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Résumé. Les cochaı̂nes cubiques sont munies d’un produit associatif, dual
à la diagonale de Serre, relevant la structure commutative graduée en coho-
mologie. Dans ce travail, nous introduisons par des méthodes combinatoires
explicites une extension de ce produit à une structure E∞. Comme applica-
tion, nous prouvons que l’application de Cartan–Serre, qui relie les cochaı̂nes
singulières cubiques et simpliciales d’espaces, est un quasi-isomorphisme de
E∞-algèbres.
Abstract. Cubical cochains are equipped with an associative product, dual to
the Serre diagonal, lifting the graded commutative structure in cohomology. In
this work we introduce through explicit combinatorial methods an extension
of this product to a full E∞-structure. As an application we prove that the
Cartan–Serre map, which relates the cubical and simplicial singular cochains
of spaces, is a quasi-isomorphism of E∞-algebras.
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1. Introduction

Instead of simplices, in his groundbreaking work on fibered spaces Serre
considered cubes as the basic shapes used to define cohomology, stating that:

Il est en effet evident que ces derniers se pretent mieux que les
simplexes a l’etude des produits directs, et, a fortiori, des espaces
fibres qui en sont la generalisation. [Ser51, p.431]

Cubical sets, a model for the homotopy category, were considered by Kan
[Kan55; Kan56] before introducing simplicial sets, they are central to non-
abelian algebraic topology [BHS11], and have become important in Voevod-
sky’s program for univalent foundations and homotopy type theory [KV20;
Coh+17]. Other areas that highlight the relevance of cubical methods are
applied topology, where cubical complexes are ubiquitous in the study of im-
ages [KMM04], condensed matter physics, where models on cubical lattices
are central [Bax85], and geometric group theory [Gro87], where fundamental
results have been obtained considering actions on certain cube complexes
characterized combinatorially [Ago13].

Cubical cochains are equipped with the Serre algebra structure, a lift
to the cochain level of the graded ring structure in cohomology. Using an
acyclic carrier argument it can be shown that this product is commutative up
to coherent homotopies in a non-canonical way. The study of such objects,
referred to as E∞-algebras, has a long history, where (co)homology operations
[SE62; May70], the recognition of infinite loop spaces [BV73; May72] and
complete algebraic models of the p-adic homotopy category [Man01] are
key milestones. The goal of this work is to introduce a description of an
explicit E∞-algebra structure naturally extending the Serre algebra structure,
and relate it to one on simplicial cochains extending the Alexander–Whitney
algebra structure.

We use the combinatorial model of the E∞-operad U(M) obtained from
the finitely presented propM introduced in [Med20a]. The resulting U(M)-
algebra structure on cubical cochains is induced from a naturalM-bialgebra
structure on the chains of representable cubical sets, which is determined by
only three linear maps. To our knowledge, this is the first effective construc-
tion of an E∞-algebra structure on cubical cochains. Non-constructively, this
result could be obtained using a lifting argument based on the cofibrancy of
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the reduced version of the operad U(M) in the model category of operads
[Hin97; BM03], but this existence statement is not very useful in concrete
situations. To illustrate the advantages of an effective construction let us con-
sider a prime p. The mod p cohomology of spaces is equipped with natural
stable endomorphisms, known as Steenrod operations [SE62]. Following an
operadic viewpoint developed by May [May70], in [KM21] we exhibited
integral elements in U(M) representing Steenrod operations on the mod p
homology of U(M)-algebras. Since, as proven in this article, the cochains of
a cubical set are equipped with a U(M)-algebra structure, we obtain natural
cochain level multioperations for cubical sets representing Steenrod operation
at every p. This cubical cup-(p, i) products are explicit enough to have been
implemented in the open source computer algebra system ComCH [Med21a].

We now turn to the comparison between cubical and simplicial cochains.
In [Ser51, p. 442], Serre described for any topological space Z a natural
quasi-isomorphism

S•
□(Z)→ S•

△(Z) (1)

between its cubical and simplicial singular cochains, stating this to be a
quasi-isomorphism of algebras with respect to the usual structures. We will
consider a well known Quillen equivalence

sSet ⊥ cSet

U

T

between simplicial and cubical sets, and construct a natural chain map

N•
□(U Y )→ N•

△(Y ) (2)

for every simplicial set Y . In [Med20a], a natural U(M)-algebra structure
extending the Alexander–Whitney coalgebra structure was constructed on
simplicial sets. With respect to it and the one defined here for cubical sets we
have the following results after passing to a sub-E∞-operad of U(M).

Theorem. The map presented in Equation (2) is a quasi-isomorphism of
E∞-algebras.

From this result, stated as Theorem 15, we deduce the following two. The
first one concerns the triangulation functor T and it is stated more precisely
as Corollary 16.
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Corollary. There is a natural zig-zag of E∞-algebra quasi-isomorphisms
between the cochains of a cubical set and those of its triangulation.

The next one concerns the map presented in Equation (1), relating the
cubical and simplicial singular cochains of a space, and it is stated more
precisely as Corollary 17.

Corollary. The Cartan–Serre map is a quasi-isomorphism of E∞-algebras.

Remark. In this introduction we have used the setting defined by cochains
and products since it is more familiar, whereas in the rest of the text we use
the more fundamental one defined by chains and coproducts.

Outline

We recall the required notions from homological algebra and category theory
in Section 2. The necessary concepts from the theory of operads and props
is reviewed in Section 3, including the definition of the propM. Section 4
contains our main contribution; an explicit naturalM-bialgebra structure on
the chains of representable cubical sets and, from it, a natural E∞-coalgebra
structure on the chains of cubical sets. The comparison between simplicial and
cubical chains is presented in Section 5, where we show that the Cartan–Serre
map is a quasi-isomorphism respecting E∞-structures. We close presenting
some future work in Section 6.
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2. Conventions and preliminaries

2.1 Chain complexes

Throughout this article k denotes a commutative and unital ring and we
work over its associated closed symmetric monoidal category of differential
(homologically) graded k-modules (Ch,⊗,k). We refer to the objects and
morphisms of this category as chain complexes and chain maps respectively.
We denote by Hom(C,C ′) the chain complex of k-linear maps between chain
complexes C and C ′, and refer to the functor Hom(−,k) as linear duality.

2.2 Presheaves

Recall that a category is said to be small if its objects and morphisms form
sets. We denote the category of small categories by Cat. Given categories B
and C with B small we denote their associated functor category by Fun(B,C).
A category is said to be cocomplete if any functor to it from a small category
has a colimit. If A is small and C cocomplete, then the (left) Kan extension of
g along f exists for any pair of functors f and g in the diagram below, and it
is the initial object in Fun(B,C) making

A C

B

f

g

commute. A Kan extension along the Yoneda embedding, i.e., the functor

Y : A→ Fun(Aop, Set)

induced by the assignment

a 7→
(
a′ 7→ A(a′, a)

)
,

is referred to as a Yoneda extension. Abusively we use the same notation for
a functor and for its Yoneda extension. We refer to objects of Fun(Aop, Set)
in the image of the Yoneda embedding as representable.
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3. Operads, props and E∞-structures

We now review the definition of the finitely presented propM introduced in
[Med20a] and whose associated operad is a model of the E∞-operad. Given
its small number of generators and relations, is well suited to explicitly define
E∞-structures. We start by recalling some basic material from the theory of
operads and props.

3.1 Symmetric (bi)modules

Let S be the category whose objects are the non-negative integers N and whose
set of morphisms between n and n′ is empty if n ̸= n′ and is otherwise the
symmetric group Sn. A left S-module (resp. right S-module or S-bimodule)
is a functor from S (resp. Sop or Sop × S) to Ch. In this paper we prioritize
left module structures over their right counterparts. As usual, taking inverses
makes both perspectives equivalent. We respectively denote by ModS and
biModS the categories of left S-modules and of S-bimodules with morphisms
given by natural transformations.

Given a chain complex C, we have the following key examples of a left
and a right S-module

EndC(n) = Hom(C,C⊗n), EndC(m) = Hom(C⊗m, C),

and of an S-bimodule

EndC
C(m,n) = Hom(C⊗m, C⊗n),

where the symmetric actions are given by permutation of tensor factors.
The group homomorphisms Sn → Sop

1 × Sn induce a forgetful functor

U: biModS → ModS (3)

defined explicitly on an object P by U(P)(n) = P(1, n) for n ∈ N. The
similarly defined forgetful functor to right S-modules will not be considered.

3.2 Composition structures

Operads and props are obtained by enriching S-modules and S-bimodules
with certain composition structures. Intuitively, these are obtained by abstract-
ing the composition structure naturally present in the left S-module EndC
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(or right S-module EndC), naturally an operad, and the S-bimodule EndC
C ,

naturally a prop. More explicitly, an operad O is a left S-module with chain
maps

k→ O(1),
O(n1)⊗ · · · ⊗ O(nr)⊗O(r)→ O(n1 + · · ·+ nr),

satisfying relations of associativity, equivariance and unitality. Similarly, a
prop P is an S-bimodule together with chain maps

k→ P(n, n),
P(m, k)⊗ P(k, n)→ P(m,n),

P(m,n)⊗ P(m′, n′)→ P(m+m′, n+ n′),

satisfying certain natural relations. For a complete presentation of these
concepts we refer to Definition 11 and 54 of [Mar08]. We respectively denote
the category of operads and props with structure preserving morphisms by
Oper and Prop.

Let C be a chain complex, O an operad, and P a prop. An O-coalgebra
(resp. O-algebra or P-bialgebra) structure on C is a structure preserving
morphism O → EndC (resp. O → EndC or P → EndC

C). We mention that
the linear dual of an O-coalgebra is an O-algebra.

Since the forgetful functor presented in Equation (3) induces a functor

U: Prop→ Oper,

any P-bialgebra structure on C

P → biEndC
C

induces a U(P)-coalgebra structure on it

U(P)→ U(biEndC
C)
∼= coEndC .

3.3 E∞-operads

Recall that a projective Sn-resolution of a chain complex C is a quasi-
isomorphism R→ C from a chain complex R of projective k[Sn]-modules.
An S-module M is said to be E∞ if there exists a morphism of S-modules
M → k inducing for each n ∈ N a free Sn-resolution M(n)→ k. An operad
is said to be an E∞-operad if its underlying S-module is E∞. A prop P is
said to be an E∞-prop if U(P) is an E∞-operad.
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3.4 Presentations

The free prop construction is the left adjoint to the forgetful functor from
props to S-bimodules. Explicitly, the free prop F(M) generated by an S-
bimodule M is constructed using isomorphism classes of directed graphs with
no directed loops that are enriched with the following labeling structure. We
think of each directed edge as built from two compatibly directed half-edges.
For each vertex v of a directed graph Γ, we have the sets in(v) and out(v) of
half-edges that are respectively incoming to and outgoing from v. Half-edges
that do not belong to in(v) or out(v) for any v are divided into the disjoint
sets in(Γ) and out(Γ) of incoming and outgoing external half-edges. For
any positive integer n let n = {1, . . . , n} and set 0 = ∅. For any finite set S,
denote the cardinality of S by |S|. The labeling is given by bijections

|in(Γ)| → in(Γ), |out(Γ)| → out(Γ),

and
|in(v)| → in(v), |out(v)| → out(v),

for every vertex v. We refer to the isomorphism classes of such labeled
directed graphs with no directed loops and m incoming and n outgoing half-
edges as (m,n)-graphs. We denote the set these form by G(m,n). We use
graphs immersed in the plane to represent elements in G(m,n), with the
direction implicitly given from top to bottom and the labeling from left to
right. Please consult Figure 1 for an example.

∼

1

1 2

1 2

1 2

1 2

Figure 1: Immersed graph representing a (1, 2)-graph.

We consider the right action of Sm and the left action of Sn on a (m,n)-
graph given respectively by permuting the labels of in(Γ) and out(Γ). This
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action defines the S-bimodule structure on the free prop

F(M)(m,n) =
⊕
Γ in

G(m,n)

⊗
v in

V ert(Γ)

out(v)⊗Sp M(p, q)⊗Sp in(v), (4)

where we have simplified the notation writing p and q for |in(v)| and |out(v)|
respectively. The differential ∂F(M) is the extension of that of M to the tensor
product (4), and the prop structure is induced by the “identity graphs”

· · ·

together with (relabeled) grafting and disjoint union.
Let G be an assignment of a set G(m,n)d to each m,n ∈ N and d ∈ Z.

Denote by k[Sop × S]{G} the S-bimodule mapping (m,n) to the chain
complex with trivial differential and degree d part equal to

k[Sop
m × Sn]

{
G(m,n)d

}
.

We will denote by F(G) the free prop generated by this S-bimodule. Let
∂ : k[Sop × S]{G} → F(G) be a morphism of S-bimodules whose canonical
extension ∂ : F(G)→ F(G) defines a differential. We denote by F∂(G) the
prop obtained by endowing F(G) with this differential. Let R be a collection
of elements in F(G) and denote by ⟨R ⟩ the smallest ideal containing R. The
prop generated by G modulo R with boundary ∂ is defined to be F∂(G)

/
⟨R ⟩.

3.5 The propM

We now recall the E∞-prop that is central to our constructions.

Definition 1. LetM be the prop generated by

, , , (5)

in (1, 0)0 , (1, 2)0 and (2, 1)1 respectively, modulo the relations

, , , (6)

with boundary defined by

∂ = 0, ∂ = 0, ∂ = . (7)
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Explicitly, any element inM(m,n) can be written as a linear combination
of the (m,n)-graphs generated by those in (5) via grafting, disjoint union and
relabeling, modulo the ideal generated by the relations in (6). Its boundary is
determined by (7) using (4).

Proposition 2 ([Med20a, Theorem 3.3]). M is an E∞-prop.

Remark. The propM is obtained from applying the functor of chains to a
prop over the category of cellular spaces [Med21b], a quotient of which is
isomorphic to the E∞-operad of stable arc surfaces [Kau09].

4. An E∞-structure on cubical chains

In this section we construct a naturalM-bialgebra structure on the chains of
representable cubical sets. These are determined by three natural linear maps
satisfying the relations definingM. A Yoneda extension then provides the
chains of any cubical set with a natural U(M)-coalgebra structure. We begin
by recalling the basics of cubical topology.

4.1 Cubical sets

The objects of the cube category □ are the sets 2n = {0, 1}n with 20 = {0}
for n ∈ N, and its morphisms are generated by the coface and codegeneracy
maps

δεi = id2i−1 × δε × id2n−1−i : 2n−1 → 2n,

σi = id2i−1 × σ × id2n−i : 2n → 2n−1,

where ε ∈ {0, 1} and the functors

20 21 20
δ0

δ1

σ

are defined by

δ0(0) = 0, δ1(0) = 1, σ(0) = σ(1) = 0.
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More globally, the category □ is the free strict monoidal category with an
assigned internal bipointed object. We refer to [GM03] for a more leisurely
exposition and variants of this definition.

We denote by Dgn(2m, 2n) the subset of morphism in □(2m, 2n) of the
form σi ◦ τ with τ ∈ □(2m, 2n+1).

The category of cubical sets Fun(□op, Set) is denoted by cSet and the
representable cubical set Y(2n) by □n. For any cubical set X we write, as
usual, Xn instead of X(2n).

4.2 Cubical topology

Consider the topological n-cube

In =
{
(x1, . . . , xn) | xi ∈ [0, 1]

}
.

The assignment 2n → In defines a functor □→ Top with

δεi (x1, . . . , xn) = (x1, . . . , xi, ε, xi+1, . . . xn),

σi(x1, . . . , xn) = (x1, . . . , x̂i, . . . , xn).

Its Yoneda extension is known as geometric realization. It has a right adjoint
Sing□ : Top→ cSet referred to as the cubical singular complex satisfying

Sing□(Z)n = Top(In,Z)

for any topological space Z.

4.3 Cubical chains

The functor of (normalized) chains N: cSet→ Ch is the Yoneda extension
of the functor □ → Ch defined next. It assigns to an object 2n the chain
complex having in degree m the module

k{□(2m, 2n)}
k{Dgn(2m, 2n)}

and differential induced by

∂(id2n) =
n∑

i=1

(−1)i
(
δ1i − δ0i

)
.
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To a morphism τ : 2n → 2n
′ it assigns the chain map

N(□n)m N(□n′
)m(

2m → 2n
) (

2m → 2n
τ→ 2n

′)
.

The chain complex N(□n) is isomorphic to both: N(□1)⊗n and the cellular
chains on the topological n-cube with its standard CW structure C(In). We
use the isomorphism N(□n) ∼= C(I1)⊗n when denoting the elements in the
basis of N(□n) by x1 ⊗ · · · ⊗ xn with xi ∈ {[0], [0, 1], [1]}.

For a topological space Z, the chain complex N(Sing□ Z) is referred to as
the cubical singular chains of Z.

4.4 Serre coalgebra

We now recall the Serre coalgebra structure, a natural (counital and coasso-
ciative) coalgebra structure on cubical chains.

By a Yoneda extension, to define this structure it suffices to describe it on
the chains of representable cubical sets N(□n). For N(□1) we have

ϵ
(
[0]

)
= 1, ∆

(
[0]

)
= [0]⊗ [0],

ϵ
(
[1]

)
= 1, ∆

(
[1]

)
= [1]⊗ [1],

ϵ
(
[0, 1]

)
= 0, ∆

(
[0, 1]

)
= [0]⊗ [0, 1] + [0, 1]⊗ [1].

The Serre coalgebra structure on a general N(□n) is define using the iso-
morphism N(□n) ∼= N(□1)⊗n and the monoidal structure on the category of
coalgebras. Explicitly, the structure maps are given by the compositions

ϵ : N(□1)⊗n ϵ⊗n

−−→ k⊗n → k

and

∆: N(□1)⊗n ∆⊗n

−−→
(
N(□1)⊗2

)⊗n σ−1
2n−−→

(
N(□1)⊗n

)⊗2
,

where σ2n in S2n is the (n, n)-shuffle mapping the first and second “decks” to
odd and even values respectively. An explicit description of σ2n is presented
in Equation (13).
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Remark. Similarly to how the Alexander–Whitney coalgebra can be inter-
preted geometrically as the sum of all complementary pairs of front and back
faces of a simplex, this coproduct is, up to signs, also given by the sum of
complementary pairs of front and back faces of a cube.

For later reference we record a useful description of the value of ∆ on the
top dimensional basis element of N(□n).

Lemma 3. For any n ∈ N,

∆
(
[0, 1]⊗n

)
=

∑
λ∈Λ

(−1)indλ
(
x
(λ)
1 ⊗ · · · ⊗ x(λ)

n

)
⊗
(
y
(λ)
1 ⊗ · · · ⊗ y(λ)n

)
,

where each λ in Λ is a map λ : {1, . . . , n} → {0, 1} with λ(i) interpreted as

0 : x
(λ)
i = [0, 1], 1 : x

(λ)
i = [0],

y
(λ)
i = [1], y

(λ)
i = [0, 1],

and indλ is the cardinality of {i < j | λ(i) > λ(j)}.

4.5 Degree 1 product

Let n ∈ N. For x = x1 ⊗ · · · ⊗ xn a basis element of N(□n) and ℓ ∈
{1, . . . , n} we write

x<ℓ = x1 ⊗ · · · ⊗ xℓ−1,

x>ℓ = xℓ+1 ⊗ · · · ⊗ xn,

with the convention
x<1 = x>n = 1 ∈ Z.

We define the product ∗ : N(□n)⊗2 → N(□n) by

(x1⊗· · ·⊗xn)∗(y1⊗· · ·⊗yn) = (−1)|x|
n∑

i=1

x<i ϵ(y<i)⊗xi∗yi⊗ϵ(x>i) y>i,

where the only non-zero values of xi ∗ yi are

[0] ∗ [1] = [0, 1], [1] ∗ [0] = −[0, 1].
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Example. Since in N(□3) we have that

∂
(
[0]⊗ [0]⊗ [0]

)
= ∂

(
[1]⊗ [1]⊗ [1]

)
= 0

and

∂
(
[0]⊗ [0]⊗ [0] ∗ [1]⊗ [1]⊗ [1]

)
= ∂

(
[0, 1]⊗ [1]⊗ [1] + [0]⊗ [0, 1]⊗ [1] + [0]⊗ [0]⊗ [0, 1]

)
= [1]⊗ [1]⊗ [1]− [0]⊗ [0]⊗ [0],

we conclude that in general ∗ is not a cycle in the appropriate Hom complex,
so it does not descend to homology. This product should be understood as an
algebraic version of a consistent choice of path between points in a cube. In
our case, as illustrated in Figure 2, the chosen path is given by the union of
segments parallel to edges of the cube.

∗ =

Figure 2: Geometric representation of
(
[0]⊗ [0]⊗ [0] ∗ [1]⊗ [1]⊗ [1]

)
where

we are using the width-depth-height order.

4.6 M-bialgebra on representable cubical sets

Lemma 4. The assignment

7→ ϵ, 7→ ∆, 7→ ∗,

induces a naturalM-bialgebra structure on N(□n) for every n ∈ N.

Proof. We need to show that this assignment is compatible with the relations

= 0, = 0, = 0,
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and
∂ = 0, ∂ = 0, ∂ = .

For the rest of this proof let us consider two basis elements of N(□n)

x = x1 ⊗ · · · ⊗ xn and y = y1 ⊗ · · · ⊗ yn.

Since the degree of ∗ is 1 and ϵ([0, 1]) = 0, we can verify the first relation
easily:

ε(x ∗ y) =
∑

(−1)|x|ϵ(y<i)ϵ(x<i)⊗ ϵ(xi ∗ yi)⊗ ϵ(x>i)ϵ(y>i) = 0.

For the second relation we want to show that (ϵ⊗ id) ◦∆ = id. Since

(ϵ⊗ id) ◦∆([0]) = ϵ([0])⊗ [0] = [0],

(ϵ⊗ id) ◦∆([1]) = ϵ([1])⊗ [1] = [1],

(ϵ⊗ id) ◦∆([0, 1]) = ϵ([0])⊗ [0, 1] + ϵ([0, 1])⊗ [1] = [0, 1],

we have

(ϵ⊗ id) ◦∆(x1 ⊗ · · · ⊗ xn) =∑
±
(
ϵ
(
x
(1)
1

)
⊗ · · · ⊗ ϵ

(
x(1)
n

))
⊗

(
x
(2)
1 ⊗ · · · ⊗ x(2)

n

)
= x1 ⊗ · · · ⊗ xn,

where the sign is obtained by noticing that the only non-zero term occurs
when each factor x(0)

i is of degree 0. The third relation is verified analogously.
The fourth and fifth are precisely the well known facts that ϵ and ∆ are chain
maps. To verify the sixth and final relation we need to show that

∂(x ∗ y) + ∂ x ∗ y + (−1)|x|x ∗ ∂ y = ϵ(x)y − ϵ(y)x.

We have

x ∗ y =
∑

(−1)|x|x<i ϵ(y<i)⊗ xi ∗ yi ⊗ ϵ(x>i) y>i

and

∂(x ∗ y) =
∑

(−1)|x| ∂ x<i ϵ(y<i)⊗ xi ∗ yi ⊗ ϵ(x>i) y>i

+
∑

(−1)|x|+|x<i| x<i ϵ(y<i)⊗ ∂(xi ∗ yi)⊗ ϵ(x>i) y>i

−
∑

(−1)|x|+|x<i| x<i ϵ(y<i)⊗ xi ∗ yi ⊗ ϵ(x>i) ∂ y>i.
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Since |x| = |x<i| + |xi| + |x>i| and ϵ(x>i) ̸= 0 ⇔ |x>i| = 0 as well as
∂(xi ∗ yi) ̸= 0⇒ |xi| = 0 we have

∂(x ∗ y) =
∑

(−1)|x| ∂ x<i ϵ(y<i)⊗ xi ∗ yi ⊗ ϵ(x>i) y>i

+
∑

x<i ϵ(y<i)⊗ ∂(xi ∗ yi)⊗ ϵ(x>i) y>i

−
∑

x<i ϵ(y<i)⊗ xi ∗ yi ⊗ ϵ(x>i) ∂ y>i.

(8)

We also have

∂ x ∗ y =
∑

(−1)|x|−1 ∂ x<i ϵ(y<i)⊗ xi ∗ yi ⊗ ϵ(x>i) y>i

+
∑

(−1)|x|−1+|x<i| x<i ϵ(y<i)⊗ ∂ xi ∗ yi ⊗ ϵ(x>i) y>i

+
∑

(−1)|x|−1+|x<i| x<i ϵ(y<i)⊗ xi ∗ yi ⊗ ϵ(∂ x>i) y>i.

Since
ϵ(∂ x>i) = 0, ∂ xi ̸= 0⇔ |xi| = 1,

we have

∂ x ∗ y =
∑

(−1)|x|−1 ∂ x<i ϵ(y<i)⊗ xi ∗ yi ⊗ ϵ(x>i) y>i

+
∑

x<i ϵ(y<i)⊗ ∂ xi ∗ yi ⊗ ϵ(x>i) y>i.
(9)

We also have

(−1)|x| x ∗ ∂ y =
∑

x<i ϵ(∂ y<i)⊗ xi ∗ yi ⊗ ϵ(x>i) y>i

+
∑

(−1)|y<i| x<i ϵ(y<i)⊗ xi ∗ ∂ yi ⊗ ϵ(x>i) y>i

+
∑

(−1)|y<i|+|yi| x<i ϵ(y<i)⊗ xi ∗ yi ⊗ ϵ(x>i) ∂ y>i,

which is equivalent to

(−1)|x| x ∗ ∂ y =
∑

x<i ϵ(y<i)⊗ xi ∗ ∂ yi ⊗ ϵ(x>i) y>i

+
∑

x<i ϵ(y<i)⊗ xi ∗ yi ⊗ ϵ(x>i) ∂ y>i.
(10)

Putting identities (8), (9) and (10) together, we get

∂(x⊗ y) + ∂ x ∗ y + (−1)|x|x ∗ ∂ y

=
∑

ϵ(y<i)x<i ⊗
(
∂(xi ∗ yi) + ∂ xi ∗ yi + xi ∗ ∂ yi

)
⊗ ϵ(x>i) y>i.
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Since

∂(xi ∗ yi) + ∂ xi ∗ yi + xi ∗ ∂ yi = ϵ(xi)yi − ϵ(yi)xi,

we have

∂(x ∗ y) + ∂ x ∗ y + (−1)|x|x ∗ ∂ y =∑
ϵ(y<i)x<i ⊗ ϵ(x≥i)y≥i − ϵ(y≤i)x≤i ⊗ ϵ(x>i)y>i

= ϵ(x)y − ϵ(y)x,

as desired, where the last equality follows from a telescopic sum argument.

4.7 E∞-coalgebra on cubical chains

Lemma 4 defines a functor from the cube category to that ofM-bialgebras.
This category is not cocomplete so we do not expect to have anM-bialgebra
structure on arbitrary cubical sets. For example, consider the chains on the
cubical set X whose only non-degenerate simplices are v, w ∈ X0. By degree
reasons v ∗ w = 0 for any degree 1 product ∗ in N(X). The third relation
inM would then imply the contradiction 0 = w − v. Since categories of
coalgebras over operads are cocomplete we have the following.

Theorem 5. The Yoneda extension of the composition of the functor □ →
biAlgM defined in Lemma 4 with the forgetful functor biAlgM → coAlgU(M)

endows the chains of a cubical set with a natural E∞-coalgebra extension of
the Serre coalgebra structure.

4.8 Cohomology operations

In [Ste47], Steenrod introduced natural operations on the mod 2 cohomology
of spaces, the celebrated Steenrod squares

Sqk : H−n H−n−k

[α]
[
(α⊗ α)∆n−k

]
,
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via an explicit construction of natural linear maps ∆i : N(X) → N(X) ⊗
N(X) for any simplicial set X , satisfying up to signs the following homolog-
ical relations

∂ ◦∆i +∆i ◦ ∂ = (1 + T )∆i−1, (11)

with the convention ∆−1 = 0. These so-called cup-i coproducts appear to
be fundamental. We mention two results supporting this claim. In higher
category theory they define the nerve of n-categories [Med20b] as introduced
by Street [Str87]; and, in connection with K- and L-theory, the Ranicki–Weiss
assembly [RW90] can be used to show that chain complex valued presheaves
over a simplicial complex X can be fully faithfully modeled by comodules
over the symmetric coalgebra structure they define on N(X) [Med22b].

In the cubical case, cup-i coproducts were defined in [Kad99] and [KP16].
The formulas used by these authors are similar to those introduced in [Med23]
for the simplicial case, a dual yet equivalent version of Steenrod’s original.
A new description of cubical cup-i coproducts can be deduced from our
E∞-structure. We first present it in a recursive form

∆0 = ∆,

∆i = (∗ ⊗ id) ◦ (23)(∆i−1 ⊗ id) ◦∆.
(12)

A closed form formula for ∆i uses the
(⌈

i+2
2

⌉
,
⌊
i+2
2

⌋)
-shuffle permutation

σi+2 ∈ Si+2 mapping the first and second “decks” to odd and even integers
respectively. Explicitly, this shuffle permutation is defined by

σi+2(ℓ) =

{
2ℓ− 1 ℓ ≤

⌈
i+2
2

⌉
,

2(ℓ−
⌈
i+2
2

⌉
) ℓ >

⌈
i+2
2

⌉
.

(13)

Let ∆0 = ∗0 = id and define for any k ∈ N

∗k+1 = ∗ ◦ (∗k ⊗ id),

∆k+1 = (∆k ⊗ id) ◦∆.
(14)

With this notation it can be checked that Equation (12) is equivalent to

∆i =
(
∗⌈

i+2
2 ⌉ ⊗ ∗⌊

i+2
2 ⌋

)
◦ σ−1

i+2∆
i+1. (15)
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Figure 3: Graphs representing cup-i coproducts.

The first four cup-i coproducts are the images in the endomorphism operad
of cubical (and simplicial) chains of the elements U(M) represented by the
graphs in Figure 3.

It is not known if the cup-i coproducts defined in Equation (15) agree
with those previously constructed, for which a comparison is also missing.
This highlights the value of a potential axiomatic characterization of cubical
cup-i coproducts as it exists in the simplicial case [Med22a].

As already mentioned, cup-i coproducts represent the Steenrod squares
at the chain level, which are primary operations in mod 2 cohomology. To
obtain secondary cohomology operations one studies the cohomological
relations these operations satisfy, for example the Cartan and Adem relations
[SE62]. To do this at the cubical cochain level, as it was done in [Med20c;
BMM21] for the simplicial case, the operadic viewpoint is important, so
our E∞-structure on cubical cochains invites the construction of cochain
representatives for secondary operations in the cubical case.

For p an odd prime, Steenrod also introduced operations on the mod p
cohomology of spaces using the homology of symmetric groups [Ste52;
Ste53]. Using the operadic framework of May [May70], we described in
[KM21] elements in U(M) representing multicooperations defining Steenrod
operations at any prime. In particular, as proven in this work, these so-
called cup-(p, i) coproducts are defined on cubical chains and are expressible,
similarly to Equation (15), in terms of ∆, the permutations of factors, and ∗.
The aforementioned construction of cubical cup-(p, i) coproducts has been
implemented in the open source computer algebra system ComCH [Med21a].
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5. The Cartan–Serre map

Let us consider, with their usual CW structures, the topological simplex ∆n

and the topological cube In. In [Ser51, p. 442], Serre described a quasi-
isomorphism of coalgebras between the simplicial and cubical singular chains
of a topological space. It is given by precomposing with a canonical cellular
map cs : In → ∆n also considered in [EM53, p.199] where it is attributed to
Cartan.

The goal of this section is to deduce from a more general categorical
statement that this comparison map between singular chains of a space is a
quasi-isomorphism of E∞-coalgebras.

5.1 Simplicial sets

We denote the simplex category by △, the category Fun(△op, Set) of sim-
plicial sets by sSet, and the representable simplicial set Y

(
[n]

)
by△n. As

usual, we denote an element in △n
m by a non-decreasing tuple [v0, . . . , vm]

with vi ∈ {0, . . . , n}. The Cartesian product of simplicial sets is defined
by the product of functors. The simplicial n-cube (△1)×n is the nth-fold
Cartesian product of△1 with itself.

We will use the following model of the topological n-simplex:

∆n =
{
(y1, . . . , yn) ∈ In | i ≤ j ⇒ yi ≥ yj

}
,

whose cell structure associates [v0, . . . , vm] with the subset{(
1, . . . , 1︸ ︷︷ ︸

v0

, y1, . . . y1︸ ︷︷ ︸
v1−v0

, . . . , ym, . . . ym︸ ︷︷ ︸
vm−vm−1

, 0, . . . , 0︸ ︷︷ ︸
n−vm

)
| y1 ≥ · · · ≥ ym

}
. (16)

The spaces ∆n define a functor△→ CW with

σi(x1, . . . , xn) = (x1, . . . , x̂i, . . . , xn)

δ0(x1, . . . , xn) = (1, x1, . . . , xn),

δi(x1, . . . , xn) = (x1, . . . , xi, xi, . . . , xn),

δn(x1, . . . , xn) = (x1, . . . , xn, 0).

Its Yoneda extension is the geometric realization functor. It has a right adjoint
Sing△ : Top→ sSet referred to as the simplicial singular complex satisfying

Sing△(Z)n = Top(∆n,Z)
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for any topological space Z.
The functor of (normalized) chains N△ : sSet→ Ch is the composition

of the geometric realization functor and that of cellular chains. We denote the
composition N△ ◦ Sing△ by S△ and omit the superscript△ if no confusion
may result from doing so. For any n ∈ N, the Alexander–Whitney coalgebra
structure on N(△n) is given by

∆
(
[v0, . . . , vm]

)
=

m∑
i=0

[v0, . . . , vi]⊗ [vi, . . . , vm],

and

ϵ
(
[v0, . . . , vm]

)
=

{
1 if m = 0,

0 if m > 0.

The degree 1 product ∗ : N(△n)⊗2 → N(△n) is defined by

[v0, . . . , vp] ∗ [vp+1, . . . , vm] ={
(−1)p+|σ| [vσ(0), . . . , vσ(m)

]
if vi ̸= vj for i ̸= j,

0 if not,

where σ is the permutation that orders the totally ordered set of vertices and
(−1)|σ| is its sign. As shown in [Med20a, Theorem 4.2] the assignment

7→ ϵ, 7→ ∆, 7→ ∗,

defines a naturalM-bialgebra on the chains of representable simplicial sets,
and, by forgetting structure, also a natural U(M)-coalgebra. For any sim-
plicial set, a natural U(M)-coalgebra structure on its chains is defined by a
Yoneda extension.

5.2 The Eilenberg–Zilber maps

For any permutation σ ∈ Sn let

iσ : ∆n → In

be the inclusion defined by (x1, . . . , xn) 7→ (xσ(1), . . . , xσ(n)). If e is the
identity permutation, we denote ie simply as i. The maps {iσ}σ∈Sn define

- 407 -



R.K. & A.M-M. AN E∞-STRUCTURE ON CUBICAL COCHAINS

a subdivision of In making it isomorphic to
∣∣(△1)×n

∣∣ in CW. Using this
identification, the identity map induces a cellular map

ez : In →
∣∣(△1)×n

∣∣.
We denote the induced chain map by

EZ: N(□n)→ N
(
(△1)×n

)
.

For any topological space Z, the cubical map

U Sing△(Z)→ Sing□(Z)

is defined, using the adjunction isomorphism

sSet
(
(△1)×n, Sing△(Z)

) ∼= Top
(
|(△1)×n|,Z

)
,

by the assignment(
|(△1)×n| f−→ Z

)
7→

(
In

ez−→ |(△1)×n| f−→ Z
)
.

We denote the induced chain map by

EZS(Z) : N□
(
U Sing△(Z)

)
→ S□(Z).

5.3 The Cartan–Serre maps

The cellular map
cs : In → ∆n

is defined by

cs(x1, . . . , xn) = (x1, x1x2, . . . , x1x2 · · ·xn).

We denote its induced chain map by

CS: N(□n)→ N(△n).

The chain map
CSS(Z) : S△(Z)→ S□(Z)

between the singular chain complexes of a topological space Z is defined by

CSS(Z)(∆
n → Z) = (In

cs−→ ∆n → Z).

These maps were considered in [Ser51, p. 442] where it was stated that
CSS(Z) is a natural quasi-isomorphisms of coalgebras. We will prove this in
§5.6 showing in fact that it is a quasi-isomorphism of E∞-coalgebras.
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5.4 No-go results

Since CS is shown to be a coalgebra map in Lemma 8 and EZ is well known
to be one, one may hope for higher structures to be preserved by these maps.
We now provide some examples constraining the scope of these expectations.

Example. We will show that EZ does not preserve U(M)-structures. More
specifically, that in general

EZ⊗2 ◦∆1 ̸= ∆1 ◦ EZ

where
∆1 = (∗ ⊗ id) ◦ (id⊗ (12)∆) ◦∆

is the cup-1 coproduct presented in Equation (15). Up to signs, on one hand
we have

∆1

(
[01][01]

)
= [01][01]⊗ [1][01] + [01][1]⊗ [01][01]

+ [0][01]⊗ [01][01] + [01][01]⊗ [01][0].

Therefore,

EZ⊗2 ◦∆1

(
[01][01]

)
=

(
011× 001 + 001× 011

)
⊗ 11× 01

+ 01× 11⊗
(
011× 001 + 001× 011

)
+ 00× 01⊗

(
011× 001 + 001× 011

)
+

(
011× 001 + 001× 011

)
⊗ 01× 00.

On the other hand, we have

∆1[0, 1, 2] = [0, 1, 2]⊗ [0, 1] + [0, 2]⊗ [0, 1, 2] + [0, 1, 2]⊗ [1, 2].

Therefore,

∆1 ◦ EZ
(
[01][01]

)
= ∆1

(
011× 001 + 001× 011

)
= 011× 001⊗ 01× 00 + 01× 01⊗ 011× 001

+ 011× 001⊗ 11× 01 + 001× 011⊗ 00× 01

+ 01× 01⊗ 001× 011 + 001× 011⊗ 01× 11.
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We conclude that

EZ⊗2 ◦∆1

(
[01][01]

)
̸= ∆1 ◦ EZ

(
[01][01]

)
since, for example, the basis element 01× 11⊗ 011× 001 appears in the left
sum but not in the right one.

Example. We will show that the Cartan–Serre map does not preserveM-
structures. More specifically, that in general

CS(x ∗ y) ̸= CS(x) ∗ CS(y).

Consider x = [1][1] and y = [0][01]. On one hand we have that

CS
(
[1][1]

)
∗ CS

(
[0][01]

)
= 0

since CS
(
[0][01]

)
= 0. On the other hand we have, up to a signs, that

CS
(
([1][1]) ∗ ([0][01])

)
= CS

(
[01][01]

)
= [012],

which establishes the claim.

The reason for this incompatibility is that ∗ in the simplicial context is
commutative, which is not the case in the cubical one.

Example. We will show that the Cartan–Serre map does not preserve U(M)-
structures. More specifically, that in general

CS ◦ ∆̃1 ̸= ∆̃ ◦ CS

where
∆̃1 = (∗ ⊗ id) ◦ (12)(id⊗ (12)∆) ◦∆.

On one hand we have that

CS
(
∆̃1

(
[01][01]

))
= T∆1

(
[012]

)
,

and on the other that

∆̃1 ◦ CS
(
[01][01]

)
= ∆1

(
[012]

)
,

which establishes the claim.

In §5.6 we will show that CS is a morphism of E∞-coalgebras. To do
so we now introduce an E∞-suboperad of U(M) where the incompatibility
resulting from the lack of commutativity of ∗ in the cubical context is dealt
with.
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5.5 Shuffle graphs

Consider k = k1 + · · ·+ kr. A (k1, . . . , kr)-shuffle σ is a permutation in Sk

satisfying

σ(1) < · · · < σ(k1),

σ(k1 + 1) < · · · < σ(k1 + k2),

...
σ(k − kr + 1) < · · · < σ(k).

The (left comb) shuffle graph associated to such σ is the (1, k)-graph

1

1 2 k1
...

...

. . .

r

k − kr + 1 k − 1 k
...
...

◦

1

σ−1(1) σ−1(2)σ−1(3) σ−1(k)

...

...

presented as a composition of (left comb) self-graftings of the generators
and . With the notation introduced in Equation (14), the U(M)-coalgebra
sends the shuffle graph associated to σ to

(∗k1 ⊗ · · · ⊗ ∗kr) ◦ σ−1∆k−1.

Example. All the graphs in Figure 3 are shuffle graphs. In fact, all the
cup-i coproducts presented in Equation (15) are induced from shuffle graphs,
whereas

∆̃1 = (∗ ⊗ id) ◦ (12)(id⊗ (12)∆) ◦∆
= (∗ ⊗ id) ◦ (123)∆2,

used in the previous section to probe the limits of the structure preserving
properties of CS, is not.

The operad U(Msh) is defined as the suboperad of U(M) (freely) gener-
ated by shuffle graphs. Explicitly, any element in U(Msh)(r) is represented
by a linear combination of (1, r)-graphs obtained by grafting these. The same
proof used in [Med20a, p.5] to show that U(M) is an E∞-operad can be used
to prove the same for U(Msh).
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5.6 E∞-coalgebra preservation

We devote this subsection to the proof of the following key result.

Theorem 6. The chain map CS: N(□n)→ N(△n) is a quasi-isomorphism
of U(Msh)-coalgebras.

We start by stating an alternative description of the CS map.

Lemma 7. Let x = x1 ⊗ · · · ⊗ xn ∈ N(□n)m be a basis element with
xqi = [0, 1] for all {q1 < · · · < qm}. If there is xℓ = [0] with ℓ < qm then
CS(x) = 0, otherwise

CS(x) =
[
q1 − 1, . . . , qm − 1, p(x)− 1

]
where p(x) = min

{
ℓ | xℓ = [0]

}
or p(x) = n+ 1 if this set is empty.

Proof. This can be directly verified using the cell structure of ∆n described
in Equation (16).

Lemma 8. The chain map CS: N(□n)→ N(△n) is a quasi-isomorphism of
coalgebras.

Proof. The chain map CS is a quasi-isomorphism compatible with the counit
since it is induced from a cellular map between contractible spaces. We need
to show it preserves coproducts. By naturality it suffices to verify this on
[0, 1]⊗n. Recall from Lemma 3 that

∆
(
[0, 1]⊗n

)
=

∑
λ∈Λ

(−1)indλ
(
x
(λ)
1 ⊗ · · · ⊗ x(λ)

n

)
⊗
(
y
(λ)
1 ⊗ · · · ⊗ y(λ)n

)
,

where the sum is over all choices for each i ∈ {1, . . . , n} of

x
(λ)
i = [0, 1], or x

(λ)
i = [0],

y
(λ)
i = [1], y

(λ)
i = [0, 1].

By Lemma 7, the summands above not sent to 0 by CS⊗CS are those basis
elements for which x

(λ)
i = [0] implies x(λ)

j = [0] for all i < j. For any one
such summand, its sign is positive and its image by CS⊗CS is [0, . . . , k]⊗
[k, . . . , n] where k + 1 = min

{
i | x(λ)

i = [0]
}

or k = n if this set is empty.
The summands [0, . . . , k] ⊗ [k, . . . , n] are precisely those appearing when
applying the Alexander–Whitney coproduct to CS

(
[0, 1]⊗n

)
= [0, . . . , n].

This concludes the proof.
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We will consider the basis of N(□n) as a poset with

(x1 ⊗ · · · ⊗ xn) ≤ (y1 ⊗ · · · ⊗ yn)

if and only if xℓ ≤ yℓ for each ℓ ∈ {1, . . . , n} with respect to

[0] < [0, 1] < [1].

As we prove next, an example of ordered elements are the tensor factors of
each summand in the iterated Serre diagonal.

Lemma 9. Writing

∆k−1
(
[0, 1]⊗n

)
=

∑
± x(1) ⊗ · · · ⊗ x(k)

with each x(ℓ) a basis element of N(□n), we have

x(1) ≤ · · · ≤ x(k)

for every summand.

Proof. This can be proven using a straightforward induction argument whose
base case follows from inspecting Lemma 3.

Lemma 10. Let x, y and z be basis elements of N(□n). If both x ≤ z and
y ≤ z then either (x ∗ y) = 0 or every summand in (x ∗ y) is ≤ z.

Proof. Recall that

(x1⊗· · ·⊗xn)∗(y1⊗· · ·⊗yn) = (−1)|x|
n∑

ℓ=1

x<ℓ ϵ(y<ℓ)⊗xℓ∗yℓ⊗ϵ(x>ℓ) y>ℓ.

By assumption x<ℓ ≤ z<ℓ and y>ℓ ≤ z>ℓ for every ℓ ∈ {1, . . . , n}. If
xℓ ∗ yℓ ̸= 0 then xℓ ∗ yℓ = [0, 1] and either xℓ = [1] or yℓ = [1] which implies
zℓ = [1] as well, so xℓ ∗ yℓ ≤ zℓ.

Lemma 11. If x and y are basis elements of N(□n) satisfying x ≤ y then

CS(x ∗ y) = CS(x) ∗ CS(y). (17)
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Proof. We present this proof in the form of three claims. We use Lemma 7,
the assumption x ≤ y, and the fact that the join of basis elements in N(△n)
sharing a vertex is 0 without explicit mention.

Claim 1. If CS(x) = 0 or CS(y) = 0 then for every i ∈ {1, . . . , n}

CS
(
x<i ϵ(y<i)⊗ xi ∗ yi ⊗ ϵ(x>i) y>i

)
= 0. (18)

Assume CS(x) = 0, that is, there exists a pair p < q such that xp = [0] and
xq = [0, 1], then (18) holds since:

1. If i > q, then xp and xq are part of x<i.

2. If i = q, then xq ∗ yq = 0 for any yq.

3. If i < q, then ϵ(x>i) = 0.

Similarly, if there is a pair p < q such that yp = [0] and yq = [0, 1], then (18)
holds since:

1. If i < p, then yp and yq are part of y>i.

2. If i = p, then xi = [0] and xi ∗ yi = 0.

3. If i > p, then either xi ∗ yi = 0 or xi ∗ yi = [0, 1] and xp = [0].

This proves the first claim and identity (17) under its hypothesis.

Claim 2. If CS(x) ̸= 0 and CS(y) ̸= 0 then

CS(x ∗ y) = CS
(
x<pxϵ(y<px)⊗ xpx∗ ypx ⊗ ϵ(x>px) y>px

)
if px = min

{
i | xi = [0]

}
is well-defined and x ∗ y = 0 if not.

Assume px is not well-defined, i.e., xi ̸= [0] for all i ∈ {1, . . . , n}. Given
that x ≤ y we have that [0] < xi implies xi ∗ yi = 0, and the claim follows in
this case.

Assume px is well-defined. We will show that for all i ∈ {1, . . . , n} with
the possible exception of i = px we have

CS
(
x<i ϵ(y<i)⊗ xi∗ yi ⊗ ϵ(x>i) y>i

)
= 0 (19)

This follows from:
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1. If i < px and xi = [1] then yi = [1] and xi ∗ yi = 0.

2. If i < px and xi = [0, 1] then xi ∗ yi = 0 for any yi.

3. If i > px then Lemma 7 implies the claim since xpx = [0] and xi∗yi ̸= 0
iff xi ∗ yi = [0, 1].

Claim 3. If CS(x) ̸= 0 and CS(y) ̸= 0 then (17) holds.

Let us assume that
{
i | xi = [0]

}
is empty, which implies the analogous

statement for y since x ≤ y. Since neither of x nor y have a factor [0] in
them, Lemma 7 implies that the vertex [n] is in both CS(x) and CS(y), which
implies CS(x) ∗ CS(y) = 0 as claimed.

Assume now that px =
{
i | xi = [0]

}
is well defined, and let {q1 < · · · <

qm} with xqi = [0, 1] for i ∈ {1, . . . ,m}. Since CS(x) ̸= 0 Lemma 7 implies
that px > qm, so ϵ(x>px) = 1 and Claim 2 implies

CS(x ∗ y) = CS
(
x<pxϵ(y<px)⊗ xpx∗ ypx ⊗ y>px

)
.

We have the following cases:

1. If ϵ(y<px) = 0 then there is qi such that yqi = [0, 1] so [qi − 1] is in
both CS(x) and CS(y).

2. If ϵ(ypx) ̸= 0 and ypx ∈ {[0], [0, 1]} then xpx ∗ ypx = 0 and [px − 1] is
in both CS(x) and CS(y).

3. If ϵ(ypx) ̸= 0 and ypx = [1] let {ℓ1 < · · · < ℓk} be such that yℓj = [0, 1]
and let py > ℓk be either n+ 1 or min{j | yj = {0}} then

CS(x ∗ y) = CS
(
x<px ⊗ xpx ∗ ypx ⊗ y>py

)
= [q1 − 1, . . . , qm − 1, px − 1, ℓ1 − 1, . . . , ℓk − 1, py − 1]

= CS(x) ∗ CS(y).

This concludes the proof.

Combining the previous two lemmas we obtain the following.

Lemma 12. Let x(1) ≤ · · · ≤ x(k) be basis elements of N(□n). Then,

CS ◦ ∗k−1
(
x(1) ⊗ · · · ⊗ x(k)

)
= ∗k−1 ◦ CS⊗k

(
x(1) ⊗ · · · ⊗ x(k)

)
.
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We are now ready to present the argument establishing that CS is an
E∞-coalgebra map.

Proof of Theorem 6. Since U(Msh) is generated by elements represented by
shuffle graphs, we only need to show that for any (k1, . . . , kr)-shuffle σ with
k = k1 + · · ·+ kr the following holds

CS⊗r(∗k1 ⊗ · · · ⊗ ∗kr) ◦ σ−1∆k−1 = (∗k1 ⊗ · · · ⊗ ∗kr) ◦ σ−1∆k−1 ◦ CS .

By naturality, it suffices to prove this identity for [0, 1]⊗n. According to
Lemma 9

x(1) ≤ · · · ≤ x(k)

for every summand in

∆k−1
(
[0, 1]⊗n

)
=

∑
± x(1) ⊗ · · · ⊗ x(k).

Since σ is a shuffle permutation, Lemma 12 implies that

CS⊗r(∗k1 ⊗ · · · ⊗ ∗kr) ◦ σ−1∆k−1
(
[0, 1]⊗n

)
= (∗k1 ⊗ · · · ⊗ ∗kr) ◦ σ−1CS⊗k ◦∆k−1

(
[0, 1]⊗n

)
.

As proven in Lemma 8, CS is a coalgebra map, which concludes the proof.

5.7 Categorical reformulation

The assignment 2n 7→ (△1)×n defines a functor □→ sSet with

δεi : (△1)×n → (△1)×(n+1)

σi : (△1)×(n+1) → (△1)×n

given by inserting [ε, . . . , ε] as the ith factor and removing the ith factor
respectively. Its Yoneda extension, referred to as triangulation functor, is
denoted by

T : cSet→ sSet.

This functor admits a right adjoint

U : sSet→ cSet
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defined, as usual, by the expression

U(Y )(2n) = sSet
(
(△1)×n, Y

)
.

We mention that, as proven in [Cis06, § 8.4.30], the pair (T , U) defines a
Quillen equivalence when sSet and cSet are considered as model categories.

Definition 13. The simplicial map cs : (△1)×n →△n is defined by

[ε10, . . . , ε
1
m]× · · · × [εn0 , . . . , ε

n
m] 7→ [v0, . . . , vm]

where vi = ε1i + ε1i ε
2
i + · · ·+ ε1i · · · εni .

Please observe that the maps cs and |cs| ◦ ez agree.

Definition 14. Let Y be a simplicial set. The map

CSY : N△(Y )→ N□(U Y )

is the linear map induced by sending a simplex y ∈ Yn to the composition

(△1)×n cs−→ △n ξy−→ Y

where ξy : △n → Y is the simplicial map determined by ξy
(
[n]

)
= y.

Theorem 15. For any simplicial set Y the map CSY : N△(Y )→ N□(U Y )
is a quasi-isomorphism of U(Msh)-coalgebras which extend respectively the
Alexander–Whitney and Serre coalgebra structures.

Proof. This is a direct consequence of Theorem 6 following from a standard
category theory argument, which we now present. Consider the isomorphism

N(U Y ) ∼=
⊕
n∈N

N(□n)⊗ k
{
sSet

(
(△1)×n,△n

)}/
∼

and the canonical linear inclusions:

N(□n)
⊕
m∈N

Hom
(
N(□m), N(□n)

)
(2m

δ−→ 2n)
(
N(□m)

N(δ)−−→ N(□n)
)
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and ⊕
n∈N

k
{
sSet

(
(△1)×n,△n

)} ⊕
n∈N

Hom
(
N
(
(△1)×n

)
, N(△n)

)
(
(△1)×n f−→ △n

) (
N
(
(△1)×n

) N(f)−−→ N(△n)
)
.

We can use these and the naturality of EZ to construct the following chain
map which is an isomorphism onto its image.

N(U Y )
⊕
n∈N

Hom
(
N(□n), N(Y )

)
(δ ⊗ f)

(
N(f) ◦ EZ ◦N(δ)

)
.

Let Γ be an element in U(Msh)(r) and denote by Γ□ : N(U Y )→ N(U Y )⊗r

and Γ△ : N(Y ) → N(Y )⊗r its image in the respective endomorphism op-
erads. Using the naturality of Γ□, we have that Γ□(δ ⊗f) corresponds to
(N(f) ◦ EZ)⊗r ◦ Γ□ ◦ N(δ). On the other hand, the map CSY corresponds to

N(Y )n N(U Y )n

y
(
N(ξy) ◦ CS

)
where ξy : △n → Y is determined by ξy

(
[n]

)
= y, and we used that CS =

N(cs) ◦ EZ to ensure the above assignment is well defined. The image of
Γ△(y) corresponds to N(ξy)

⊗r ◦ Γ△ ◦ CS. So the claim follows from the
identity

Γ□
(
2n ⊗ (ξy ◦ cs)

)
= (N(ξy ◦ cs) ◦ EZ)⊗r ◦ Γ□

= N(ξy)
⊗r ◦ CS⊗r ◦Γ□

= N(ξy)
⊗r ◦ Γ△ ◦ CS

where we used that CS⊗r ◦Γ□ = Γ△ ◦ CS as proven in Theorem 6.

Corollary 16. For any cubical set X

N□(X)
N□(ξX)−−−−→ N□(U T X)

CST X←−−− N△(T X),
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where ξ is the unit of adjunction, is a natural zig-zag of quasi-isomorphisms
of U(Msh)-coalgebras which extend respectively the Serre and Alexander–
Whitney coalgebra structures.

Proof. The map CST X is a quasi-isomorphism of U(Msh)-coalgebras by
Theorem 15, whereas N□(ξX) is also one since it is induced from a cubical
map that is a weak-equivalence.

Corollary 17. The singular simplicial and cubical chains of a topological
space Z are quasi-isomorphic as U(Msh)-coalgebras which extend respec-
tively the Alexander–Whitney and Serre coalgebra structures. More specifi-
cally, the map

CSS(Z) : S△(Z)→ S□(Z)

is a quasi-isomorphism of U(Msh)-coalgebras.

Proof. It can be verified using that cs = |cs| ◦ ez that this map factors as

CSS(Z) : S△(Z)
CS

Sing△(Z)−−−−−−→ N□
(
U Sing△(Z)

) EZS(Z)−−−−→ S□(Z)

where the first map was proven in Theorem 15 to be a quasi-isomorphism
of U(Msh)-coalgebras, and the second, introduced in § 5.2, is also one
since it is induced from a cubical map whose geometric realization is a
homeomorphism.

6. Future work

In the fifties, Adams introduced in [Ada56] a comparison map

Ω S△(Z, z)→ S□(ΩzZ)

from his cobar construction on the simplicial singular chains of a pointed
space (Z, z) to the cubical singular chains on its based loop space ΩzZ.
This comparison map is a quasi-isomorphism of algebras, which was shown
by Baues [Bau98] to be one of bialgebras by considering Serre’s cubical
coproduct. In [MR21] the E∞-coalgebra structure defined here is used to
generalize Baues’ result, by showing that Adams’ comparison map is a quasi-
isomorphism of E∞-bialgebras or, more precisely, of monoids in the category
of U(M)-coalgebras.
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For a closed smooth manifold M , in [FMS21] a canonical vector field
was used to compare multiplicatively two models of ordinary cohomology.
On one hand, a cochain complex generated by manifolds with corners over
M , with partially defined intersection; on the other, the cubical cochains
of a cubulation of M with the Serre product. With the explicit description
introduced here of an E∞-structure on cubical cochains, we expect to build
on this multiplicative comparison and enhance geometric cochains [FMS22]
with compatible representations of further derived structure.
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types d’homotopie”. Astérisque 308 (2006) (cit. on p. 31).

- 420 -

https://doi.org/10.1073/pnas.42.7.409
https://www.math.uni-bielefeld.de/documenta/vol-18/33.html
https://doi.org/10.1007/s002220050231
https://doi.org/10.1007/s002220050231
https://www.worldscientific.com/doi/abs/10.1142/9789814415255_0002
https://doi.org/10.4171/083
https://doi.org/10.4171/083
https://doi.org/10.1007/s00014-003-0772-y
https://doi.org/10.1007/s00014-003-0772-y
https://doi.org/10.1007/s40062-021-00287-3
https://doi.org/10.1007/s40062-021-00287-3
https://doi.org/10.1007/s40062-021-00287-3
https://www.springer.com/gp/book/9783540064794
https://www.springer.com/gp/book/9783540064794
http://www.mathematik.uni-regensburg.de/cisinski/ast.pdf
http://www.mathematik.uni-regensburg.de/cisinski/ast.pdf


R.K. & A.M-M. AN E∞-STRUCTURE ON CUBICAL COCHAINS

[Coh+17] Cyril Cohen et al. “Cubical Type Theory: a constructive inter-
pretation of the univalence axiom”. IfCoLog Journal of Logics
and their Applications 4.10 (Nov. 2017) (cit. on p. 2).

[EM53] Samuel Eilenberg and Saunders MacLane. “Acyclic models”.
Amer. J. Math. 75 (1953) (cit. on p. 20).

[FMS21] Greg Friedman, Anibal M. Medina-Mardones, and Dev Sinha.
“Flowing from intersection product to cup product”. arXiv e-
prints (2021). Submitted (cit. on p. 34).

[FMS22] Greg Friedman, Anibal M. Medina-Mardones, and Dev Sinha.
“Co-orientations, pull-back products, and the foundations of
geometric cohomology”. In preparation. 2022 (cit. on p. 34).

[GM03] Marco Grandis and Luca Mauri. “Cubical sets and their site”.
Theory Appl. Categ. 11 (2003) (cit. on p. 11).

[Gro87] M. Gromov. “Hyperbolic groups”. Essays in group theory. Vol. 8.
Math. Sci. Res. Inst. Publ. Springer, New York, 1987 (cit. on
p. 2).

[Hin97] Vladimir Hinich. “Homological algebra of homotopy algebras”.
Comm. Algebra 25.10 (1997) (cit. on p. 3).

[Kad99] T. Kadeishvili. “DG Hopf algebras with Steenrod’s i-th coprod-
ucts”. Proc. A. Razmadze Math. Inst. 119 (1999) (cit. on p. 18).

[Kan55] Daniel M. Kan. “Abstract homotopy. I”. Proc. Nat. Acad. Sci.
U.S.A. 41 (1955) (cit. on p. 2).

[Kan56] Daniel M. Kan. “Abstract homotopy. II”. Proc. Nat. Acad. Sci.
U.S.A. 42 (1956) (cit. on p. 2).

[Kau09] Ralph M. Kaufmann. “Dimension vs. genus: a surface realization
of the little k-cubes and an E∞ operad”. Algebraic topology—
old and new. Vol. 85. Banach Center Publ. Polish Acad. Sci. Inst.
Math., Warsaw, 2009 (cit. on p. 10).

[KM21] Ralph M. Kaufmann and Anibal M. Medina-Mardones. “Co-
chain level May-Steenrod operations”. Forum Math. 33.6 (2021)
(cit. on pp. 3, 19).

- 421 -

http://www.collegepublications.co.uk/journals/ifcolog/?00019
http://www.collegepublications.co.uk/journals/ifcolog/?00019
https://doi.org/10.2307/2372628
http://arxiv.org/abs/2106.05986
https://www.medina-mardones.com/
https://www.medina-mardones.com/
http://www.tac.mta.ca/tac/volumes/11/8/11-08.pdf
https://doi.org/10.1007/978-1-4613-9586-7_3
https://doi.org/10.1080/00927879708826055
http://www.rmi.ge/proceedings/volumes/pdf/v119-7.pdf
http://www.rmi.ge/proceedings/volumes/pdf/v119-7.pdf
https://doi.org/10.1073/pnas.41.12.1092
https://doi.org/10.1073/pnas.42.5.255
https://doi.org/10.4064/bc85-0-17
https://doi.org/10.4064/bc85-0-17
https://doi.org/10.1515/forum-2020-0296
https://doi.org/10.1515/forum-2020-0296


R.K. & A.M-M. AN E∞-STRUCTURE ON CUBICAL COCHAINS

[KMM04] Tomasz Kaczynski, Konstantin Mischaikow, and Marian Mrozek.
Computational homology. Vol. 157. Applied Mathematical Sci-
ences. Springer-Verlag, New York, 2004 (cit. on p. 2).
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