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Résumé. La formule de Heron pour les aires des triangles (et pour d’autres
simplexes) s’applique, dans une variété Riemannienne quelconque, aux sim-
plexes qui sont infinitésimaux en un certain sens précis. Ceci conduit, dans la
dimension supérieure, à une description géométrique de la forme volume sur
la variété.
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Introduction

The Greek geometers (Heron et al.) discovered a remarkable formula, ex-
pressing the area of a triangle in terms of the lengths of the three sides.
Here, length and area are seen as non-negative numbers, which involves, in
modern terms, formation of absolute value and square root. To express the
notions and results involved without these non-smooth constructions, one
can express the Heron Theorem in terms of the squares of the quantities in
question: if g(A,B) denotes the square of the length of the line segment
given by A and B, the Heron formula says that the square of the area of the
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triangle ABC may be calculated by a simple algebraic formula out the three
numbers g(A,B), g(A,C), and g(B,C). Explicitly, the formula appears
in (1) below. In modern terms, the formula is (except for a combinatorial
constant −16−1) the determinant of a certain symmetric 4 × 4 matrix con-
structed out of three numbers; see (2) below. This determinant, called the
Cayley-Menger determinant, generalizes to simplices of higher dimensions,
so that e.g. the square of the volume of a tetrahedron (3-simplex) (ABCD)
in space is given (except for a combinatorial constant) by the determinant of
a certain 5× 5 matrix constructed out of the six square lengths of the edges
of the tetrahedron (by a formula already known by Piero della Francesca in
the Renaissance).

The Heron formula is symmetric w.r.to permutations of the k+1 vertices
of a k-simplex. Also, it does not refer to the vector space or affine structure
of the ambient space.

The square lengths, square areas, square volumes etc. of the simplices
can also be calculated by another well known and simple expression: namely
as (1/k!)2 times the Gram determinant of a certain k× k matrix constructed
from the simplex, by choosing one of its vertices as origin. The Gram deter-
minant itself expresses the square volume of the parallelepipedum spanned
by k vectors in V that go from the origin to the remaining vertices.

An important difference between the two formulae is the (k + 1)!-fold
symmetry in the Heron formula, where the Gram formula is apriori only
k!-fold symmetric, because of the special role of the chosen origin.

It is useful to think in terms of the quantities occurring as being quantities
whose physical dimension is some power of length (measured in meter m,
say), so that length is measured in m, area in m2, square area in m4, etc.
Tangent vectors are not used in the following; they would have physical
dimension of m · t−1 (velocity). The word square-density is used in any
dimension. Square length, square area, and square volume are examples.
The theory developed here was also attempted in my [8] (whose basis is the
Gram method). I hope that the present account will be less ad hoc.
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1. Cayley-Menger matrices

The basic idea for the construction of a square k-volume function goes, for
the case k = 2, back to Heron of Alexandria (perhaps even to Archimedes);
they knew how to express the square of the area of a triangle S (whether
located in Euclidean 2-space or in a higher dimensional Euclidean space) in
terms of an expression involving only the lengths a, b, c of the three sides:

area2(S) = t · (t− a) · (t− b) · (t− c)

where t = 1
2
(a+b+c). Substituting for t, and multiplying out, one discovers

([3] 1.53) that all terms involving an odd number of any of the variables
a, b, c cancel, and we are left with

area2(S) = −16−1(a4 + b4 + c4 − 2a2b2 − 2a2c2 − 2b2c2), (1)

an expression that only involves the squares a2, b2 and c2 of the lengths of
the sides.

The expression in the parenthesis here may be written in terms of the
determinant of a 4 × 4 matrix (described in (2) below). This provides a
blueprint for how to generalize from 2-simplices (= triangles) to k-simplices,
in terms of determinants of certain (k + 2) × (k + 2) matrices, “Cayley-
Menger matrices/determinants”; they again only involve the square lengths
of the

(
k+1
2

)
edges of the simplex.

A k-simplex X in a space M is a (k + 1)-tuple of points (vertices)
(x0, x1, . . . , xk) in M . If g : M × M → R satisfies g(x, x) = 0 and
g(x, y) = g(y, x) for all x and y (like a metric dist(x, y), or its square),
one may construct a (k+ 2)× (k+ 2) matrix C(X) by the following recipe:

1) Take the (k + 1)× (k + 1) matrix c(X) whose ijth entry is g(xi, xj).

2) Enlarge this matrix c(X) to a (k+2)×(k+2)- matrix C(X) by bordering
it with (0, 1, . . . , 1) on the top and on the left.

Both c(X) and C(X) have 0s down the diagonal and are symmetric, by
the two assumption about g. For the case k = 2, C(X) is depicted here,
writing g(ij) for g(xi, xj) for brevity; note g(01) = g(10) etc., so that the
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matrix is symmetric. 
0 1 1 1
1 0 g(01) g(02)
1 g(10) 0 g(12)
1 g(20) g(21) 0

 (2)

(The indices of the rows and columns are most conveniently taken to be
−1, 0, 1, 2.)

This is the Cayley-Menger1 matrix C(X) for the simplex X , and its de-
terminant is its Cayley-Menger determinant. Heron’s formula then says that
the value of this determinant is, modulo the “combinatorial” factor −16−1,
the square of the area of a triangle with vertices x0, x1, x2, as expressed
in terms of squares g(xi, xj) of the distances between them. Similarly for
(square-) volumes of higher dimensional simplices. Note that no coordinates
are used in the construction of this matrix/determinant.

The general formula is that the square of the volume of a k-simplex is
−(−2)−k · (k!)−2 times the determinant of C, e.g. for k = 1, 2, and 3, the
factors are 2−1, −16−1, and 288−1, respectively.

Proposition 1.1. The Cayley-Menger determinant for a k-simplex is invari-
ant under the (k + 1)! symmetries of the vertices of the simplex.

Proof. Interchanging the vertices xi and xj has the effect of first interchang-
ing the ith and jth column, and then interchanging the ith and jth row of the
new matrix. Each of these changes will change the determinant by a factor
−1.

2. Square volumes in coordinates

2.1 Heron’s formula

We shall now work in the space Rn, with its standard metric. So the square
of the distance between x and y is

∑n
i=1(xi−yi)2. This is the matrix product

(x− y)T · (x− y), where elements in Rn are identified with n× 1 matrices
(column matrices), and where (−)T denotes transposition of matrices. The

1We shall sometimes use the acronym “CM” for “Cayley-Menger”.
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displayed matrix product is therefore a 1 × 1 matrix, i.e. an element of R.
For a symmetric n×nmatrixG, we may more generally consider the matrix
product (x− y)T ·G · (x− y) (if G is the identity n×n matrix I , we retrieve
the standard metric). Then the function g(x, y) := (x − y)T · G · (x − y)
has the two properties g(x, x) = 0 and g(x, y) = g(y, x), which was all we
needed to describe the Cayley-Menger determinant (the g thus defined may
not be a square-metric in any reasonable sense. This would require that G is
positive definite; we return to this in Section 5.)

We denote by heronG the “square volume” for k-simplices in Rn, when
calculated using such G for the entries in the Cayley-Menger determinant.

2.2 Gram’s formula

For a k-tuple of vectors (y1, . . . , yk) in Rn, one may form the Gram deter-
minant: first form the n × k matrix Y whose k columns are the yjs. Then
form the (symmetric) k × k matrix obtained as the matrix product Y T · Y ,
where Y T denotes the transpose of Y . So the ijth entry in Y T ·Y is the inner
product yi · yj . Let us write

Gram(Y ) := det(Y T · Y )

for the determinant of this k×k matrix. The significance of this determinant
is that it describes the square of the volume of the parallelepipedum spanned
by the k vectors yj . Therefore the square gram(Y ) of the volume of the
simplex spanned by these vectors is smaller, it is

gram(Y ) = (k!)−2 ·Gram(Y ).

Let Y be as above, and let G be a symmetric n×n matrix. Then we may
instead of Y T ·Y consider the (symmetric) k×k matrix given by Y T ·G ·Y ,
and write

GramG(Y ) := det(Y T ·G · Y ),

thus for the n× n identity matrix I , GramI(Y ) = Gram(Y ).

Proposition 2.1. If an n × n matrix G can be written G = HT · H for an
n× n matrix H , then (G is symmetric and) we have for any n× k matrix Y
that

GramG(Y ) = GramI(H · Y ),

- 243 -



A. KOCK HERON’S FORMULA

(and hence also gramG(Y ) = gramI(H · Y )).

Proof. We have for GramG(Y ) the following calculation

det(Y T ·G · Y ) = det(Y T ·HT ·H · Y ) = det((H · Y )T · (H · Y ))

which is Gram(H · Y ) (i.e. GramI(H · Y )).

Remark. We note that if R denotes the real numbers, then the existence of
an invertible matrix H with HT · H = G is equivalent to G being positive
definite in the standard sense, see e.g. Proposition 6 in [10] XI.4.

2.3 Comparison formula

For Rn, it makes sense to compare the values of the Heron and Gram for-
mulas for square volume of a k-simplex X = (x0, x1, . . . , xk). For j =
1, . . . , k, let yj denote the vector xj − x0 ∈ Rn, and let Y = (y1, . . . , yk)
denote the resulting n×k matrix. LetC = C(X) denote the (k+2)×(k+2)
matrix ((Heron-) Cayley-Menger) arising from the square distances between
the vertices, as described above, and let Y T · Y be the Gram k × k matrix
of the simplex, likewise described above. There is a known relation between
their determinants

−(−2)−k det(C) = det(Y T · Y ). (3)

For a proof, see reference [4].
Note that the left hand hand side in (3) does not make use of the algebraic

structure of Rn, but only on the (square-) distance function (arising from the
inner product). This flexibility will be crucial when we later on consider
Riemannian manifolds.

We denote the square volume of a simplex X , as calculated in terms of
the Cayley-Menger matrix C, by heron(X), and denote the square volume
of the corresponding parallelepipedum, as calculated by Gram’s method, by
Gram(X) So by dividing (3) by (k!)2, we have

heron(X) = gram(X) (4)

We described at the end of Section 2.1 how one may modify the Heron
expression using a symmetric n × n matrix G, so one may ask whether the
G-modified heronG(X) equals gramG(X)? This holds if G is the identity
n× n matrix, by (4).
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Proposition 2.2. LetX = (x0, . . . , xk) be a k-simplex inRn. IfG is positive
definite, in the sense that G = HT · H for some square matrix H , then
heronG(X) = gramG(X).

Proof. The submatrix c(X) of C(X) for calculating heronG(X) is the (k +
1)× (k+ 1) matrix whose i, j entry is the G-square distance between xi and
xj , i.e. it is

(xi − xj)T ·G · (xi − xj) = (xi − xj)T ·HT ·H · (xi − xj)

= (H · (xi − xj))T · (H · (xi − xj)) = (H · xi −H · xj)T · (H · xi −H · xj)

which is the i, j entry in the CM matrix for the simplex H ·X . We conclude
that heronG(X) = heron(H · X). By (4), heron(H · X) = gram(H · X),
which in turn is gramG(X) by Proposition 2.1.

Remark. In terms of physical dimensions alluded to in the Introduction:
volume of a k-simplex has dimension mk, so its square volume has dimen-
sion (mk)2; the entries g(xi, xj) in the Cayley-Menger matrix have physical
dimension m2, and expanding its determinant, all terms are products of k
copies of these entries. (The entries 0 and 1 in the top line and left column
in the matrix are “pure” quantities, i.e. of dimension m0). So the value of
the determinant is of physical dimension (m2)k. The Heron formula is then
meaningful in the sense that it equates quantities of dimension (m2)k and
(mk)2.

In particular, the comparison between the square volumes of a k-simplex,
as calculated by Heron-Cayley-Menger and by Gram, which is a conse-
quence of (3), is dimensionally meaningful; both have physical dimension
m2k.

2.4 The terms in the Cayley-Menger determinant

Given a k-simplexX = (x0, . . . , xk) (in a spaceM , with a “square distance”
function g(x, y), as in Section 1). Consider the CM determinant C(X) as
described by the recipe in Section 1. The terms of this determinant have
k + 2 factors; but two of these factors are 1 (expand after top row, and then
after leftmost column, and use that the top left entry is 0). So each of the
terms of the CM determinant is a product of k factors placed in a k-element
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pattern S in the (k + 1)× (k + 1)- matrix c(X); and S has no entries in the
diagonal, since the CM matrix has 0s in the diagonal. We want to describe
and classify the patterns that occur: To place a set of k chess rooks on an
m ×m chess board (k ≤ m), so that no one of them can beat another one,
can be expressed: no two of them are placed in the same row, and no two of
them are placed in the same column. Let us for brevity call such a k-element
set S of positions in an m×m matrix a rook pattern.

We conclude that the terms in a CM matrix for a k-simplex are named by
k-element rook patterns S (containing no diagonal entries) in {0 . . . , k} ×
{0, . . . , k}; the term named by such S is ±

∏
(i,j)∈S g(xi, xj).

Each such pattern S gives rise to an oriented graph with k + 1 vertices
0, 1, . . . k, and with an edge from i to j (i 6= j) if (i, j) ∈ S. Hence this
graph has k edges. Also, for every vertex i, there is a most one edge with i
as domain, and at most one edge with i as codomain.

For such oriented graphs with k + 1 vertices, there are two alternatives
(mutually exclusive): 1) the graph is singular, in the sense that there is some
closed path in the graph; 2) there is a path of length k, passing through each
of the k+1 vertices; we call such rook-pattens and their graphs non-singular.
Note that for a non-singular path, there are exactly two extreme vertices, and
k − 1 intermediate vertices.

Looking at the classical Heron formula (1), the three first terms are
named by singular graphs, the three (really six) last terms are named by
non-singular graphs.

3. Differential forms and square densities

In this Section, we work in the context of synthetic differential geometry
(SDG); this is a category E (with suitable properties, say a topos, but less
will do for the present note), together with a basic commutative ring object
R ∈ E , the “number line”, satisfying certain axioms. In such context, one
derives a notion of n-dimensional manifold M ; this means objects which
locally are diffeomorphic2 to Rn. Since we shall only consider local issues,

2the maps in the category E are termed smooth, and an isomorphism in E is therefore
termed a diffeomorphism
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we shall use the term manifold for any object which admits a open inclusion
M → Rn (called a chart), but no such chart is part of the structure of M .

In such M , one may define, for each r = 0, 1, 2, . . . a binary (reflexive
symmetric) relation M(r) ⊆M ×M . For x and y (generalized3) elements of
M , we write x ∼r y if (x, y) ∈ M(r) ⊆ M ×M . For Rn itself, the relation
∼r may be described in terms of (generalized) elements as follows: ,

x ∼r y iff for any r + 1-linear function φ : Rn × . . .×Rn → R, we have

φ(x− y, . . . , x− y) = 0. (5)

In particular: if x ∼2 y, then any trilinear φ : Rn ×Rn ×Rn → R, vanishes
on (x− y, x− y, x− y). (Here “linear” means “R-linear”).

It can be proved in the context of SDG that the relation ∼r is preserved
and reflected by local diffeomorphisms ofRn and hence, via charts fromRn,
∼r makes sense for arbitrary n-dimensional manifoldsM , but is independent
of the choice of chart. (That ∼r is well defined, independent of of the chart
chosen, is a version of Ehresmann’s theory of jets, [5].)

One has that x ∼r y implies x ∼r+1 y. We are in the present paper only
interested in the case r = 0, 1, 2 (where x ∼0 x is equivalent to x = y, since
on Rn, there are sufficiently many 1-linear Rn → R, e.g. the n projections).

In particular we consider, for a natural number k, the object of r-infinite-
simal k-simplices in M , meaning the subobject of M ×M × . . .×M (k+ 1
times) consisting of k + 1-tuples (x0, x1, . . . , xk) of elements of M with
(xi, xj) ∈ M(r) for all i, j = 0, 1, . . . , k; such a k + 1-tuple, we shall call an
r-infinitesimal k-simplex; the xis are the vertices of the simplex.

For r = 1 and r = 2, we shall consider certain maps from the object of
r-infinitesimal k-simplices (x0, . . . , xk) in M to R, namely (smooth!) maps
which have the property that they vanish if xi = xj for some i 6= j. For r =
1, combinatorial differential k forms ω have this property. (In the context of
SDG, such maps are automatically alternating with respect to the (k + 1)!
permutations of the xis, see [7] Theorem 3.1.5.)

3We use the well known “synthetic” language to express constructions in categories E
with finite limits, in “elementwise” terms. Recall that a generalized element of an object M
in a category E is just an arbitrary map in E with codomain M ; see e.g. [6] II.1, [11] V.5, or
[12] 1.4.
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For r = 2, such maps have not been considered much4, except for the
case where k = 1, where 1-square densities g (pseudo-Riemannian metrics),
in the combinatorial sense (recalled after Definition 3.3 below), are examples
of such maps; for this case, we think of g(x0, x1) as the square of the distance
between x0 and x1. For manifolds M , we have

Proposition 3.1. Given g : M(2) → R with g(x, x) = 0 for all x. Then g is
symmetric iff it vanishes on M(1) ⊆M(2).

Proof. In a chart M ∼= Rn, consider, for fixed x, the degree ≤ 2 part of the
Taylor expansion of g around x. Then g is given as

g(x, y) = C(x) + Ω(x;x− y) + (x− y)T ·G(x) · (x− y),

whereC(x) is a constant, Ω is linear in the argument after the semicolon, and
G(x) is a symmetric n × n matrix . To say that g vanishes on the diagonal
M(0) (i.e. g(x, x) = 0 for all x) is equivalent to saying that C(x) = 0 for all
x. We now compare g(x, y) and g(y, x); we claim

(x− y)T ·G(x) · (x− y) = (y − x)T ·G(y) · (y − x). (6)

For, Taylor expanding from x the G(y) on the right hand side, gives that
the difference between the two sides is (y − x) · dG(x; y − x) · (y − x)
which is trilinear in y − x, and therefore vanishes, since x ∼2 y. So we
have that if C vanishes, then g is symmetric; vice versa, if g is symmetric, its
restriction to M(1) is likewise symmetric, and (being a differential 1-form),
it is alternating, so the Ω-part vanishes, which in coordinate free terms says:
g(x, y) = 0 for x ∼1 y.

(For the number lineR, (x0, x1) ∈ R(2) iff (x0−x1)3 = 0, and the map g
given by g(x0, x1) := (x0−x1)2 is a map as described in the Proposition. In
fact, it is the restriction of the standard “square-distance” function R×R→
R.)

So we recall, respectively pose, the following definitions, corresponding
to r = 1 and r = 2. Let M be a manifold.

4For r = 2 and k = 1, such things were in [7] 8.1 called “quadratic differential forms”.

- 248 -



A. KOCK HERON’S FORMULA

Definition 3.2. A (combinatorial) differential k-form on M is an R-valued
function ω on the object of 1-infinitesimal k-simplices in M , which is alter-
nating with respect to the (k+1)! permutations of the vertices of the simplex.

So ω vanishes on simplices where two vertices are equal.
For the category E of affineK-schemes, combinatorial differential forms

were studied and applied in [2]; here R is the scheme represented by the
algebra of polynomials in one variable over K. The commutative ring rep-
resenting the objects of 1-infinitesimal simplices is described explicitly. It is
a version of the construction of the module of Kaehler differentials.

Definition 3.3. A k-square-density on M is an R-valued function on the
object of 2-infinitesimal k-simplices in M , which is symmetric with respect
to the (k+1)! permutations of the vertices of the simplex, and which vanishes
on simplices where two vertices are equal.

Note that for k = 1, Proposition 3.1 gives that 1-square densities (square
lengths) g have the property that they vanish not just on M(0) (the diagonal),
but also on M(1): g(x, y) = 0 if x ∼1 y.

I apologize for the following proliferation of terminology:
1-square density = differential quadratic form = pseudo-Riemannian metric
(where “differential quadratic form” was the term used in [7], Section 8.1).

3.1 k-square-densities herong from 1-square-densities g

Given a 1-square-density g. We shall argue that the Cayley-Menger deter-
minants, using this g, for 2-infinitesimal simplices (x0, . . . , xk), define a k-
square-density. We already argued (Proposition 1.1) that these determinants
are symmetric: the value does not change when interchanging xi and xj .
We have to argue for the vanishing condition required. If xi = xj , then
g(xi, xm) = g(xj, xm) for all m, and this implies that the ith and jth rows in
the Cayley-Menger matrix are equal, which implies that the determinant is
0.

3.2 k-square-densities from differential k-forms

Essentially this is the process of squaring (in R) the values, so it is tempting
to denote the square-density which we are aiming for, by ω2. Precisely: we
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get a well defined k-square-density out of a differential k-form by a two
step procedure: 1) to extend the given k form ω to a suitable function ω,
to allow as inputs not just 1-infinitesimal k-simplices, but also also certain
2-infinitesimal k-configurations; and then 2) squaring ω valuewise.

Given a combinatorial k-form ω on M . In a coordinate chart Rn, it may
be expressed (as in [7] 3.1) in terms of a function Ω : M × (Rn)k → R
which is k-linear and alternating in the last k arguments,

ω(x0, x1, . . . , xk) = Ω(x0;x0 − x1, x0 − x2, . . . , x0 − xk). (7)

The right hand side is defined without restrictions in the x0 − xis. Let us
denote it ω.

Proposition 3.4. The valuewise square ω2 , when applied to 2-infinitesimal
k-simplices, is a k-square density.

Proof. It clearly vanishes if two vertices are equal, since Ω, hence ω, have
this property. For the (k + 1)!-fold symmetry: interchanging xi and xj (for
i, j ≥ 1) gives a sign change in the value of ω, since Ω is alternating in the
last k arguments. So squaring the value gives no change. For interchange of
x0 and xi for i ≥ 1, a more delicate argument is needed: We shall only do
the case k = 1. First, we have by a Taylor expansion from x0

Ω(x1;x0 − x1) = Ω(x0;x0 − x1) + dΩ(x0;x1 − x0;x0 − x1)

+ a term d2Ω(x0; . . .), trilinear in x1 − x0.

The trilinear term vanishes, because x1 ∼2 x0. Now we square, and get

Ω(x1;x0−x1)2 = Ω(x0;x0−x1)2+2·Ω(x0;x0−x1)·dΩ(x0;x1−x0, x0−x1)

+ a term (dΩ(x0; . . .))
2, quadrilinear in x1 − x0.

The quadrilinear term vanishes because x1 ∼2 x0, but also the term Ω · dΩ
vanishes, because it is trilinear in x1 − x0. So we get

Ω(x1;x0 − x1)2 = Ω(x0;x0 − x1)2 = Ω(x0;x1 − x0)2,

as desired.
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We shall prove that the square density constructed is independent of the
choice of chart used for constructing it. The unicity can be formulated
without reference to any coordinate chart. To formulate it, let us intro-
duce an auxiliary terminology: a function ω from the set of (k + 1)-tuples
(x0, x1, . . . , xk) with x0 ∼2 xi for i = 1, . . . , k we call an extended form,
if it takes value 0 if two of its arguments are equal. Such an extended form
restricts to a function on the set of 1-infinitesimal k-simplices, and hence it
makes sense to say that ω extends a given (combinatorial) differential k-form
ω. We shall then prove the coordinate free assertion:

Proposition 3.5. If two extended k-forms ω and ω′ extend the same differen-
tial k-form ω, then ω2 = ω′2.

Proof. We have to prove that

ω2(x0, x1, . . . , xk) = ω′2(x0, x1, . . . , xk),

for any 2-infinitesimal k-simplex (x0, x1, . . . , xk). It suffices prove it for
M = Rn and with x0 = 0. In this case ω and ω′ are functions Ω and
Ω′ : D2(n) × . . . × D2(n) → R (k factors in the product). Here D2(n) ⊆
Rn has for its (generalized) elements x ∈ Rn with x ∼2 0. By the basic
axiom scheme of SDG, the ring A of functions D2(n) → R is of the form
A = A0 ⊕ A1 ⊕ A2, with A0 consisting of the constant functions Rn → R,
A1 of the linear functions Rn → R, and A2 of the (homogeneous) quadratic
functions Rn → R. This A is a graded ring (only non-zero in degrees 0,1
and 2). The ideal of functions vanishing on 0 is A1 ⊕ A2 ⊆ A. So the ideal
of functions (D2(n))k → R, which vanish if at least one of its arguments is
0, is the k-fold tensor product of (A1 ⊕ A2),

(A1 ⊕ A2)
⊗k ⊆ A⊗k. (8)

The ring A⊗k is k-graded, with e.g. the multidegree (1, . . . , 1) consisting of
the k-linear functions (Rn)k → R

By assumption, both Ω and Ω′ belong to the ideal (8). The assumption
that both Ω and Ω′ restrict to the same differential k-form ω implies that Ω
and Ω′ agree in their component of multidegree (1, . . . , 1) (this component
being the coordinate expression of ω). Thus Ω′ = Ω + θ, with θ of multi-
degree ≥ (1, . . . , 1) and of total degree ≥ k + 1. The required equation is,

- 251 -



A. KOCK HERON’S FORMULA

in these terms, that (Ω + θ)2 = Ω2, and this is a simple “counting degrees”-
argument in the k-graded ring Ak:

(Ω + θ)2 = Ω2 + 2Ω · θ + θ2. (9)

Here, θ2 has total degree ≥ 2 · (k + 1) ≥ 2k + 1, which is 0 since Ak is 0 in
total degrees > 2k; and θ is a linear combination of terms of multidegree of
the form (1, 1, . . . , 1 + p, . . . 1) for p ≥ 1, so θ · ω is a linear combination of
terms of multidegree

(1, 1, . . . , 1 + p, . . . , 1) + (1, 1, . . . , 1, . . . , 1) = (2, 2, . . . , 2 + p, . . . , 2)

which is of total degree 2k + p ≥ 2k + 1. So the two last terms in (9) are 0,
and this proves the Proposition.

Because of the Proposition, there is a well-defined “squaring” process,
leading from differential k-forms to k-square-densities on a manifold M :
extend the form ω, and square the result. It is natural to denote this square
density by ω2, with the understanding that it means ω2 for any extended form
ω, extending ω.

4. Variable metric tensor

We consider a manifold M . A finite sequence of points

x̃ = (x0, x1, . . . , xk)

inM , which are consecutive 2-neigbours, i.e. xi ∼2 xi+1 for i = 0, . . . k−1,
we shall for simplicity call a path of length k. We call x0, . . . , xk a closed
path if x0 = xk. If M is provided with a pseudo-Riemannian metric g, we
shall, for a path x̃ of length k, be interested in products of the form

g(x̃) := g(x0, x1) · g(x1, x2) · . . . · g(xk−1, xk). (10)

For any chart M ⊆ Rn, the metric g is described by a variable “metric
tensor” G: i.e. by a family of (symmetric) n× n matrices G(x), for x ∈M ,
and varying smoothly with x; more precisely, G is a map in E from M to
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the (finite dimensional) vector space W of n× n matrices over R. And g is
expressed in terms of G: for x ∼2 y in M

g(x, y) = (x− y)T ·G(x) · (x− y) (11)

(which equals (y − x)T ·G(y) · (y − x) by (6)). The displayed product (10)
is then calculated as the iterated matrix product

g(x̃) = G(x̃) =

= [(x0 − x1) ·G(x0) · (x0 − x1)] · [(x1 − x2)T ·G(x1) · (x1 − x2)]·
· . . . · [(xk−1 − xk)T ·G(xk−1) · (xk−1 − xk)].

(12)

(The square brackets are only inserted for readability; mathematically, they
are redundant, by associativity of matrix multiplication.)

Lemma 4.1. If x̃ is a closed path, then g(x̃) = 0.

Proof. It suffices to prove this in a chart. In a given chart, g is represented by
symmetric matrices G(x), as described above. Using the charts, let ai be the
vector xi−xi−1 for i = 1, . . . , k. Since xk = x0, we have a1 + . . .+ ak = 0,
so ak is a linear combination of the ais, for i < k. Then the last factor
[aTk · G(xk−1) · ak] in the above product is a linear combination of terms
aTi · G(xk−1) · aj with i < k and j < k. But among the remaining factors
in the product for G(x̃), we have ai · G(xi−1) · ai, so altogether, ai appears
trilinearily in the corresponding term, and so vanishes since ai ∼2 0.

We shall derive some further properties for products of the form (10).
With notation as in the previous proof, the product (12) takes the form

g(x̃) = [aT1 ·G(x0) · a1] · . . . · [aTk ·G(xk−1) · ak].

We write G(x̃) for the similar expression, but with all the G(xi)s replaced
by G(x0) where x0 is the first vertex of the path x̃. If x̃ is a path of length k,
we get a path of length k − 1 by omitting the first of the vertex of the path.
Let us denote this truncated path by |x̃. Thus in G(|x̃), the constant matrix
used is G(x1) because the first vertex of |x̃ is x1.

Lemma 4.2. For any path x̃, g(x̃) = G(x̃).
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Proof. By induction of the length k of the path. The assertion is clearly true
for k = 1. Assume that it holds for k − 1. We use the expression (12) for
g(x̃). Then

g(x̃) = (x0 − x1)T ·G(x0) · (x0 − x1) ·G(|x̃), (13)

by the induction assumption, used for the path |x̃. So G(|x̃) is a matrix prod-
uct containg the matrix G(x1) as a factor k − 1 times. By Taylor expansion
of the function G : M → W , from x0 in the direction x1 − x0, we get

G(x1) = G(x0) + dG(x0;x1 − x0) + 1
2
d2G(x0;x1 − x0, x1 − x0)

in the vector spaceW of n×nmatrices. In each of these factors inG(|x̃), we
substitute the Taylor expansion exhibited; and then multiply by (x0 − x1)T ·
G(x0) · (x0 − x1) to arrive at (13). However, this latter factor is quadratic in
(x0 − x1). Since x0 ∼2 x1, all terms in G(|x̃) containing a factor linear or
quadratic in x1−x0, like dG(x0;x1−x0), get annihilated by being multiplied
by (x0−x1)T ·G(x0)·(x0−x1), since then in whole product, x1−x0 appears in
a trilnear way and x0 ∼2 x1. So now the matrices G(x1) have been replaced
by G(x0), and then we have G(x̃). This proves the Lemma.

The same argument, using truncation in the other end (the vertex xk)
of the path, gives that one may also uniformly use G(xk) instead of the
varying G(xi)s. In fact, we may equally well pick any fixed xj instead of
either G(x0) or G(xk). For, split the path into two paths (x0, . . . , xj) and
(xj, . . . , xk), and pick for the first of these two paths its end vertex xj , and
for the second of the two paths, pick its initial vertex xj; then use the Lemma
4.2 for paths of length j and of length k− j, respectively. Summarizing, the
Lemma may be strengthened, and formulated in a more complete way:

Lemma 4.3. For any path x̃ of length k, for any fixed j = 1, . . . , k, and for
any chart, we have G(x̃) = G(x̃), where the G(x) is the expression for g in
the chart, and where G uses G(xj) uniformly, (i.e. in (12), all the G(xi) are
replaced by G(xj)).

Remark. The argument simplifies for the case of “restricted” 2-infinitesimal
k-simplices, as considered by [1], since there one has that each of the indi-
vidual g(xi, xj) in a simplex (x0, . . . , xk) may be calculated by using G(x0).
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In preliminary versions of the present note, I only considered the restricted
simplices; but the value of the Heron-Cayley-Menger formula on such sim-
plices is probably not enough for characterizing the volume form, which is
our aim.

Now recall from Subsection 2.4 that the terms in the CM determinant
C(X) for a k-simplex X = (x0, . . . , xk) are named by k-element rook pat-
terns S in the (k + 1) × (k + 1) matrix c(X) of square-distances g(xi, xj),
and that each of these rook patterns gives rise to a graph. Now we con-
centrate on 2-infinitesimal k-simplices. Given a rook pattern whose graph
is singular, i.e. contains a closed path. Then the corresponding product of
the g(xi, xj)s is 0, by Lemma 4.1. So we need only be interested in rook
patterns S whose corresponding graph is a non-singular. The corresponding
product of k terms is, possibly after renumbering, of the form as displayed
in (10). And for such, Lemma 4.2 implies that we, in a chart, may calculate
g(x̃) = G(x̃) by using instead G(x̃), that is, we may uniformly use G(x0)
(or any other fixed G(xj)) instead of the varying G(xi)s.

So in the CM determinant for a 2-infinitesimal k-simplex, the terms are
named by non-singular rook patterns and so each of the terms may be cal-
culated by expressions (10) for paths; and in any chart, this expression my
be calculated as asserted in Lemma 4.3, by picking arbitrarily any xj in the
path. But each non-singular paths of length k in a k simplex passes through
all the vertices of the simplex, say x0.

We conclude that for calculating the square volume of a 2-infinitesimal
k simplex X = (x0, . . . , xk), all the factors g(xi, xj) in all the terms in the
CM determinant may, in any chart, may be replaced by (xi − xj)T ·G(x0) ·
(xi − xj).

From the Lemma, we conclude, for any variable metric tensor G:

Proposition 4.4. Given a 2-infinitesimal k-simplex X = (x0, . . . , xk). Then
(herong(X) =) heronG(X) = heronG(x0)(X).

For, any non-singular path of length k contains all the k + 1 vertices, in
particular they all contain x0 (although not necessarily as first or last vertex),
so we may, by Lemma 4.3, for each non-singular path, pick the constant
matrix G(x0) for the calculation.

Combining with the comparison in (3), we get
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Proposition 4.5. Given a coordinate patch M ⊆ Rn and a 2-infinitesimal
k-simplex X = (x0, x1, . . . , xk) in M . Then

herong(X) = gramG(x0)(X).

5. Volume form

The volume form is a differential n-form that may be defined on an n-
dimensional manifold M equipped with a positive definite metric g. (Since
we only consider here open subspaces M ⊆ Rn, we need not mention
the usual orientability requirement for M .) We take “positive definite” in
the sense, which for individual symmetric matrices was described in the
Remark at the end of Subsection 2.2; but now, for variable metric tensor
G : M → W , we require there exists another H : M → W in E with
G(x) = HT (x) ·H(x) for all x ∈M . (This is a property of g which does not
depend on the chart.) However, the smoothness of such H , which implicitly
is assumed here, is for the real C∞-case with positive definite G, probably
not automatic.)

Recall from the last lines of Section 3 the notation ω2 for the square
k-volume constructed out of a differential k-form ω:

Theorem 5.1. Assume that g is a Riemannian metric on an n-dimensional
manifold M ⊆ Rn. Then there exists on M a differential n-form ω such that
herong and ω2 agree on all 2-infinitesimal n-simplices; such ω deserves the
name a volume form for g.

Proof. Since the data and assertions in the statement do not depend on the
choice of a coordinate chart, it suffices to prove the assertion in an arbitrary
chart. So assume that M is identified with an open subspace of Rn and
that G is given in terms of the positive definite n × n matrices G(x) (for
x ∈ M ) (i.e. G : M → W ), with G(x) = H(x)T · H(x) for all x ∈ M ,
with H : M → W smooth. Now consider the extended n-form ω, whose
value on a 2-infinitesimal n-simplexX = (x0, . . . , xn) is given by the by the
formula

ω(X) :=
det(H(x0))

n!
· det(Y ) (14)
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where Y denote the n × n matrix with yi := xi − x0 as its ith column.
Now detG(x0) = det(H(x0))

2 by the product and transposition rules for
determinants. Therefore squaring the defining equality (14) for ω gives

ω2(X) =
detG(x0)

n!2
· (detY )2 =

1

n!2
det(Y T ·G(x0) · Y ) (15)

for any 2-infinitesimal n-simplex X = (x0, . . . , xn) using again the product
rule and transposition rules for determinants. By definition of Gram, the
equation continues

=
1

n!2
GramG(x0)(X) = heronG(x0)(X) = heronG(X),

using the Heron-Gram comparison Proposition 2.2 and Proposition 4.5. This
proves the existence of the claimed differential n-form.

Since detG(x0) = det(H(x0)
T ·H(x0)) = det(H(x0))

2 by the product
rule for determinants, detH(x0) is a square root of detG(x0), so except for
the ambiguity of square roots, the formula derived here for “the” volume
form may be written in the familiar form√

det(G(x0))

n!
· det(y1, . . . , yn).

We would like to have a uniqueness statement for volume form. This re-
quires more structure or assumptions on the basic ringR, namely a positivity
notion such that an invertible element in R is positive iff it is a square iff it
is a square of a positive element.

Also, one would require thatM is oriented, in the sense that there is given
an n-form δ on M such that every other n-form on M is of the form f · δ for
a unique f : M → R; this is redundant with the simplifying assumption we
have made that M is an open subspace of Rn (where determinant formation
provides the desired δ).

Under these circumstances, one may prove that there among the volume
forms onM , there is a unique one of the form f ·δ with f : M → R positive,
(meaning that f has only positive values).
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