. After discussing homotopy local λ-presentability
of the 2-category of derivators, for some appropriate regular cardinal λ, as
an application we prove that derivators of small presentation are homotopy
λ-presentable objects.
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1. Introduction

Derivators were introduced by Grothendieck in his manuscript [22] written
between the end of 1990 and the beginning of 1991, though the term first
appeared in his letter to Quillen [21] of 1983. Similar notions appeared,
independently, in Heller’s work [23] of 1988 with the name of homotopy
theories, and later, in 1996, in Franke’s paper [16] with the name of systems
of triangulated diagram categories. Then they were studied, for example, by
Heller himself [24], Maltsiniotis [35], Cisinski [9], [11], Cisinski and Nee-
man [12], Keller [26], Tabuada [44], Groth [18], Groth, Ponto and Shulman
[20].

VOLUME LXII-4 (2021)

- 409 -



G. MARELLI A SKETCH FOR DERIVATORS

A reason for proposing derivators is to provide a formalism improving
that of triangulated categories. In fact, triangulated categories lack a good
theory of homotopy limits and homotopy colimits, in the sense that, though
they can be defined, they can not be expressed by means of an explicit univer-
sal property. An example of this is the non-functoriality of the cone construc-
tion. Since in the case of the derived category of an abelian category or the
homotopy category of a stable model category or of a stable (∞, 1)-category,
these construction can be made functorial, it means that when passing to the
homotopy category the information for the construction of homotopy lim-
its and homotopy colimits is lost. A derivator, as opposed to the homotopy
(or derived) category, contains enough information to deal in a satisfactory
way with homotopy limits and homotopy colimits. The idea in derivators
is not only to consider the homotopy (or derived) category, but also to keep
track of the homotopy (or derived) categories of diagrams and homotopy
Kan extension between them. An advantage of working with derivators is
also the possibility of describing them completely by means of the theory of
2-categories.

As proved by Cisinski [9], model categories give rise to derivators, yield-
ing a pseudo-functor between the 2-category of model categories and the 2-
category of derivators. Building on this and on Dugger’s result [14] about
presentation of combinatorial model categories, Renaudin [40] proved that
the pseudo-localization of the 2-category of combinatorial model categories
at the class of Quillen equivalences is biequivalent to the 2-category of deriva-
tors of small presentation. These are defined by imposing, in a suitable
sense, relations on a derivator associated to the model category of simplicial
presheaves on a small category C, which plays the role of a free derivator on
C. In this sense, small presentation of derivators resembles finite presenta-
tion of modules over rings or of models of algebraic theories, when given in
terms of generators and relations. However, in these last two cases, finite pre-
sentation can be characterized also intrinsically: finitely presented modules
(or models) are those which represent functors preserving filtered colimits.
The search for an analogous intrinsic formulation of small presentation for
derivators has been the motivation for this paper.

The main result we have obtained is the construction of a homotopy limit
2-sketch whose homotopy models can be identified with derivators. A (ho-
motopy) limit sketch is a way to describe a theory defined by means of (ho-
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motopy) limits. The 2-categories of (homotopy) models of (homotopy) limit
2-sketches are the (homotopy) locally presentable 2-categories. Therefore,
the construction of a homotopy limit 2-sketch for derivators, besides provid-
ing some kind of algebraic description of derivators, supplies also a frame-
work in which to discuss homotopy presentability. Indeed, as an application,
we prove that derivators of small presentation are homotopy λ-presentable
models, partially meeting our original motivation.

We summarize the content of the paper and present the results.
In section 2 we recall (right, left) derivators, as they were defined by

Grothendieck [22], and we present Cisinski’s result mentioned above. In this
paper, in order to study presentability, we will assume that the 2-category of
diagrams Dia on which derivators are defined is small with respect to a fixed
Grothendieck universe.

In section 3, we recall the definition of the weighted homotopy limit 2-
sketch S and of its category of models. We explain, then, how to include
pseudo-natural transformations as morphisms between models in a new 2-
category of models hModpsS .

In section 4 we present our main result: we prove that the 2-category
Derr of right derivators, cocontinuous pseudo-natural transformations (2.8)
and modifications, is the 2-category of models of a weighted homotopy limit
2-sketch, whose construction is explicitly exhibited.

Theorem 4.1. There exists a weighted homotopy limit 2-sketch S = (G,P)
and a biequivalence from the 2-category hModpsS to the 2-category Derr.

In section 5 we recall the theory of homotopy presentable categories,
together with the notion of presentable object in the homotopic sense. We
have:

Corollary 5.11. hModpsS is a homotopy locally λ-presentable 2-category,
where λ is a regular cardinal bounding the size of every category in Dia.

In section 6, we prove first, in lemma 6.3, after passing to a realized
sketch, that representable models correspond to derivators defined by model
categories of the form sSetC

op , for some small category C. As an application,
derivators can be reconstructed by means of homotopy λ-filtered colimits as
follows:
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Corollary 6.4. Any right derivator is a homotopy λ-filtered colimit in Derr

of λ-small homotopy 2-colimits of derivators of the formF(C) = Φ(sSetC
op

).

Finally, after recalling Renaudin’s definitions and result on small pre-
sentability, we obtain:

Theorem 6.14. A derivator of small presentation is a homotopy λ-presentable
object of Derr.

The author would like to thank Kuerak Chung for introducing the topic,
Bernhard Keller for bringing this problem to his attention, Steve Lack and
John Power for useful suggestions, Georges Maltsiniotis and Mike Shulman
for useful comments.

2. Derivators

In this section we recall derivators as introduced by Grothendieck [22, 1].
Derivators of small presentation, defined by Renaudin [40, 3.4], will be re-
called instead in section 6. Besides these two references, introductions to
derivators are found for instance in [35], [9, 1] or [18, 1].

We fix a Grothendieck universe U and we denote by Cat the 2-category
of U-small categories, and by Cat the ordinary category underlying Cat.

Definition 2.1. A category of diagrams, which we denote by Dia, is a full
2-subcategory of Cat such that:

1. it contains the empty category, the terminal category e and the cate-
gory ∆1 = 2 associated to the ordered set {0 < 1};

2. it is closed under finite coproducts and pullbacks;

3. it contains the overcategories C/D and the undercategories D\C cor-
responding to any functor u : C → D and to any object D ∈ D;

4. it is stable under passage to the opposite category.

Examples of categories of diagrams are Cat itself, the 2-category Catf of
finite categories, the 2-category of partially ordered sets or the 2-category of
finite ordered sets.
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In this paper we will assume that Dia is U-small, because, although the
definitions regarding derivators do not depend on this, this hypothesis guar-
antees that all limits and colimits with which we will be concerned are U-
small. So we will assume the existence of a regular cardinal λ such that all
the categories in Dia are λ-small.

Definition 2.2. A prederivator of domain Dia is a strict 2-functor

D : Diacoop → Cat.

In other words, applying a prederivator D to the diagram

C
u

))

v

55�� α D

yields the diagram

D(D) D(C)
v∗

kk

u∗
ss KS

α∗

where we have set u∗ = D(u), v∗ = D(v) and α∗ = D(α).

Example 2.3. For any category C ∈ Dia, the representable 2-functor Dia(−op, C)
is a prederivator of domain Dia. Actually, any C ∈ Cat defines a prederivator
of domain Dia.

We present now the definitions of derivator, right derivator and left deriva-
tor, as introduced by Grothendieck [22]. There are other variants, which,
however, we do not consider in this paper (see, for instance, [12, 1]).

Definition 2.4. A derivator is a prederivator D satisfying the following ax-
ioms.

1. For every C0 and C1 in Dia, the functor

D(C0 q C1) −→ D(C0)× D(C1),

induced by the canonical inclusions Ci → C0 q C1, is an equivalence
of categories. Moreover, D(∅) is equivalent to the terminal category
e.
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2. A morphism f : A → B of D(C) is an isomorphism if and only if, for
any object D of C, the morphism in D(e)

c∗D(f) : c∗D(A) −→ c∗D(B)

is an isomorphism, where cD : e → C denotes the constant functor at
D.

3. For every u : C → D in Dia, the functor

u∗ : D(D) −→ D(C)

has both left and right adjoints

u! : D(C) −→ D(D) (1)
u∗ : D(C) −→ D(D), (2)

called homological and cohomological direct image functor respec-
tively.

4. Consider diagrams in Dia of the form

D\C f //

t

��

C
u

��

C/D f //

t

��
}� β

C
u

��
e cD

// D

=Eα

e cD
// D

where D ∈ D, t is the unique functor to the terminal category e, f the
obvious forgetful functor, cD the constant functor at D, α and β the
canonical natural transformations. Apply D

D(D\C)

�	 α∗

D(C)f∗oo D(C/D) D(C)f∗oo

D(e)

t∗

OO

D(D)
c∗D

oo

u∗

OO

D(e)

t∗

OO

D(D)
c∗D

oo

u∗

OO
AIβ∗

and use axiom 3 to construct the Beck-Chevalley transformations

α∗bc : t!f
∗ ⇒ c∗Du! (3)

β∗bc : c∗Du∗ ⇒ t∗f
∗, (4)
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shown in the diagrams

D(D\C)
t!
��

D(C)
u!
��

f∗oo D(C/D)

t∗
��

D(C)
u∗
��

f∗oo

V^
β∗bc

D(e)

��
α∗bc

D(D)
c∗D

oo D(e) D(D)
c∗D

oo

and given respectively by the composites

t!f
∗ ⇒ t!f

∗u∗u! ⇒ t!t
∗c∗Du! ⇒ c∗Du!

c∗Du∗ ⇒ t∗t
∗c∗Du∗ ⇒ t∗f

∗u∗u∗ ⇒ t∗f
∗.

Then the natural transformations α∗bc and β∗bc are isomorphisms.

Definition 2.5. A right derivator is a prederivator such that:

• it satisfies axioms 1 and 2;

• it admits homological direct image functors u! for any functor u in
Dia;

• every α∗bc as in (3) is an isomorphism.

A left derivator is defined in an analogous way.

Example 2.6. Let M be a model category and W the class of its weak
equivalences. The prederivator Ho[−op,M], which on objects C ∈ Dia is
defined as the homotopy category

Ho[Cop,M] = [Cop,M][W−1
C ],

where WC is the class of objectwise weak equivalences, defines a derivator.
Its value on the terminal category e is just the homotopy category Ho(M) of
M. Its complete definition and the proof that it does define a derivator is the
subject of [9].

We use pseudo-natural transformations to define 1-morphisms of deriva-
tors.
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Definition 2.7. A morphism of prederivators θ : D1 → D2 is a pseudo-
natural transformation θ : D1 ⇒ D2.

Explicitly, a pseudo-natural transformation θ : D1 ⇒ D2 consists of the
following data:

1. for any C ∈ Dia, a functor

θC : D1(C) −→ D2(C);

2. for any C, D and u : C → D in Dia, an isomorphism

βθCDu ≡ βθu : u∗2 ◦ θD ⇒ θC ◦ u∗1,

where u∗i = Di(u) for i = 1, 2, which is natural in u, that is, for any
α : u⇒ v in Dia the diagram

v∗2 ◦ θD
βθv //

α∗2∗θD
� �

θC ◦ v∗1
θC∗α∗1
��

u∗2 ◦ θD
βθu

// θC ◦ u∗1

is commutative;

these data are required to fulfill the following coherence conditions

βθ1C = 1θC

βθvu = (βθu ∗ v∗1) ◦ (u∗2 ∗ βθv)

for any composable u and v.

Definition 2.8. A morphism of right derivators θ : D1 → D2 is cocontinuous
if it is compatible with the homological direct image functors, namely, for
every u in Dia the Beck-Chevalley transform

βθu! : u2! ◦ θC ⇒ θD ◦ u1!

is an isomorphism.
Continuous morphisms of (left) derivators are defined in an analogous

way.
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It remains to define 2-morphisms of derivators.

Definition 2.9. Given two (pre)derivators D1 and D2 and two morphisms θ1,
θ2 : D1 → D2, a 2-morphism λ : θ1 → θ2 is a modification λ : θ1 V θ2

between the underlying pseudo-natural transformations.

Explicitly, a modification λ : θ1 V θ2 consists of a family of natural
transformations

λC : θ1C ⇒ θ2C

for any C ∈ Dia, such that for every u : C → D of Dia the diagram

u∗2 ◦ θ1C
β
θ1
u //

u∗2∗λC
��

θ1D ◦ u∗1
λD∗u∗1
� �

u∗2 ◦ θ2C
β
θ2
u

// θ2D ◦ u∗1

(5)

is commutative.
We organize what has been introduced so far into the following 2-categories:

1. PDer the 2-category of prederivators, morphisms of prederivators and
2-morphisms,

2. Derr the 2-category of right derivators, cocontinuous morphisms and
2-morphisms,

3. Derl the 2-category of left derivators, continuous morphisms and 2-
morphisms,

4. Derrl the 2-category of derivators, continuous and cocontinuous mor-
phisms and 2-morphisms,

5. Derad the 2-category of derivators, morphisms of derivators whose
components have right adjoints, and modifications.

We conclude this section by telling more about the relationship between
derivators and model categories outlined in example 2.6. Let ModQ denote
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the 2-category of model categories, left Quillen functors and natural trans-
formations. Cisinski proved in [9] that the map in example 2.6

obModQ −→ obDerad

M 7−→ Ho[−op,M]

extends to 1-morphisms and 2-morphisms: he showed that a Quillen adjunc-
tion F : M1 � M2 : G induces for any C ∈ Dia an adjunction of total
derived functors

LF̃ : Ho[Cop,M1]� Ho[Cop,M2] : RG̃,

where F̃ and G̃ act by composing with F andG respectively, and so it defines
a pair of adjoint morphisms between the corresponding derivators.

Theorem 2.10. The construction above defines a pseudo-functor

Φ : ModQ→ Derad

taking Quillen equivalences to equivalences of derivators.

We will use the symbol Φ(M) for the derivator Ho[−op,M] constructed
from a model categoryM.

We will recall other facts about derivators, especially the definition of
small presentation, in section 6.

3. Sketches

Sketches, introduced by Ehresmann [15], are a way of presenting a theory
which can be defined by means of limits and colimits. It turns out that the
categories of models of sketches can be characterized intrinsically as the
accessible categories (Lair [32, 1-2]), and, in particular, the categories of
models of limit sketches are the locally presentable categories (Gabriel and
Ulmer [17]).

Though the underlying idea is the same, there are different types of
sketches, depending on the type of limits and colimits which define the the-
ory we want to describe. In this section we recall, in some detail, homotopy
limit 2-sketches: in fact, in section 4 we will prove that derivators can be
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identified, up to equivalence, with the homotopy models of a sketch of this
type. The 2-category of homotopy models, pseudo-natural transformations
and modifications is then homotopy locally presentable. As an application,
in section 6, we will use this framework to study small presentability of
derivators.

Homotopy limit sketches were proposed by Rosický [41] with the pur-
pose of extending rigidification results of Badzioch [1] and Bergner [2] to
finite limit theories. Lack and Rosický in [31] proved that the V-categories
of homotopy models of homotopy limit V-sketches can be characterized as
the homotopy locally presentable V-categories.

We will consider only the case V = Cat, since this is the one of deriva-
tors. Recall that Cat has a model structure, known as the standard model
structure, where weak equivalences are the equivalences of categories, and
fibrations are the isofibrations; this model structure is combinatorial, all ob-
jects are fibrant and, assuming the axiom of choice, also cofibrant, moreover,
Cat becomes a monoidal model 2-category (in the sense of [34, A.3.1.2]).

If E is a small 2-category, then the category underlying [E,Cat], endowed
with the projective model structure, is also a combinatorial model category,
whose cofibrant objects can be characterized as follows. Recall that the in-
clusion

i : [E,Cat] ↪→ Ps(E,Cat)

has a left adjoint Q (see [8, 2.2]), where Ps(E,Cat) denotes the 2-category
of 2-functors E → Cat, pseudo-natural transformations and modifications.
Thus, for 2-functors G,H : E → Cat, there is a natural isomorphism of
categories

[E,Cat](QG,H) ∼= Ps(E,Cat)(G,H). (6)

The counit and unit computed at a functor G : E → Cat are given by a 2-
natural transformation εG : Q(G)→ G and a pseudo-natural transformation
ηG : G → Q(G) respectively. One of the triangle equations tells us that
εG ◦ ηG = 1G. Since ηG ◦ εG ∼= 1G (see [4, 4.2]), it follows that QG and G
are equivalent in Ps(E,Cat). If ε has a section in [E,Cat], then QG and G
are equivalent also in [E,Cat] and G is said to be flexible (see [30, 4.3] and
[4, 4.7]). As proved in [29, 4.12], flexible 2-functors are exactly the cofibrant
objects of [E,Cat] with respect to the projective model structure, and QG is
indeed a cofibrant replacement of G.
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Definition 3.1. Let G be a 2-category, F : E → G and G : E → Cat be 2-
functors, where E is a small 2-category. AssumeG is a cofibrant object of the
category [E,Cat] endowed with the projective model structure. The homo-
topy 2-limit of F weighted by G exists when there is an object {G,F}h ∈ G
and for every object D of G an equivalence of categories

G(D, {G,F}h) −→ [E,Cat](G,G(D, F−)) (7)

which is 2-natural in D.

In a similar way we define the homotopy 2-colimit G?hF of F : E→ G
weighted by G : Eop → Cat by replacing formula (7) with

G(G ?h F,D) −→ [E,Cat](G,G(F−,D)).

The following definitions are from from [41, 2].

Definition 3.2. A weighted limit 2-sketch is a pair S = (G,P) where:

1. G is a small 2-category;

2. P is a set of 2-cones, that is, quintuples (E, F,G,L, γ) where E is
a small 2-category, the diagram F : E → G and the weight G :
E → Cat are 2-functors, the vertex L is an object of G and γ : G ⇒
G(L, F−) is a 2-natural transformation.

A weighted homotopy limit 2-sketch is a weighted limit 2-sketch S = (G,P)
with all weights cofibrant.

Definition 3.3. A homotopy model of a weighted homotopy limit 2-sketch
S is a 2-functor M : G → Cat transforming the cones of P into weighted
homotopy 2-limits. We denote by hModS the full 2-subcategory of [G,Cat]
spanned by the homotopy models of the weighted homotopy limit 2-sketch
S.

The 2-categories of the form hModS for some weighted homotopy limit
2-sketch S are the homotopy locally presentable 2-categories: this fact [31,
9.14(1)] is a consequence of [31, 9.10] (and, actually, holds for a more gen-
eral V). We will return to these results and to homotopy locally presentable
2-categories in 5.1.
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To recover morphisms of derivators, we have to consider pseudo-natural
transformations as morphisms between homotopy models. This motivates
the following definition.

Definition 3.4. If S is a weighted homotopy limit 2-sketch, we define hModpsS
to be the full 2-subcategory of Ps(G,Cat) spanned by the homotopy models.

4. A sketch for derivators

In this section we prove, by giving an explicit construction, that Derr is the
2-category hModpsS of homotopy models of a homotopy limit 2-sketch S.
Analogous results hold for Derl and Derrl, however, here we consider just
the case of Derr, since this is the one relevant to study of presentability of
derivators.

We recall that a biequivalence between 2-categories is a pseudo-functor
which is 2-essentially surjective (surjective on objects up to equivalence),
and a local equivalence (essentially full on 1-morphisms and full and faithful
on 2-morphisms), see [40, 1.1.4-5] and [33, 1.5.13].

Theorem 4.1. There exists a weighted homotopy limit 2-sketch S = (G,P)
and a biequivalence from the 2-category hModpsS to the 2-category Derr.

Since the proof is long, we split it into several parts.

4.1 Idea of the proof

The proof consists of two parts: the first, from subsection 4.2 to 4.7, contains
the construction of a homotopy limit 2-sketch S = (G,P), and the second,
in subsection 4.8, the verification that the 2-category hModpsS is indeed Derr.

The construction of S will be carried out as follows. After providing a
2-sketch for prederivators (G,P) in subsection 4.2, we will proceed by steps
capturing, in subsections 4.3, 4.4, 4.5 and 4.6, each of the four axioms for
derivators. More precisely, we will adjoin to G, at each step, new elements
and commutative diagrams, and we will enlarge P with new cones, in order
to express by means of these the axioms for derivators; then, we will redefine
G as the free 2-category on these data and on the commutativity conditions
already in G (see remark 4.2 below). Observe that cones in P are used to
capture only axiom 1 and 2.

- 421 -



G. MARELLI A SKETCH FOR DERIVATORS

Remark 4.2. The free construction we use to adjoin new elements to G
generalizes the analogous construction for ordinary categories (see [5, 5.1]),
replacing ordinary graphs with 2-graphs. A 2-graph is a graph “enriched”
over the category of small graphs, that is, it is given by a set of vertices
and a family of ordinary graphs, one for every pair of vertices (see [33,
1.3.1] for the precise definition). If 2Gr denotes the category of 2-graphs
and morphisms of 2-graphs, and 2Cat the category of 2-categories whose
underlying 2-graph belongs to 2Gr and 2-functors, then the forgetful functor
2Cat→ 2Gr is monadic (see [33, D]).

When a 2-graph contains elements already composable or relations among
them, we would like that the free 2-category constructed over it preserves
such data. As usual, the idea is to consider, in the given 2-graph, pairs
formed by finite sequences of horizontally or vertically composable 2-cells
in a prescribed order, sharing horizontal sources and targets, and to require
that the components of each pair become equal in the free 2-category. Such
pairs, called commutativity conditions, are defined rigorously by Power and
Wells [39, 2.5], in terms of labeled pasting schemes, called pasting diagrams
in [43]. The proof that pasting 2-cells is well-defined in any 2-category is
the subject of [37], of which a brief survey is found in [38, 2]. Denoting
by c2Gr the category whose objects are 2-graphs with a set of commutativ-
ity conditions and whose morphisms are morphisms of 2-graphs preserving
commutativity conditions, a free construction, left adjoint to the forgetful
functor 2Cat→ c2Gr, is provided in Street’s paper [43, 5] in terms of “pre-
sentations” of 2-categories.

When a 2-graph G is built from a 2-category C by adjoining new sym-
bols, as in our case, we refer to all the relations among elements of C de-
termined by the 2-category structure on C as the commutativity conditions
defined by C .

The first step consists in providing a sketch for prederivators.

4.2 Prederivators

Let G = Diaop and set P = ∅. A homotopy model with values in Cat is a
2-functor D : G → Cat with domain Diaop, in other words, a prederivator
of domain Dia. Therefore S = (G,P) is a homotopy limit 2-sketch whose
2-category hModpsS of homotopy models in Cat is the 2-category PDer of
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prederivators.

The next steps are concerned with including into the sketch the axioms
for derivators.

4.3 Axiom 1

Let G = Diaop and define P to be the family of cones in Diaop of the form

C0 q C1
sC0

{{

sC1

##
C0 C1,

(8)

corresponding to cocones for the coproducts C0 q C1 in Dia, for any pair of
objects C0 and C1. Therefore, sC0 and sC1 are the arrows in Diaop correspond-
ing to the canonical morphisms of the coproduct C0 q C1 taken in Dia. With
the notation of definition 3.2 we can write these cones as

({0, 1}, F, δe, C0 q C1, (sC0 , sC1)), (9)

where {0, 1} is the discrete 2-category with two objects, F : {0, 1} → G
is the 2-functor mapping i to Ci, for i = 0, 1, δe : {0, 1} → Cat is the
constant 2-functor at the terminal category e (which is clearly cofibrant),
C0qC1 denotes the product of C0 and C1 in Diaop (the coproduct in Dia) and
sCi : C0 q C1 → Ci are the canonical projections.

Since models take the product cones (9) to product cones in Cat, they
fulfill the first part of axiom 1. To capture completely axiom 1, we have to
include into P the cone ∅ with vertex the empty category over the empty
diagram, thus forcing D(∅) ' e

Observe that P is a set, as we have assumed that Dia is small for the
fixed universe U .

4.4 Axiom 2

To capture axiom 2 we need first a reformulation of it in terms of limits. As
an intermediate step, we recast it as follows.
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Lemma 4.3. A prederivator D satisfies axiom 2 if and only if, for any C ∈
Dia, the family of functors D(cD) : D(C) → D(e) induced by the constant
functors cD : e → C at D ∈ C, is jointly conservative, that is, the induced
functor

D(C)→ ΠD∈CD(e)

is conservative.

Conservative functors can be described as follows. Consider a functor
f : A → B. Denote by A2 and B2 the categories of arrows of A and B
respectively, seen as categories of functors, where 2 = ∆1 is the category
corresponding to the ordered set {0 < 1}. Let cA : A → A2 and cB :
B → B2 denote the canonical inclusions. Let f2 : A2 → B2 be the functor
induced by f via composition. With these data, consider the diagram

A //

f
��

cA // A2

f2

��
B cB

// B2

(10)

in the 2-category Cat.

Lemma 4.4. A functor f : A→ B is conservative if and only if the commu-
tative diagram 10 is a bilimit in Cat.

We recall the notion of bilimit: if F : E → G and G : E → Cat are
2-functors, where E is a small 2-category, the bilimit of F weighted by G
exists when there is an object {G,F}b ∈ G and for every object D in G an
equivalence in Cat

G(D, {G,F}b) ' Ps(E,Cat)(G,G(D, F−))

natural in D.
Notice, however, that by the isomorphism (6), any bilimit {G,F}b is

equivalent to the weighted homotopy limit {QG,F}h, where QG is a cofi-
brant replacement of G, so that a bilimit is a special case of weighted homo-
topy limit (definition 3.1).
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Proof. The proof of lemma 4.4 is lengthy nevertheless straightforward, so
we just outline the idea.

Suppose f is conservative. Observe first that a pseudo-pullback is indeed
a bilimit (see [30, 6.12]) and recall its explicit expression (see [5, 7.6.3]): in
our case, it is the category whose objects are quintuples (b, w, h, v, g) with
b ∈ B, h ∈ B2, g ∈ A2, w : cB(b) ∼= h, v : f2(g) ∼= h, and whose
morphisms are triples

(x, y, z) : (b, w, h, v, g)⇒ (b′, w′, h′, v′, g′)

with x : b→ b′, y : h⇒ h′ and z : g ⇒ g′, such that

y ◦ w = w′ ◦ cB(x)

y ◦ v = v′ ◦ f2(z).

Denoting by B ×psB2 A
2 the pseudo-pullback of the diagram in figure (10),

we have an inclusion of r : A→ B ×psB2 A
2 constructed by means of f . We

then define a functor u : B×psB2A
2 → A as follows: on objects (b, w, h, v, g)

in B ×psB2 A
2 we set

u((b, w, h, v, g)) = g(0),

where 0 ∈ 2; on morphisms (x, y, z) : (b, w, h, v, g) → (b′, w′, h′, v′, g′) we
define

u((x, y, z)) = z0,

where z0 denotes the natural transformation z computed at 0 ∈ 2. Clearly
ur = 1A. That ru ∼= 1B×ps

B2
A2 , and so that the pair r : A � B ×psB2 A

2 : u

is an equivalence and so A a bilimit, follows from the hypothesis that f is
conservative. We omit however this part.

Concerning the converse, observe first that if 10 is a bilimit then (r, u)
defined above yields an equivalence A ' B ×psB2 A

2. Now, if n : a → a′ is
a morphism in A then it defines an object in A2, and, if, in addition, f(n) is
also an isomorphism, then it can be extended to an object of B×psB2 A

2. This
finally implies that n is an isomorphism. Again, we omit the details.

Lemma 4.3 and 4.4 provide a formulation of axiom 2 in terms of limits.
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Lemma 4.5. The functor D(C) → ΠD∈CD(e) is conservative if and only if
the diagram

D(C) //

��

D(C)2

��
ΠD∈CD(e) // (ΠD∈CD(e))2

(11)

is a bilimit, where arrows are as in diagram 10.

Now, as explained in 4.1, we have to add to P cones, one for each C ∈
Dia, which models will then map to the bilimit (11), thus forcing them to
fulfill axiom 2; the weights defining such cones will have to be cofibrant. We
proceed as follows.

For every C ∈ Diaop, let C ′ denote the category obtained by adjoining an
initial object to the discrete category on the objects of C: in other words, C ′ is
the category whose objects are all those of C together with a new one ∗ acting
as initial object, and whose non-trivial morphisms are just the canonical ones
with source the initial object ∗.

Given a derivator D, consider the following functors: a diagram

FC : C ′ → Cat,

which, on objects, maps ∗ to D(C) and the remaining objects to D(e), and,
on morphisms, sends the morphism ∗ → C, for every object C of C, to the
morphism D(C)→ D(e), obtained by applying D to the functor cC : e→ C
in Dia constant at C in C; a weight

GC : C ′ → Cat,

which, on objects, maps each C of C to e and ∗ to 2, and, on morphisms,
takes each ∗ → C to the canonical morphism 2→ e.

We claim that {GC, FC} is the bilimit (11). This will imply the following
form of axiom 2.

Corollary 4.6. The functor D(C) → ΠD∈CD(e) is conservative if and only
if D(C) ∼= {GC, FC}.

Proof. The claim follows from the observation that a natural transformation
GC ⇒ Cat({GC, FC}, FC−) consists of:
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1. a functorGC(∗)→ Cat({GC, FC}, FC(∗)), that is, a functor {GC, FC} →
D(C)2;

2. a functor GC(C) → Cat({GC, FC}, FC(C)) for every object C of C,
that is, a functor {GC, FC} → D(e);

3. for every arrow ∗ → C in C ′, with C ∈ C, a commutative diagram
imposing that each composition

{GC, FC} → D(e)→ D(e)2,

of the functor in (2) with that induced by 2 → e, agrees with the
composition

{GC, FC} → D(C)2 → D(e)2,

of the functors in (1) with those induced by cC : e → C; of such
diagram we display below the part defined by C ∈ C:

{GC, FC} //

��

D(C)2

� �
D(e) // D(e)2.

In view of corollary 4.6 we have to impose that the bilimit of diagram
(11)), computed by {GC, FC}, is D(C). To this purpose we consider, for
every C ∈ Diaop, the cone

(C ′, F ′C, GC, C, γ), (12)

where C ′ andGC have been defined above; F ′C : C ′ → G is the functor which,
in a way analogous to what FC does, maps ∗ to C and the remaining objects
to e, and sends the unique morphism ∗ → C, for every object C of C, to the
morphism in G corresponding to the functor cC : e → C in Dia constant at
C in C; and γ is a 2-natural transformation GC ⇒ G(C, F ′C−) determined by
two identity arrows C → C with the identity 2-morphism between them, and,
for each C ∈ C, by the arrow cC : C → e, where the naturality is expressed
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by the commutativity of the following diagram, of which we display below
the part corresponding to C ∈ C,

C
cC

��

1C
((

1C

66�� 1 C

cC
xx

e

Finally, we replace this pseudo-cone by the cone defined by the 2-natural
transformation γ′ corresponding to γ via the isomorphism (6) which comes
after taking a cofibrant replacement QG of G. We add to P all such cones,
for every C ∈ Dia.

4.5 Axiom 3

If we are constructing a sketch for Derr, to capture axiom 3 we freely adjoin
to G a 1-morphism u(!) : C → D and 2-morphisms ε(u!) : u(!)u ⇒ 1C ,
η(u!) : 1D ⇒ uu(!), for any 1-morphism u : D → C in Diaop which has not
already a left adjoint. We impose the following diagrams in G:

(u ∗ ε(u!)) ◦ (η(u!) ∗ u) = 1u

(ε(u!) ∗ u(!)) ◦ (u(!) ∗ η(u!)) = 1u(!)
(13)

These will ensure the existence of a left adjoint to D(u), for any model D.
We remark that if we are instead interested in a sketch for Dial then we

should adjoin, for any u : D → C in Diaop not having a right adjoint, a 1-
morphism u(∗) : C → D and 2-morphisms ε(u∗) : uu(∗) ⇒ 1C , η(u∗) : 1D ⇒
u(∗)u, together with diagrams

(u(u∗) ∗ ε(∗)) ◦ (η(u∗) ∗ u(∗)) = 1u(∗)

(ε(u∗) ∗ u) ◦ (u ∗ η(∗)) = 1u.

If we are constructing a sketch for Derrl then all the 1-morphisms, 2-
morphisms and relations above should be added.
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4.6 Axiom 4

To capture axiom 4 in the sketch for Derr, for any diagram in Diaop of the
form

D\C

}� α

Cfoo

e

t

OO

D
d

oo

u

OO

(see axiom 4 in definition 2.4 for the meaning of the symbols), we add a
2-morphism α−1

bc : du(!) ⇒ t(!)f and impose the commutativity conditions

[(ε(t!) ∗ d ∗ u(!)) ◦ (t(!) ∗ α ∗ u(u!)) ◦ (t(!) ∗ f ∗ η(u!))] ◦ α
−1
bc = 1du(!)

α−1
bc ◦ [(ε(t!) ∗ d ∗ u(!)) ◦ (t(!) ∗ α ∗ u(u!)) ◦ (t(!) ∗ f ∗ η(u!))] = 1t(!)f ,

(14)

provided such a morphism is not already in G.
If concerned with Derl or Derrl, we proceed by adapting what done

above to the new situation in the obvious way.

4.7 Summary

We summarize the construction of the sketch S = (G,P) for Derr.

4.7.1 Cones

The set P contains the following cones:

1. ({0, 1}, F, δe, C0qC1, (sC0 , sC1)), for any objects C0 and C1 of Dia (see
4.3);

2. ∅ the empty cone (see 4.3);

3. (C ′, F ′C, GC, C, γ′), for every object C ∈ Dia (see 12).

4.7.2 G

The 2-category G is the free 2-category on Diaop with new symbols and with
commutativity conditions adjoined. It is made of the following elements:

1. elements of Diaop;
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2. 1-morphism u(!) and 2-morphisms ε(u!), η(u!), for every 1-morphism
u ∈ Diaop without a left adjoint 4.5;

3. 2-morphism α−1
bc , for any 2-morphism α ∈ Diaop as in 4.6;

4. elements obtained as a result of the free construction over the previous
elements and the commutativity conditions.

We omit a summary for the sketches for Derl and Derrl, which can be
obtained from the sketch for Derr by making the proper substitutions or
additions, as outlined in 4.5 and 4.6.

Remark 4.7. Observe that conservativity can be expressed not only in terms
of the bilimit 10, but also by means of the following strict pullback

AI //

fI

��

bA // A2

f2

��
BI

bB
// B2

(15)

Since bB is an isofibration, the pullback above is a homotopy pullback.
If, in order to capture axiom 2, we construct a sketch with cones for each

diagram 10, we will have to introduce a new symbol for AI and a cone to
impose what this symbol should be. However, the resulting sketch will be
an ordinary 2-sketch, and, since weights are cofibrant, also a homotopy limit
2-sketch.

If considered as an ordinary 2-sketch, to prove biequivalence between
models and derivators, since models preserves products strictly while deriva-
tors transform coproducts into products up to equivalence, some rigidifica-
tion will be necessary. This last problem can be faced also by expressing
axiom 1 by means of a suitable strict cone, for every C0 and C1 in Dia, and
by adjoining an arrow which act as an equivalence between the vertex of
such cone and C0 qC1. We could then try to recover 1-morphisms of deriva-
tors by restricting to cofibrant models, however, it is not then evident why
a cofibrant replacement of a derivator may be identified with some model.
Moreover, since the definition of small presentability is up to equivalence,
we have preferred a homotopy limit 2-sketch in place of this approach.
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4.8 Biequivalence between models and derivators

In this subsection we prove that the 2-category Derr is biequivalent to the 2-
category hModpsG of models of the homotopy limit 2-sketch G. If concerned
with Derl or Derrl, the proof is analogous.

We will exhibit a 2-functor

Υ : hModpsS −→ Derr,

and we will outline why Υ is surjective on objects, full and faithful on both 1-
morphisms and 2-morphisms, however, omitting those lenghty verifications
which looks nevertheless sufficiently clear for the way the sketch S has been
constructed.

4.8.1 The 2-functor Υ

Every model M, via the inclusion Diaop → G, yields a derivator Υ(M).
Given any 1-morphism of models

θ = ((θX )X∈G, (β
θ
u)u:X→Y∈G) : M1 →M2,

consider

Υ(θ) = ((Υ(θ)C)C∈Diaop , (β
Υ(θ)
u )u:C→D∈Diaop) : Υ(M1)→ Υ(M2)

where
Υ(θ)C = θC

for any C ∈ Diaop, and
βΥ(θ)
u = βθu

for any u ∈ Diaop. These data do define a morphism of derivators Υ(θ):
what is left to prove is that Υ(θ) is cocontinuous, in other words, that, for
any u ∈ Diaop, the Beck-Chevalley transform β

′θ
u(!)

of βθu is an isomorphism;
this can be proved directly by showing that β ′θu(!) coincides with βθu(!) up to
isomorphism, however, we omit the lengthy verification.

Concerning Υ on 2-morphisms, a modification λ : θ1 V θ2 in hModpsS
does define a modification Υ(λ) : Υ(θ1) V Υ(θ2) in Derr, by setting for
every C ∈ Dia

Υ(λ)C = λC.

It is now straightforward to check that Υ preserves strictly all composi-
tions and identities, and so it is a 2-functor.
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4.8.2 Υ is surjective on objects

Any derivator D can be extended along the canonical functor Diaop → G to
a model Ω(D) : G → Cat such that Υ(Ω(D)) = D. Indeed, it is enough to
assign Ω(D) on the symbols adjoined to Diaop: by construction of the sketch
S, this assignment is determined by D itself; for example, Ω(D) must bring
u(!) to a left adjoint u! to u∗ = D(u) = Ω(D)(u).

From this we see that two models determining the same derivators are
isomorphic.

4.8.3 Υ is full and faithful on 1-morphisms

Consider models M1 and M2 and the corresponding derivators Υ(M1) and
Υ(M2). Let θ : Υ(M1)→ Υ(M2) be a morphism in Derr. We show that we
can find a morphism of models Ω(θ) : M1 → M2 such that Υ(Ω(θ)) = θ.
Let us write

θ = ((θC)C∈Diaop , (β
θ
u)u:C→D∈Diaop) : Υ(M1)→ Υ(M2).

We start defining

Ω(θ) = ((Ω(θ)X )X∈G, (β
Ω(θ)
u )u:X→Y∈G) : M1 →M2

by setting Ω(θ)X = θX for any X ∈ Diaop and βΩ(θ)
u = βθu for any u ∈

Diaop.
We assign now Ω(θ) on the symbols adjoined to Diaop, that is, on u(!),

by defining βΩ(θ)
u(!) as the Beck-Chevalley transform of βΩ(θ)

u : with this def-
inition the naturality of βΩ(θ)

u(!)u and of βΩ(θ)
uu(!) with respect to εu(!) and to ηu(!)

respectively, as well as the coherence conditions, are fulfilled; we skip the
verification.

The naturality of βΩ(θ)
u with respect to 2-morphisms of the form α−1

bc is
also easily verified.

Therefore, Υ(Ω(θ)) = θ, thus proving that Υ is full on 1-morphisms.
Since βΩ(θ)

u(!) is completely determined, Υ is also faithful.
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4.8.4 Υ is full and faithful on 2-morphisms

Consider a modification λ : Υ(θ1) V Υ(θ2) in Derr, where θ1, θ2 : M1 →
M2 are 1-morphisms of models. We set

Ω(λ)C = λC

for every object C in Diaop.
The commutativity of diagram 5 for u(!) follows from commutativity of

diagram 5 for u and the relation between u and u(!) via Beck-Chevalley trans-
forms.

Since Ω(λ) is completely determined by λ, then Υ is full and faithful on
2-morphisms.

5. Homotopy local presentability

5.1 Homotopy locally presentable categories

We recall some definitions and results from [31] regarding homotopy local
presentability [31, 9.6] and the characterization [31, 9.13], in the case V =
Cat.

We recall the definition of homotopy filtered colimit, by means of which
we will introduce homotopy presentability [31, 6.4]. Let λ be a regular cardi-
nal, I the free 2-category on an ordinary small λ-filtered category, F : I→ C
a 2-functor, δe : Iop → Cat the 2-functor constant at the terminal category,
Qδe a cofibrant replacement of δe: the homotopy λ-filtered colimit hocolimF
of F is defined as the weighted homotopy colimit Qδe ?h F . Homotopy fil-
tered colimits are computed up to equivalence by ordinary conical filtered
colimits [31, 5.9].

Definition 5.1. Let C be a 2-category. An object C in C is homotopy λ-
presentable if C(C,−) : C→ Cat preserves homotopy λ-filtered colimits.

The following is the definition of homotopy locally presentable 2-category
[31, 9.6]. Below, a 2-functor F : R → S is called a local equivalence if
FXX′ : R(X,X ′) → S(F (X), F (X ′)) is an equivalence of categories for
every objects X and X ′ of R (see [31, 7] or [40, 1.1.4]).
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Definition 5.2. Let C be a 2-category admitting weighted homotopy 2-colimits,
i : A ↪→ C a small full 2-subcategory of homotopy λ-presentable objects. We
say that A exhibits C as strongly homotopy locally λ-presentable if every ob-
ject of C is a homotopy λ-filtered colimit of objects of A. We say that A
exhibits C as homotopy locally λ-presentable if the induced functor

C
C(i,−)// [Aop,Cat]

Q // [Aop,Cat]

is a local equivalence.
We say that C is strongly homotopy locally λ-presentable or homotopy

locally λ-presentable if there is some such A, and that C is strongly homotopy
locally presentable or homotopy locally presentable if it is so for some λ.

Notice that strongly homotopy local presentability implies homotopy lo-
cal presentability ([31, 9.7]).

A characterization of homotopy locally presentable 2-categories is [31,
9.13].

Theorem 5.3. Suppose there exists a combinatorial model 2-category D and
a biequivalence C → IntD, then C is strongly homotopy local presentable.
Assuming Vopěnka’s principle, the converse holds true, and D can be taken
to be a left Bousfield localization of the 2-category [Aop,Cat], where A is as
in definition 5.2.

Note that we will be using only the first part of theorem 5.3 (namely, [31,
9.13]), which does not depend on Vopěnka’s principle.

5.2 The 2-category hModpsS of homotopy models of S

We now apply what recalled in 5.1 to hModpsS . By [31, 9.14(1)] we know that
the 2-category of homotopy models of S is homotopy locally presentable,
however, as we are interested in hModpsS where we allow pseudo-natural
transformations as 1-morphisms, we show that the same procedure applies
also to this case, leading to the same conclusion.

Let Int[G,Cat] denote the full 2-subcategory spanned by the flexible 2-
functors, that is, the cofibrant objects of [G,Cat]. By means of the cofibrant
replacement Q (see section 3), we have the following result.
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Lemma 5.4. There is a biequivalence Q : Ps(G,Cat) −→ Int[G,Cat],
provided by the cofibrant replacement functor.

We soon deduce the following corollary.

Corollary 5.5. Ps(G,Cat) is strongly homotopy locally presentable.

Proof. By [31, 9.8], Int[G,Cat] is strongly homotopy locally presentable.
The claim now follows now from 5.4 and [31, 9.15].

To prove that hModpsS is homotopy locally presentable, we show that
hModpsS is a homotopy orthogonal subcategory of Ps(G,Cat) (see [31, 4.1]
for the general definition of homotopy orthogonal). The proof extends the
one given in [28, 6.11].

Lemma 5.6. hModpsS is a homotopy orthogonal subcategory of Ps(G,Cat).

Proof. Consider a cone (E, F,G,L, γ) ∈ P and the composite, which we
denote iY(γ),

G
γ // G(L, F−)

iYL,F− // Ps(G,Cat)(iY(F−), iY(L)),

whereY indicates the enriched contravariant Yoneda embedding G→ [G,Cat]
and i the inclusion [G,Cat] ↪→ Ps(G,Cat). Since Ps(G,Cat) has weighted
homotopy 2-colimits (corollary 5.5), iY(γ) yields a 1-morphism

ρ : G ?h iY(F−) −→ iY(L)

in Ps(G,Cat).
We prove that a 2-functor M : G → Cat preserves the weighted homo-

topy 2-limits of P , that is, it is a homotopy model, if and only if, for any
D ∈ Cat, the 2-functor [D,M−] is homotopy orthogonal in Ps(G,Cat) to
the collection of 1-morphisms ρ constructed above from cones of P , namely,
the functor Ps(G,Cat)(ρ, [D,M−])

Ps(G,Cat)(iY(L), [D,M−]) −→ Ps(G,Cat)(G?h iY(F−), [D,M−])
(16)

is an equivalence of categories.
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Since Y(L) is flexible ([3, 4.6]) and by the enriched Yoneda lemma, we
have an equivalence

Ps(G,Cat)(iY(L), [D,M−]) ' [D,M(L)]. (17)

On the other hand, by definition of weighted homotopy 2-colimit, we
obtain an equivalence

Ps(G,Cat)(G ?h iY(F−), [D,M−]) '
' [G,Cat](G,Ps(G,Cat)(iY(F−), [D,M−])

and, using again the flexibility of Y(L) and the enriched Yoneda lemma, an
equivalence

[G,Cat](G,Ps(G,Cat)(iY(F−), [D,M−]) ' [G,Cat](G, [D,M ◦ F−].
(18)

By the equivalences (17) and (18), the functor (16) induces an equiva-
lence

[G,Cat](G, [D,M ◦ F−] −→ [D,M(L)],

or, equivalently, M(L) ' {G,M ◦ F}h, that is, M takes all the cones of P
to weighted homotopy limit cones.

Writing Σ for the collection of all morphisms ρ as in lemma 5.6, hModpsS
can be identified with the homotopy orthogonal subcategory Ps(G,Cat)Σ of
Ps(G,Cat).

Corollary 5.7. hModpsS is strongly homotopy locally presentable, and there
are biequivalences

hModpsS −→ Ps(G,Cat)Σ −→ Int[G,Cat]Q(Σ)

Proof. By lemma 5.4 and 5.6, the proof follows from proposition [31, 9.9].

Observe that Int[G,Cat] and Ps(G,Cat) are strongly homotopy locally
finitely presentable, as representable functors are homotopy finitely pre-
sentables (see [31, 9.8-7.1(3)]). We will prove now that hModpsS is strongly
homotopy locally λ-presentable, where λ is a regular cardinal which bounds
the size of any category in Dia. First we need a few results summarized in
the remark below.
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Remark 5.8. (1) By [31, 8.5], hModpsS is a homotopy reflective 2-subcategory
of Ps(G,Cat). Let j and r denote the inclusion and reflection

j : hModpsS � Ps(G,Cat) : r.

Weighted homotopy 2-colimits in hModpsS are computed by means of the re-
flection r from the corresponding weighted homotopy 2-colimit inPs(G,Cat)
(see the proof of [31, 9.9]): if F is a diagram in hModpsS , then G ?h F '
r(G ?h jF ).

(2) We can now use the biequivalences Q and i to compute weighted
homotopy 2-colimits in Ps(G,Cat): indeed, by [31, 7.1] biequivalences
preserve and create weighted homotopy colimits, so if F is a diagram in
Ps(G,Cat), then G ?h F ' G ?h iQF ' i(G ?h QF ).

(3) Finally, as explained in the proof of [31, 5.5], weighted homotopy
2-colimits G ?h F in Int[G,Cat] are computed as fibrant replacement of the
weighted 2-colimits G ? F in [G,Cat], so by G ? F itself. The advantage is
that weighted 2-colimits in [G,Cat] are computed pointwise ([28, 3.3]).

(4) It is convenient to replace the weighted homotopy limit 2-sketch
S = (G,P) for derivators with a realized one, that is, whose underlying
category has the same objects as G, whose cones are already homotopy limit
cones and whose 2-category of homotopy models is equivalent to that of
S; the proof of the existence of such homotopy limit 2-sketch is analo-
gous to that of [28, 6.21]. We denote this new sketch by T. In this way,
representable 2-functors, which we will write as T(C,−), are automatically
homotopy models of T.

Let λ be a regular cardinal which bounds the size of any category in Dia.

Lemma 5.9. Homotopy λ-filtered colimits in hModpsT are computed as in
Ps(G,Cat), particularly, they are computed pointwise via Q.

Proof. Let I be the free 2-category on an ordinary small λ-filtered category,
and H : I → hModpsT a 2-functor. We want to prove that the homotopy λ-
filtered colimit hocolimjH in Ps(G,Cat) is indeed the homotopy λ-filtered
colimit hocolimH in hModpsT , where j denotes the inclusion of hModpsT
into Ps(G,Cat). To this purpose, we verify that hocolimjH preserves the
weighted homotopy limit cones ofP , thus proving that it belongs to hModpsT .
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Notice that, as observed in remark 5.8, hocolimjF is computed by the
pointwise ordinary filtered colimit colimQjH in [G,Cat].

Since the weighted homotopy limit cones in P are λ-small, in the sense
that they have λ-small diagrams and are weighted by λ-presentable 2-functors,
they commute with λ-filtered homotopy colimits ([31, 6.10]). Therefore,

(colimQjH)({G,F}h) ' colim(QjH)({G,F}h))
' colim({G,QjH(F )}h)
' {G, colim(QjH(F ))}h
' {G, (colim(QjH)(F )}h

Finally, the next lemma implies that λ is a degree of homotopy locally
presentability for hModpsT .

Lemma 5.10. Representable 2-functors on T are homotopy λ-presentable
objects of hModpsT . The full 2-subcategory of hModpsT spanned by λ-small
homotopy 2-colimits of representable models can be taken for the 2-subcategory
A in definition 5.2.

Proof. By lemma 5.9 and by the Yoneda lemma for bicategories, repre-
sentable 2-functors are homotopy λ-presentable objects of hModpsT .

Since representable models are cofibrant, we can view them as 2-functors
in [T,Cat]. From the proof of [31, 9.8], we see that 2-functors which are
λ-presentable in [T,Cat] are homotopy λ-presentable in Int[T,Cat]. Since
[T,Cat] is locally λ-presentable and representable 2-functors form a set of
generators, then every object of [T,Cat] is a λ-filtered colimit of λ-small
colimits of representables. Therefore, by (3) in 5.8, the full 2-subcategory of
Int[T,Cat] spanned by λ-small homotopy 2-colimits of representable mod-
els can be taken as A in definition 5.2 for the homotopy λ-presentable 2-
category Int[T,Cat].

By (1) in remark 5.8 and lemma 5.9, every object of hModpsT is a λ-
filtered homotopy colimit of λ-small homotopy colimits of representables.

Corollary 5.11. hModpsT is a homotopy locally λ-presentable 2-category,
where λ is a regular cardinal bounding the size of every category in Dia.
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6. Small presentation

In this section we identify representable models for T with a precise type
of derivator, and we prove, via the biequivalence in 4.1, that Renaudin’s
derivators of small presentation are λ-presentable objects.

6.1 Representable models

Denote by sSet the category of simplicial sets with its classical model struc-
ture and by sSetCop the category of simplicial presheaves endowed with the
projective model structure. Recall that Φ denotes the pseudo-functor of the-
orem 2.10. The following result is due to Cisinski (see [11, 3.24]).

Theorem 6.1. For every right derivator D and every small category C in
Dia there is an equivalence of categories

Derr(Φ(sSetC
op

),D) ' D(C).

Before outlining how the equivalence in theorem 6.1 is constructed, we
rewrite it as follows. Setting F(C) = Φ(sSetC

op
), we have

Ψ : Derr(F(C),D) ' D(C) : Ξ. (19)

Remark 6.2. Consider the morphism of localizers

N : (Cat,W∞) −→ (sSet,WsSet),

whereN : Cat→ sSet is the nerve andWsSet is the class of weak-equivalences
of sSet and W∞ = N−1WsSet. This morphism induces an equivalence
between the associated derivators, namely, HotC = [−, CatCop ][W−1

∞ ] and
F(C). In view of this, we will use the notation F(C) also forHotC . We refer
to [11, 1.1] for more details.

We recall now from [11, 3.18] and [10] how equivalence (19) is con-
structed. We describe first the functor

Ξ : D(C) −→ Derr(F(C),D).

For every h ∈ D(C), we indicate how the pseudo-natural transformation
Ξ(h) : F(C)⇒ D is defined, by giving the functors Ξ(h)D, for every object
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D ∈ Dia, and referring then to [11] for the rest. For g ∈ F(C)(D), let
∇g and

∫
g be the Grothendieck fibration and cofibration associated to g :

D × Cop → Cat, by fixing C ∈ Cop and D ∈ D respectively. Let π(g) :
∇
∫
g → D and $(g) : ∇

∫
g → Cop be the projections:

∇
∫

(g)
π(g)

{{

$(g)

""D C

Applying D, we obtain the diagram

D(∇
∫

(g))
π(g)!

yy

$(g)!

%%

D(D)
π(g)∗

99

D(C)
$(g)∗

ee

The functor Ξ(h)D : F(C)(D) → D(D) is defined on objects g ∈ F(C)(D)
as

π(g)!$(g)∗(h). (20)

The action of Ξ(h)D on morphisms is as follows: for α : g → g′ inF(C)(D),
we set β = ∇

∫
α, yielding in Dia the commutative diagram

∇
∫

(g)
π(g)

||
β

��

$(g)

""
D ∇

∫
(g′)

π(g′)
oo

$(g′)
// C,

Ξ(h)D(α) is now defined as the composite

π(g)!$(g)∗(h) ∼= π(g′)!β!β
∗$(g′)∗(h) −→ π(g′)!$(g′)∗(h)

We refer to [11, 3.19] to complete the definition of Ξ(h).
We now consider the other functor in (19)

Ψ : Derr(F(C),D) −→ D(C).

As explained in remark 6.2, we can view the Yoneda embedding Y : C →
CatCop as an object of F(C)(C). Any 1-morphism of derivators θ : F(C) →
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D, when computed at C, yields a functor θC : F(C)(C)→ D(C), whose value
θC(Y) at Y defines Ψ(θ).

We establish now a correspondence between derivatorsF(C) = Φ(sSetC
op

)
and representable models T(C,−) of the homotopy limit 2-sketch T.

Proposition 6.3. For every C ∈ Dia, the derivator Υ(T(C,−)) correspond-
ing to the representable model T(C,−) is equivalent in Derr to F(C).

Proof. For the way Υ is defined, the derivator Υ(T(C,−)) will be reasonably
denoted T(C,−).

On the one hand, equivalence (19) for D = T(C,−) becomes

Ψ : Derr(F(C),T(C,−))� T(C, C) : Ξ. (21)

Noting that the category T(C, C) has Diaop(C, C) = [C, C] as subcategory, let

ϕ : F(C)⇒ T(C,−)

be the 1-morphism of derivators Ξ(1C).
On the other hand, by the Yoneda lemma for bicategories (see [42, 1.9])

there is an equivalence of categories

Λ : hModpsT (T(C,−),Ω(F(C)))� Ω(F(C))(C) : Π, (22)

where Ω(F(C) is any homotopy model such that ΥΩ(F(C)) ' F(C) (such
models are all equivalent), and, again, we will denote the derivator ΥΩ(F(C))
simply as Ω(F(C)). Consider the Yoneda embedding Y : C → CatCop as an
object of F(C)(C) and, by means of the equivalence above, as an element,
which we denote again Y , of Ω(F(C)). Let

ψ : T(C,−)⇒ Ω(F(C))

be the 1-morphism of models Π(Y): for D ∈ G and g ∈ T(C,D)

ψD(g) = Ω(F(C))(g)(Y),

particularly, when g : C → D is a morphism in G corresponding to some
g : D → C in Dia, then ψD(g) = Y ◦ g. We write ψ also for the mor-
phism of derivators Υ(ψ), and, by the equivalence Ω(F(C) ' F(C), we
have ψD(g) ∼= Y ◦ g, for g in Dia.
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To prove the lemma we show there are isomorphic modifications ϕ◦ψ V
1T(C,−) and ψ ◦ ϕV 1F(C).

Formula (20), for D ∈ G and g ∈ F(C)(D), yields

ϕD(g) = T(C, π(g))!T(C, $(g))(1C),

which we visualize in the diagram

T(C,∇
∫

(g))
T(C,π(g)(!))

ww

T(C,$(g)(!))

''

T(C,D)
T(C,π(g))

77

T(C, C),
T(C,$(g))

gg

where note that T(C, π(g))! denotes a left adjoint to T(C, π(g)), and that,
viewing T(C,−) as model, T(C, π(g))! equals T(C, π(g)(!)) up to isomor-
phism; analogous considerations hold for T(C, $(g)) and T(C, $(g)(!)). No-
tice also that T(C, $(g)) acts by composing in G with the projection $(g),
so T(C, $(g))(1C) = $(g). Similarly T(C, π(g)(!)) acts by composing in G
with π(g)(!), therefore

ϕD(g) = π(g)(!)$(g).

As a consequence we find out that

ψ ◦ ϕ = Ω(F(C))(ϕ(−))(Y)

= Ω(F(C))(π(−)(!)$(−))(Y)

= Ω(F(C))(π(−)(!))Ω(F(C))($(−))(Y).

So, by the equivalence (19), particularly (20), for D = F(C), observing the
diagram

F(C)(∇
∫

(g))
F(C)(π(g))!

ww

F(C)($(g))!

''

F(C)(D)
F(C)(π(g))

77

F(C)(C)
F(C)($(g))

gg

with g ∈ F(C)(D), we see that ψ ◦ ϕ is isomorphic to Ξ(Y); on the other
hand, the image of the identity 1F(C) ∈ Derr(F(C),F(C)) by Ψ is Y; so
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ψ ◦ ϕ and 1F(C) are isomorphic in Derr(F(C),F(C)), that is, there is an
isomorphic modification ψ ◦ ϕV 1F(C).

As to ϕ ◦ ψ, observe that

ϕ ◦ ψ = ϕ(Ω(F(C))(−)(Y))

= π(Ω(F(C))(−)(Y))(!)$(Ω(F(C))(−)(Y)).

The equivalence Λ in (22) maps ϕ ◦ ψ : T(C,−) ⇒ T(C,−) to the object
Λ(ϕ ◦ ψ) in T(C, C) obtained by computing ϕ ◦ ψ at C and then evaluating
at 1C:

π(Ω(F(C))(1C)(Y))(!)$(Ω(F(C))(1C)(Y)) = π(Y)(!)$(Y).

This, by lemma 3.22 in [11], is isomorphic to the identity 1C , providing an
isomorphic modification ϕ ◦ ψ V 1T(C,−).

As a consequence of lemma 5.10 and proposition 6.3 above we have the
following result.

Corollary 6.4. Any right derivator is a homotopy λ-filtered colimit in Derr

of λ-small homotopy 2-colimits of derivators of the formF(C) = Φ(sSetC
op

).

6.2 Derivators of small presentation

Let ModQc[Q−1] be the pseudo-localization at Quillen equivalences Q of
the 2-category of combinatorial model categories ModQc, as in [40, 2.3].
The following theorem, proved by Renaudin [40, 3.3.2], builds on Dugger’s
results on universal homotopy theories [13] and on presentations of combi-
natorial model categories [14].

Theorem 6.5. The pseudo-functor Φ induces a local equivalence

Φ̃ : ModQc[Q−1] −→ Derad.

Renaudin also describes the essential image of Φ̃: it is formed by deriva-
tors of small presentation. We recall this result and the relevant definitions
from [40, 3.4].

Definition 6.6. Given a prederivator D, a localization of D is an adjunction
θ : D� D′ : χ such that the counit ε : θ ◦ χ→ 1D′ is an isomorphism.
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Derivators are invariant under localization, in the sense that a localization
of a derivator is again a derivator (see [11, 4.2]).

We recall now from [40, 3.4] the concept of presentation in the case of
derivators. The motivation comes from Dugger’s definitions of homotopi-
cally surjective map ([14, 3.1]) and of presentation of a model category ([14,
1] or [13, 6.1]). We will observe an analogy between the definition of a
derivator of small presentation (generation) and the definition, by means of
the free construction, of a finitely presented (generated) model of an alge-
braic theory or module over a ring (see for example [6, 3.8.1]). This analogy
relies on the use of “generators” and “relations”.

Definition 6.7. A derivator D has small generation if there is a category
C ∈ Cat and a localization F(C)� D.

Definition 6.8. A derivator D has small presentation if it has a small gen-
eration F(C) � D and there is a set S of morphisms in sSetC

op
, such that

the S-local equivalences coincide in F(C)(e) with the inverse image of the
isomorphisms in D(e) by the induced functor F(C)(e)→ D(e). In this case,
we call the pair (C, S) a small presentation for D.

Let Derfpad be the full 2-subcategory of Derad spanned by derivators of
small presentation. The next is the main result of [40].

Theorem 6.9. There is a biequivalence ModQc[Q−1] → Derfpad induced by
Φ̃.

Proof. See [40, 3.4.4].

As a consequence we see that a derivator has small presentation if and
only if it is equivalent to a derivator of the form Φ(sSetC

op
/S), where sSetCop/S

denotes the left Bousfield localization of sSetCop with respect to S.
For algebraic theories, an intrinsic definition of finitely presented model

consists in requiring that the model represents a functor which preserves
filtered colimits (see proposition [6, 3.8.14]). A similar situation occurs with
finitely presented modules over a ring. We would like to see if anything
similar holds for derivators of small presentation. To this purpose, we recall
from [44, 5.2] the notion of Bousfield localization of derivators, from which
we will deduce a reformulation of small presentation.
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Definition 6.10. A derivator D admits a left Bousfield localization by a sub-
set S of D(e) if there exists a cocontinuous morphism of derivators

γ : D −→ LSD

mapping the elements of S to isomorphisms in LSD(e) and such that for any
other derivator D′ the morphism γ induces an equivalence of categories

Derr(LSD,D′) −→ DerrS(D,D′),

where DerrS(D,D′) denotes the category of cocontinuous morphisms of deriva-
tors which send the elements of S to isomorphisms in D′(e).

Small presentation is a special case of Bousfield localization.

Proposition 6.11. If D is a derivator of small presentation (C, S), for some
category C and some set S as in definition 6.8, then D is equivalent to the
left Bousfield localization LSF(C).

Proof. This result, due to Cisinski, is [44, 5.4].

We would like now to translate the notions introduced above in terms of
models by means of the biequivalence Υ : hModpsT → Derr. Note, however,
that we can not use this biequivalence to transfer the notion of localization
from derivators to models: in general, of the two morphisms forming a local-
ization of derivators only one is a morphism in Derr. Nevertheless, we can
reformulate finite presentation in terms of models by means of proposition
6.11 as it uses only cocontinuous morphisms.

Observe that, as localizations of categories are coinverters, similarly,
derivators of small presentation, regarded as Bousfield localizations, can be
written as coinverters.

Lemma 6.12. If D is a derivator of small presentation (C, S), then it is
equivalent to the coinverter

D ' coinv
(
T(S̃,−)

s ..

t
00��

η T(C,−)
)
,

computed in hModpsT , where S̃ is the subcategory of the category of arrows
of C spanned by S (s, t and η are defined below in the proof).
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Proof. With D being identified with a homotopy model in hModpsT , by the
Yoneda lemma, the diagram

T(S̃,−)

s ,,

t
22��

η T(C,−) (23)

corresponds in T to the diagram

C
u
''

v
77�� α S̃,

where T(u,−) = t, T(v,−) = s and T(α,−) = η. As T(C, S̃) ' Ho[S̃op, sSetC
op

],
the coinverter (23) is completely assigned by choosing v and u to be the
obvious source and tail functors, and η the canonical natural transforma-
tion between them. Since coiverters are PIE-colimits, and so they compute
their non-strict counterparts, and by lemma 6.11, it follows that the univer-
sal property of the coinverter (23) is just the universal property of the left
Bousfield localization of derivators D ' LSF(C).

Theorem 6.13. If a model of T is a Bousfield localization of a representable
one, then it is a homotopy λ-presentable object of hModpsT .

Proof. Since, by [31, 9.5], λ-small weighted homotopy colimit of homotopy
λ-presentable objects are homotopy λ-presentable, the theorem follows from
lemma 6.12.

As a consequence we deduce the following property for small presenta-
tion of derivators.

Theorem 6.14. A derivator of small presentation is a homotopy λ-presentable
object of Derr.
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