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Résumé. Un semi-anneau unitaire commutatif (ou rig, en abrégé) est intégral

si 1 + x = 1. Nous montrons que, de même que le classique ‘gros topos’ de

Zariski associé à un corps algébriquement clos, le topos classifiant Z des rigs

intégraux (réellement) locaux est pré-cohésif sur Set. Le problème principal

est de montrer que le morphisme géométrique canonique Z → Set est hy-

perconnexe essentiel et, encore comme dans le cas classique, le problème se

réduit à certains résultats purement algébriques. L’hyperconnectivité est liée

à une caractérisation inédite des rigs simples due à Schanuel. L’essentialité

est un corollaire d’un analogue d’un ‘théorème de la base’ prouvée ici pour

les rigs avec addition idempotente.

Abstract. A commutative unitary semi-ring (or rig, for short) is integral if

1 + x = 1. We show that, just as the classical ‘gros’ Zariski topos associated

to an algebraically closed field, the classifying topos Z of (really) local in-

tegral rigs is pre-cohesive over Set. The main problem is to show that the

canonical geometric morphism Z → Set is hyperconnected essential and,

again as in the classical case, the problem reduces to certain purely algebraic

results. Hyperconnectedness is related to an unpublished characterization of

simple rigs due to Schanuel. Essentiality is a corollary of an analogue of a

‘Basis Theorem’ for rigs with idempotent addition proved here.

Keywords. Commutative Algebra, Rig Geometry, Axiomatic Cohesion.

Mathematics Subject Classification (2010). 13A99, 14A20, 18B25, 18F10.

- 451 -

VOLUME LXII-4 (2021)



M. MENNI A BASIS THEOREM FOR 2-RIGS

Contents

1 Rig geometry 2

2 The extensive category of affine K-schemes 10

3 Noetherian rigs 13

4 The lower Basis Theorem 15

5 The 2-Basis Theorem 17

6 Integral rigs and a Nullstellensatz for 2-rigs 19

7 The Gaeta topos of Aff2 22

8 The extensive category of Affine i-schemes 24

9 Really local integral rigs 26

10 The ‘Zariski’ topos of the theory of integral rigs 28

11 ‘Zariski’ covers of connected objects 32

12 The ‘Zariski’ topos is pre-cohesive 35

1. Rig geometry

The present work is motivated by the claim (in the second paragraph of

[11]) that some semi-combinatorial non-classical examples of cohesion can

be handled in ways analogous to Grothendieck’s algebraic geometry. More

specifically, we are interested in the construction of ‘gros’ toposes from cer-

tain algebraic categories in a way that abstracts the classical construction

of the ‘gros’ Zariski topos and related toposes. To motivate and outline the

contents of the paper it is convenient to recall some of the details of that con-

struction and one source of examples. We assume that the reader is familiar

with some basic Topos Theory [12, 6], Lattice Theory and Commutative
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Algebra. (Incidentally rings are to be understood as in and [2], i.e. commu-

tative, with unit.)

Definition 1.1. A category C is called extensive if it has finite coproducts

and the canonical functor C/X × C/Y → C/(X + Y ) is an equivalence for

any X , Y in C.

For instance, every topos is extensive. In contrast, an additive category is

extensive if and only if it is degenerate. If C is extensive, then so is the slice

C/X for any X . See [3] and references therein.

An object X in an extensive category will be called connected if it is not

initial and, for every coproduct diagram X0 → X ← X1, either X0 is initial

(in which case X1 → X is an isomorphism or X1 is initial (in which case

X0 → X is an isomorphism). Roughly speaking, an object is connected if it

is not empty and has no coproduct decompositions. An object in a topos is

connected if and only if it has exactly two complemented subobjects.

A category is called coextensive if its opposite is extensive. IfA is coex-

tensive then, trivially by duality, A/A is coextensive for every A in A, and

an object in Aop is connected if and only if it is directly indecomposable as

an object of A.

Let Ring be the category of rings.

Lemma 1.2. The category Ring is coextensive. An object in Ringop is

connected if and only if the corresponding ring has exactly two idempotents.

Proof. This is well-known but let us sketch a proof. A useful characteriza-

tion [3, Proposition 2.14] states that a category is extensive if and only if

coproducts are universal and disjoint. The dual of this characterization may

be applied directly to Ring as soon as we understand (direct) product de-

compositions there. Recall that if A is a ring and e ∈ A is idempotent then

the span A[(1− e)−1]← A→ A[e−1] is a product diagram. Moreover, this

construction determines a bijection between direct decompositions (of A)

and idempotents (in A). (If A ∼= B × C is a direct product decomposition

then the unique element in A corresponding to (0, 1) is the associated idem-

potent.) It easily follows from this description of direct decompositions that

products are codisjoint and couniversal (i.e. stable under pushout).

If C is an extensive category then the finite families (Xi → X | i ∈ I)
such that the induced

∑
i∈I Xi → X is an isomorphism form the basis of a
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Grothendieck topology. If C is also small then the associated category of

sheaves is a topos that we denote by GC and which is sometimes called the

‘Gaeta’ topos (of C).

Recall that, for any small category C, the Yoneda embedding C → Ĉ of

C into the topos of presheaves on C preserves limits but not colimits. For

instance, every representable object in Ĉ is connected so, if C has finite co-

products then the Yoneda embedding does not preserve them. On the other

hand, if C is extensive then the Gaeta topology is subcanonical and the re-

sulting full embedding C → GC preserves finite coproducts [11].

Recall also that a geometric morphism f : E → S is essential if its in-

verse image f ∗ has a left adjoint usually denoted by f! : E → S . For exam-

ple, for any small category C, the canonical geometric morphism Ĉ → Set is

essential. On the other hand, if C is small and extensive then GC → Set need

not be essential; although it is in some cases arising in Algebraic Geometry.

If C is an extensive category then the full subcategory of connected ob-

jects will be denoted by Cc → C. The existence of finite coproduct decompo-

sitions guarantees that the Gaeta topos is essential as the next result shows.

Lemma 1.3. Let C be small and extensive. If every object of C is a fi-

nite coproduct of connected objects then the canonical geometric morphism

GC → Set is essential.

Proof. If every object in C is a finite coproduct of connected objects then the

Comparison Lemma [6, Theorem C2.2.3] can be applied and it implies that

the restriction functor Ĉ → Ĉc restricts itself to an equivalence GC → Ĉc. In

other words, in this case, the Gaeta topos of C is a presheaf topos and so the

canonical geometric morphism to Set is essential.

Let K be a ring and let K/Ring be the associated coextensive cate-

gory of K-algebras. Let (K/Ring)fp → K/Ring be the full subcategory

of finitely presentable K-algebras. The category of affine K-schemes (of

finite type) is the opposite of the category (K/Ring)fp and, for brevity, it

will be denoted by AffK . As (K/Ring)fp → K/Ring is closed under finite

colimits, AffK has finite limits.

Lemma 1.4. If the ring K is Noetherian then AffK is extensive and every

object is a finite coproduct of connected objects.
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Proof. It is enough to check that the subcategory (K/Ring)fp → K/Ring

is not only closed under closed under finite colimits but also under finite

products, so that the domain inherits coextensivity from the codomain.

Finitely generated K-algebras are closed under finite products for ar-

bitrary K but, if K is Noetherian then Hilbert’s Basis Theorem implies

that finitely generated K-algebras are finitely presented so, in this case,

(K/Ring)fp → K/Ring is closed under finite products. Also, a Noethe-

rian K-algebra cannot have an infinite product decomposition. (We will

review a proof in a more general context later.)

We stress the role of Noetherianity and Hilbert’s Basis Theorem in the

proof of Lemma 1.4. We will come back to the issue. We will see that

Noetherianity is not necessary to prove extensivity of AffK . On the other

hand, the finite-coproduct-decomposition property does not hold in general.

The presheaf topos ÂffK is the classifier of K-algebras. It embeds (via

Yoneda) the category of K-affine spaces and every object in ÂffK is a colimit

of affine spaces. In this sense, ÂffK is a topos of ‘K-schemes’ but, it does not

have the ‘right’ colimits. In particular, it does not have the right coproducts.

Extensivity of AffK permits to solve this problem because we may consider

the subtopos G(AffK)→ ÂffK and the finite-coproduct preserving restricted

Yoneda embedding AffK → G(AffK), into another topos of ‘K-schemes’ so

to speak, but with better coproducts. (See also [11, Section 5] for a more

conceptual discussion on the inexactness of affine schemes.)

Lemma 1.5. If the ring K is Noetherian then the canonical geometric mor-

phism G(AffK)→ Set is essential.

Proof. By Lemma 1.4, Lemma 1.3 is applicable to the case C = AffK .

Let f : G(AffK)→ Set be the canonical geometric morphism. For gen-

eral reasons, the direct image f∗ : G(AffK)→ Set sends X in G(AffK) to

the set f∗X = G(AffK)(1, X) = X1 of points of X . More explicitly, in this

case, it sends a sheaf X : (K/Ring)fp → Set to the set f∗X = XK where

K is considered as the initial object of (K/Ring)fp. In particular, if X is

representable by A in (K/Ring)fp then

f∗X = (K/Ring)fp(A,K) = (K/Ring)(A,K)
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is the set of algebra morphisms from A to the base ring K.

As stressed in [10, Section II], even if we assume that K is a field, the

leftmost adjoint f! : G(AffK)→ Set need not preserve finite products. (See

also [16, Example 4.8].) This observation partially motivates the following

axiomatization of a topos ‘of spaces’ over a topos ‘of sets’.

Definition 1.6. A geometric morphism p : E → S is called pre-cohesive if

the adjunction p∗ ⊣ p∗ extends to a string p! ⊣ p∗ ⊣ p∗ ⊣ p! of adjoint func-

tors such that p∗, p! : S → E are fully faithful, p! : E → S preserves finite

products and (Nullstellensatz) the canonical transformation θ : p∗ → p! is

epic.

The intuition is that E is a ‘gros’ topos over a topos S of ‘sets’. (See

[10], also [16, 14] and references therein.) So the objects of E are ‘spaces’

of some kind, p∗ : S → E is the full subcategory of discrete spaces and its

right adjoint p∗ : E → S sends a space X to the set p∗X of points of X . The

leftmost adjoint p! : E → S sends a space X to the set p!X of ‘pieces’ of X .

The Nullstellensatz condition formulated above captures the idea that ‘every

piece has a point’. (In the presence of a string p! ⊣ p∗ ⊣ p∗ ⊣ p! with fully

faithful p∗, p! : S → E , the Nullstellensatz is equivalent to p : E → S being

hyperconnected, i.e. that both the unit an counit of p∗ ⊣ p∗ are monic [7].)

Proposition 1.7. If K is an algebraically closed field then the essential ge-

ometric morphism G(AffK)→ Set is pre-cohesive.

Proof. We already know by Lemma 1.5 that G(AffK)→ Set is essential.

In fact, we know it is essential because G(AffK) is the topos of presheaves

on the category of connected affine K-schemes. So it is enough to apply a

characterization of the small categories whose associated presheaf topos is

pre-cohesive over Set [7]: for a small category D whose idempotents split,

the canonical D̂ → Set is pre-cohesive if and only ifD has a terminal object

and every object has a point. (See also [16, Proposition 2.10].)

Let C = AffK be the category of K-affine schemes. Since it has finite

limits, idempotents split. Moreover, this property is inherited by the subcat-

egory Cc of connected objects. As K is a field, it is directly indecomposable.

Hence, the terminal object of AffK is connected and so Cc has a terminal

object. Hilbert’s Nullstellensatz implies that every object in Cc has a point.

Then, by the result cited in the previous paragraph, G(AffK) = Ĉc → Set is

pre-cohesive.
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If K is not algebraically closed then K-affine spaces still induce pre-

cohesive geometric morphisms E → S , but over a base S more informative

than Set such as the Galois topos of the base field. See [10] and [16].

The classical ‘gros’ Zariski topos ZK determined by a field K is a (non-

presheaf) subtopos of G(AffK) and, if K is an algebraically closed field, the

canonical geometric morphism ZK → Set is pre-cohesive, but we need not

go into that at this point.

So far we have used extensive categories to sketch some basic construc-

tions in classical algebraic geometry which, in particular, produce a pre-

cohesive topos G(AffK) over Set for any algebraically closed field. This

sketch will prove useful to recall some of the material in [11] that motivates

the original work in the present paper.

Definition 1.8. A rig is a set A equipped with two commutative monoid

structures (A, ·, 1) and (A,+, 0) such that ‘product distributes over addi-

tion’ in the sense that x · 0 = 0 and x · (y + z) = (x · y) + (x · z) for every

x, y, z ∈ A.

The category of rigs and homomorphisms between them will be denoted

by Rig. Evidently, the category of rings may be seen as the full subcategory

Ring→ Rig of those rigs such that the underlying additive structure is a

(necessarily Abelian) group. On the other hand, the category of (bounded)

distributive lattices appears as the full subcategory dLat→ Rig consist-

ing of those rigs such that multiplication is idempotent and the equation

1 + x = 1 holds [11, Section 8].

It is well-know that many of the constructions among rings have ana-

logues for semi-rings and, in particular, for rigs. For instance, given a mul-

tiplicative submonoid F ⊆ A of a rig A it is possible to construct the rig of

fractions A→ A[F−1] much as in the case of rings. In particular, for a ∈ A
and F = {an | n ∈ N} we will write A[a−1] instead of A[F−1].

Lack of negatives implies that the treatment of idempotents is a little

more subtle than in rings. An element b in a rig is called Boolean if there is

a (necessarily unique) c such that b+ c = 1 and bc = 0. In this case c may

be called the complement of b. If b is Boolean then it is idempotent.

Proposition 1.9. The category Rig is coextensive. An object in Rigop is

connected if and only if the corresponding rig has exactly two Boolean ele-

ments.
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Proof. Essentially as in rings: direct product decompositions correspond to

Boolean elements. More precisely, if A is a rig and b ∈ A is Boolean (with

complement c) then the canonical map A→ A[b−1]× A[c−1] is an isomor-

phism. Moreover, every direct product decomposition A→ B × C is deter-

mined as above by a unique Boolean element in A. The argument can be

completed as in Lemma 1.2 which then may be seen as a corollary of the

present result.

As in the case of rings we may consider, for a rig K, the coexten-

sive category K/Rig of K-rigs (or K-algebras). Notice that for a ring

K, the canonical functor K/Ring→ K/Rig is an equivalence. On the

other hand, of special interest for us is the case of K = 2 the distributive

lattice with two elements. In this case, 2/Rig→ Rig may be identified

with the full subcategory of rigs with idempotent addition. For any rig K
let (K/Rig)fp → K/Rig be the full subcategory of finitely presentable K-

algebras.

Definition 1.10. The category of affine K-spaces is the opposite of the cat-

egory (K/Rig)fp and it will be denoted by AffK .

In Section 2 we prove that AffK is extensive, generalizing one of the two

aspects of Lemma 1.4. Sections 3 to 5 culminate in the proof that the second

aspect of Lemma 1.4 holds for the case K = 2. In other words, we prove that

every object in Aff2 is a finite coproduct of connected objects. This requires

the introduction of a suitable notion of Noetherian rig (Section 3) and related

‘Basis Theorem’ (Section 4) which is probably the main original result of the

paper.

Sections 6 proves a Nullstellensatz for 2-rigs (essentially due to Schanuel)

which is used in Section 7 to show an analogue of Proposition 1.7 for K = 2,

namely, that the Gaeta topos of Aff2 is pre-cohesive over Set. We also give a

proof of the folk fact that the Gaeta topos classifies 2-rigs ‘without Boolean

elements’ and that the generic model therein satisfies the Kock-Lawvere ax-

iom for Synthetic Differential Geometry [8].

Our proof of the Nullstellensatz for 2-rigs involves another coextensive

variety of rigs that we introduce below.

Definition 1.11. A rig A is integral if 1 + x = 1 for every x ∈ A.
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Without a name, integral rigs are briefly considered in [11, Section 8]

where there the free integral rig I on one generator x is described as the order

{0 < . . . < xn < . . . < x2 < x < x0 = 1} with the obvious multiplication

and it is suggested that the spectrum of I can be visualized as an interval (not

a lattice). It is also suggested that I may be viewed as an extended positive

line by reading the structure logarithmically, suggesting a connection with

tropical geometry.

The coextensive category iRig of integral rigs and morphisms between

them is also studied in [4] where it is shown that, as in the Zariski represen-

tation of rings, every integral rig is the algebra of sections of a sheaf of really

local integral rigs.

Let iRig be the category of integral rigs. Let iRigfp → iRig be the full

subcategory of finitely presentable integral rigs and let iAff be the opposite

of iRigfp. Using the tools developed for the proof of the Nullstellensatz

for 2-rigs we show in Section 8 that iAff is extensive and that the associated

Gaeta topos is pre-cohesive over Set. We also sketch a proof of the folk

result that this topos classifies integral rigs without idempotents.

In Section 9 we recall the definition of really local integral rigs and show

that the generic integral rig without idempotents is not really local in the

Gaeta topos of iAff . In the classical case, the analogous fact that the generic

ring without idempotents is not local may be seen as motivating the consider-

ation of the Zariski topos. Section 10 proves that iAff has an analogue of the

Zariski topology. This topology is proved to be subcanonical in Section 12.

It is also proved there that the resulting topos is pre-cohesive and classifies

really local integral rigs.

Altogether, the new Basis Theorem and Nullstellensatz for 2-rigs allow

us to show that the classifying toposes of certain extensions of the theory

of rigs with idempotent addition are ‘gros’ in the sense of Axiomatic Cohe-

sion. It might be interesting to compare these with the various categories of

‘tropical schemes’ such as those in [5] and references therein.

As expected, much of the work reported below concerns ideals, so let us

quickly recall a couple of basic facts in the context of rigs.

Definition 1.12. An ideal of a rig R is an additive submonoid I ⊆ R such

that for every r ∈ R and y ∈ I , ry ∈ I .

If a ∈ R then the subset (a) = {ra | r ∈ R} ⊆ R is a principal ideal of
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the rig R. Ideals in rings coincide with the classical notion.

Every ideal I ⊆ A determines the relation≈I ⊆ A× A defined by x ≈I y
if and only if there are i, j ∈ I such that x+ i = y + j. It is straightforward

to check that ≈I is a congruence.

Lemma 1.13. For any ideal I ⊆ A the quotient q : A→ A/≈I is the univer-

sal map from A sending every element of I to 0. Also, the kernel q−10 ⊆ A
coincides with the ideal {x ∈ A | (∃s ∈ I)(x+ s ∈ I)} ⊆ A.

Proof. The quotient A→ A/≈I maps every t ∈ I to 0. Now let f : A→ B
in Rig be such that fI = {0}. If x ≈I y then there are t, t′ ∈ I such that

x+ t = y + t′ in A and so fx = f(x+ t) = f(y + t′) = fy.

Finally, qx = 0 if and only if x ≈I 0 in A. This holds if and only if there

are s, s′ ∈ I such that x+ s = 0 + s′ = s′. In turn, this is equivalent to the

existence of an s ∈ I such that x+ s ∈ I .

Naturally, the quotient of A by ≈I will be denoted by A→ A/I . Its

kernel will be called the saturation of I and will be denoted by I ⊆ A. Of

course, I ⊆ I ⊆ A. The ideal I will be called saturated if I = I as ideals of

A. Notice that, in a ring, every ideal is saturated.

Lemma 1.14. If b ∈ A is a Boolean element (with complement c) of the rig

A then A→ A[b−1] and A→ A/(c) coincide in the sense that each has the

universal property of the other.

Proof. A Boolean element is invertible if and only if its complement is 0.

2. The extensive category of affine K-schemes

Fix a rig K. The purpose of the present section is to show that AffK is

extensive. We actually show that the subcategory (K/Rig)fp → K/Rig,

which is closed under finite colimits, is also closed under finite products and

therefore the domain inherits coextensivity from the codomain. (This may

be a folk fact but we have not found it in the literature. It is certainly classical

for the case of Noetherian rings K. See Lemma 1.4.)

The full subcategory (K/Rig)fp → K/Rig contains the terminal object

because it may be presented as K/(1) where (1) is the principal ideal gen-

erated by 1. So we are interested in sufficient conditions for the subcategory

- 460 -



M. MENNI A BASIS THEOREM FOR 2-RIGS

to be closed under finite products. By [15, Proposition 3.6] it is enough to

check that the product of two finitely generated free K-rigs is finitely pre-

sented.

The free K-rig on a set S may be identified with the rig of polynomials

K[S] with coefficients in K and ‘variables’ in S. Let S and T be two finite

sets. The product K[S]×K[T ] is easily seen to be (finitely) generated by

(1, 0), (0, 1), (s, 0) for any s ∈ S and (0, t) for any t ∈ T . To prove that

the product is finitely presented we need to be more detailed so consider

the free K-rig K[S + T + {σ, τ}]. Let L : K[S + T + {σ, τ}]→ K[S] be

the unique morphism of K-rigs such that Ls = s for every s ∈ S, Lt = 0
for every t ∈ T , Lσ = 1 and Lτ = 0. The morphism L sends a polyno-

mial p(S, T, σ, τ) ∈ K[S + T + {σ, τ}] to p(S, 0, 1, 0) ∈ K[S]. Similarly,

we let R : K[S + T + {σ, τ}]→ K[T ] be the unique morphism of K-rigs

such that Rs = 0, Rt = t, Rσ = 0 and Rτ = 1.

Lemma 2.1. The map 〈L,R〉 : K[S + T + {σ, τ}]→ K[S]×K[T ] is sur-

jective.

Proof. The map 〈L,R〉 sends σ to (1, 0), τ to (0, 1), s ∈ S to (s, 0) and

t ∈ T to (0, t).

Lemma 2.1 is just another way of saying that finite products of finitely

generated free K-rigs are finitely generated. It remains to show that congru-

ence determined by the quotient 〈L,R〉 is finitely generated.

Lemma 2.2. The following elements of K[S + T + {σ, τ}]

1. st for every s ∈ S and t ∈ T ,

2. tσ for every t ∈ t,

3. sτ for every s ∈ S,

4. στ

are in the kernel of 〈L,R〉. Also, 〈L,R〉(σ + τ) = 1 ∈ K[S]×K[T ].

Proof. Notice that 〈L,R〉(t · σ) = (0 · 1, t · 0) = (0, 0) ∈ K[S]×K[T ] for

t ∈ T and 〈L,R〉(σ + τ) = (1 + 0, 0 + 1) = (1, 1). We leave the details for

the reader.
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Let ≈ be the congruence on K[S + T + {σ, τ}] generated by the rela-

tions

st ≈ tσ ≈ sτ ≈ στ ≈ 0 σ + τ ≈ 1

for s ∈ S and t ∈ T . We stress that, as S and T are finite, the congru-

ence ≈ is finitely generated. By Lemma 2.2 there exists a unique morphism

Γ : K[S + T + {σ, τ}]/≈→ K[S]×K[T ] such that the following diagram

commutes

K[S + T + {σ, τ}]

〈L,R〉 **

// K[S + T + {σ, τ}]/≈

Γ
��

K[S]×K[T ]

and Γ is surjective because 〈L,R〉 is so by Lemma 2.1.

Proposition 2.3. For any rig K the subcategory (K/Rig)fp → K/Rig is

closed under finite products and it is therefore coextensive.

Proof. We continue the argument preceding the statement. It remains to

show that Γ is injective. For brevity let W = K[S + T + {σ, τ}]/≈.

As σ and τ complement each other in W , they are Boolean and therefore

idempotent. Together with the first four items of Lemma 2.2 we deduce

that every element of W is of the form k + p(S) + q(T ) + kσσ + kττ with

p(S) ∈ K[S] and p(0) = 0, q(T ) ∈ K[T ] and q(0) = 0, and k, kσ, kτ ∈ K.

Moreover, as k = k(σ + τ) = kσ + kτ we conclude that every element of

W is of the form

p(S) + q(T ) + kσσ + kττ

with p(S) ∈ K[S] and p(0) = 0, q(T ) ∈ K[T ] and q(0) = 0, and kσ, kτ ∈ K.

Let p′(S) + q′(S) + k′
σσ + k′

ττ be another element of W in the same

‘normal form’ and assume that Γ sends them both to the same thing. That is,

(p(S) + kσ, q(T ) + kτ ) = (p′(S) + k′
σ, q

′(T ) + k′
τ )

in K[S]×K[T ]. Then p(S) = p′(S), kσ = k′
σ, q(T ) = q′(T ) and kτ = k′

τ .

Hence,

p(S) + q(T ) + kσσ + kττ = p′(S) + q′(S) + k′
σσ + k′

ττ

in W completing the proof that Γ is injective.

Corollary 2.4. The category AffK is extensive for any rig K.
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3. Noetherian rigs

In this section we introduce a notion of Noetherianity for rigs involving sat-

urated ideals as defined in Section 1 and which abstracts the standard notion

for rings.

Let A be a rig.

Lemma 3.1. If I0 ⊆ I1 ⊆ . . . is a sequence of saturated ideals of A then so

is the union I =
⋃

n∈N In.

Proof. Let x ∈ A and s ∈ I be such that x+ s ∈ I . Then there are m,n ∈ N

such that s ∈ Im and x+ s ∈ In. Then s, x+ s ∈ Im+n and, as Sm+n is

saturated, x ∈ Im+n ⊆ I by Lemma 1.13.

For any family (xs ∈ A | s ∈ S) there is a least ideal containing the el-

ements in that family. It is called the ideal generated by the family. Its

elements are those of the form
∑

i∈I aixi for some finite subset I ⊆ S and

ai ∈ A for each i ∈ I . An ideal of A is finitely generated if it is generated

by finite family. We next introduce something less standard.

Definition 3.2. A saturated ideal is essentially finitely generated if it is the

saturation of a finitely generated ideal.

Of course, a finitely generated saturated ideal is essentially finitely gen-

erated. In the case of rings the converse holds because ideals of rings are

saturated.

Lemma 3.3. The following are equivalent:

1. Every sequence I0 ⊆ I1 ⊆ . . . of saturated ideals of A is stationary;

that is, there is an m ∈ N such that Im = In for every n ≥ m.

2. Every saturated ideal I ⊆ A is essentially finitely generated.

Proof. (Just as in the classical case, but taking the necessary precautions to

deal with saturation.) Assume that the first item holds and, for the sake of

contradiction, let I ⊆ A be a saturated ideal that is not essentially finitely

generated. Choose an element s0 ∈ I , let S0 ⊆ A be the ideal generated by

s0 and let S0 be the saturation which is, of course, essentially finitely gen-

erated. Certainly, S0 ⊆ I but, as I is not essentially finitely generated, there
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is an s1 ∈ I such that s1 6∈ S0. Let S1 ⊆ A be the ideal generated by s0, s1.
Then S0 ⊂ S1 ⊂ I . Again, there must exist an s2 ∈ I such that s2 6∈ S1 and

continuing with this process we obtain a sequence S0 ⊂ S1 ⊂ . . . of satu-

rated ideals of A that is not stationary; a contradiction.

Conversely, assume that the second item holds. The union I =
⋃

n∈N In
is a saturated ideal by Lemma 3.1 so, by hypothesis, it is essentially finitely

generated. Let (gs ∈ I | s ∈ S) be a finite family generating an ideal J
such that J = I . Then there are ms ∈ N such that gs ∈ Ims

. As the set

S is finite, gs ∈ Im for m =
∑

t∈S mt and every s ∈ S, so J ⊆ Im. Then

I = J ⊆ Im = Im so Im = I .

Although congruences of rigs are not in bijective correspondence with

ideals, the following terminology seems fair.

Definition 3.4. A rig A will be called Noetherian if it satisfies the equiv-

alent conditions of Lemma 3.3. Also, a rig is strongly Noetherian if every

saturated ideal in it is finitely generated.

Of course, strongly Noetherian implies Noetherian; and the converse

holds for rings. So a ring is Noetherian in the present ‘rig sense’ if and

only if it is Noetherian in the classical sense.

The following lemmas will be needed later and are simple variations of

standard facts about Noetherian rings. The proofs are also variations that

take saturation into account. (Recall that, in algebraic categories, regular

epimorphisms coincide with surjections.)

Lemma 3.5. If A→ B is a regular epi in Rig and A is Noetherian then so

is B.

Proof. Let f : A→ B be a map in Rig. For any ideal I ⊆ B, the inverse im-

age f−1I ⊆ A is an ideal. Moreover, if I is saturated then so is f−1I . Also, if

J ⊆ B is another ideal and I ⊆ J then f−1I ⊆ f−1J . Hence, every ascend-

ing sequence I1 ⊆ I2 ⊆ . . . of saturated ideals of B determines an ascending

sequence f−1I1 ⊆ f−1I2 ⊆ . . . of saturated ideals of A. As A is Noethe-

rian, this sequence is stationary. So, to complete the proof, it is enough to

prove the following lemma: For I ⊆ J ideals of B such f−1I = f−1J , if

f is surjective then I = J . In turn, it is enough to show that J ⊆ I . So let

b ∈ J . As f is surjective, b = fa for some a ∈ A. Then a ∈ f−1J = f−1I
so b = fa ∈ I .
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Lemma 3.6. If the rig A is Noetherian then it is a finite product of directly

indecomposable rigs.

Proof. Assume that A is not a finite direct product of directly indecompos-

able rigs. Then A is not directly indecomposable so A = A0 × A′
0 for non-

terminal A0, A′
0. Moreover, either A0 or A1 is not a finite direct product of

directly indecomposable rigs. Without loss of generality we can assume that

A0 is not. By Lemma 1.14 the projection A→ A0 is the quotient by a satu-

rated ideal I0 ⊆ A. (Indeed, an ideal generated by Boolean element.) More-

over, the ideal is strict because A′
0 is not terminal. By our current assumption,

A0 = A1 × A′
1 for non-terminal A1 and A′

1. Again, we may assume that A1

is not directly indecomposable and let I1 ⊂ A be the strict saturated ideal

whose quotient is the composite projection A→ A0 → A1. Also, I0 ⊂ I1
as ideals of A. Repeating the process we obtain a non-stationary sequence

I0 ⊂ I1 ⊂ . . . of saturated ideals of A, contradicting Noetherianity of A.

4. The lower Basis Theorem

Every commutative monoid determines a pre-order on its underlying set. In

particular, addition in a rig induces a pre-order. In more detail, let A be a

rig and declare, for every x, y ∈ A, that x ≤ y if and only if there is a d ∈ A
such that x+ d = y. We sometimes call this the ‘canonical pre-order’ of A.

It is easy to check that addition and multiplication are monotone with respect

to the canonical pre-order.

An ideal I ⊆ A is called lower-closed if x ≤ y ∈ I implies x ∈ I . We

stress an obvious corollary of Lemma 1.13: lower-closed implies saturated.

For example, the canonical pre-order of a ring is codiscrete (in the sense

that x ≤ y for every x, y) so the only lower-closed ideal in a ring is that

containing 1. On the other hand, the canonical pre-order of a distributive

lattice (considered as a rig) coincides with the lattice.

Fix a rig K.

Lemma 4.1. If I ⊆ K[x] is a lower closed ideal then every element of I is a

sum of monomials in I . Hence, I is generated by the monomials in I .

Proof. If the polynomial
∑m

i=0 kix
i is in I then, by lower-closedness, I con-

tains kix
i for each 0 ≤ i ≤ m ∈ N.
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In the next auxiliary result the reader may recognize a trick used in the

classical proof Hilbert’s Basis Theorem. It is no accident.

Lemma 4.2. If K is such that every lower-closed ideal is finitely generated

then for every lower-closed ideal I ⊆ K[x] there is an n ∈ N such that I is

generated by monomials of degree at most n.

Proof. By Lemma 4.1 it is enough to check that every monomial in I may be

expressed as a linear combination (with coefficients in K[x]) of monomials

in I of some bounded degree.

Let L ⊆ K be the subset consisting of 0 together with the leading coef-

ficients of polynomials in I . The subset L ⊆ K is clearly an ideal and it is

also lower-closed. To see this assume that a ≤ b ∈ L. Then there is a poly-

nomial f = bxn + (lower terms) in I . So axn ≤ bxn ≤ f ∈ I and, as I is

lower closed, axn ∈ I . Hence, a ∈ L so L is indeed lower-closed.

By hypothesis, there is a finite family (κs ∈ K | s ∈ S) spanning L. For

each κs there exists a polynomial fs ∈ I that has κs as leading coefficient.

Let n be the largest degree of any of the fs’s. Multiplying the polynomials

fs with suitable powers of x we obtain polynomials gs ∈ I all of the same

degree n and each gs with leading coefficient κs. As I is lower closed,

κsx
n ∈ I for every s ∈ S.

Let m ≥ n and axm ∈ I . Then a is a linear combination, with coeffi-

cients in K, of (κs | s ∈ S). So axm is a linear combination, with coeffi-

cients in K[x], of the polynomials κsx
n ∈ I . Hence, every monomial in I

is a linear combination, with coefficients in K[x], of the monomials in I of

degree strictly less than n; as we needed to prove.

We can now mimic the classical proof of Hilbert’s Basis Theorem but

using lower-closedness of the ideals involved instead of the existence of neg-

atives.

Theorem 4.3 (The lower Basis Theorem). If K is such that every lower-

closed ideal is finitely generated then every lower-closed ideal of K[x] is

finitely generated.

Proof. Let I ⊆ K[x] be a lower-closed ideal. By Lemma 4.2 there is an

n ∈ N such that I is generated by the monomials in I of degree at most n.

For each m ≤ n let Lm ⊆ K be the subset consisting of 0 and all coefficients
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of monomials of degree m in I . As before, Lm is a lower-closed ideal in K
so, by hypothesis, it is generated by a finite family (κm,s | s ∈ Sm). Then

every monomial of degree m may be expressed as a linear combination (with

coefficients in K, actually) of the monomials κm,sx
m. Then every monomial

of degree at most n is a linear combination of the finite family of monomials

(κm,sx
m | s ∈ Sm,m ≤ n). So the same family generates the ideal I .

5. The 2-Basis Theorem

Let 2 be the initial distributive lattice. For any rig A there is at most one rig

morphism 2→ A so the forgetful functor 2/Rig→ Rig is full as well as

faithful. The objects in the subcategory may be identified with the rigs whose

addition is idempotent. Of course, from this perspective, the initial object of

2/Rig is 2. Also, idempotence of addition implies that the canonical pre-

order is anti-symmetric so, for any 2-rig A, we will picture (A,+, 0) as a

join-semilattice.

Lemma 5.1. If A is a 2-rig and I ⊆ A is an ideal then the following hold:

1. For every x, y ∈ A, x ≈I y if and only if there is a k ∈ I such that

x+ k = y + k.

2. The ideal I is saturated if and only if it is lower closed.

Proof. By the definition of ≈I , x ≈I y if and only if there are i, j ∈ I such

that x+ i = y + j. In this case,

x+ i+ j = x+ i+ i+ j = y + j + i+ j = y + i+ j

so we may take k = i+ j.

Assume that I is saturated. If x ≤ y ∈ I then x+ y = y so, by satu-

ration, x ∈ I . On the other hand, if I is lower closed then it is trivially

saturated.

Hence, for 2-rigs, we may reformulate strong Noetherianity as follows.

Proposition 5.2. A 2-rig is strongly Noetherian if and only if every lower

closed ideal is finitely generated.
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Proof. Recall that a rig A is strongly Noetherian if every saturated ideal is

finitely generated. So the statement follows immediately from the second

item of Lemma 5.1.

Combining Theorem 4.3 and Proposition 5.2 we obtain the following.

Corollary 5.3 (The 2-Basis-Theorem). If K is a strongly Noetherian 2-rig

then so is K[x].

As in the classical case, a simple induction implies that free 2-rigs on a

finite set of generators are strongly Noetherian.

Corollary 5.4. Finitely generated 2-rigs are Noetherian.

Proof. Follows from the previous remark and Lemma 3.5.

Corollary 5.4 and Lemma 3.6 imply the following.

Corollary 5.5. Every finitely generated 2-rig is a finite product of directly

indecomposable finitely generated 2-rigs.

We don’t know if finitely generated implies finitely presentable for 2-rigs

so we are forced to state the following separately.

Corollary 5.6. Every finitely presentable 2-rig is a finite product of directly

indecomposable finitely presentable 2-rigs.

Proof. If A is a finitely presentable 2-rig then it is finitely generated so, by

Corollary 5.5, A =
∏

s∈S As for a finite set S and As directly indecompos-

able for every s ∈ S. By Lemma 1.14, the projection A→ As is the quotient

by a principal ideal. Hence, as A is finitely presentable, so is As.

We can now deduce an analogue of Lemma 1.4.

Corollary 5.7. Every object in the extensive Aff2 is a finite coproduct of

connected objects.
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6. Integral rigs and a Nullstellensatz for 2-rigs

Section 4 in [11] attributes to Schanuel the result that the only simple rigs

are fields and the distributive lattice 2. We prove here a weaker statement

with an argument that is more convenient for our purposes.

Let A be a rig and let F ⊆ A be a multiplicative submonoid.

For x, y ∈ A we write x ≤F y if there is an u ∈ F such that x ≤ uy. In

this case we may say that u witnesses that x ≤F y. The relation≤F on the set

A is reflexive because 1 ∈ F and it is transitive because if u, v ∈ F witness

that x ≤F y and y ≤F z respectively then uv witnesses that x ≤F z. Hence,

≤F is a pre-order.

Write x ≈F y if both x ≤F y and y ≤F x. As ≤F is a pre-order, ≈F is

an equivalence relation. We next give a sufficient condition for it to be a

congruence.

Lemma 6.1. If 1 + F ⊆ F ⊆ A then≈F is a congruence on A. In this case,

the quotient A/≈F is a 2-rig and, it is trivial if and only if A is a ring.

Proof. We have already seen that the relation ≈F is an equivalence relation.

For a, b, c, d ∈ A assume that a ≤F b is witnessed by u ∈ F and that c ≤F d
is witnessed by v ∈ F . Then uv witnesses that ac ≤F bd.

Assume from now on that 1 + F ⊆ F . We claim that if x ∈ A and

a ≤F b then x+ a ≤F x+ b. By hypothesis there is an u ∈ F such that

a ≤ ub so

x+ a ≤ x+ ub ≤ x+ (b+ ux) + ub = (x+ b) + u(x+ b) = (1+ u)(x+ b)

and hence x+ a ≤F x+ b, so the claim is proved.

Using the claim one easily shows that if a ≤F b and x ≤F y then also

a+ x ≤F b+ y. It follows that ≈F is a congruence.

Trivially, 1 ≤F 1 + 1 and, since 1 + 1 ∈ F by hypothesis, the inequality

1 + 1 ≤ (1 + 1)1 implies 1 + 1 ≤F 1. So 1 ≈F 1 + 1 and hence the quotient

A/≈F is a 2-rig.

Assume now that 0 = 1 in the quotient A/≈F . That is, 0 ≈F 1 in A.

Equivalently, 0 ≤F 1 and 1 ≤F 0. One of the conjuncts holds trivially and

the other is equivalent to 1 ≤ 0. So the quotient is terminal if and only if

1 ≤ 0 in A.
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For instance, we recall Schanuel’s construction [17] of the left adjoint

to the full inclusion 2/Rig→ Rig. The rig N of natural numbers with the

usual addition and multiplication is initial in Rig. That is, for any rig A there

exists a unique∇ : N→ A in Rig. The subset F = {∇n | 1 ≤ n} ⊆ A sat-

isfies the hypotheses of Lemma 6.1. The induced pre-order on A satisfies:

a ≤F b if and only if there is an 1 ≤ n ∈ N such that a ≤ nb. The quotient by

≈F is denoted by dim : A→ D(A) and is universal from A to the inclusion

2/Rig→ Rig. This construction suggests something more general.

Lemma 6.2. Let 1 + F ⊆ F so that ≈F is a congruence by Lemma 6.1.

If 1 ≤F u for every u ∈ F , then the quotient A→ A/≈F is the universal

morphism sending F ⊆ A to 1 in the codomain.

Proof. Trivially u ≤F 1 for every u ∈ F . As 1 ≤F u by hypothesis, 1 ≈F u
for every u ∈ F so the quotient A→ A/≈F sends F ⊆ A to the unit 1 in

the codomain. Now let f : A→ B in Rig be such that fu = 1 for every

u ∈ F . As 1 + 1 ∈ F , B is a 2-rig. If a ≤F b then a ≤ ub for some u ∈ F .

Then fa ≤ (fu)(fb) = fb. So, if a ≈F b then fa ≤ fb and fb ≤ fa and,

as B is a 2-rig, fa = fb. Hence, f factors uniquely through the quotient

A→ A/≈F .

Recall that iRig→ Rig is the variety of rigs determined by the equation

1 + x = 1. We next describe the left adjoint to iRig→ Rig.

Let ↑1 ⊆ A be the upper-closed multiplicative submonoid of the ele-

ments in A above 1. The relation≈↑1 is a congruence by Lemma 6.1. Denote

the associated quotient A/≈↑1 by LA.

Proposition 6.3. The quotient A→ LA is universal from A to iRig→ Rig

and the resulting left adjoint L : Rig→ iRig preserves finite products.

Proof. Evidently, 1 + x ∈ ↑1 ⊆ A for all x so, by Lemma 6.2, the quotient

A→ LA sends 1 + x ∈ A to 1 ∈ LA for every x ∈ A; so LA is integral. To

prove that the quotient A→ LA is universal let R be an integral rig and let

f : A→ R be a rig homomorphism. Then fu = 1 for every 1 ≤ u ∈ A, so

f factors through A→ LA by Lemma 6.2.

Let L : Rig→ iRig be the resulting left adjoint and denote the unit by

η. Let A, B be rigs and let γ be the unique map such that the following
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diagram

A× B

η×η
&&

η
// L(A× B)

γ

��

LA× LB

commutes in Rig. Then γ is surjective so we need only prove that it is

monic. Let (a, b), (a′, b′) ∈ A× B and assume that γ(η(a, b)) = γ(η(a′, b′)).
Then both ηa = ηa′ and ηb = ηb′. Hence a ≈↑1 a

′ in A and b ≈↑1 b
′ in

B. That is, a ≤↑1 a
′ and a′ ≤↑1 a in A and also b ≤↑1 b

′ and b′ ≤↑1 b in B.

Let 1 ≤ u ∈ A witness that a ≤↑1 a
′ and 1 ≤ v ∈ B witness that b ≤↑1 b

′.

Then (1, 1) ≤ (u, v) ∈ A× B and (a, b) ≤ (ua′, vb′) = (u, v)(a′, b′). Hence

(a, b) ≤↑1 (a
′, b′) in A× B. Similarly, (a′, b′) ≤↑1 (a, b) so (a, b) ≈↑1 (a

′, b′)
as we needed to show.

The inclusion iRig→ Rig factors through the right adjoint inclusion

2/Rig→ Rig. The left adjoint to the factorization iRig→ 2/Rig is just

the restriction of the left adjoint L : Rig→ iRig. Hence, we may deduce

the following result that will be needed later.

Corollary 6.4. The left adjoint to iRig→ 2/Rig preserves finite products.

Combining the integral reflection described above with some of the ma-

terial in [4] we arrive at the promised weak version of Schanuel’s result.

Proposition 6.5 (Nullstellensatz). For any non-trivial 2-rig A there is a map

A→ 2.

Proof. By hypothesis and Lemma 6.1, the codomain of the unit A→ LA
is not trivial. Consider now the variety dLat→ iRig. The left adjoint

L′ : iRig→ dLat is described explicitly in [4, Lemma 4.3] which also im-

plies that the unit LA→ L′(LA) is local (in the sense that it reflects 1) so the

distributive lattice L′(LA) is non-trivial. Classical lattice theory then implies

the existence of a map L′(LA)→ 2, so we have a composite rig morphism

A→ LA→ L′(LA)→ 2.

Corollary 6.6 (Nullstellensatz). Every connected object in Aff2 has a point.
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7. The Gaeta topos of Aff2

We can now apply standard topos theory to construct a topos ‘of spaces’ em-

bedding the category of affine 2-spaces in such a way that finite coproducts

are preserved.

Theorem 7.1. The Gaeta topos of Aff2 is pre-cohesive over sets.

Proof. Exactly as in Proposition 1.7. By Corollary 5.6 the Gaeta topos of

Aff2 is equivalent to the topos of presheaves on the category of connected

affine 2-schemes and every every connected affine 2-scheme has a point by

Corollary 6.6.

Theorem 7.1 and the related Proposition 6.5 show that the rig 2 has cer-

tain typical properties of algebraically closed fields.

As suggested in [11], standard techniques allow us to give a presentation

of the geometric theory classified by the topos of Theorem 7.1. We give

details below.

Proposition 7.2. The Gaeta topos of Aff2 classifies the extension of the the-

ory of 2-rigs presented by the following sequents.

0 = 1 ⊢ ⊥
(x+ y = 1) ∧ (xy = 0) ⊢x,y [(x = 1) ∧ (y = 0)] ∨ [(x = 0) ∧ (y = 1)]

In other words, this G(Aff2) classifies ‘Boolean-free’ 2-rigs.

Proof. First let us give a dual description of the basis for the Gaeta topology

in (2/Rig)fp. Our knowledge of products in 2/Rig implies that a Gaeta

cocover on an (f.p.) 2-rig A is a finite family (A→ A[a−1
i ] | i ∈ I) of maps

in (2/Rig)fp such that aiaj = 0 for every i, j ∈ I and the ideal 〈ai | i ∈ I〉
generated by the ai’s is trivial in the sense that it contains 1. In this case, for

brevity, we will also say that the family (ai | i ∈ I) covers A.

On the other hand, there is a more or less general procedure to exhibit

an explicit site for the classifier of Boolean-free 2-rigs. See, for example,

[6, Proposition D3.1.10]). Roughly speaking, one first constructs the classi-

fier for the restricted (algebraic) theory presented by the equations and then

forces the remaining axioms by imposing a Grothendieck topology. In the

present case, the classifier for the theory of 2-rigs may be described as the
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topos [(2/Rig)fp,Set] = Âff2 of functors (2/Rig)fp → Set; and the clas-

sifier of Boolean-free 2-rigs may be obtained as the sheaf topos associated

to the least Grothendieck topology on Aff2 ‘forcing’ the coherent sequents

in the statement. More explicitly, the classifying topos for idempotent 2-rigs

may be described as the topos of sheaves on the site (Aff2, J) where J is the

least Grothendieck topology ‘containing’ the cocover

2[x, y]/(xy = 0, x+ y = 1)

��

// 2[x, y]/(x = 0, y = 1) ∼= 2

2 ∼= 2[x, y]/(x = 1, y = 0)

and the empty cocover on the terminal object. The explicit dual description

of the Gaeta topology in the first paragraph implies that the two cocovers

generating J are in the basis for the Gaeta topology. So J is included in the

Gaeta topology. On the other hand, any binary cocover

A/(v) Aoo // A/(u)

with uv = 0 and u+ v = 1 in the Gaeta basis appears as the pushout, along

the map 2[(x+ y)−1, xy]→ A that sends x to u and y to v, of the main cover-

age generating J . A simple inductive argument as in [12, Lemma VIII.6.2]

implies that all the non-empty Gaeta cocovers are in J . Hence, the Gaeta

topology is included in J . Altogether, the two topologies are the same.

It is well-known that for any ring K, the classifier of K-algebras (i.e. the

presheaf topos [(K/Ring)fp,Set]) and some of its subtoposes are models

of Synthetic Differential Geometry [8, Part III]. Folklore says that this also

holds for arbitrary rigs. We end this section with a sketch of the proof that

one of the key axioms of SDG holds in the Gaeta topos of 2.

Let R = (2/Rig)fp(2[x],−) in G(Aff2) be the generic Boolean-free 2-

rig. Let the following diagram be a pullback

D

��

// 1

0
��

R
∆

// R×R ·
// R
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or, alternatively, define D = {x ∈ R | x2 = 0} ⊆ R using the internal lan-

guage of G(Aff2). The composite

R×R×D
idR×·

// R×R
+

// R

transposes to a map R×R→ RD.

Proposition 7.3 (The KL-axiom holds in the Gaeta topos of 2). The canon-

ical map R×R→ RD is an isomorphism in G(Aff2).

Proof. For any rig A, the universal morphism A→ A[ǫ] in Rig adding

an element ǫ of square-zero may be built as usual by taking the additive

monoid A× A equipped with multiplication (a, a′)(b, b′) = (ab, ab′ + a′b)
and ǫ = (0, 1) as selected element of square 0. If we let a = (a, 0) ∈ A[ǫ]
then every element of A[ǫ] is of the form a+ bǫ. The object D is repre-

sentable by 2[ǫ] and the subobject D → R, as a cosieve in (2/Rig)fp, is

generated by the map 2[x]→ 2[ǫ] sending x to ǫ. (Notice that the pull-

back defining D could be taken in Aff2.) The object RD, as a functor

(2/Rig)fp → Set, sends A in the domain to the underlying set A× A of

A[ǫ]. The canonical map R×R→ RD, at stage A, sends the ordered pair

(a, b) ∈ (R×R)A = A× A to a+ bǫ ∈ (RD)A = A[ǫ].

The resulting differential geometry in G(Aff2) should be an interesting

pursuit. See also [11, Section 1].

8. The extensive category of Affine i-schemes

Let iRigfp → iRig be the full subcategory of finitely presentable integral

rigs.

Corollary 8.1. The full subcategory iRigfp → iRig is closed under prod-

ucts and it is therefore coextensive.

Proof. Let F [S] be the free integral rig generated by the set S. As in Propo-

sition 2.3 we need only show that if S and T are finite then F [S]× F [T ] is

finitely presented. By Proposition 2.3 again there are finite sets U , V and a

coequalizer

2[V ]
//

// 2[U ] // 2[S]× 2[T ]
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in the category 2/Rig. The reflection L : 2/Rig→ iRig preserves finite

products by Corollary 6.4 so it sends the coequalizer above to the coequalizer

L(2[V ])
//

// L(2[U ]) // L(2[S])× L(2[T ])

in iRig. As L(2[W ]) = FW for any set W , the result follows.

Naturally, we introduce the following.

Definition 8.2. The category of affine i-schemes is the (extensive) opposite

of iRigfp and it will be denoted by iAff .

We next show that the Gaeta topos of iAff is pre-cohesive using the same

techniques that we used for a Aff2.

Corollary 8.3. Every finitely generated integral rig is Noetherian.

Proof. It is clear from the definition of integral rig that iRig is a variety of

2-rigs so it follows from classical universal algebra that the full subcategory

iRig→ 2/Rig is regular epireflective and closed under regular quotients

and directed unions [1, Corollary 10.21].

By regular epireflectivity every integral rig freely generated by a set of

generators is a quotient of free 2-rig freely generated by the same set. If the

generating set is finite then the free 2-rig is Noetherian by Lemma 5.4, so the

free integral rig is also Noetherian by Lemma 3.5. Lemma 3.5 also implies

that finitely generated integral rigs are Noetherian.

Just as in Corollaries 5.5 and 5.6 we may deduce the next result.

Corollary 8.4. Every finitely presentable integral rig is a finite product of

directly indecomposable finitely presentable integral rigs.

It is plausible that these finite direct decomposition results may be lifted

to other algebraic categories equipped with a suitable functor to 2/Rig or to

iRig such as those discussed in [4], but we will not pursue that here.

Theorem 8.5. The Gaeta topos of iAff is pre-cohesive over sets and classi-

fies the extension of the theory of 2-rigs presented by the following sequents.

0 = 1 ⊢ ⊥
(x+ y = 1) ∧ (xy = 0) ⊢x,y [(x = 1) ∧ (y = 0)] ∨ [(x = 0) ∧ (y = 1)]

In other words, this Gaeta topos classifies ‘Boolean-free’ integral rigs.
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Proof. To prove that the topos is pre-cohesive proceed as in Proposition 1.7

(or Theorem 7.1). By Corollary 8.4 the Gaeta topos of iAff is equivalent to

the topos of presheaves on the category of connected affine i-schemes and

every connected affine i-scheme has a point by Corollary 6.6.

Also, the Gaeta topology in iAff has the same dual description made

explicit in Proposition 7.2. (See [4].) Then the same argument used in 7.2

proves the present result.

9. Really local integral rigs

A rig A (in a topos, with subobject classifier Ω) is really local if the charac-

teristic map A→ Ω of the subobject of (multiplicatively) invertible elements

of A is a rig morphism when Ω is considered equipped with its canonical dis-

tributive lattice structure [9].

In an integral rig the unit 1 is the only invertible element. It is then easy

to check [4, Lemma 6.2] that an integral rig (in a topos E) is really local if

and only if it satisfies the following sequents

0 = 1 ⊢ ⊥
x+ y = 1 ⊢x,y (x = 1) ∨ (y = 1)

in the internal logic of E . Notice that this sequents imply those in Theo-

rem 8.5.

Notice also that if R is an integral rig in a topos E then the sequent

(x = 1) ∨ (y = 1) ⊢x,y x+ y = 1

holds, but the witnessing inclusion

{(x, y) | (x = 1) ∨ (y = 1)} ⊆ {(x, y) | x+ y = 1}

of subobjects of R×R need not be an isomorphism, so R need not be re-

ally local. Something similar happens in the classical context: the generic

idempotent-free C-algebra is not local (in the classical sense) in the complex

Gaeta topos; on the other hand, the same object, as an algebra in the Zariski

subtopos, is local; indeed, it is the generic local C-algebra.

Lemma 9.1. The generic Boolean-free integral rig R is not really local.
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Proof. By Theorem 8.5 the classifier of Boolean-free integral rigs is the

Gaeta topos of iAff and the generic object therein is the ‘affine line’ rep-

resentable by the free integral rig on one generator. To check if R is really

local in the Gaeta topos G(iAff) it is convenient to present the topos as that of

presheaves on connected objects. Let iRigfpi → iRigfp be the full subcat-

egory of directly indecomposable (finitely presentable) integral rigs so that

G(iAff) may be identified with the functor category [iRigfpi,Set].
Let i : Set→ iRig be the left adjoint to the forgetful functor and let

i[x] be the free integral rig on one generator so that the representable object

R = iRigfpi(i[x],−) in G(iAff) is the generic Boolean-free integral rig.

The ‘affine plane’ R×R in G(iAff) is representable by the free integral

rig i[x, y] on two generators so the subobject {(x, 1) | x ∈ R} ⊆ R×R in

G(iAff), which is the same thing as the monic id× 1 : R× 1→ R×R, is

the cosieve in iRigfpi generated by the map i[x, y]→ i[x, y, y−1] ∼= i[x] that

sends x to x, and y to 1. Similarly for {(1, y) | y ∈ R} ⊆ R×R. Hence, the

subobject {(x, y) | (x = 1) ∨ (y = 1)} ⊆ R×R is the cosieve in iRigfpi

generated by the span i[x]← i[x, y]→ i[y].
On the other hand, the subobject {(x, y) | x+ y = 1} ⊆ R×R in the

topos G(iAff) is the cosieve in iRigfpi generated by the quotient morphism

i[x, y]→ i[x, y]/(x+ y = 1). So it is enough to show that this quotient does

not factor through i[x, y]→ i[x] or i[x, y]→ i[y]; but this is easy.

Loosely speaking, although G(iAff) has the ‘right’ coproducts, the col-

imit (join)

{(x, 1) | x ∈ R} ∨ {(1, y) | y ∈ R}

of subobjects of R×R is not ‘right’ in G(iAff) (or in iAff ) but we can correct

it by a considering a suitable subtopos. Indeed, the least subtopos of G(iAff)
forcing the inclusion

{(x, y) | (x = 1) ∨ (y = 1)} ⊆ {(x, y) | x+ y = 1}

to become an isomorphism is the topos of sheaves on iAff for the least

Grothendieck topology containing the Gaeta coverage and also the sieve

(co)generated by the span

i[x] i[x, y]/(x+ y = 1)oo // i[x]

in iAffop = iRigfp. In the classical case over the complex numbers the anal-

ogous construction results in the Zariski topos.
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10. The ‘Zariski’ topos of the theory of integral rigs

Let C be a category with finite limits and equipped with a distinguished in-

tegral rig R. For any finite family (fi : X → R | i ∈ I) we denote the com-

posite

X
〈fi|i∈I〉

// RI

∑
i∈I

// R

by
⊕

i∈I fi : X → R. The family is said to cocover X if the diagram below

X
⊕

i∈I fi

&&

〈fi|i∈I〉
��

// 1

1
��

RI
∑

i∈I

// R

commutes.

A finite family (ui : Ui → X | i ∈ I) of maps in C is said to cover X
if there is a cocovering family (fi : X → R | i ∈ I) such that the following

diagram is a pullback

Ui

ui

��

// 1

1
��

X
fi

// R

for every i ∈ I . Notice that all the maps in a covering family must be monic.

One easily sees that isomorphisms cover and that covers are stable under

pullback.

Different properties of R will determine different properties of covers.

Rather than pursuing this idea in the abstract we are going to concentrate

on the case C = iAff equipped with the integral rig R therein determined

by the free integral rig i[x] on one generator (considered as an object in

iAffop = iRigfp).

If A is in iRigfp and X is the corresponding object in iAff then a map

X → R in iAff is a map i[x]→ A in iRigfp; that is, an element in A. So

a family (fi : X → R | i ∈ I) may be identified with a family (ai | i ∈ I)
of elements in A. The map

⊕
i∈I fi : X → R corresponds to

∑
i∈I ai ∈ A.

Hence, the family (fi : X → R | i ∈ I) cocovers the object X if and only if∑
i∈I ai = 1 ∈ A. In this case we say that (ai | i ∈ I) cocovers A.
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Lemma 10.1. A finite family (ai | i ∈ I) cocovers A if and only if the ideal

generated by the family contains 1 ∈ A.

Proof. The generated ideal contains the unit 1 if and only if there is a family

(bi | i ∈ I) such that
∑

i∈I aibi = 1. In an integral rig this holds if and only

if 1 ≤
∑

i∈I aibi ≤
∑

i∈I ai.

Again, let i[x]→ A in iRigfp be the unique map determined by a ∈ A
and let X → R be the corresponding map in iAff . Any pullback in iAff as

on the left below

U

��

// 1

1

��

i[x]

��

// 2

��

X // R A // A[a−1]

corresponds to a pushout in iRigfp as on the right above, where the top map

sends x to 1 and the left map sends x to a ∈ A. Hence, a finite family of

(ui : Ui → X | i ∈ I) of maps in C covers X if and only if there is a cocover

(ai | i ∈ I) of A such that the map in iRigfp corresponding to ui has the

universal property of A→ A[a−1
i ] for each i ∈ I .

Altogether, already familiar with the (trivial) duality iAff = iRig
op
fp, we

may say a (co)cover of A in iRigfp is a finite family of universal maps

(A→ A[a−1
i ] | i ∈ I) such that

∑
i∈I ai = 1 ∈ A.

In order to continue our study of (co)covers it is convenient to have a

concrete construction the universal maps inverting elements in integral rigs.

Let A be an integral rig and F ⊆ A be a multiplicative submonoid. Let

A→ A[F−1] be the universal map in iRig inverting all the elements of F ;

in other words, sending all the elements of F to 1. For x, y ∈ A write x |F y
if there is a w ∈ F such that wx ≤ y. (Notice the similarity with ≤F in

Section 6; but notice also that, as A is integral, the condition “1 ≤F u for

every u ∈ F ” in Lemma 6.2 only holds if F is trivial.) Write x ≡F y if

x |F y and y |F x. Lemma 3.4 in [4] shows that ≡F is a congruence and that

the quotient A→ A/≡F has the universal property of A→ A[F−1].

Lemma 10.2. The map A→ A[F−1] inverts a ∈ A if and only if there exists

w ∈ F such that w ≤ a. Also, the object A[F−1] is terminal if and only if

0 ∈ F .
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Proof. The universal map inverts a if and only if 1 ≡F a if and only if 1 |F a
and a |F 1. One of the conjuncts is trivial and the other is equivalent to the

existence of a w ∈ F such that w ≤ a.

Also, A[F−1] is terminal if and only if 0 ≡F 1 if and only if 0 ≤F 1 and

1 ≤F 0. Again, one of the conjuncts is trivial and the other is equivalent to

the existence of an w ∈ F such that w ≤ 0.

Taking a ∈ A and F = {an | n ∈ N} ⊆ A we obtain A→ A[a−1]. By

Lemma 10.2 this map inverts b ∈ A if and only if there is an n ∈ N such that

an ≤ b.
We have already observed in the abstract setting that isomorphisms cover

and that covers are stable under pullback. So naturally we now concentrate

on compositions of (co)covers. In order to carry out the arguments we intro-

duce a small piece of notation. For a ∈ A we write
(−)
a

: A→ A[a−1] for the

universal map so that, for b ∈ A, the resulting element in A[a−1] is denoted

by b
a
∈ A[a−1]. For instance, a straightforward argument using universal

properties shows the following.

Lemma 10.3. For any a, b ∈ A, the composite maps

A→ A[a−1]→ A[a−1][(
b

a
)−1] and A→ A[b−1]→ A[b−1][(

a

b
)−1]

have the universal property of A→ A[(ab)−1] in iRig and the following

square is a pushout

A

��

// A[b−1]

��

A[a−1] // A[(ab)−1]

in iRig.

Those familiar with the usual presentation of the Zariski topos will rec-

ognize the following auxiliary fact.

Lemma 10.4. If the family (
bj
a
| j ∈ J) covers A[a−1] then there exists a

1 ≤ k ∈ N such that ak ≤
∑

j∈J abj in A.
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Proof. By hypothesis we have
∑

j bj

a
=
∑

j

bj
a
= 1 so, as explained above

(Lemma 10.2), there is an n ∈ N such that an ≤
∑

j bj , so an+1 ≤
∑

j abj .

We can now prove that (co)covers compose.

Lemma 10.5. If (ai | i ∈ I) covers A and, for each i ∈ I , (
bi,j
ai
| j ∈ Ji) cov-

ers A[a−1
i ] then (aibi,j | i ∈ I, j ∈ Ji) covers A.

Proof. By hypothesis
∑

i∈I ai = 1 and, by Lemma 10.4 above, there is a

1 ≤ ki ∈ N such that akii ≤
∑

j aibi,j for each i ∈ I . So, by [4, Lemma 4.1],

1 =

(∑

i∈I

ai

)∏
i∈I ki

≤
∑

i∈I

akii ≤
∑

i∈I

∑

j∈Ji

aibi,j

as we needed to show.

We summarize what we have obtained so far in this section.

Proposition 10.6. The cocovering families in iRigfp form the basis for a

Grothendieck topology on iAff and the resulting topos of sheaves classifies

really local integral rigs.

Proof. We observed that identities cover and that covers are stable under

pullback. Lemma 10.5 proves that covers compose. We therefore have a

basis and the resulting topos of sheaves. We occasionally refer to it as the

‘Zariski’ basis.

An argument analogous to that of Proposition 7.2 (and Theorem 8.5)

establishes the classifying role of the topos of sheaves. In more detail one

shows that the topology generated be the sequents stated in the beginning of

the section coincides with the topology generated by the Zariski basis. To

sketch the idea in more detail let i : Set→ iRig be the left adjoint to the

forgetful functor. For efficiency we use some familiar notational tricks so,

for example we write i[(x+ y)−1] instead of i[x, y][(x+ y)−1]. Consider the

span

i[x−1, y] i[(x+ y)−1]oo // i[x, y−1]
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in iRigfp induced by the sequent x+ y = 1 ⊢x,y (x = 1) ∨ (y = 1). Clearly,

the pair x, y ∈ i[(x+ y)−1] cocovers. Similarly, the empty family cocov-

ers the terminal algebra. That is, the topology generated by the sequents is

included in the Zariski topology. Finally, one checks that these to covers

generate the Zariski basis.

The basis on iAff described in this section may be called the ‘Zariski’

basis. (We stress the evident fact that, as in the classical case over fields, the

Zariski basis contains the Gaeta basis.) The topos of sheaves for the Zariski

basis on iAff will be denoted by Z .

Remark 10.7 (On the representation of integral rigs). Let R be the generic

really local integral rig in Z . The results in [4] imply that for any integral

rig A there exists a spatial topos Γ : EA → Set and a geometric morphism

OA : EA → Z over Set such that the algebra Γ(O∗
AR) of global sections of

the sheafO∗
AR of really local integral rigs is isomorphic to A. Compare with

the classical Zariski representation of rings.

11. ‘Zariski’ covers of connected objects

In order to show that the Zariski topos of Section 10 is locally connected

(over Set) we will present a locally connected site for it. Local connected-

ness of the site will follow from the main result of the present section which

proves, roughly speaking, that the Zariski basis on iAff is well behaved with

respect to connectedness. We first need an algebraic result concerning cov-

ering families.

Lemma 11.1. Let A be an integral rig and let the finite family (ai ∈ A | i ∈ I)
cover A. Then, for any family (ki ∈ N | i ∈ I), (akii ∈ A | i ∈ I) covers A.

Proof. A standard argument using the multinomial theorem. In more detail,

if we let k = I ·maxi∈I ki then

1 =

(∑

i∈I

ai

)k

=
∑

i∈I

ui(ai
ki)

for some family (ui | i ∈ I) of elements of A. Hence, 1 ≤
∑

i∈I a
ki
i .
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The next result has a more geometric flavour.

Lemma 11.2. Let X be connected in iAff and let the subobjects u : U → X ,

v : V → X form a Zariski cover of X . If u and v are disjoint then either U
is initial or V is initial.

Proof. We argue on the algebraic side. Let a, b ∈ A cover a directly inde-

composable integral rig A. By Lemma 10.3 the cointersection of A→ A[a−1]
and A→ A[b−1] is the universal A→ A[(ab)−1].

If the cointersection A[(ab)−1] is terminal then, by Lemma 10.2, there is

an n ∈ N such that (ab)n = anbn = 0. Also, by Lemma 11.1, an + bn = 1.

So, as A is directly indecomposable by hypothesis, we may, without loss

of generality, assume that an = 1 and bn = 0. Then A[b−1] is terminal by

Lemma 10.2.

The following variant will be useful.

Lemma 11.3. Let X be connected in iAff and let the subobjects u : U → X ,

v : V → X form a Zariski cover of X . If U , V are non-initial in iAff then

there is a point in the intersection u ∧ v. Equivalently, there are points

1→ U and 1→ V such that the following diagram

1

��

// V

v

��

U u
// X

commutes in iAff .

Proof. By Lemma 11.2 the intersection is not empty so it is a finite coprod-

uct of connected objects. Hence, a point in the intersection exists by the

Nullstellensatz for 2-rigs.

A subobject U → X in iAff is basic if the corresponding map in iRigfp

is of the form A→ A[a−1] for some a ∈ A. The next result shows that finite

families of basic subobjects (of a common object) have a kind of ‘join’.

Lemma 11.4. If (ui : Ui → X | i ∈ I) is a finite family of basic subobjects

in iAff then there is a basic subobject u : U → X such that the following

hold:
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1. For every i ∈ I , ui ≤ u as subobjects of X .

2. Every point of U factors through one of the inclusions Ui → U of the

previous item.

Proof. We argue on the algebraic side. We have a finite family

(A→ A[a−1
i ] | i ∈ I)

in iRigfp (corresponding to the family of subobjects in the statement). Let

a =
∑

i∈I ai and consider the map A→ A[a−1]. Its universal property im-

plies, for each i ∈ I , the existence of a unique map A[a−1]→ A[a−1
i ] such

that the left triangle below

A

""

// A[a−1]

��

f

!!

A[a−1
i ]

f ′

// 2

commutes in iRigfp, so the first item is proved. To prove the second item let

f be a map as in the right above. Then
∑

i∈I fai = 1 ∈ 2 and, as 2 is really

local, there is an i ∈ I such that fai = 1. So there is an f ′ such that the right

triangle above commutes.

The next result is a ‘Zariski analogue’ of a familiar property of open

covers of connected topological spaces.

Proposition 11.5. Let (ui : Ui → X | i ∈ I) be a Zariski cover of X in iAff

such that Ui is not initial for each i ∈ I . If X is connected then, for every

k, l ∈ I there exists a sequence k = i0, i1, . . . , in = l ∈ I and a commutative

diagram as below.

1

�� ��

1

�� $$

. . . 1

zz   

Ui0

ui0
//

Ui1

ui1

//

Ui2 . . . Uin−1

ui2

,,

uin−1

rr

Uin

uinooX
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Proof. Fix k ∈ I and let J ⊆ I be the subset of those l ∈ I such that there is

a sequence k = i0, i1, . . . , in = l ∈ I and a diagram as in the statement. Let

u : U → X be the basic subobject determined as in Lemma 11.4 by the fam-

ily (uj : Uj → X | j ∈ J). Similarly, Let v : V → X be the basic subobject

determined by the complement J ′ ⊆ I of J ⊆ I . It is not difficult to check

that u, v cover X . Assume for the sake of contradiction that J ′ is not-empty.

Then V is not initial so Lemma 11.3 implies the existence of a point in the

intersection of u and v. Lemma 11.4 implies that the same point is in Uj

for some j ∈ J and in Uj′ for some j′ ∈ J ′. Then j′ ∈ J , which is absurd.

Hence J ′ is empty.

12. The ‘Zariski’ topos is pre-cohesive

In Section 10 we equipped iAff with the basis of a ‘Zariski’ topology and

showed that the resulting topos Z of sheaves classifies really local integral

rigs. In this section we show that this basis is subcanonical and that the

canonical geometric morphism Z → Set is pre-cohesive. (Again, the gen-

eral strategy is analogous to that of the classical case.)

Lemma 12.1. Zariski covers in iAff are jointly epic.

Proof. We argue on the algebraic side. We prove that if A is a integral rig

and the finite family (ai ∈ A | i ∈ I) covers A then (A→ A[a−1
i ] | i ∈ I) is

a jointly monic family of maps.

Let x, y ∈ A be such that x
ai

= y

ai
in A[a−1

i ] for each i ∈ I . Then, there

is an m ∈ N such that ami x ≤ y and ami y ≤ x for each i ∈ I . As the family

(ai ∈ A | i ∈ I) covers, so does (ami ∈ A | i ∈ I) by Lemma 11.1. That is,

1 =
∑

i∈I a
m
i . Then

x =
∑

i∈I

ami x ≤
∑

i∈I

y = y

and, similarly, y ≤ x.

It follows that representable objects in îAff are separated.

Proposition 12.2. The ‘Zariski’ topology on iAff is subcanonical.
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Proof. Recall that we denote the left adjoint to the forgetful functor by

i : Set→ iRig so that the free integral rig on one generator may be denoted

by i[x]. We first prove that R = iRigfp(i[x],−) : iRigfp → Set is a sheaf.

Let (ai | i ∈ I) cover A. By Lemma 10.3, a family (xi

ai
∈ A[a−1

i ] | i ∈ I) is

compatible with the cover if, for every i, j ∈ I , xi

aiaj
=

xj

aiaj
∈ A[(aiaj)

−1].

By Lemma 10.2 above there is, for each i, j ∈ I , an mi,j ∈ N such that

(aiaj)
mi,jxi ≤ xj and (aiaj)

mi,jxj ≤ xi. If we let m be the largest of the

mi,j’s then we get that (aiaj)
mxi ≤ xj and (aiaj)

mxj ≤ xi. So, if we let

x =
∑

i∈I a
m
i xi then, clearly amj xj ≤ x for every j ∈ I and also

amj x =
∑

i∈I

(aiaj)
mxi ≤

∑

i∈I

xj = xj

so
xj

aj
= x

aj
in A[a−1

j ]. In other words, the compatible family has an amalga-

mation. This amalgamation is unique by Lemma 12.1.

Sheaves are closed under finite limits and every object in iAff is the

equalizer of a parallel pair of maps between finite powers of R. As R is

a sheaf, the result follows.

We next show that the canonical geometric morphism Z → Set is pre-

cohesive. It is enough to provide a locally connected site for Z , but the one

we have on iAff is not. The rest of the section is devoted to find one.

Since we have presented our toposes using bases for Grothendieck topolo-

gies it is convenient have a version of the Comparison Lemma in terms of

these. The following is surely folklore.

Let C be a small category equipped with the basis K for a Grothendieck

topology. LetD → C be a full subcategory of C. We say that the subcategory

is (K-)dense if for every C in C there is a K-cover (Di → C | i ∈ I) in C
with Di in D for every i ∈ I . For D in D let K ′D ⊆ KD be the set of

K-covers (Di → D | i ∈ I) such that Di in D for every i ∈ I .

Lemma 12.3. With the notation above, if D → C is K-dense then K ′ is the

basis for a Grothendieck topology on D and the obvious restriction functor

induces an equivalence Sh(C, K)→ Sh(D, K ′).

Proof. It is easy to check that isomorphisms K ′-cover and that K ′-covers

compose. Assume now that (fi : Di → D | i ∈ I) is a K ′-cover. So it
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is a K-cover and then, for any g : E → D in D, there exists a K-cover

(gj : Cj → E | j ∈ J) such that for every j ∈ J there is an ij ∈ I such that

ggj factors through fij . As D is K-dense there is, for each j ∈ J , a K-cover

(hj,k : Bj,k → Cj | k ∈ Jj) with Bk,j in D for every k ∈ Jj . The composite

family (gjhj,k : Bj,k → E | j ∈ J, k ∈ Jj) is a K-cover and, as all the do-

mains are in D, it is also a K ′-cover. Moreover, for every j ∈ J and k ∈ Jj
the map ggjhj,k factors through fij . Altogether, we have shown that K ′ is

the basis of a Grothendieck topology.

Let K be the Grothendieck topology generated by K. That is, a sieve on

C in C is K-covering if and only if it contains all the maps in a K-covering

family. Density of D in the ‘basis sense’ of the statement easily implies

that D is K-dense in the sense of the Comparison Lemma, so restriction

along D → C induces an equivalence Sh(C, K)→ Sh(D, L) where L is the

topology on D induced by K (in the sense of the Comparison Lemma). It

remains to show that the basis K ′ generates the topology L.

A sieve S in D on an object D is L-covering if and only if the generated

sieve S = {fg | f : D′ → D in S, g : C → D′ in C} in C is K-covering. That

is, if and only if S contains the maps in a K-covering family F on D. Com-

posing F with the special covers provided by density (in the ‘basis sense’),

as in the paragraph above, we obtain that S contains the maps in a K ′-cover.

In other words, every L-covering sieve is K ′-covering where K ′ is the topol-

ogy generated by K ′. Conversely, if a sieve S on D is K ′-covering then it

contains the maps in a K ′-covering family. As every K ′-covering family is

K-covering, S is K-covering and hence, S is L-covering.

We may now prove the main result of the section.

Theorem 12.4. The classifier of really local integral rigs is pre-cohesive

over sets.

Proof. By [7, Proposition 1.4] it is enough to provide a connected and lo-

cally connected site of definition for Z such that every object in the site

has a point. Let K be the ‘Zariski’ basis on iAff introduced in Section 10.

As the Zariski basis contains the Gaeta basis and every object in iAff is a

finite coproduct of connected objects (Corollary 8.4), the full subcategory

iAff c → iAff of connected objects is K-dense. Lemma 12.3 implies that

Z = Sh(iAff , K) is equivalent to Sh(iAff c, K
′) where K ′ is the restriction
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of K. The category iAff c has a terminal object (because 2 is directly inde-

composable in iRig). That is, the site (iAff c, K
′) is connected. Also, every

object has a point by Proposition 6.5. Finally, the site is locally connected

by Proposition 11.5.

Altogether, as in the classical space, the classifier Z → Set of really

local integral rigs is pre-cohesive; the Yoneda embedding restricts to a full

inclusion iAff → Z that sends Zariski covers to jointly epimorphic families

so, in particular, it preserves finite coproducts.

Recent unpublished work on integral rigs by Jipsen and Spada on subdi-

rectly irreducible integral rigs suggests that it is possible to calculate level ǫ
of the pre-cohesive toposes G(iAff) and Z as in the classical complex case

discussed in [14].

On the other hand, if we let R be the generic really local integral rig then,

although the subobject D = {x ∈ R | x2 = 0} → R, is non-trivial, the expo-

nential RD is not isomorphic to R×R. In other words, the Kock-Lawvere

axiom for SDG does not hold. At present it is not clear to the author if this is

a drawback or an opportunity for interesting variants of the KL-axiom. Also

in contrast with the classical case, the topos of simplicial sets is a subto-

pos of Z . So there is a full inclusion ∆̂→ Z and, for every X in Z (an

‘i-scheme’), a universal map X → SX towards a simplicial set. Intuitively,

the inverse image Z → ∆̂ is a ‘combinatorial realization’ analogous to the

classical ‘geometric realizations’ or, perhaps, it is more similar to the ‘com-

binatorial truncations’ ∆̂→ ∆̂n induced by the inclusions ∆n → ∆ for each

n ∈ N. See Corollary 7.5 in [13].
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[15] P. Mayr and N. Ruškuc. Finiteness properties of direct products of

algebraic structures. J. Algebra, 494:167–187, 2018.

[16] M. Menni. Sufficient cohesion over atomic toposes. Cah. Topol. Géom.
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