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Résumé. Nous introduisons la notion de topos EILC: un topos E tel que tout
morphisme géometrique essentiel de but E est localement connexe. Nous
démontrons alors que le topos de faisceaux sur un espace topologique X est
EILC si X est Hausdorff (ou plus généralement, si X est Jacobson). Ensuite,
nous introduisons les espaces Jacobson est les étendues Jacobson sur un topos
de base élémentaire quelconque, et montrons que ceux-ci sont EILC lorsque
le topos de base est EILC, sous l’hypothèse de l’existence d’un objet de nom-
bres naturels. Autres examples de topos de Grothendieck qui sont EILC, sont
les étendues booléennes et les topos classifiants des groupes compacts. Puis,
nous introduisons la notion plus faible de topos CILC: un topos E tel que
tout morphisme géometrique f : F → E avec f∗ cartésien fermé, est locale-
ment connexe. Nous donnons quelques examples des espaces topologiques
resp. catégories petites tel que Sh(X) resp. PSh(C) sont CILC. Enfin, nous
démontrons que chaque topos élémentaire booléen est CILC.
Abstract. We introduce the notion of an EILC topos: a topos E such that ev-
ery essential geometric morphism with codomain E is locally connected. We
then show that the topos of sheaves on a topological space X is EILC if X
is Hausdorff (or more generally, if X is Jacobson). We then introduce Jacob-
son spaces and Jacobson étendues over an arbitrary elementary base topos,
and show that these are EILC whenever the base topos is EILC, assuming
the existence of a natural numbers object. Further examples of Grothendieck
toposes that are EILC are Boolean étendues and classifying toposes of com-
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pact groups. Next, we introduce the weaker notion of CILC topos: a topos E
such that any geometric morphism f : F → E is locally connected, as soon
as f∗ is cartesian closed. We give some examples of topological spaces X

and small categories C such that Sh(X) resp. PSh(C) are CILC. Finally, we
show that any Boolean elementary topos is CILC.
Keywords. Topos, essential, locally connected, molecular, Jacobson, carte-
sian closed, EILC, CILC, Beck–Chevalley.
Mathematics Subject Classification (2010). 18B25, 18F10, 03G30.

1. Introduction

For elementary toposes E and F , a geometric morphism f : F → E is called
essential if the inverse image functor f ∗ has a left adjoint, that is then usually
written as f!. Moreover, we say that f is locally connected (or molecular)
if f ∗ has an E-indexed left adjoint, or equivalently, if f is essential and the
natural morphism

f!(X ×f∗B f ∗A)→ f!(X)×B A (1)

is an isomorphism, for all morphisms A → B in E and X → f ∗B in F ,
see [BP80]. The notion of a locally connected geometric morphism is more
natural from a geometric point of view; in particular, locally connected ge-
ometric morphisms are stable under base change, while essential geometric
morphisms are not.

In this article, we will follow an idea of Matı́as Menni, formulated in
his message “Essential vs Molecular” on the category theory mailing list
(May 3, 2017), where he mentions the problem of characterizing the toposes
E such that any essential geometric morphism f : F → E is locally con-
nected. Elementary toposes with this property will here be called EILC
(“Essential Implies Locally Connected”). Since an additional left adjoint
is always Sets-indexed [BP80, §5], the topos of sets is EILC. On the other
hand, a typical example of a topos that is not EILC is the topos of sheaves on
the Sierpiński space. In [Men21] it was suggested that the family of EILC
toposes might coincide with the family of Boolean toposes or the (smaller)
family of toposes satisfying the internal axiom of choice. In this paper, we
will show that there are also non-Boolean toposes that are EILC, including
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for example the topos of sheaves Sh(X) for X an arbitrary Hausdorff topo-
logical space. Within the family of Boolean toposes, we show that Boolean
étendues and classifying toposes of compact topological groups are EILC. It
remains an open problem whether every Boolean topos is EILC.

The notion of an EILC topos has applications to the study of levels of an
elementary topos E . A level of E , as introduced by Lawvere, is by definition
a subtopos E ′ of E such that the inclusion geometric morphism i : E ′ → E
is essential. For example, each open subtopos of E defines a level of E .
Conversely, if E is an EILC topos, then for any level E ′, the inclusion i :
E ′ → E must be locally connected, and because locally connected geometric
morphisms are open, we find that any level of E is given by an open subtopos.
So for EILC toposes, the structure of the levels is completely known.

Another situation where EILC toposes are relevant, and the original mo-
tivation for this paper, is in the study of precohesive geometric morphisms.
In [Law07], Lawvere introduced an axiomatic setting for when a category E
can be seen as a “category of spaces” over a base category S, with both E
and S cartesian closed and extensive. A first requirement is that there is a
string of adjoint functors

E S

f!

f∗

f∗

f !
f! a f ∗ a f∗ a f !

between E and S. Here f ∗ is thought of as the functor that sends an object
in S to its associated discrete space object in E . Then for X in E , f!(X) has
an interpretation as the object of connected components (or “pieces”) of X ,
and f∗(X) can be thought of as the object of points of X .

Further relevant axioms in this setting are that f ∗ (or equivalently, f !) is
fully faithful, that f! preserves finite products, and that the natural map f∗ →
f! is an epimorphism. Lawvere calls this last condition the Nullstellensatz:
it expresses that each component has at least one point. If all the conditions
above are satisfied, then E is said to be precohesive over S, see the work of
Lawvere and Menni [LM15, Definition 2.4].

A particular case of interest is when the string of adjoint functors f! a
f ∗ a f∗ a f ! arises from a geometric morphism f : E → S between
elementary toposes (with f ∗ the inverse image functor). Because f ∗ has a
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left adjoint f!, the geometric morphism f is necessarily essential. Moreover,
recall that by definition a geometric morphism f is local if and only if f ∗ is
fully faithful and f∗ has a further right adjoint f !. Finally, the Nullstellensatz
holds whenever f is hyperconnected [LM15, Lemma 3.1]. As a result, E is
precohesive over S if and only if f is hyperconnected, essential and local,
with f! preserving finite products (in particular, f ∗ is cartesian closed). If
this is the case, then the geometric morphism f is itself called precohesive.

A natural question is now whether precohesive geometric morphisms f :
E → S are stable under étale base change, or in other words whether for an
object X in S, the induced geometric morphism on slice toposes

f/X : E/f ∗(X)→ S/X

is again precohesive. It was shown in [LM15, Corollary 10.4] that this is
the case whenever f is locally connected. A question that was left open in
[LM15] is then whether already every precohesive geometric morphism is
locally connected. An affirmative answer would be useful in practice: it is
often difficult to verify explicitly whether the map (1) is an isomorphism.
The question remains open, although some progress on the question was
made in [HR21] and [GS21]. The results in this paper might be useful in
attempts to settle the problem, since any precohesive geometric morphism
is automatically locally connected whenever the codomain topos is EILC or
CILC.

The main goal of the present article is to show that the topos of sheaves
Sh(X) on a topological space is EILC if X is Jacobson. Here we say that a
topological space is Jacobson if two open subsets are equal whenever they
contain the same closed points, see e.g. [Sta22, Section 005T]. For T1 topo-
logical spaces (in particular, Hausdorff topological spaces) this condition is
automatically satisfied, because in this case all points are closed. Further,
the spectrum Spec(R) of a commutative ring R is Jacobson (for the Zariski
topology) if and only if R is a Jacobson ring. As a result, there are many
examples of Jacobson spaces that are not Hausdorff, for example Spec(Z)
or Spec(C[x, y]).

The notion of Jacobson space can be generalized to an arbitrary base
topos S as follows. Let e : E → S be a geometric morphism. Then we say
that e is a Jacobson space if it is localic and the family of closed points p :
S → E (i.e. closed geometric morphisms p with ep ' 1) is jointly surjective.
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This agrees with the classical notion of Jacobson topological space in the
case S = Sets. More generally, we say that e : E → S is a Jacobson
étendue if there is a well-supported object E in E such that E/E → S is a
Jacobson space. We show that a Jacobson étendue E over an elementary base
topos S is EILC as soon as S is EILC and E has a natural numbers object.

In order to give a more comprehensive list of EILC toposes, we also show
in Section 4 that a Grothendieck topos is EILC if it is a Boolean étendue, or
if it is a classifying topos of a compact topological group. In particular,
the petit étale topos of a field is EILC, because it coincides with the clas-
sifying topos of the absolute Galois group of the field (which is compact).
An intriguing problem that is left open is whether the petit étale topos of a
Jacobson ring is EILC.

In the last section, we introduce the more general class of CILC toposes
(“Cartesian closed Implies Locally Connected”). These are the elementary
toposes E such that any geometric morphism f : F → E is locally con-
nected, as soon as f ∗ is cartesian closed (i.e. preserves exponential objects).
We then introduce a notion of weakly Jacobson geometric morphism, and we
show that if f : E → S is weakly Jacobson and S is EILC, then E is CILC
(under the assumption that E has a natural number object). Further, we give
a characterization of topological spaces X and small categories C such that
Sh(X) resp. PSh(C) are weakly Jacobson over the topos of sets. Finally,
we show that all Boolean elementary toposes are CILC, extending an ear-
lier result by Matı́as Menni, who showed that if S is a Boolean topos and
f : E → S is a connected essential geometric morphism with f! preserving
products, then f is locally connected [Men21].

2. Background on Beck–Chevalley conditions

If f : F → E is a locally connected geometric morphism, then in particular
the fiber of f in a point p : Sets → E (defined as the pullback of f along
p) is locally connected. If f is merely essential, then can we still conclude
that its fibers are locally connected? And if the fibers are locally connected,
under what assumptions can we conclude that f is itself locally connected?
In this section, we can formulate some partial answers to these questions by
studying Beck–Chevalley conditions. The technical results from this section
will be used later in the paper to prove that certain toposes are EILC or CILC.
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Definition 2.1. We write g .qp f if there is a commutative diagram

F ′ F

E ′ E

q

g f

p

(2)

such that the natural map
f ∗p∗ → q∗g

∗

is an isomorphism (the Beck–Chevalley condition). Further, we write g .p f
if there exists a morphism q with g .qp f , and g .p f if moreover q can be
chosen such that (2) is a pullback diagram.

In order for pullbacks of elementary toposes to exist, we need some tech-
nical conditions. Recall that a geometric morphism f : F → E is bounded
if there is an object B in F such that for every object X in F , there is an
object I in E such that X is a subquotient of B × p∗(I), see [Joh02, Defi-
nition B3.1.7]. The pullback of two geometric morphisms f : F → E and
p : E ′ → E exists if either f or p is bounded [Joh02, Proposition B3.3.6].
All localic geometric morphisms are bounded [Joh02, Examples B3.1.8(a)].
In particular, inclusions and étale geometric morphisms are bounded.

When discussing Beck–Chevalley conditions in topos theory, the notion
of a tidy geometric morphism is relevant:

Definition 2.2. Let p : E ′ → E be a geometric morphism. Then we say that
p is tidy if p∗ preserves filtered E-indexed colimits.

For an extensive treatment of tidy geometric morphisms, see e.g. Mo-
erdijk and Vermeulen [MV00, Chapter III] or Johnstone [Joh02, C3.4]

We recall some of the history behind this concept, following the intro-
duction of [MV00]. The concept of a tidy geometric morphism was first
studied by Edwards in her PhD thesis [Edw80], in the special case where the
codomain topos is Sets. Later, the concept was introduced for an arbitrary
codomain topos by Tierney, and developed by Lindgren in his PhD thesis
[Lin84]. Lindgren referred to these geometric morphisms as being “proper”.
Moerdijk and Vermeulen later used the name “tidy” instead, to distinguish
the concept from a notion of properness as introduced by Johnstone.
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In practice, it might be difficult to check whether a given geometric mor-
phism is tidy. However, every closed inclusion is tidy [MV00, Chapter III,
Corollary 5.8], so this gives a large family of concrete examples.

We recall the following properties from the literature.

Proposition 2.3 (See [Joh02]). Consider a pullback diagram

F ′ F

E ′ E

q

g f

p

.

1. If f is locally connected and p is bounded, then g .p f .

2. If f is bounded and locally connected, then g .p f .

3. If p is bounded and tidy, and E has a natural number object, then
g .p f .

4. If p is bounded and tidy and f is bounded, then g .p f .

A proof for (1) and (2) is given in [Joh02, Theorem C3.3.15]. Further,
(3) corresponds to [Joh02, Theorem C3.4.7] and (4) corresponds to [Joh02,
Theorem C3.4.10]. See also [MV00, Chapter III, Theorem 4.8], where the
boundedness assumption is implicit. If we restrict to Grothendieck toposes,
then all geometric morphisms are automatically bounded, and moreover ev-
ery Grothendieck topos has a natural object. In this setting, (3) and (4) coin-
cide and are attributed to Lindgren [Lin84].

Beck–Chevalley squares can be pasted in the following way:

Proposition 2.4 (Transitivity). If h .q
′

p′ g and g .qp f , then h .qq
′

pp′ f .

Proof. Consider the commutative diagram

F ′′ F ′ F

E ′′ E ′ E

q′

h

q

g f

p′ p

Then it follows that f ∗p∗p′∗ ' q∗g
∗p′∗ ' q∗q

′
∗h
∗.
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We now introduce the following definition:

Definition 2.5. Let f : F → E and p : E ′ → E be geometric morphisms. We
say that f is locally connected at p if there is a locally connected geometric
morphism g such that g .p f .

Proposition 2.6 (Descent). Let f : F → E be an essential geometric mor-
phism, and let {pi : Ei → E}i∈I be a jointly surjective family of geometric
morphisms. If f is locally connected at pi for each i ∈ I , then f is locally
connected.

Proof. It is enough to show that the map

ϑ : f!(X ×f∗B f ∗A)→ f!(X)×B A

is an isomorphism, for each X in F and each diagram f!(X) → B ← A in
E . Because the family {pi}i∈I is jointly surjective, it is enough to prove that
each p∗i (ϑ) is an isomorphism.

Take g and q such that fq = pig, with g locally connected, and such
that the natural map f ∗pi,∗ → q∗g

∗ is an isomorphism. Because f and g are
essential, there is also a natural isomorphism g!q

∗ → p∗i f!. We compute:

p∗i f!(X ×f∗B f ∗A) ' g!(q
∗X ×q∗f∗B q∗f ∗(A))

' g!(q
∗X ×g∗p∗iB g

∗p∗iA)

' g!(q
∗X)×p∗iB p

∗
iA

' p∗i f!(X)×p∗iB p
∗
iA

' p∗i (f!(X)×B A)

where in the third isomorphism we use that g is locally connected.

Proposition 2.7 (Stability). Suppose that g .p f with p an inclusion. If f is
essential, then g is essential as well.

Proof. We write q for the pullback of p along f , so we have a pullback
diagram of the form

F ′ F

E ′ E

q

g f

p

(3)
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We claim that p∗f!q∗ is a left adjoint for g∗. We compute:

HomE ′(p
∗f!q∗X, Y ) ' HomF(q∗X, f

∗p∗Y )

' HomF(q∗X, q∗g
∗Y )

' HomF ′(X, g
∗Y )

where in the second natural bijection we use the Beck–Chevalley condition,
and in the third natural bijection we use that q is an inclusion (as pullback
of the inclusion p). It follows that p∗f!q∗ is the left adjoint of g∗, so g is
essential.

We will also need the following well-known characterization of cartesian
closedness for the inverse image functor.

Proposition 2.8 (Cartesian closedness). Let f : F → E be a geometric
morphism. Then the following are equivalent:

1. f ∗ is cartesian closed;

2. (f/E) .πE f for every object E in E , with πE : E/E → E the étale
geometric morphism corresponding to E and f/E the pullback of f
along πE .

Proof. For E in E , consider the pullback diagram

F/f ∗(E) F

E/E E

π̃E

f/E f

πE

.

Both f and f/E are essential, so the Beck–Chevalley isomorphism is in this
case given by

(f/E)!π̃
∗
E ' π∗Ef!.

This amounts to the condition that the morphism

ϑF,E : f!(F × f ∗(E))→ f!(F )× E

is an isomorphism, for each F in F . This is precisely the Frobenius map,
and f ∗ is cartesian closed if and only if ϑF,E is an isomorphism for all F and
E (see [Joh02, Lemma A1.5.8]). We conclude that f ∗ is cartesian closed if
and only if (f/E) .πE f for each object E in E .
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3. Jacobson topological spaces and Jacobson étendues

An elementary topos E will be called EILC if any essential geometric mor-
phism f : F → E is locally connected. We will first show that Sh(X) is
EILC for any Jacobson topological space X .

Definition 3.1. Let X be a topological space, and let X0 ⊆ X be its sub-
space of closed points. We then say that X is Jacobson if U ∩X0 = V ∩X0

implies U = V , for all open subsets U, V ⊆ X .

Equivalently, X is Jacobson if and only if for every closed subset Z ⊆
X , the subset Z ∩ X0 ⊆ Z is dense, see [Sta22, Section 005T]. However,
Definition 3.1 is more natural from a topos-theoretic point of view: it says
precisely that the closed points of X define a jointly surjective family of
points for Sh(X).

If X is the spectrum of a commutative ring R, with the Zariski topology,
then X is Jacobson if and only if R is a Jacobson ring, in the sense that each
prime ideal is an intersection of maximal ideals [Sta22, Lemma 00G3].

We can generalize the notion of Jacobson topological space over an ar-
bitrary base elementary topos S as follows: we say that a localic geometric
morphism e : E → S is a Jacobson space if e is localic and the family
of closed points p : S → E is jointly surjective (points are by definition
sections of e, i.e. ep ' 1). If e : E → S is a Jacobson space over S, then
in particular E has enough points over S. Note that if e is localic, then any
point p : S → E is an inclusion. Indeed, we have a pullback of the form

S E

E E ×S E

p

p (pe,1E)

∆

and because e is localic, the diagonal morphism ∆ is an inclusion [Joh02,
Proposition B3.3.8(ii)]. It then follows that its pullback p is an inclusion as
well. So, in this setting, p : S → E is closed as geometric morphism (in the
sense of [Joh02, C3.2, p.629]) if and only if p defines a closed subtopos.

We start by describing the idea behind the proof. Let X be a Jacobson
topological space. We want to show that any essential geometric morphism
f : F → Sh(X) is locally connected. The intuition is that f is locally
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connected if and only if its fibers are locally connected and moreover “the
way in which the fibers are locally connected, varies continuously over the
different fibers”. Our proof will consist of two parts. First, we show that
because f is essential, its fibers over closed points are locally connected.
Second, we claim that if f has locally connected fibers over each closed
point, then it follows that f is itself locally connected. So the “continuity
condition” for the fibers already follows from f being essential. Both steps
depend on Beck–Chevalley conditions, and these are the reason we restrict
to points that are closed. For the second step to work, we use that Sh(X) has
“enough closed points”, i.e. that the closed points form a jointly surjective
family (by definition of Jacobson space).

The next lemma gives an abstraction of the ideas described above.

Lemma 3.2. Let E be an elementary topos with a natural number object,
and let {pi : Ei → E}i∈I be a jointly surjective family, with each pi a closed
inclusion and with each Ei EILC. Then E is EILC as well.

Proof. Take an essential geometric morphism f : F → E . We will show
that f is locally connected. For each pi, we consider the pullback diagram

Fi F

Ei E

qi

fi f

pi

.

Because pi is a closed inclusion, it is in particular tidy [MV00, Chapter III,
Corollary 5.8]. Further, any inclusion is bounded. So by Proposition 2.3.(3)
we have fi .pi f . It now follows from Proposition 2.7 that fi is essential.
Because Ei is by assumption EILC, it follows that fi is locally connected.
As a result, f is locally connected at pi, for each i ∈ I . Using Proposition
2.6 and the fact that the family {pi}i∈I is jointly surjective, we can then
conclude that f is locally connected.

Theorem 3.3. LetX be a Jacobson topological space. Then Sh(X) is EILC.

Proof. LetX be a Jacobson topological space, and letX0 ⊆ X be the subset
of closed points. Then the family {px : Sets → Sh(X)}x∈X0 is a jointly
surjective family of closed inclusions, where px denotes the closed inclusion
corresponding to the closed subset {x} ⊆ X . Further, Sets is EILC, so from
Lemma 3.2 we deduce that Sh(X) is EILC as well.
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The proof above generalizes to a Jacobson space f : E → S , for S
an EILC base topos, under the assumption that E has a natural numbers
object. In this case, by definition the family of closed points S → E is
jointly surjective, so as soon as S is EILC we can apply Lemma 3.2.

We can also generalize the notion of Jacobson space in another direction
as follows. Recall that an object E of a topos E is called well-supported if
the unique morphism E → 1 is an epimorphism. Further, an étendue is a
topos E such that there is a well-supported object E in E such that E/E is
localic (over the base topos S).

Definition 3.4. Fix an elementary topos S. A geometric morphism e : E →
S will be called a Jacobson étendue if there is a well-supported object E in
E such that the composition

E/E π→ E e→ S

is a Jacobson space.

If e : E → S is a Jacobson space, then it is also a Jacobson étendue; in
this case we can take E = 1.

Example 3.5. We give two examples of Grothendieck toposes that are Ja-
cobson étendues (over Sets).

1. PSh(G) for G a group is a Jacobson étendue. Indeed, we can take
E = Gwith its standard rightG-action, and then PSh(G)/G ' Sets.

2. The Jónsson–Tarski topos J is a Jacobson étendue. Here we can
take E to be the free Jónsson-Tarski algebra on one generator, and
then J /E ' Sh(X), for X the Cantor space, see [BF06, Proposition
8.5.2]. The Cantor space is Hausdorff, so it is in particular Jacobson.

Lemma 3.6. Let E be an elementary topos and let E be a well-supported
object of E . If E/E is EILC, then E is EILC as well.

Proof. Let f : F → E be an essential geometric morphism. The slice

f/E : F/f ∗E → E/E

is then also essential [LM15, Lemma 5.2]. Because E/E is EILC, we see
that f/E is locally connected. Note that f/E is the base change of f
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along the étale geometric morphism π : E/E → E . Because E is well-
supported, the étale geometric morphism is a surjection. It follows that f is
locally connected as well, because local connectedness can be checked af-
ter base change along an étale surjection, see for example [Joh02, Corollary
C3.3.2(iv)].

Let E be an elementary topos with a natural number object. If E is a
Jacobson étendue over an EILC base topos S, then we can take a well-
supported object E in E such that E/E is a Jacobson space over S. By
Theorem 3.3, it follows that E/E is EILC. So by applying Lemma 3.6, we
find that E is EILC. In summary:

Corollary 3.7. Let E be an elementary topos with a natural numbers object.
If E is a Jacobson étendue over an EILC base topos S, then E is EILC as
well.

In particular, PSh(G) is EILC for any group G, and the Jónsson–Tarski
topos is EILC.

4. Boolean étendues and compact topological groups

In this section we restrict to Grothendieck toposes, i.e. toposes bounded over
the topos of sets. We will show that both Boolean étendues and classifying
toposes of compact topological groups are EILC. Afterwards, we show that
a presheaf topos PSh(C) is EILC if and only if C is a groupoid.

For both Boolean étendues and classifying toposes of compact topologi-
cal groups, the argument can be simplified using the following lemma:

Lemma 4.1. Let A be a family of toposes with the following properties:

1. if E is in A, then also E/E is in A, for any object E in E;

2. for any essential geometric morphism f : F → E , with E in A, the
inverse image functor f ∗ is cartesian closed.

Then all toposes in A are EILC.
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Proof. For E in A, we have to show that any essential geometric morphism
f : F → E is locally connected. This follows from the following character-
ization of local connectedness: f is locally connected if and only if its slice
f/E : F/f ∗E → E/E has cartesian closed inverse image functor, for all
objects E in E [Joh02, Proposition C3.3.1]. If f is essential, then each slice
f/E is again essential [LM15, Lemma 5.2], and by (1) its codomain E/E is
in A. So by (2) f/E has cartesian closed inverse image functor.

A Boolean étendue is a topos that is both Boolean and an étendue. Note
that if E is a well-supported object of a topos E , then E is Boolean if and
only if E/E is Boolean. So we can alternatively define a Grothendieck topos
E to be a Boolean étendue if there is a well-supported object E in E and a
Boolean locale Y with E/E ' Sh(Y ).

We now show that any Grothendieck topos that is a Boolean étendues, is
EILC. The proof is inspired by a related argument by Matı́as Menni, in his
proof that for an arbitrary Boolean topos E , a connected, essential geometric
morphism f : F → E is locally connected as soon as f! preserves finite
products.

Proposition 4.2. Let E be a Grothendieck topos. If E is a Boolean étendue,
then it is EILC.

Proof. By Lemma 3.6 it is enough to prove that localic Boolean Grothendieck
toposes are EILC. Further, by applying Lemma 4.1 for A the family of lo-
calic Boolean Grothendieck toposes, it is enough to show that any essential
geometric morphism f : F → E has cartesian closed inverse image functor,
for E a localic Boolean Grothendieck topos. This is equivalent to showing
that for any objects X in F and A in E the natural map

ϑX,A : f!(X × f ∗A)→ f!(X)× A

is an isomorphism. Because E is a localic Grothendieck topos, A can be
written as a colimit of subterminal objects. So it is enough to prove that
ϑX,A is an isomorphism in the special case that A is subterminal (colimits
are preserved by f! and f ∗ and are stable under pullbacks).

Now take the complement A′ of A, so 1 = AtA′. Since ϑX,1 is trivially
an isomorphism, its restrictions ϑX,A and ϑX,A′ are isomorphisms as well.
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Alternatively, we can argue that in the pullback diagram

F/f ∗A F

E/A E

π̃

f/A f

π

the Beck–Chevalley condition holds, because π : E/A → E is a closed in-
clusion, in particular bounded and tidy, so Proposition 2.3(3) applies. The
Beck–Chevalley condition in this case says precisely that ϑX,A is an isomor-
phism for each object X in F .

For a topological group G, its classifying topos Cont(G) is the topos
of sets equipped with a continuous action of G (where the sets are seen
as topological spaces with the discrete topology). We will now show that
Cont(G) is EILC if the topological group G is compact. We would not gain
any generality by considering compact localic groups, because over Sets
any compact localic group has enough points [Joh02, Remarks 5.3.14(b)].

We will simplify our argument by applying Lemma 4.1. In order for this
to work, we need to consider more generally toposes of the form

⊔
i∈I Cont(Gi),

for (Gi)i∈I a family of compact topological groups (the disjoint union is
computed in the category of Grothendieck toposes). An object in

⊔
i∈I Cont(Gi)

is a family (Ai)i∈I with eachAi an object in Cont(Gi). We claim that if E is
of the form

⊔
i∈I Cont(Gi) for some family of compact topological groups

(Gi)i∈I , then E/A is again of the same form, for each object A in E .
Indeed, if A = (Ai)i∈I is an object in E '

⊔
i∈I Cont(Gi), then

E/A '
⊔
i∈I

Cont(Gi)/Ai.

We can write each Ai as a disjoint union of orbits Ai ∼=
⊔
j∈Ji Gi/Hij , with

Hij ⊆ Gi an open subgroup, for each j ∈ Ji. Now using the equivalence
Cont(Gi)/(Gi/Hij) ' Cont(Hij), we find that

E/A '
⊔
i∈I

⊔
j∈Ji

Cont(Hij).
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Note that each group Hij is again compact, because it is an open subgroup
of the compact topological group Gi (and open subgroups are closed). So
E/A is of the same form.

For an object A = (Ai)i∈I in E , we would now like to determine when
the corresponding étale geometric morphism E/A → E is tidy. Each topos
Cont(Gi) has a canonical point Sets → Cont(Gi) which is an open sur-
jection, so taking the disjoint union of these points gives an open surjection
of the form

ξ :
⊔
i∈I

Sets −→ E .

The inverse image functor ξ∗ is the forgetful functor, sending a family (Ai)i∈I
to the same family (Ai)i∈I , but this time each Ai is seen only as a set. The
property of being tidy can be checked after base change along the open sur-
jection ξ, so E/A→ E is tidy if and only if⊔

i∈I

Sets/Ai −→
⊔
i∈I

Sets

is tidy. We conclude that E/A → E is tidy if and only if the underlying set
of Ai is finite, for all i ∈ I . This will be relevant in the next result, because
of the relation between tidy geometric morphisms and the Beck–Chevalley
condition.

Proposition 4.3. Let {Gi}i∈I be a family of compact topological groups.
Then the topos

⊔
i∈I Cont(Gi) is EILC.

Proof. We write E '
⊔
i∈I Cont(Gi). Let f : F → E be an essential

geometric morphism. We have to show that f is locally connected. Applying
Lemma 4.1, it is enough to show that f ∗ is cartesian closed. In other words,
we have to show that the natural map ϑX,A : f!(X × f ∗A) → f!(X) × A is
an isomorphism, for X in F and A in E . Because E is locally connected, we
can write A as a coproduct of connected objects. Coproducts are pullback-
stable and preserved by f ∗ and f!, so we can reduce to the case where A is
connected. Note that if A corresponds to the family (Ai)i∈I with each Ai an
object in Cont(Gi), then A being connected implies that there is an index
i0 ∈ I such that Ai0 is a single Gi-orbit, and Aj = ∅ for all j 6= i0. Using
compactness of Gi0 , it follows that the underlying set of Ai0 is finite. By the
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discussion above, we then have that the étale geometric morphism E/A→ E
is tidy. In particular, the pullback square

F/f ∗A F

E/A E

π̃

f/A f

π

satisfies the Beck–Chevalley condition, see Proposition 2.3(3). But this co-
incides precisely with the statement that the natural map f!(X × f ∗A) →
f!(X)× A is an isomorphism, which is what we wanted to prove.

For presheaf toposes, we have a jointly surjective family of essential
points, and these points are typically not locally connected. As a result,
presheaf toposes will usually not be EILC. More precisely:

Proposition 4.4. Let C be a small category. Then PSh(C) is EILC if and
only if C is a groupoid.

Proof. If C is a groupoid, then PSh(C) is a Boolean étendue, so we can use
Proposition 4.2 to conclude that PSh(C) is EILC.

Conversely, suppose that PSh(C) is EILC. Each object C in C deter-
mines an essential point p : Sets → PSh(C) with p!(1) ' yC, y the
Yoneda embedding. Because of the EILC property, p has to be locally con-
nected. We can then factorize p as a connected, locally connected geometric
morphism, followed by an étale geometric morphism. However, because the
domain topos is Sets, the connected part is trivial, so p is étale. It follows
from p!(1) ' yC that we then have PSh(C/C) ' Sets. This is only pos-
sible if C/C has only one object up to isomorphism, or in other words any
morphism D → C is necessarily an isomorphism. Because C was arbitrary,
we conclude that C is a groupoid.

More generally, we could consider the presheaf toposes PShS(C), for C
an internal category in an arbitrary EILC topos S. However, it is not known
at the moment to the present author whether the analogue of Proposition 4.4
would still hold.
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5. A weaker property: CILC toposes

We will say that an elementary topos E is CILC if any geometric morphism
f : F → E such that f ∗ is cartesian closed (i.e. preserves exponential ob-
jects) is automatically locally connected.

Note that by a result of Barr and Paré [BP80, Theorem 2], if f ∗ is carte-
sian closed, then f is essential. I thank Thomas Streicher for pointing out
this result to me. So all EILC toposes are in particular CILC. The converse
does not hold; we will construct some counterexamples below.

Proposition 5.1. Let E be an elementary topos with a natural number ob-
ject, and suppose that there is a jointly surjective family {pi : Ei → E}i∈I ,
such that each pi can be factored as a closed inclusion followed by an étale
geometric morphism, and such that each Ei is EILC. Then E is CILC.

Proof. Let f : F → E be a geometric morphism with f ∗ cartesian closed.
For each i ∈ I , the geometric morphism pi factors as

Ei
j−→ E/E πE−→ E

with j a closed inclusion and πE : E/E → E the étale geometric morphism
corresponding to an object E in E .

Now consider the corresponding pullback squares

Fi F/f ∗(E) F

Ei E/E E

j̃

fi

π̃E

f/E f

j πE

.

Note that because j and πE are localic, they are bounded. Further, since j is
a closed inclusion, it is in particular tidy, see [MV00, Chapter III, Corollary
5.8]. So using Proposition 2.3(3), we find fi .j(f/E). Because (f/E) is
essential, it then follows from Proposition 2.7 that fi is essential as well. But
then fi is locally connected, because Ei is EILC.

Moreover, it follows from cartesian closedness of f ∗ that (f/E) .πE f ,
see Proposition 2.8. Using Proposition 2.4 and pi ' πE ◦ j we conclude that
fi .pi f . So for each i ∈ I , we find that f is locally connected at pi. Because
the family {pi : Ei → E} is jointly surjective, we then conclude that f is
locally connected, see Proposition 2.6.
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The assumption that E has a natural number object is relevant when we
apply Proposition 2.3(3). Alternatively, we could use Proposition 2.3(4), but
then we can only conclude that E has the property that any bounded geomet-
ric morphism f : F → E , with f ∗ cartesian closed, is locally connected.

Definition 5.2. A geometric morphism f : E → S will be called weakly
Jacobson if there is a jointly surjective family of points {pi : S → E}i∈I ,
such that each pi can be factored as a closed inclusion followed by an étale
geometric morphism.

Theorem 5.3. Let f : E → S be a geometric morphism. Suppose that E has
a natural numbers object. If f is weakly Jacobson and S is EILC, then E is
CILC.

Proof. If f is weakly Jacobson, then by definition there is a jointly surjective
family of {pi : S → E}i∈I such that each pi can be factored as a closed
inclusion followed by an étale geometric morphism. If moreover S is EILC,
then Proposition 5.1 applies, and we conclude that E is CILC.

We will restrict to Grothendieck toposes in the remainder of this section.
We first characterize the topological spaces X such that Sh(X) is weakly
Jacobson (over the topos of sets).

Proposition 5.4. Let X be a topological space, and let Xlc ⊆ X be the
subset of locally closed points. Then Sh(X) is weakly Jacobson if and only
if U ∩Xlc = V ∩Xlc implies U = V , for all open subsets U, V ⊆ X .

Proof. The locally closed points of X are precisely the points that are open
in their closure. So if x ∈ X is a locally closed point, then there is an open
set U ⊆ X such that U ∩ {x} = {x}. In this situation, x is the only point
that can distinguish between the open setsW andW ∪U , forW = X−{x}.
This implies that a jointly surjective family of points {pi : Sets→ Sh(X)}
will necessarily contain all points px : Sets → Sh(X) corresponding to
locally closed points x ∈ Xlc ⊆ X .

In particular, let X̃ be the sobrification of X . Then the elements of X
determine a jointly surjective family of points for Sh(X̃), and by the above
this means that all locally closed points of X̃ are also contained in X . So we
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can assume without loss of generality that X is sober, i.e. that the correspon-
dence between elements of X and topos-theoretic points Sets → Sh(X)
(up to isomorphism) is bijective.

Now suppose that Sh(X) is weakly Jacobson, or in other words that
there exists a jointly surjective family of points {pi : Sets → Sh(X)}i∈I ,
such that each pi can be factored as a closed inclusion followed by an étale
geometric morphism. Let xi ∈ X be the element corresponding to pi. The
embedding {xi} ⊆ X can then be factored as a closed inclusion {xi} ⊆
E followed by a local homeomorphism π : E → X . Take an open set
U containing xi such that the restriction of π defines an homeomorphism
from U to the open set π(U) ⊆ X . Then {xi} ⊆ X factors as a closed
inclusion {xi} ⊆ π(U) followed by an open inclusion π(U) ⊆ X . So each
xi is a locally closed point. As a result, the locally closed points of X form
a jointly surjective family, i.e. if two open subsets U, V contain the same
locally closed points, then U = V .

Conversely, suppose that the locally closed points form a jointly surjec-
tive family. For each locally closed point x ∈ X , we can write {x} = U ∩V
with U open and V closed. But then the inclusion {x} ⊆ X factorizes as
a closed inclusion {x} ⊆ U followed by the open inclusion U ⊆ X , which
is in particular a local homeomorphism. But then Sh(X) is weakly Jacob-
son.

Example 5.5. The Sierpinski space is given by S = {m, g} with as open
sets ∅, {g} and {g,m}. Both points are locally closed (g is open and m is
closed). It then follows by Proposition 5.4 that Sh(S) is weakly Jacobson.
As a result, Sh(S) is CILC.

Note that Sh(S) ' PSh(C), for C the category with two objects A and
B and a single non-identity morphism A → B. So from Proposition 4.4 it
follows that Sh(S) is not EILC.

Example 5.6. In some topological spaces, none of the points are locally
closed. Take for example the set X ⊂ P(N) of infinite subsets of natural
numbers, with as topology the smallest topology such that the sets

Un = {V : V 3 n} ⊆ X

are open. Then none of the points of X are locally closed, so Sh(X) is not
weakly Jacobson. However, it is not known to the author whether Sh(X) is
CILC or even EILC.
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We also want to give a criterion for when a presheaf topos is weakly
Jacobson (over the topos of sets). We first need the following lemma:

Lemma 5.7. Let C be a small category with a terminal object. Then PSh(C)
is local. Moreover, its center is a closed inclusion if and only if the terminal
object in C is strict.

Proof. If C has a terminal object, then PSh(C) is local, see [Joh02, Exam-
ples C3.6.3(b)]. The center of a local geometric morphism is an inclusion,
and in this case it agrees with the essential point p : Sets→ PSh(C) corre-
sponding to the terminal object in C.

From [Joh02, Lemma C3.2.4] it then follows that p is closed if and only if
every morphism b : 1→ C in C admits a right inverse r : C → 1. Whenever
such a right inverse r exists, it must also be a left inverse, because rb is an
endomorphism of the terminal object. So we find that p is closed if and only
if every morphism 1 → C is an isomorphism, or in other words if and only
if the terminal object is strict.

Note that the argument in [Joh02, Lemma C3.2.4] is not constructive. So
our argument here does not generalize to presheaf toposes over an arbitrary
base topos.

Proposition 5.8. Let C be a small category. If every morphism in C admit-
ting a right inverse is an isomorphism, then PSh(C) is weakly Jacobson.
Conversely, if PSh(C) is weakly Jacobson, then there is a small category C ′,
with PSh(C) ' PSh(C ′), such that every morphism in C ′ admitting a right
inverse is an isomorphism.

Proof. For every object C, we can consider the corresponding point

pC : Sets→ PSh(C).

This point factors as j : Sets→ PSh(C/C) followed by π : PSh(C/C)→
PSh(C). If every morphism f : D → C that admits a right inverse is
an isomorphism, then the terminal object in C/C is strict. But then using
Lemma 5.7 we see that j is a closed inclusion. In the definition of weakly
Jacobson, we can now take the family {pC : Sets → PSh(C)}C , with
C going over the objects of C, to conclude that PSh(C) is indeed weakly
Jacobson.
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Conversely, let {pi : Sets → PSh(C)}i∈I be a jointly surjective fam-
ily, such that each point pi can be factored as a closed inclusion j : Sets→
PSh(D) followed by an étale geometric morphism π : PSh(D)→ PSh(C).
Because j is a closed inclusion, it must be essential. Indeed, otherwise all
essential points would be contained in the complement of the subtopos de-
fined by j, and because the essential points form a jointly surjective family,
this means that the complement of j is the full topos PSh(D), a contradic-
tion. As a result, we know that pi is essential, for all i ∈ I . The family
{pi : Sets → PSh(C)}i∈I is jointly surjective, so we can find a small cate-
gory C ′, with PSh(C ′) ' PSh(C), such that

{pi : Sets→ PSh(C ′)}i∈I = {pC : Sets→ PSh(C ′)}C∈Ob(C′),

for pC : Sets→ C ′ the essential geometric morphism associated toC (points
are considered up to isomorphism).

For each object C in C ′, we can now factorize pC as a closed inclu-
sion j : Sets → PSh(D) followed by the étale geometric morphism π :
PSh(D)→ PSh(C ′), as above. We further have a different factorization of
pC as an inclusion j′ : Sets → PSh(C ′/C) followed by an étale geometric
morphism π′ : PSh(C ′/C) → PSh(C ′). In fact, the latter is precisely the
(terminal-connected, étale) factorization as described by Caramello in [Car,
Section 4.7]. The geometric morphism j′ is the center of the local topos
PSh(C ′/C). We want to show that j′ is closed, because then we can apply
Lemma 5.7.

We apply the (terminal-connected, étale) factorization to the closed in-
clusion j : Sets → PSh(D). By uniqueness of (terminal-connected,
étale) factorizations [Car, Proposition 4.62], this factorization must be given
by j′ : Sets → PSh(C ′/C) followed by an étale geometric morphism
π′′ : PSh(C ′/C)→ PSh(D). Now consider the pullback diagram

Sets/A PSh(C ′/C)

Sets PSh(D)

j̃

γ π′′

j

and note that j′ : Sets → PSh(C ′/C) can be written as j′ = j̃ ◦ s, for
s a section of γ (see [sga72, Exposé IV, Proposition 5.12]). The geometric

- 446 -



J. HEMELAER SOME TOPOSES OVER WHICH ESS IMPLIES LC

morphism j̃ is the pullback of the closed inclusion j, so it is itself a closed
inclusion. Further, any section of γ is also a closed inclusion (a discrete
topological space has closed points). It follows that j′ is a closed inclusion.
By Lemma 5.7, this implies that the terminal object in C ′/C is strict. In the
above, the object C was arbitrary, so C ′/C has a strict terminal object for all
objects C in C ′. In other words, if an arbitrary morphism in C ′ has a right
inverse, then it must be an isomorphism.

Example 5.9.

1. The topos of directed graphs is the topos of presheaves on a category
C with two objects V and E, and as morphisms the two identity mor-
phisms and s, t : V → E. The only morphisms in C that admit a right
inverse, are the identity morphisms. So the topos of directed graphs is
weakly Jacobson, in particular CILC.

2. Let M be a monoid such that every right-invertible element is (two-
sided) invertible. Then PSh(M) is weakly Jacobson, in particular
CILC.

3. Let N be the monoid of natural numbers (with zero) under multipli-
cation. Consider the category C with as objects the left N -set N , with
the action given by multiplication, and the terminal left N -set 1. As
morphisms, we take the morphisms of left N -sets. The unique mor-
phismN → 1 in C then admits a right inverse. However, because 1 is a
retract of N in C, we have PSh(C) ' PSh(N). Moreover, in N there
is only one element that admits a right inverse, namely the identity. So
PSh(C) ' PSh(N) is weakly Jacobson.

4. Let M be a monoid containing a right-invertible element that is not
invertible. Suppose that PSh(M) ' PSh(M ′) for a different monoid
M ′. Then M ′ again contains a right-invertible element that is not
invertible, otherwise the Morita equivalence PSh(M) ' PSh(M ′)
would imply that M ∼= M ′, see for example [Rog, Corollary 7.2(3)].
If, more generally, C ′ is a category with PSh(M) ' PSh(C ′), then
there is an object in C ′ that is a generator, in the sense that its endomor-
phism monoid M ′ satisfies PSh(M) ' PSh(M ′). We conclude that
in C ′ there is a right-invertible morphism that is not invertible. It then
follows from Proposition 5.8 that PSh(M) is not weakly Jacobson.
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Finally, we also show that every Boolean elementary topos is CILC.

Theorem 5.10. Every Boolean elementary topos is CILC.

Proof. Let E be a Boolean elementary topos, and let f : F → E be a geo-
metric morphism such that the inverse image functor f ∗ is cartesian closed.
We need to show that for every morphism ϕ : A → B, the associated pull-
back square

F/f ∗A F/f ∗B

E/A E/B

f/A

π̃

f/B

π

(4)

satisfies the Beck–Chevalley condition (f/A) .π(f/B).
There are two situations in which we know this Beck–Chevalley condi-

tion is satisfied. First of all, if ϕ is a monomorphism, then π is an inclu-
sion, and because E/B is Boolean, it must be a closed inclusion. So it is
bounded and tidy, and then the Beck–Chevalley condition is automatically
satisfied, see Proposition 2.3(3). Note however that in order to apply Propo-
sition 2.3(3), we need that E has a natural numbers object. To avoid this extra
assumption, we give an alternative argument. Consider the natural map

ϑX,B,A : f!(X ×f∗B f ∗A) −→ f!(X)×B A.

If ϕ : A → B is an inclusion, then because E is Boolean, we can take
a complement A′ of A. The natural map ϑX,B,B associated to the identity
B → B is trivially an isomorphism, so its restrictions ϑX,B,A and ϑX,B,A′ are
isomorphisms as well. As a result, the diagram (4) satisfies (f/A) .π(f/B)
as soon as ϕ is injective.

A second situation when the Beck–Chevalley condition is satisfied is
when X = 1, because in this case the Beck–Chevalley condition follows
from f ∗ being cartesian closed, see Proposition 2.8. More generally, if ϕ is
of the form πB : Y × B → B (projection on the second component), then
the corresponding pullback square is a slice over B of the pullback square
for ϕ : Y → 1, so it is again a Beck–Chevalley square, see [Joh02, Lemma
A4.1.16].

In general, we can factor ϕ : Y → X as the inclusion j : Y → Y ×X ,
j = (idY , ϕ) followed by the projection πX : Y × X → X . But then the
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square in (4) satisfies the Beck–Chevalley condition by applying transitivity,
see Proposition 2.4.

Remark 5.11. Theorem 5.10 extends an earlier result by Matı́as Menni, who
showed in [Men21] that a connected, essential geometric morphism f : F →
E , with E a Boolean topos, is locally connected as soon as f! preserves finite
products. Note that if f is connected and f! preserves finite products, then
f ∗ is cartesian closed, see [Joh02, Proposition A4.3.1].

Acknowledgements

I would like to thank Thomas Streicher, Matı́as Menni and Morgan Rogers
for interesting discussions leading to this article, and for helpful comments
on draft versions. Further, I would like to thank Marta Bunge for various
suggestions made that improved the paper.

The author is a postdoctoral fellow of the Research Foundation Flanders
(file number 1276521N).

References

[BF06] M. Bunge and J. Funk, Singular coverings of toposes, Lecture Notes
in Mathematics, vol. 1890, Springer-Verlag, Berlin, 2006.
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