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Dedicated to my good friend Tom Rewwer on the occasion of
his 35th birthday.

Résumé. Les variétés lisses ont toujours été intuitivement perçues comme
étant des espaces munis d’une géométrie affine à l’échelle infinitésimale.
Nous précisons cette notion en Géométrie Différentielle Synthétique en mon-
trant que chaque variété est naturellement munie d’une structure d’espace
infinitésimal affine, que nous interprétons comme l’action du clone des com-
binaisons affines sur une structure infinitésimale du premier ordre construite
à partir du premier voisinage de la diagonale. Nous définissons une structure
infinitésimale du second ordre basée sur le second voisinage de la diagonale
et montrons que sur toute variété une connexion affine symétrique s’étend
en une structure infinitésimale affine du second ordre en utilisant la bijection
log-exp induite par la connexion.

Abstract. Smooth manifolds have been always understood intuitively as
spaces with an affine geometry on the infinitesimal scale. We make this no-
tion precise within Synthetic Differential Geometry by showing that every
manifold carries a natural structure of an infinitesimally affine space, which
we interpret as the action of the clone of affine combinations on a first-order
infinitesimal structure constructed from the first neighbourhood of the diag-
onal. We define a second-order infinitesimal structure based on the second
neighbourhood of the diagonal and show that on any manifold a symmetric
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affine connection extends to a second-order infinitesimally affine structure
using the log-exp bijection induced by the connection.
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1. Introduction

A deeply rooted intuition about smooth manifolds is that of spaces that be-
come linear spaces in the infinitesimal neighbourhood of each point. On the
infinitesimal scale the geometry underlying a manifold is thus affine geom-
etry. To make this intuition precise requires a good theory of infinitesimals
as well as defining precisely what it means for two points on a manifold to
be infinitesimally close. As regards infinitesimals we make use of Synthetic
Differential Geometry (SDG) and adopt the neighbourhoods of the diago-
nal from Algebraic Geometry to define when two points are infinitesimally
close. The key observations on how to proceed have been made by Kock in
[5]: 1) The first neighbourhood of the diagonal exists on formal manifolds
and can be understood as a symmetric, reflexive relation on points, saying
when two points are infinitesimal neighbours, and 2) we can form affine
combinations of points that are mutual neighbours.

It remains to make precise in which sense a manifold becomes a model of
the theory of affine spaces. This has been done in [1]. Firstly, one abstracts
from Kock’s infinitesimal simplices of mutual infinitesimally neighbouring
points to what is called an infinitesimal structure. (See also section 2 for a
definition.) An infinitesimal structure serves then as the domain of definition
for the operations of affine combinations. A space together with an infinites-
imal structure (i-structure) and an action of the clone of affine operations on
that infinitesimal structure is called an infinitesimally affine space (i-affine
space).

Formal manifolds and affine schemes (considered as either duals of com-
mutative rings, or C∞-rings) are examples of i-affine spaces. The i-structures
are generated by the first neighbourhood of the diagonal. In this paper we
shall construct an i-structure from the second-order neighbourhood of the di-
agonal on Rn for a ring R satisfying the Kock-Lawvere axioms for second-
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order infinitesimals. The definition of this i-structure is guided by the re-
quirement that it is preserved by all maps f : Rn → Rm (hence can be
defined on formal manifolds as well) and that the affine structure of Rn re-
stricts to an i-affine space on the second-order i-structure. Both of these hold
true for the i-structure generated by the first neighbourhood of the diagonal.
In contrast to the first neighbourhood of the diagonal the i-affine structure
on the second-order neighbourhood is not preserved by all maps anymore.
Therefore, whereas a manifold carries a second-order i-structure, an i-affine
structure has to be imposed as an additional piece of data.

We show that any second-order i-affine structure on a manifold induces
a symmetric affine connection, and, conversely, any symmetric affine con-
nection extends to a second-order i-affine structure in such a way that the
latter is of the same affine-algebraic form as the canonical connection on an
affine space. The second-order i-affine structure is constructed by using the
second-order log-exp bijection induced by the connection as introduced by
Kock in [5, chap. 8.2]. With the help of the log-exp bijection the infinites-
imally linear (i-linear) structure on the tangent space can be transported to
the formal manifold. For affine combinations this is independent of the cho-
sen base point and thus defines an i-affine structure on the second-order
i-structure. The log-exp bijection yields also a natural geometric interpre-
tation of an affine combination as the geometric addition of geodesic line
segments extending the familiar vector parallelogram construction from the
affine plane to curved space.

2. Infinitesimally affine and linear spaces

We shall work mostly within naive axiomatic SDG, as it is done in [5], for
example. Let A be a space. An i-structure on A amounts to give an n-ary
relationA〈n〉 for each n ∈ N that defines which n points inA are considered
as being ‘infinitesimally close’ to each other.

Definition 2.1 (i-structure). Let A be a space. An i-structure on A is an
N-indexed family n 7→ A〈n〉 ⊆ An such that

(1) A〈1〉 = A, A〈0〉 = A0 = 1 (the ‘one point’ space, or terminal object)

(2) For every map h : m → n of finite sets and every (P1, . . . , Pn) ∈ A〈n〉
we have (Ph(1), . . . , Ph(m)) ∈ A〈m〉
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The first condition is a normalisation condition. The second condition
makes sure that the relations are compatible: if we have a family of points
that are infinitesimally close to each other, then so is any subfamily of these
points, or any family created from repetitions. In particular, we obtain that
the A〈n〉 are symmetric and reflexive relations. An n-tuple (P1, . . . , Pn) ∈
An that lies in A〈n〉 will be denoted by 〈P1, . . . , Pn〉 and we shall refer to
these as i-n-tuples. A map f : A→ X that maps i-n-tuples to i-n-tuples for
each n ∈ N, i.e. fn(A〈n〉) ⊆ X〈n〉, is called an i-morphism.

Two trivial examples of i-structures on A are the discrete and the indis-
crete i-structure obtained by taking A〈n〉 to be the diagonal ∆n, respectively
the whole An. The i-structures that are of main interest in SDG are the
i-structures generated by the first neighbourhood of the diagonal (as rela-
tions). We call them nil-square i-structures. For example, let R be a ring1.
Recall that

D(n) = {(d1, . . . , dn) ∈ Rn | didj = 0, 1 ≤ i, j ≤ n}

On Rn the first neighbourhood of the diagonal is given by

{(P1, P2) | P2 − P1 ∈ D(n)}

This is a symmetric and reflexive relation and we can construct an i-structure
from it: take the first neighbourhood of the diagonal as Rn〈2〉 and define the
nil-square i-structure on Rn by

Rn〈m〉 = {(P1, . . . , Pm) | (Pi, Pj) ∈ Rn〈2〉, 1 ≤ i, j ≤ m}

This i-structure is thus generated by Rn〈2〉. Not all i-structures A〈−〉 of
interest need to be generated by A〈2〉. The second-order i-structure defined
in section 3 is not, for example.

If the ring R satisfies the Kock-Lawvere axiom, that is for every n ∈ N
and every map t : D(n)→ R there are unique a0, . . . , an ∈ R such that

t(d1, . . . , dn) = a0 +
n∑

j=1

ajdj, (d1, . . . , dn) ∈ D(n),

1All rings are assumed to be commutative.
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then every map f : Rn → Rm is an i-morphism of the nil-square i-structures.
This is due to the following two facts: linear maps Rn → Rm map D(n) to
D(m), and for P2 − P1 ∈ D(n)

f(P2)− f(P1) = ∂f(P1)[P2 − P1] (1)

where ∂f(P1) denotes the derivative of f at P1. The stated property of linear
maps can be checked by direct computation; the existence and uniqueness of
the linear map ∂f(P1) are both a consequence of the Kock-Lawvere axiom.

The nil-square i-structure induces i-structures on subspaces U ↪→ Rn by
restriction. For formally open subspaces U ↪→ Rn, which are stable under
infinitesimal perturbations at each point (see [4, I.17] or [1, def. 3.2.5] for a
definition), each map f : U → Rm has a derivative; hence every map f :
U → V between formally open subspaces is an i-morphism. Furthermore,
it is possible to glue the i-structures on formally open subspaces together to
get an i-structure on a formal manifold and show that every map between
formal manifolds is an i-morphism. (See [4, prop. I.17.5] and [1, thm. 3.2.8]
for proofs.)

Definition 2.2 (i-affine space). LetA〈−〉 be an i-structure onA. SetA(n) =
{(λ1, ..., λn) ∈ Rn |

∑n
j=1 λj = 1}. The space A is said to be an i-affine

space (over R), if for every n ∈ N there are operations

A(n)× A〈n〉 → A, ((λ1, . . . , λn), 〈P1, . . . , Pn〉) 7→
n∑

j=1

λjPj

satisfying the axioms

• (Neighbourhood) Let λk ∈ A(n), 1 ≤ k ≤ m. If 〈P1, . . . , Pn〉 ∈ A〈n〉
then ( n∑

j=1

λ1jPj, . . . ,
n∑

j=1

λmj Pj

)
∈ A〈m〉

• (Associativity) Let λk ∈ A(n), 1 ≤ k ≤ m, µ ∈ A(m) and
〈P1, . . . , Pn〉 ∈ A〈n〉. We have

m∑
k=1

µk

( n∑
j=1

λkjPj

)
=

n∑
j=1

( m∑
k=1

µkλ
k
j

)
Pj
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F. BÁR CONNECTIONS AND 2ND-ORDER AFFINE STRUCTURES

(Note that the left-hand side is well-defined due to the neighbourhood
axiom.)

• (Projection) Let n ≥ 1 and let enk ∈ Rn denote the kth standard basis
vector for 1 ≤ k ≤ n. For every 〈P1, . . . , Pn〉 ∈ A〈n〉 it holds

n∑
j=1

(enk)jPj = Pk

In particular, we have for n = 1 that 1P = P , P ∈ A.

The neighbourhood axiom makes sure that we can compose affine com-
binations as we are used to, provided we are working over a fixed i-tuple.
The associativity and projection axioms make sure the algebra of affine com-
binations follows the same rules as in all the Rn. A consequence of the
neighbourhood axiom is that every i-tuple generates an affine space over R.
This makes precise the statement that the geometry of the space A is affine
on the infinitesimal scale.

It is not difficult to show by direct calculation that the affine space Rn

satisfies the neighbourhood axiom for the nil-square i-structure making it an
i-affine space2. Moreover, due to (1) it follows that every map f : Rn → Rm

preserves not only the nil-square i-structure but the i-affine combinations as
well. Each map f is an i-affine map.

The nil-square structure of Rn restricts to its formally open subspaces.
Due to (1) all maps between formally open subspaces become i-affine maps
for these i-structures. Like with the i-structures also the i-affine structures on
formally open subspaces can be glued together to an i-affine structure on a
formal manifold. All maps between formal manifolds become i-affine maps
for these i-affine structures [1, thm. 3.2.8]. Any manifold in the sense of
classical differential geometry is a formal manifold3, so any manifold is an
i-affine space and any smooth map between manifolds is i-affine.

2This is also a consequence of the more general [1, cor. 3.1.6 and 2.3.3].
3This is to be understood in the context of well-adapted models of SDG [3], where we

have a fully faithful embedding of the category of smooth manifolds into a Grothendieck
topos that admits a model of the Kock-Lawvere axioms. This embedding maps the real line
R to R, analytical derivatives to derivatives in SDG and it maps open covers to covers by
formally open spaces [3], [4, III.3].
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Affine schemes (considered as either duals of commutative rings, or C∞-
rings) become examples of i-affine spaces over their respective nil-square
i-structure [1, cor. 2.3.3 and 3.1.6]. Every morphism of affine schemes be-
comes an i-morphism. Affine C∞-schemes, for example, form a category of
spaces generalising smooth manifolds. Besides manifolds the category fully
faithfully embeds locally closed subsets of Euclidean space with smooth
maps between them [7, prop. 1.5]. This provides us with a wealth of ex-
amples of i-affine spaces. Furthermore, i-affine spaces are surprisingly well-
behaved under taking colimits of the underlying spaces [1, chap. 2.6], [2].
This and their algebraic nature makes them a suitable type of space to study
geometric notions based on infinitesimals.

Besides i-affine spaces we shall also consider i-linear spaces. The defi-
nition is almost identical to that of i-affine spaces; the main difference being
that an i-linear space has a constant, the zero vector 0.

Definition 2.3 (i-linear space). Let V 〈−〉 be an i-structure on V . Set L(n) =
Rn, n ∈ N. The space V is said to be an i-linear space (over R), if for every
n ∈ N there are operations

L(n)× V 〈n〉 → V, ((λ1, . . . , λn), 〈v1, . . . , vn〉) 7→
n∑

j=1

λjvj

where we denote the constant L(0)×V 〈0〉 ∼= 1→ V by 0. These operations
satisfy the axioms

• (Neighbourhood) Let λk ∈ L(n), 1 ≤ k ≤ m. If 〈v1, . . . , vn〉 ∈ V 〈n〉
then ( n∑

j=1

λ1jvj, . . . ,
n∑

j=1

λmj vj
)
∈ V 〈m〉

• (Associativity) Let λk ∈ L(n), 1 ≤ k ≤ m, µ ∈ L(m) and
〈v1, . . . , vn〉 ∈ V 〈n〉. We have

m∑
k=1

µk

( n∑
j=1

λkjvj
)

=
n∑

j=1

( m∑
k=1

µkλ
k
j

)
vj

and for 0 ∈ L(n) and 0 ∈ V
n∑

j=1

0 vj = 0
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• (Projection) Let n ≥ 1 and let enk ∈ Rn denote the kth standard basis
vector for 1 ≤ k ≤ n. For every 〈v1, . . . , vn〉 ∈ A〈n〉 it holds

n∑
j=1

(enk)jvj = vk

In particular, we have for n = 1 that 1v = v, v ∈ V .

The existence of the constant 0 ∈ V implies that for any 〈v1, . . . , vn〉 ∈
V 〈n〉 we have 〈0, v1, . . . , vn〉 ∈ V 〈n+ 1〉. This follows from combining the
associativity axiom

n∑
j=1

0 vj = 0

with the projection and neighbourhood axioms. In particular, 0 has to be in-
finitesimally close to any other vector v ∈ V , which has a major implication
on the size of V .

An example of an i-linear space is D(n) ⊂ Rn with the restriction (=
pullback) of the nil-square i-structure and theR-linear structure onRn. More
generally, for any KL vector space V the space

D(V ) = {v ∈ V | φ[v]2 = 0 for any bilinear map φ : V 2 → R}

becomes an i-linear space with the i-structure andR-linear structure induced
by V . Writing φ[v]` for an `-linear map φ means that we evaluate φ on the
`-tuple (v, . . . , v). Indeed, recall that an R-vector space V is called KL if it
satisfies the Kock-Lawvere axiom 4 for all maps t : D(n) → V and n ∈ N.
For the case of V = Rn we have D(V ) = D(n) [5, prop. 1.2.2] and, like
Rn, each KL vector space V carries a nil-square i-structure generated by

{(v1, v2) | v2 − v1 ∈ D(V )}

A KL vector space is called finite-dimensional if V ∼= Rn for some n ∈ N.
It follows from (1) that any map f : V → W between finite-dimensional
KL vector spaces satisfying f(0) = 0 is an i-morphism preserving the linear
combinations and thus restricts to an i-linear map D(V )→ D(W ).

4As with R, a KL vector space maybe required to satisfy more axioms from the Kock-
Lawvere axiom scheme based on the context. See [5, chap. 1.3], for example.
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An important class of examples of i-linear spaces is given by the subse-
quent general construction. For an i-affine space A and P ∈ A we define the
monad around P

M(P ) = {Q ∈ A | 〈P,Q〉 ∈ A〈2〉}

as the set of points infinitesimally close to P . It carries a natural i-structure

M(P )〈n〉 = {(Q1, . . . , Qn〉) ∈M(P )n | 〈P,Q1, . . . , Qn〉 ∈ A〈n+ 1〉}

Using the i-affine structure of A we can define a natural action of L(n) for
each n ∈ N

L(n)×M(P )〈n〉 →M(P ),

((λ1, . . . , λn), 〈Q1, . . . , Qn〉) 7→
(
1−

n∑
j=1

λj
)
P +

n∑
j=1

λjQj

making M(P ) into an i-linear space with P the zero vector. Any i-affine
map f induces an i-linear map

f : M(P )→M(f(P ))

This is just the familiar construction of a vector space from an affine space
for a given base point P re-phrased in infinitesimal algebra. Indeed, in
the case of A being an affine space with the indiscrete i-structure we have
M(P ) = A, i-affine maps are precisely the affine maps and the base-point
dependency of this construction disappears. We shall denote the action of
λ ∈ L(n) on 〈Q1, . . . , Qn〉 ∈M(P )〈n〉 by

P +
n∑

j=1

λj(Qj − P )

As D(V ) = M(0) for a KL vector space V equipped with the nil-square
i-structure the monad construction subsumes the first class of examples.
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3. Second-order infinitesimal structures

The important examples of i-structures so far have all been the nil-square
i-structures, which are constructed from the first neighbourhood of the diag-
onal. In this section we wish to define an i-structureA2 = A2〈−〉 onA = Rn

such that A2〈2〉 is the second neighbourhood of the diagonal

{(P1, P2) | P2 − P1 ∈ D2(n)}

where D2(n) is the space of second-order infinitesimals

D2(n) = {(d1, . . . , dn) ∈ Rn | any product of three dj vanishes}

The i-structure A2〈−〉 shall satisfy

1) All maps f : Rn → Rm become i-morphisms for the respective second-
order i-structures on Rn and Rm

2) The affine space A = Rn becomes an i-affine space over A2〈−〉.

To be able to study 1) we assume henceforth that R is a Q-algebra that sat-
isfies the Kock-Lawvere axiom for D2(n) with n ≥ 1.5 This amounts to
say that each map t : D2(n) → R is a polynomial function for a uniquely
determined polynomial in R[X1, . . . , Xn] of total degree ≤ 2, i.e.

t(d1, . . . , dn) = a0 +
n∑

j=1

ajdj +
∑

1≤j≤k≤n

ajkdjdk

for uniquely determined aj ∈ R and ajk ∈ R. An important consequence is
that every map f : A→ Rm has a Taylor representation

f(P )− f(Q) = ∂f(Q)[P −Q] +
1

2
∂2f(Q)[P −Q]2

for P − Q ∈ D2(n). Here ∂2f(Q) stands for the second derivative of f at
Q, which is a symmetric bilinear map (Rn)2 → Rm. The following charac-
terisation of D2(n) in [5, prop. 1.2.2] will be useful

D2(n) = {d ∈ Rn | φ[d]3 = 0 for all trilinear φ : (Rn)3 → R}
5This requirement is not an overly restrictive one. For example, in a well-adapted model,

where R is taken to be the embedding of the smooth manifold R, the R-algebra R satisfies
the whole Kock-Lawvere axiom scheme [3, thm. 4.5], [7, prop. V.7.2].
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It allows us to define D2(V ) for any R-linear space V . Let V ∼= Rn be a
finite-dimensional KL vector space6. We define DN2(V ) to be the space

DN2(V ) = {(v1, v2, v3) ∈ D2(V )3 |
For any trilinear map φ : V 3 → R, φ[v1, v2, v3] = 0}

In the subsequent definition and discussion we will use A = V to mean the
(affine) space induced by the R-linear space V .

Definition 3.1 (Second-order i-structure on Rn). Let A = V ∼= Rn be a
finite-dimensional KL vector space. We define the second-order i-structure
A2 on A by

(1) A2〈1〉 = A, A2〈0〉 = A0 = 1

(2) For m ≥ 2

A2〈m〉 = {(P1, . . . , Pm) ∈ Am |
(Pi1 − Pj1 , Pi2 − Pj2 , Pi3 − Pj3) ∈ DN2(V ),

for all i`, j` ∈ {1, . . . ,m}, 1 ≤ ` ≤ 3}

From the definition it follows readily that A2 is indeed an i-structure and
that

A2〈2〉 = {(P1, P2) ∈ A2 | P2 − P1 ∈ D2(n)}

is the second neighbourhood of the diagonal, as desired.
The following two results show that the second-order i-structure A2 is

natural and makes any finite-dimensional KL vector space V into an i-affine
space.

Theorem 3.2. Every map f : V → W between two finite-dimensional KL
vector spaces is an i-morphism for the respective second-order i-structures.

Proof. Let 〈P1, . . . , Pn〉 ∈ V2〈n〉 for an index n ≥ 2. We have to show

〈f(P1), . . . , f(Pn)〉 ∈ W2〈n〉
6Note that V is also assumed to satisfy the respective V -valued Kock-Lawvere axiom

for all D2(n).
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By definition this amounts to show

φ[f(Pi1)− f(Pj1), f(Pi2)− f(Pj2), f(Pi3)− f(Pj3)] = 0

for all i`, j` ∈ {1, . . . , n}, 1 ≤ ` ≤ 3 and any trilinear form φ on W . Since
each Pi` − Pj` ∈ D2(V ) we can apply Taylor expansion

f(Pi`)− f(Pj`) = ∂f(Pj`)[Pi` − Pj` ] +
1

2
∂2f(Pj`)[Pi` − Pj` ]

2

Substituting each f(Pi`) − f(Pj`) with its respective Taylor expansion in φ
and applying multilinearity to expand the three sums yields a sum of mul-
tilinear forms on V of the order 3 or higher with arguments being com-
binations of Pi` − Pj` for i`, j` ∈ {1, . . . , n}, 1 ≤ ` ≤ 3. Because of
〈P1, . . . , Pn〉 ∈ A2〈n〉 each such multilinear form evaluates to 0, hence does
the sum. This shows that

φ[f(Pi1)− f(Pj1), f(Pi2)− f(Pj2), f(Pi3)− f(Pj3)] = 0

as required. We conclude that f is an i-morphism as claimed.

Theorem 3.3. The affine structure on the KL vector space A = V restricts
to the second-order i-structure A2, making A2 an i-affine subspace of the
affine space A (equipped with the indiscrete i-structure).

Proof. To show A2 an i-affine subspace of A it suffices to show that the
affine operations on A satisfy the neighbourhood axiom for A2.

Let λi ∈ A(n) for 1 ≤ i ≤ m and 〈P1, . . . , Pn〉 ∈ A2〈n〉. We have to
show 〈 n∑

j=1

λ1jPj, . . . ,

n∑
j=1

λmj Pj

〉
∈ A2〈m〉

Let φ be a trilinear form on V and i`, j` ∈ {1, . . . ,m} for all 1 ≤ ` ≤ 3.
Using

∑n
j=1 λ

i
j = 1 for all 1 ≤ i ≤ m yields

φ
[ n∑
i=1

λi1i Pi −
n∑

j=1

λj1j Pj,

n∑
i=1

λi2i Pi −
n∑

j=1

λj2j Pj,

n∑
i=1

λi3i Pi −
n∑

j=1

λj3j Pj

]
= φ

[ n∑
i,j=1

λi1i λ
j1
j (Pi − Pj),

n∑
i,j=1

λi2i λ
j2
j (Pi − Pj),

n∑
i,j=1

λi3i λ
j3
j (Pi − Pj)

]
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Applying the trilinearity of φ yields a sum of trilinear forms with arguments
being combinations of Pi` −Pj` for i`, j` ∈ {1, . . . , n}, 1 ≤ ` ≤ 3, which all
evaluate to zero by assumption. We conclude

〈 n∑
j=1

λ1jPj, . . . ,
n∑

j=1

λmj Pj

〉
∈ A2〈m〉

as required.

The definitions of the second-order i-structure A2 together with theo-
rems 3.2 and 3.3 can be generalised to a formally open subspace A of Rn

directly. This allows us to glue together the second-order i-structures to a
second-order i-structure on a formal manifold and all maps between formal
manifolds will preserve that structure.

Theorem 3.4. Let A be a formal manifold.

(i) A carries a unique i-structure A2 with the universal property that any
map f : A→M is an i-morphism, if and only if it is an i-morphism on
the charts of A.

(ii) All maps between formal manifolds become i-morphisms for the re-
spective second-order i-structures.

Proof. (i) (Essentially, this part is theorem 2.6.19 in [1] applied to the i-
structure only. See also [2].) We consider a chart ι : U ↪→ A of A, i.e.
a formally open subspace of A that is also a formally open subspace of
Rn. Pulling back the second-order i-structure on Rn yields a second-
order i-structure U2. For each n ≥ 1 we define A2〈n〉 as the join of the
images of U2〈n〉 over all the charts. It is easy to see that this yields an
i-structure on A with the desired universal property.

(ii) Let f : A→M be a map between two formal manifolds equipped with
the second-order i-structure as defined in (i) and 〈P1, . . . , Pn〉 ∈ A2〈n〉.
By construction there is an A-chart ι : U ↪→ A, φ : U ↪→ Rn, and
〈x1, . . . , xn〉 ∈ U2〈n〉 such that ι(x`) = P`, 1 ≤ ` ≤ n.

We also find an M -chart j : V ↪→ M containing f(P1). Pulling back
j along f yields a formally open subspace f ∗j : f−1(V ) ↪→M , which
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becomes a chart after taking the intersection with ι

ι∗f ∗j : U ∩ f−1(V ) ↪→ A, (ι∗f ∗j)∗φ : U ∩ f−1(V ) ↪→ Rn

(Recall that formally open subspaces are stable under pullback.) Let
W = U ∩ f−1(V ). The restriction of f : W → V is a map be-
tween formally open subspaces of Rn and Rm, respectively, and thus
an i-morphism by theorem 3.2 and the constructions of W2 and V2.
Since x1 ∈ W ⊂ U and W is a formally open subspace of U , we find
〈x1, . . . , xn〉 ∈ W2〈n〉 and hence 〈f(x1), . . . , f(xn)〉 ∈ V2〈n〉; but this
implies that

〈f(P1), . . . , f(Pn)〉 = 〈j(f(x1)), . . . , j(f(xn))〉 ∈M2〈n〉

and that f is an i-morphism as claimed.

Remark 3.5. Instead of forming the union over all charts in the construction
of A2 in the proof of part (i), it is sufficient to consider the union over a
covering family, i.e. an atlas of A. Moreover, f is an i-morphism if and only
if all its restriction to the charts of the atlas are i-morphisms.

Indeed, any chart of ι : U ↪→ A can be covered by restrictions of charts
of the chosen atlas, which are formally open subspaces of both A and some
Rn. The same argument as presented in the proof of (ii) above shows that ι
is an i-morphism when applied to U and the charts of the atlas.

Note that theorem 3.4 does not extend to the i-affine structures. Maps
are not going to preserve the i-affine structure on U2 for a formally open
subspace U ↪→ Rn, in general. Only special classes of maps will have that
property. Indeed, the Taylor expansion of a map f to second order contains
quadratic terms, in general, hence can only preserve affine combinations up
to quadratic terms. Therefore, unlike Rn a formal manifold does not carry a
canonical i-affine structure on its canonical second-order i-structure.

This is in contrast to the nil-square i-structure on Rn, where the i-affine
structure is preserved by all maps and therefore induces a canonical i-affine
structure on the canonical nil-square i-structure of a formal manifold [1,
thm. 3.2.8].
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4. Affine connections and second-order i-affine structures

In differential geometry affine connections on a manifold come in three
equivalent notions: a geometric notion of parallel transport of tangent vec-
tors along paths, and two algebraic notions; that of a covariant derivative on
vector fields and the horizontal subbundle of the iterated tangent bundle. In
SDG we can study these notions from the infinitesimal viewpoint by either
using tangent vectors [6], [5], which are ‘infinitesimal paths’ t : D → A in
SDG, or using points [5].

Befitting our consideration of the infinitesimal algebra of points we shall
consider Kock’s affine connection for points as defined in [5, chap. 2.3]7. It
is based on the idea of completing three points P,Q, S to a parallelogram
PQRS. Here 〈P,Q〉 and 〈P, S〉 are first-order neighbours, but Q and S
don’t need to be. The resulting point R is a first-order neighbour of Q and
of S, hence it is a second-order neighbour of P . If we follow [5] and denote
the point R by λ(P,Q, S) then an affine connection (on points) λ is a map
mapping a triple (P,Q, S) with 〈P,Q〉, 〈P, S〉 ∈ A〈2〉 to a point λ(P,Q, S)
such that

λ(P,Q, P ) = Q

λ(P, P, S) = S

These properties are sufficient to derive the other nil-square neighbourhood
relationships [5, chap. 2.3]. An affine connection is called symmetric, if

λ(P,Q, S) = λ(P, S,Q)

For A = Rn a symmetric affine connection is induced by its affine structure

λ(P,Q, S) = Q+ S − P

Geometrically, this corresponds to the addition of vectors using parallel trans-
port to construct a vector parallelogram at P . In fact, any i-affine structure
on A2 induces a symmetric affine connection in this way.

7Note that all the other notions of affine connection can be derived from that of a point-
wise affine connection.
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Proposition 4.1. LetA be a formal manifold that admits an i-affine structure
on A2, then A admits a symmetric affine connection on points.

Proof. We wish to define the symmetric affine connection λ by

λ(P,Q, S) := Q+ S − P

where the right hand side denotes the i-affine combination in A2. For this to
be well-defined we need to show 〈P,Q, S〉 ∈ A2〈3〉. We work in a chart.
First note that Q− P, S − P,Q− S ∈ D2(n). Let φ be a trilinear map. We
find

φ[Q−P, S−P,Q−S] = φ[Q−P, S−P,Q−P ]−φ[Q−P, S−P, S−P ] = 0

as the two trilinear maps on the right hand side are quadratic in Q − P ∈
D(n), respectively in S − P ∈ D(n). This is sufficient to show 〈P,Q, S〉 ∈
A2〈3〉. The defining properties showing λ an affine connection are immedi-
ate consequence of the algebra of affine combinations.

We wish to show the converse, i.e. that any symmetric affine connec-
tion λ on a formal manifold A extends to a second-order i-affine structure.
Our strategy is to construct the i-affine structure on A2 by transporting the
second-order i-affine structure from the tangent space

TPA = {t ∈ AD | t(0) = P}

to the manifold A using the second-order log-exp bijection induced by λ as
defined in [5, chap. 8.2].

To begin with note that each tangent vector t ∈ TPA is an i-morphism
and hence factors through the monad M(P ) induced by the nil-square i-
structure on A. Moreover, any n tangent vectors t1, . . . , tn ∈ TPA satisfy

〈t1(d), . . . , tn(d)〉 ∈M(P )〈n〉, ∀d ∈ D

(See [5, chap. 4.2] or [1, chap. 3.3.2] for the details for n = 2, which implies
the general case.) The R-linear structure on TPA is obtained pointwise from
the i-linear structure on M(P ) making TPA a finite-dimensional KL vector
space over R [5, chap. 4.2].
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Using the i-linear structure on M(P ) for each Q ∈M(P ) we can define
a tangent vector logP (Q) ∈ TPA by logP (Q)(d) = P + d (Q − P ). This
yields an i-linear map

logP : M(P )→ D(TPA), Q 7→ logP (Q)

The map logP has the exponential map expP as an inverse [5, thm. 4.3.2],
which is given in a chart U ↪→ A as

expP (t) = P + v

Here v ∈ D(n) ⊂ Rn is the principal part of t ∈ D(TPA) considered in U ;
that is the unique vector v satisfying t(d) = P + d v, for all d ∈ D.

As a finite-dimensional KL vector space TPA is an i-affine space for
the second-order i-structure by theorem 3.3. This makes D2(TpA), which is
the monad for the second-order i-structure at the zero vector, into an i-linear
space. On the other hand, the second-order i-structure onA induces a monad
M2(P ). Kock has shown that using the symmetric affine connection λ we
can extend the log-exp bijection to a bijection

logP : M2(P )→ D2(TPA), expP : D2(TPA)→M2(P )

This bijection can now be used to transport the i-linear structure to M2(P ).
Since this can be done for any point P ∈ A, we can use it to define an action
of A(n) on A2. We state our main result:

Theorem 4.2. Let A be a formal manifold and λ a symmetric affine connec-
tion on A.

(1) The second-order log-exp bijection induced by the connection λ defines
an i-affine structure on A2 by

µ · 〈P1, . . . , Pn〉 = expP1

( n∑
j=1

µj logP1
(Pj)

)
(2)

where 〈P1, . . . , Pn〉 ∈ A2〈n〉 and µ ∈ A(n).

(2) The i-affine structure on A2 as defined in (1) is an extension of λ in the
sense that

λ(P,Q, S) = (−1, 1, 1)〈P,Q, S〉
for all (P,Q, S) ∈ A3 such that 〈P,Q〉, 〈P, S〉 ∈ A〈2〉.
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Proof. (1) We shall proceed in two steps. First we note that logP (and hence
expP ) are i-morphisms. Indeed, any chart mapping P to 0 ∈ Rn induces
a bijection M2(P ) ∼= D2(n). Since TPA is a finite-dimensional KL
vector space any map D2(n) → TPA has a unique extension to a map
Rn → TPA; but any such map must be an i-morphism by theorem 3.2.
Due to the construction of A2 from charts in theorem 3.4(i), as well as
the definition of the induced i-structures on the respective monads, logP

must be an i-morphism.

With this and the log-exp bijection we can see that the i-structure
M2(P )〈−〉 becomes an i-linear space for each P ∈ A. Moreover, the
action of each L(n) is given by the same formula as in (2). In the next
step we need to show that the action as defined in (2) is independent of
the base point P .

Lemma 4.3. Let µ ∈ A(n) and 〈Q,P, P1, . . . , Pn〉 ∈ A2〈n+ 2〉, then

expP

( n∑
j=1

µj logP (Pj)
)

= expQ

( n∑
j=1

µj logQ(Pj)
)

With the base point independence all the three axioms of an i-affine
structure follow from the respective axioms of the i-linear structure on
M2(P ) for a suitably chosen P ∈ A (for example, choosing the first
point in the respective i-tuple). To conclude the proof of (1) it remains
to show lemma 4.3.

Proof. (Lemma) It is sufficient to show this in a chart U . In U we find

λ(P,Q, S) = Q+ S − P + ΓP [Q− P, S − P ]

for a symmetric bilinear map ΓP [5, chapter 2.3], which we will refer
to as the connection symbol of the connection λ as it is done in [5]8.
The second-order extensions logP and expP have the following local

8Note that ΓP is the negative of the classically defined connection symbol of a covariant
derivative. In [5] the connection symbol is referred to as the Christoffel symbol.
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representations [5, chap. 8.2]

logP (Q)(d) = P + d
(
(Q− P )− 1

2
ΓP [Q− P ]2

)
expP (t) = P + v +

1

2
ΓP [v]2

for Q ∈M2(P ) ⊂ U and t ∈ D2(TPU) with principal part v ∈ D2(n).
We use this to derive a local formula for the second-order i-affine com-
bination

expP

( n∑
j=1

µj logP (Pj)
)

= P +
n∑

j=1

µj

(
(Pj − P )− 1

2
ΓP [Pj − P ]2

)
+

1

2
ΓP

[ n∑
j=1

µj

(
(Pj − P )− 1

2
ΓP [Pj − P ]2

)]2

In the next step we expand the last connection symbol. Since
〈P, P1, . . . , Pn〉 ∈ U〈n+1〉 all the multilinear occurrences of order three
and four in the Pj −P vanish. Using

∑n
j=1 µj = 1 the above expression

thus simplifies to the local representation

expP

( n∑
j=1

µj logP (Pj)
)

=
n∑

j=1

µjPj +
1

2

(
ΓP

[ n∑
j=1

µj Pj − P
]2 − n∑

j=1

µjΓP [Pj − P ]2
)
(3)

The respective local representation for the base point Q is obtained by
replacing P with Q in the above equation.

- 53 -
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The base point independence is equivalent to the identity

ΓP

[ n∑
j=1

µj Pj − P
]2 − n∑

j=1

µjΓP [Pj − P ]2

= ΓQ

[ n∑
j=1

µj Pj −Q
]2 − n∑

j=1

µjΓQ[Pj −Q]2
(4)

We use that Q − P ∈ D2(n) and represent ΓQ = ΓP+(Q−P ) using a
Taylor expansion of order two

ΓQ

[ n∑
j=1

µj Pj −Q
]2

= ΓP

[ n∑
j=1

µj Pj −Q
]2

+ ∂ΓP

[
Q− P

][ n∑
j=1

µj Pj −Q
]2

+
1

2
∂2ΓP

[
Q− P

]2[ n∑
j=1

µj Pj −Q
]2

Due to 〈Q,P, P1, . . . , Pn〉 ∈ U2〈n+ 2〉 this simplifies to

ΓQ

[ n∑
j=1

µj Pj −Q
]2

= ΓP

[ n∑
j=1

µj Pj −Q
]2 (5)

In the same vein we obtain
n∑

j=1

µjΓQ

[
Pj −Q

]2
=

n∑
j=1

µjΓP

[
Pj −Q

]2 (6)

Expanding

ΓP

[ n∑
j=1

µj Pj −Q
]2

= ΓP

[ n∑
j=1

µj Pj − P + (P −Q)
]2
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yields

ΓP

[ n∑
j=1

µj Pj −Q
]2

= ΓP

[ n∑
j=1

µj Pj − P
]2

+ ΓP

[
P −Q

]2
+ 2 ΓP

[ n∑
j=1

µj Pj − P, P −Q
]

= ΓP

[ n∑
j=1

µj Pj − P
]2

+ ΓP

[
P −Q

]2
+ 2

n∑
j=1

µjΓP

[
Pj − P, P −Q

]
,

where we have used
∑n

j=1 µj = 1 in the last step. Expanding

ΓP

[
Pj −Q

]2
= ΓP

[
Pj − P + (P −Q)

]2
yields

ΓP

[
Pj −Q

]2
= ΓP

[
Pj − P

]2
+ ΓP

[
P −Q

]2
+ 2 ΓP

[
Pj − P, P −Q

]
and thus

n∑
j=1

µjΓP

[
Pj −Q

]2
=

n∑
j=1

µjΓP

[
Pj − P

]2
+ ΓP

[
P −Q

]2
+ 2

n∑
j=1

µjΓP

[
Pj − P, P −Q

]
Combining equations (5) and (6) with the above expansions yields equa-
tion (4) and thus establishes the independence of (2) from the chosen
base point.

(2) It remains to show that λ agrees with the affine combination of the
second-order i-affine structure as given by (2) for µ = (−1, 1, 1). As
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shown in proposition 4.1 we have 〈P,Q, S〉 ∈ A2〈3〉. We consider ev-
erything in a chart U . Combining equations (2) and (3) we get

(−1, 1, 1) · 〈P,Q, S〉 = −P +Q+ S +
1

2

(
ΓP [Q− P + S − P ]2

− ΓP [Q− P ]2 − ΓP [S − P ]2
)

Expanding the symmetric bilinear map ΓP thus results in

(−1, 1, 1) · 〈P,Q, S〉 = λ(P,Q, S)

as claimed.

5. Conclusion

An action of (the clone of) affine combinations on an i-structure is an al-
gebraic model that makes precise the long-standing idea of differential ge-
ometry and of calculus that a (smooth) space has a geometry that is affine
at the infinitesimal scale. These algebraic structures have been extracted by
the author from Kock’s work [4], [5]. The author has then generalised and
studied them as infinitesimal models of algebraic theories in [1].

Within the framework of Synthetic Differential Geometry, in particular
within the algebraic and well-adapted models of SDG there is a wealth of
examples of i-affine spaces besides that of smooth and formal manifolds.
This means that the same infinitesimal constructs and the same algebra of
infinitesimals can be applied much more widely and beyond the context of
(smooth) manifolds. However, so far (almost) all these examples have been
based on the nil-square i-structure only9.

In this paper we have shown that besides the canonical nil-square i-
structure, a formal manifold carries a natural second-order i-structure (the-
orem 3.4). The affine structure on Rn induces an i-affine structure on the
second-order i-structure (theorem 3.3). In contrast to the nil-square i-affine
structure the second-order i-affine structure is not preserved by all maps

9The only exception has been the pointwise i-affine structure on function spaces studied
in [1, chap. 3.3.2].
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Rn → Rm, and is hence not natural anymore. However, as we have shown
for formal manifolds, there is a correspondence between symmetric affine
connections (on points) and second-order i-affine structures (theorem 4.2).
This provides us with a first example that a higher-order i-affine structure can
be obtained from the data of a higher-order geometric structure on a formal
manifold. Moreover, the log-exp bijection yields also a natural geometric
interpretation of an affine combination as the geometric addition of geodesic
line segments extending the familiar vector parallelogram construction from
the affine plane to curved space.

Does a manifold admit 3rd and higher-order i-affine structures? First-
ly, it is possible and straight forward to generalise the construction of a
second-order i-structure on Rn to kth-order i-structures that are preserved
by all maps Rn → Rm; the idea being that any (k+ 1)-linear occurrences of
difference vectors formed from an i-n-tuple has to vanish. Due to the general
gluing theorems in [1] it is then possible to show that any formal manifold
carries a natural kth-order i-structure. Theorem 3.3 generalises to kth-order
i-structures, too, but like with the second-order i-affine structure, kth-order
i-affine structures are not preserved by maps Rn → Rm.

As regards the construction of a 3rd-order i-affine structure on formal
manifolds the author has obtained two results pointing towards the problem
being more intricate than anticipated. Firstly, assuming the existence of a
3rd-order log-exp bijection theorem 4.2 does not seem to generalise to 3rd-
order i-affine structures. However, assuming that the formal manifold is a
retract of a formally open subset of some Rn it seems possible to project
the 3rd-order i-affine structure of Rn to the manifold. Understanding this
discrepancy as well as the geometric obstruction responsible for the failure
of the log-exp bijection in order three is subject to current research.

Does a symmetric affine connection determine an i-affine structure uni-
quely? We have shown that a symmetric affine connection extends to a
second-order i-affine structure on formal manifolds. What we have not ad-
dressed is the question whether the second-order i-affine structure is unique-
ly determined by the connection, or, if not, what structure parametrises the
possible freedom of choice.

The author was able to show that in a well-adapted model each smooth
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manifold A carries only one i-affine structure on the first-order i-structure
A1. Studying the uniqueness of second-order i-affine structures is current
work in progress.
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