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Résumé. Le lien entre les espaces métriques et la topologie repose sur cer-

taines propriétés du treillis des réels non négatifs. En raison de la célèbre

observation de Lawvere selon laquelle la théorie des espaces métriques est

une branche de la théorie des catégories enrichies, il est naturel d’étudier

dans quelle mesure le lien avec la topologie survit lors de l’enrichissement

dans d’autres petits cosmos. En même temps, l’essor récent des techniques

topologiques en science des données soulève la question de savoir quelles

propriétés théoriques du treillis des réels non négatifs jouent un rôle vital,

dans le but d’axiomatiser ces propriétés afin d’améliorer l’applicabilité des

techniques au-delà métrique classique. Nous considérons ces deux motiva-

tions comme les faces théorique et applicable d’une même médaille mathé-

matique. Nous identifions une large classe de quantales comme réponse

commune aux deux questions, et utilisons les résultats pour présenter une

construction de limites d’espaces qui est classiquement équivalente à la con-

struction topologique, mais qui a un potentiel constructif différent.

Abstract. The link between metric spaces and topology relies on various

lattice theoretic properties of the non-negative reals. Due to Lawvere’s fa-

mous observation that metric space theory is a branch of enriched category

theory, it is natural to study the extent to which the link with topology sur-

vives when enriching in other small cosmoses. At the same time, the recent

flourish of topological techniques in data science raises the question of which

lattice theoretic properties of the non-negative reals play a vital role, with the

aim of axiomatising just those properties in order to enhance the applicability

of techniques beyond the classical metric setting. We view these two motiva-
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tions as the theoretical and applicable sides of the same mathematical coin.

We pinpoint a wide class of quantales as the common answer to the two ques-

tions, and use the results to present a construction of limits of spaces that is

classically equivalent to the topological one, but has constructively different

potential.

Keywords. quantale, quantale enrichment, generalised metric space, con-

structive complete distributivity, induced topology, topological data analysis.
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1. Introduction and motivation

It is well known ([20]) that it is fruitful to view a metric space as a small

category enriched in the monoidal category [0,∞], with an arrow x→ y pre-

cisely when x ≥ y, and monoidal structure provided by addition. Any aspect

of metric space theory thus becomes a source of enriched categorical inves-

tigation. Our interest is in continuity for a function f ∶X → Y between two

sets, each of which is the set of objects of an enriched category. A suitable

category V to enrich in is a cosmos, i.e., a symmetric closed monoidal co-

complete category ([19]). When V is also small, it is canonically equivalent

to a complete lattice. Such a lattice is then precisely a commutative quantale

Q. Equivalently, a (commutative) quantale is a (commutative) monoid ob-

ject in the category CJLat of complete join lattices with respect to its tensor

product (see [17] and [10]). Let cQnt be the category of commutative quan-

tales with morphisms the join preserving monoidal functors. In more detail,

a quantale Q is a complete lattice with joins ⋁, meets ⋀, bottom element �,

and top element ⊺. It is equipped with a monoidal product, namely an as-

sociative operation ⋅ with a two-sided unit 1, and it distributes over arbitrary

joins, i.e.,

x ⋅⋁S =⋁{x ⋅ s ∣ s ∈ S} and ⋁S ⋅ x =⋁{s ⋅ x ∣ s ∈ S}

for all x ∈ Q and S ⊆ Q. A morphism f ∶Q → Q′ is a monoidal functor,

again necessarily strict, that is also a complete join homomorphism. The

quantale is affine if its monoidal unit is the top element. It is commutative

when its monoidal product is symmetric (necessarily strictly so). Recall

from [11] that a complete lattice L is constructively completely distributive

(CCD) if ⋁∶D(L) → L, as a functor from the lattice of down-closed subsets
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of L, admits a left adjoint ⇓(−). Explicitly, y ∈ ⇓(x) precisely when, for all

subsets S ⊆ Q, the condition x ≤ ⋁S implies that y ≤ s for some s ∈ S. We

then say that y is totally below x, and write y⋘ x. The CCD condition then

amounts to

x =⋁⇓(x),

for all x ∈ L. We shall use the auxiliary notation

↓(x) = {y ∈ L ∣ y ≤ x}, ↡(x) = {y ∈ L ∣ x < y}, and ↟(x) = {y ∈ L ∣ y > x}

for elements in a lattice.

Let Q1 and Q2 be quantales, X a small Q1-category, Y a small Q2-

category, and f ∶X → Y a function between the underlying sets of objects.

We say that f is continuous at x ∈ X if for all ε⋘ ⊺ in Q2 there exists a

δ⋘ ⊺ in Q1 such that

δ⋘X(x, y) Ô⇒ ε⋘ Y (fx, fy).

Expectantly, we say that f is continuous if f is continuous at all points x ∈X .

It is easily seen that the identity function from a small Q-category to itself

is continuous, and that the composition of continuous functions is continu-

ous. Therefore, if Γ is a class of quantales, we obtain the category ΓCatcont
consisting of all small Q-categories, where Q is of class Γ, with all contin-

uous functions as morphisms. For instance, if Γ = {[0,∞]}, then ΓCatcont
is the category of all Lawvere metric spaces with morphisms all functions

satisfying the usual cauchy condition of continuity.

A quantale is a value quantale ([12]) when it is affine, its underlying

lattice is CCD, and ⇓(⊺) is closed under finite joins. The following result

was noted in [32, 7].

Theorem 1.1. Let F be the class of all value quantales. The open ball topol-

ogy functor O∶FCatcont → Top is an equivalence of categories. In fact, it

is the unique equivalence between these categories as concrete categories.

As a consequence, there arises a translation mechanism between topol-

ogy and the language of enriched categories. Given any topological concept,

one may ask whether it is captured enriched categorically in a natural fash-

ion. For instance, since Top is complete, so is FCatcont. If X and Y are two
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objects of FCatcont, their product may be computed as Φ((O(X)×O(Y ))),
where the product is computed in Top and Φ∶Top→ FCatcont is any choice

of an equivalency. Of course, this is not what we mean by capturing products

enriched categorically. Instead, we insist on treating X and Y as enriched

categories and remain firmly within the category FCatcont, without passing

to the equivalent Top. Doing so, suppose that X and Y are enriched, respec-

tively, in the quantales Q1 and Q2. Suppose further that a suitable coproduct

quantale Q = Q1∐Q2 exists. It is then natural to define the Q-enriched

category X × Y with ob(X × Y ) = ob(X) × ob(Y ) and

(X × Y )((x, y), (x′, y′)) =X(x, x′)⊗ Y (y, y′)

where, for elements x ∈ Q1 and y ∈ Q2, we write x⊗y for the element ι1(x) ⋅
ι2(y) ∈ Q1∐Q2, namely the monoidal product in the coproduct Q1∐Q2, of

the canonical injections of x and y in it. We will show that this construction

is legitimate and that it results in the categorical product of X and Y in

FCatcont. A fortiori, the open ball topology O(X × Y ) must coincide with

the usual product topology ofO(X) andO(Y ). We will treat all small limits

in this enriched categorical sense.

1.1 The plan of the article

The rest of the introduction discusses the foundational aspect of the approach

above to topological data analysis, and quickly surveys related work. This is

a potential application we see to the approach we present, but the presenta-

tion itself is of independent interest. Section 2 leads to the identification of

topological quantales, namely lattice-theoretic conditions that guarantee that

the classical link between metric spaces and topology extends to the quan-

tale enrichment case. Section 3 develops the infrastructure of coproducts of

commutative quantales required for the main result. Throughout the paper,

and particularly in that section, we pay attention to the constructive validity

of the results. Section 4 then presents the construction of all small limits,

deliberately by the use of essentially metric techniques. The proof can be

seen as a very elementary ǫ − δ style proof. However, its correctness rests

upon the precise lattice theoretic machinery developed earlier. In particular,

the construction of limits of spaces is as constructive as the lattices that are

used for metrising each of the ingredient spaces.
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1.2 Connection to topological data analysis

In topological data analysis (TDA) the starting point is a point cloud, which

is nothing but a finite metric space. Of course, in practice all data is finite,

but mathematically the restriction to finite metric spaces is artificial. Drop-

ping it, the starting point of TDA is a metric space. Equivalently, the starting

point of TDA is a small [0,∞]-enriched category. The techniques used are

then topological. Topology is by design blind to small perturbations in the

presentation of a metric space, and this precisely leads to robustness in the

analysis of the data to various types of contamination (see [3]). TDA tech-

niques typically result in what is known as a bar code; a combination of the

blindness of topology together with the rigidity of the metric presentation of

the problem. Stated more formally, the algorithm is performed on the metric

space X and not on its open ball topology O(X). The metric presentation is

crucial.

A categorical understanding of TDA, as begun in [4], must handle the

tension (see [29]) between the metric presentation of the problem and the

topological techniques. In particular, any topological technique that can be

used for TDA must allow the scale ε to affect the computation. This is of-

ten achieved by converting the given metric space with a chosen scale ε, into

purely topological form, and running a computation on that. The work below

presents a rather harmonious passage from the metric to topology, primarily

without changing the objects of the category. This phenomenon may sim-

plify the interaction between the metric input and the topological processing

inherent to TDA.

Going back to the importance of the metric presentation of the point

cloud, the current phrasing of TDA is limited to operate only on classical

metric spaces. In this work we present an equivalency TQCatcont ≃ Top,

where the objects of the category on the left-hand side are generalised metric

spaces, taking values in lattices more general than [0,∞]. The approach we

take singles out such suitable lattices that ensure the results are constructive.

In other words, TDA remains applicable for data presented as an object in

TQCatcont. This increases the domain of applicability of TDA and allows

greater flexibility when modelling data. We also mention the importance and

subtleties of developing algebraic topology constructively. For instance, it is

vital for the basics of algebraic topology that a space admits the path joining
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property (see [21]). Classically, this is not an issue, but in order to lead to ex-

ecutable algorithms, the underlying mathematics must be constructive. For

a metric space, rather than just a topological space, the path joining property

can be inferred under suitable condition (again, see [21]). By exhibiting Top

as equivalent to TQCatcont, we open up the possibility of developing alge-

braic topology for generalized metric spaces, and in a constructive manner.

Already the case of the product of two spaces (alluded to above) demon-

strates the potential of our approach. Suppose that X and Y are metric

spaces, each thought of as the input for analysis. Applying TDA to X × Y

then represents a case of multidimensional persistence; a well-known prob-

lem ([5]). A related scenario is that of multiparameter persistence, requiring

sophisticated tools as developed in [14]. A metric in the classical sense for

which O(X × Y ) is the product topology surely exists, e.g., the Euclidean

metric or the inf metric. From a TDA perspective, the choice of which met-

ric is used is paramount. The bar code that will be produced with either of

the mentioned metrics does not record features as they occur in X and Y

independently. Our approach offers an alternative: a metrisation of X × Y

taking values in [0,∞] ⊗ [0,∞] as an approach to multiparameter analysis.

As mentioned, since our results are constructive, existing TDA techniques

are still applicable. Approaches to the foundations of TDA in general, and

addressing multidimensionality in particular, that take a similar path to ours

are, respectively, [9] and [8], emphasising constructive methods and topos

theory.

1.3 Relation to other work

There is plenty of existing literature on quantale enriched categories, a sur-

vey of which is not intended. We point out here the references we are aware

of that, at least tangentially, touch upon the issues we consider. We start

off by mentioning [33], by the second named author. That work provides

a comparison between Flagg’s value quantales and their precursor concept,

namely Kopperman’s value semigroups. Some attempts were made there to-

ward a construction of limits, but the background lattice theory was clunky

and is much improved in this current work.

[30] discusses extension of functors in the context of quantale enrich-

ment, clearly noting what happens when the quantale is constructively com-
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pletely distributive. In particular, in that case, the Pompeiu-Hausdorff metric

is obtained as such a functor extension. In this context we mention [1] and

[26].

Quantale enrichment in a single quantale, namely QCat, are studied in

[28] as a rich source of concretely symmetric closed-monoidal topological

categories. It is shown, conversely, that such a topological category induces

a quantale. That article works toward characterising those categories equiv-

alent to QCat. The emphasis there is on a single quantale, and enriched

functors as morphisms. In light of the information in the introduction above,

it is interesting to extend the question and ask which categories occur, up to

equivalence, as ΓCatcont for a class Γ of quantales.

Categories enriched in quantales (and quantaloids, see [27]) are well

studied in computer science. Here we mention [31], offering a topologi-

cally flavoured study, and [25], emphasising a dynamical interpretation. The

latter notes that it is the abandonment of the commutativity of the quantale

that results in dynamics. It is also primarily concerned with the categorical

consequences of the complete distributivity of the quantale. Both aspects

appear in our work, as we are careful to trace the role of commutativity, and

the effects lattice properties have on the enrichment.

It is interesting that [2], when proving that Topop is a quasi-variety, uses

complete distributivity, while we require complete distributivity when pre-

senting Top as a category of enriched categories. Constructive complete

distributivity features prominently in [22], which elaborates further on [2].

Finally, in [15] quantaloid enrichment is considered from a topological

perspective close to ours. In particular, the authors associate with such an

enrichment a closure operator and note simple conditions for the closure op-

erator to land in topological spaces. Our work below addresses the closure

operator alongside its interior operator twin, in the case of quantale enrich-

ment. We expect that a similar story unfolds for quantaloid enrichment.

2. Topological quantales

For a metric space X , the closure operator is a monad on P(X), the interior

operator is a monad on P(X)op, and each monad determines the other via set

complementation. The aim of this section is to identify a class of quantales

Q for which this phenomenon holds for all small Q-categories X . We do so
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by examining what holds in general, and how lattice-theoretic properties of

Q affect the situation. We start by furnishing such an X with closure and

interior operators.

Definition 2.1. Let Q be a quantale, X a small Q-category, and S ⊆X a set

of objects. We write

X(x,S) =⋁{X(x, s) ∣ s ∈ S}

where x ∈X is an arbitrary object. The closure of S is the set

cl(S) = {x ∈X ∣X(x,S) = ⊺},

and its interior is

in(S) = {x ∈ S ∣ ∃ε⋘ ⊺∶ ε⋘X(x, y) Ô⇒ y ∈ S}.

For r ∈ L and x ∈X , the open ball of radius r about x is

Br(x) = {y ∈X ∣ r⋘X(x, y)},

so that x ∈ in(S) is equivalently the existence of ε⋘ ⊺ with Bε(x) ⊆ S, as

usual.

Remark 2.2. When Q = [0,∞], these concepts attain the usual interpre-

tations in a metric space. Unlike the definition of the closure operator,

the interior operator requires justification. The inadequacy of naively us-

ing Bε(x) = {y ∈ X ∣ r < X(x, y)} instead is gleaned from Theorem 1.1

above — its validity depends on using⋘.

Let End be the category of endofunctors; its objects are a category C

together with a functor F ∶C → C , with a typical morphism (G,θ)∶ (C , F )→
(C ′, F ′) consisting of a functor G∶C → C ′ and a natural transformation

θ∶F ′G ⇒ GF . Let End∗ be the category of pointed endomorphisms, i.e.,

(F, η), where η∶ IdC ⇒ F is a natural transformation, and those morphisms

(G,θ) that respect the points, in the sense that Gθ = θη′G. There is an

evident forgetful functor Mon→ End∗ from the category of monads.

A consequence of the Axiom of Choice is that in any complete lattice L,

if x⋘ ⋁S, then x⋘ s for some s ∈ S (see Proposition 3.2 below). This

plays an important role in the final part of the following result.
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Theorem 2.3. Let Q be an affine quantale. The assignments X ↦ (P(X), clX)
and X ↦ (P(X)op, inX) are the object parts of the functors

Mon

QCatop End∗

cl−

in−

cl− U

θ

to the category of pointed endofunctors, each of which acts on a Q-functor

f ∶X → Y by sending f to the inverse image function f←. The functor cl−

factorises through monads, and the two functors are related by the natural

transformation θ carried by the set complementation functor ¬∶P(X) →
P(X)op.

Proof. The claim that clX is a functor is that S ⊆ S′ Ô⇒ clX(S) ⊆ clX(S′),
which is clear. The claim that it is a pointed functor is that S ⊆ clX(S), which

is just as clear. Similarly, and as trivially, inX is a functor since S ⊆ S′ Ô⇒
inX(S) ⊆ inX(S′), and it is pointed since S ⊇ inX(S). The claim that clX is

a monad is that cl2X(S) ⊆ clX(S), so let x ∈X satisfy X(x, clX(S)) = ⊺, and

we must show that X(x,S) = ⊺. It suffices to show, for a given y ∈ clX(S),
that X(x, y) ≤X(x,S). And indeed, using affineness,

X(x, y) =X(x, y) ⋅ ⊺ =X(x, y) ⋅X(y,S) ≤X(x,S)

by the distributivity law in the quantale and the composition inequality in

X . Finally, the existence of the natural transformation θ is the claim that

inX(¬S) ⊆ ¬(clX(S)). To see its validity, assume to the contrary that x ∈

inX(¬S) ∩ clX(S), namely there exists ε⋘ ⊺ with ε⋘ X(x, y) Ô⇒ y ∉

S, and X(x,S) = ⊺. But then ε ⋘ X(x,S) and so, by Proposition 3.2

below, it must be that ε⋘X(x, s) for some s ∈ S, a contradiction.

Remark 2.4. A situation where in∶P(X)op → P(X)op fails to be a monad

is given in Example 2.11.

Historically, Kuratowski favoured closed sets for the axiomatisation of

topology while Sierpiński pioneered open sets. We allow this anecdote to

dictate our choice of terminology.
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Definition 2.5. A quantale Q is sierpiński if ε⋘ t implies ε⋘ t ⋅⋁⇓(⊺),
for all t ∈ Q.

Proposition 2.6. Let Q be a quantale and X a small Q-category. If Q is

sierpiński, then in(Br(x)) = Br(x), for all r ∈ Q, and in∶P(X)op → P(X)op

is a monad.

Proof. Fix x ∈ X , r ∈ Q, and y ∈ Br(x), i.e., r⋘ X(x, y). We require a

δ⋘ ⊺with Bδ(y) ⊆ Br(x). Now, since r⋘X(x, y)⋅⋁⇓(⊺) = ⋁{X(x, y)⋅
δ ∣ δ⋘ T}, a δ⋘ ⊺ exists with r⋘X(x, y) ⋅δ (again by Proposition 3.2).

If δ⋘X(y, z), then

r⋘X(x, y) ⋅ δ ≤X(x, y) ⋅X(y, z) ≤X(x, z)

and so z ∈ Br(x), as required. The fact that in is now a monad, namely that

in(S) ⊆ in2(S), follows at once.

In the classical case Q = [0,∞], the monad clX is a kuratowski clo-

sure operator, namely its carrier functor S ↦ cl(S) preserves finite unions.

Similarly, the functor inX preserves finite intersections. In other words, if

reEnd∗ denotes the full subcategory of End∗ spanned by right exact endo-

functors, then the functors cl− and in− factorise via the inclusion reEnd∗ →
End∗. Neither claim holds generally.

Example 2.7. Consider the quantale Q = P(S) of all subsets of a set S.

Viewed as a closed monoidal category with intersection as monoidal product,

its self-enrichment structure yields the Q-category X with ob(X) = P(S)
and X(x, y) = {s ∈ S ∣ s ∈ x Ô⇒ s ∈ y} = ¬x ∨ y. For a collection

A ⊆ X we have X(x,A) = ¬x ∨⋁A, and thus cl(A) = P(⋁A)— it need

not preserve finite joins. Direct computation shows that ε⋘ ⊺ if, and only

if, ε is a sub-singleton. Noting that

B{s}(x) =
⎧⎪⎪
⎨
⎪⎪⎩

P(X) s ∉ x

{y ⊆ S ∣ s ∈ y} s ∈ x

shows that in(A) = {a ∈ A ∣ ∃s ∈ a∶ s ∈ y Ô⇒ y ∈ A} — it need not

preserve finite meets.
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Definition 2.8. Let L be a complete lattice. If ↡(⊺) is closed under finite

joins, then L is kuratowski. If ⇓(⊺) is closed under finite joins, then L is

sierpiński.

We say that a quantale Q is kuratowski if its underlying lattice is. We say

that Q is entirely sierpiński if both it and its underlying lattice are sierpiński.

Proposition 2.9. Let Q be an affine quantale and X a small Q-category. If

Q is kuratowski, then cl is a kuratowski closure operator.

Proof. We only need to verify preservation of finite unions. For binary

unions it suffices to show that cl(S ∪ S′) ⊆ cl(S) ∪ cl(S′), which follows

at once since X(x,S ∪ S′) = X(x,S) ∪ X(x,S′). It remains to see that

cl(∅) = ∅, and indeed, if x ∈ cl(∅), then X(x,∅) = ⊺, but the former is �,

forcing Q to collapse. But then ↡(⊺) is not closed under the empty join.

In agreement with our historical convention, we call the set-theoretic

dual of a kuratowski closure operator, namely a comonad in∶P(X)→ P(X)
that preserves finite meets, a sierpiński interior operator. Recall from [18]

the theory of free monads on (pointed) functors. It is clear that in admits a

free monad; its value on S is inα(S), where α is a sufficiently large ordinal

ensuring the stabilisation of the decreasing chain {inβ(S)}β , where in
β+1 =

in(inβ(S)) and, for a limit ordinal γ, inγ(S) = ⋂{inβ ∣ β < γ}.

Proposition 2.10. Let Q be an affine quantale and X a small Q-category.

If the underlying lattice of Q is sierpiński, then in preserves finite meets,

and the free monad on it is a sierpiński interior operator. If Q is entirely

sierpiński, then in is already a sierpiński interior operator.

Proof. Assuming the underlying lattice is sierpiński, the equality in(S∩S′) =
in(S) ∩ in(S′) follows at once since if x ∈ in(S) ∩ in(S′), witnessed by

ε, ε′ ⋘ ⊺, respectively, then ε ∨ ε′ ⋘ ⊺ witnesses that x ∈ in(S ∩ S′). In

order to show that in(X) =X , note that the only obstruction to that equality

is if Q admits no ε⋘ ⊺ at all, which can happen only if Q collapses. But

then ⇓(⊺) is not closed under the empty join.

It is now clear that if Q is entirely sierpiński, then in is a sierpiński in-

terior operator. If we only know that in is a pointed finite-union preserving

functor but not necessarily a monad, it is clear that the finite-union preserva-

tion survives the free monad construction, thus yielding a sierpiński interior

operator.
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In the classical case Q = [0,∞], it is well known that open and closed

sets are dual concepts: S is open/closed if, and only if, X ∖S is closed/open.

Stated differently, set complementation ¬∶P(X) → P(X)op, since it is a

complete lattice isomorphism, induces an isomorphism ¬∶Monad(P(X))→
coMonad(P(X)), given by (¬F )S = ¬(F (¬S)), that restricts to an iso-

morphism between the kuratowski and sierpiński operators. Thus, when

Q = [0,∞], the natural transformation θ∶ in− → cl− (which is carried by ¬) is

a natural isomorphism. Direct verification shows that in the case considered

in Example 2.7, one has that inX(¬S) = ¬clX(S), namely the component of

θ is an isomorphism. We shall shortly see why that holds true for all small

Q-categories X for Q = P(S). We first observe that the same phenomenon

does not hold true for arbitrary quantales.

Example 2.11. Let Q be a complete boolean algebra, viewed as a quantale

with operation given by ∧ (since any complete boolean algebra is a frame,

this is legitimate). Let X be Q as a Q-category, thus X(x, y) = ¬x∨y, where

¬ is the boolean complement operator. Clearly then, for A ⊆ X , X(x,A) =
¬x ∨⋁A, and so cl(A) = ↓(⋁A). Computing the interior operator requires

knowledge of the set ⇓(⊺). Let us consider two extremes: the atomic and

atom-less cases. If Q is an atomic complete boolean algebra, then Q ≅ P(S),
⇓(⊺) is the set of sub-atomic elements, and the situation reduces to that of

Example 2.7. If Q is atom-less, then ⇓(⊺) = {�}, and it follows that

B�(x) = {y ∈X ∣ �⋘ ¬x ∨ y} =
⎧⎪⎪
⎨
⎪⎪⎩

X x < ⊺

↟(�) x = ⊺

using the simple observation that in any lattice, �⋘ x holds precisely when

x ≠ �. Therefore,

in(A) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

X A =X

{⊺} A = ↟(�)

∅ otherwise

and in particular, in2(↟(�)) ⊊ in(↟(�)). The interior operator is thus not a

monad. Since the closure operator is always a monad, it is thus impossible

that θ is a natural isomorphism in this case.

The final piece of this section is a lattice-theoretic property under which

θ is necessarily a natural isomorphism. The following terminology is ex-

plained in Subsection 3.1.
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Definition 2.12. A complete lattice L is CCD at ⊺ if ⊺ = ⋁⇓(⊺).

We say that Q is CCD at ⊺ if its underlying lattice is. Obviously, any CCD

lattice is CCD at ⊺, and so, certainly, P(S) is CCD at ⊺ (cf. Example 2.7). A

non-atomic complete boolean algebra satisfies ⋁⇑(⊺) = �, so it is far from

being CCD at ⊺ (cf. Example 2.11). The following results clarify much of

the mechanics in both examples.

Proposition 2.13. Let Q be an affine quantale. If Q is CCD at ⊺, then θ∶ cl−⇒
in− is a natural isomorphism.

Proof. Since in(¬S) ⊆ ¬cl(S) always holds, we only need to show the re-

verse inclusion, so assume X(x,S) < ⊺. Since⋁⇓(⊺) = ⊺, there exists some

ε⋘ ⊺ such that X(x,S) ≱ ε. But then Bε(x) ⊆ ¬S, since ε⋘ X(x, y)
together with y ∈ S leads to the contradiction X(x,S) ≥X(x, y) ≥ ε.

Proposition 2.14. If an affine quantale Q is CCD at ⊺, then Q is sierpiński.

Proof. We need to show that if ε⋘ t, then ε⋘ t ⋅⋁⇓(⊺). But ⋁⇓(⊺) = ⊺,

and ⊺ is the quantale unit.

As a consequence, if Q is an affine quantale that is CCD at ⊺, then in,

and not just cl, is guaranteed to be a monad. The next result is slightly less

immediate.

Proposition 2.15. If Q is an affine quantale that is CCD at ⊺, then Q is

kuratowski if, and only if, Q is entirely sierpiński.

Proof. See [7, Proposition 3].

The above considerations highlight certain quantales as foundational in

topology.

Definition 2.16. A topological quantale is a commutative affine quantale Q

that is CCD at ⊺ and kuratowski (and thus entirely sierpiński).

Remark 2.17. The commutativity of Q was not required in any of the re-

sult so far. The effect of commutativity is of importance when we come to

consider coproducts of quantales below.

15
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The following theorems embody the idea of viewing topological spaces

as enriched categories.

Theorem 2.18. Consider the diagrams

Mon reMon

QCat End∗ QCat Mon

Mon reMon

TopK

QCat Top

TopS

cl

in

cl

cl

in

cl

in

F

O

θ θ θ−1

where Q is an affine quantale. Regarding the functor cl∶QCat → End∗
factoring over Mon, the functor in∶QCat → End∗, and the natural trans-

formation cl⇒ in from Theorem 2.3, we can specify that:

1. If Q is sierpiński, then in∶QCat→ End∗ factors over Mon.

2. if Q is kuratowski, then in factors over reMon.

3. if Q is entirely sierpiński, then in factors over reMon.

4. if Q is CCD at ⊺, then cl⇒ in is a natural isomorphism.

5. if Q is kuratowski and CCD at ⊺, then all the above happens; in other

words, both closure and interior operators are topological and specify

the same topological space.

Theorem 2.19. Let TQ be the class of topological quantales and consider

the category TQCatcont whose objects are all small Q-categories where Q

16
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is a topological quantale, and morphisms the cauchy continuous functions

f ∶X → Y , namely those satisfying the familiar ε−δ condition as described

in the introduction. The unique functor TQCatcont → Top above, which we

denote by X ↦ O(X), is the functor that associates with a small Q-category

its (unique!) topology, and acts as the identity on morphisms (which is valid

since any ε − δ continuous function is also continuous with respect to the

open ball topology). This functor takes the familiar form where U ⊆ X is

declared open precisely when

∀x ∈ U ∃ε⋘ ⊺∶ Bε(x) ⊆ U.

These functors, for the various topological quantales Q, patch up together

to form the functor

O∶TQCatcont → Top

and this functor is an equivalence of categories.

Proof. The proof is essentially due to [12]. Obviously, O is faithful, and

due to open balls being open sets, the standard textbook proof shows O is

full. Flagg utilised the free frame construction Ω∶Set → Frm, with frames

viewed as quantales. In more detail, Ω(X) is the collection of all down

closed collections of finite subsets of X , ordered by inclusion. Let us show

that Ω(X) is kuratowski, so suppose a, b < ⊺, which means a misses a finite

subset Fa, and b misses a finite subset Fb. But then if a ∨ b = ⊺, then F =

Fa ∪Fb must be there, which would force it into either a or b. Since Fa ⊆ F ,

it cannot belong to a. b is similarly prohibited. To see that Ω(X) is CCD at

⊺ it suffices to note that a⋘ ⊺ precisely when there exists a finite subset

Fa ⊆X such that a consists only of subsets of Fa. The join of such elements

a is thus the entire collection ⊺ of all finite subsets of X . In other words, Ω

lands in topological quantales. Now, to show that O is surjective on objects,

given a topology τ on X , let X(x, y) ∈ Ω(τ) be the collection of all finite

subsets of τx→y, where τx→y = {U ∈ τ ∣ x ∈ U Ô⇒ y ∈ U}.

3. Coproducts of commutative quantales

The construction of limits in TQCatcont relies on coproducts of commu-

tative quantales, and those rely on colimits of complete join lattices. We

17



D. COOK AND I. WEISS SPACES AS ENRICHED CATEGORIES

are particularly interested in stability properties of topological quantales un-

der coproducts, and so proceed to introduce the relevant notions alongside a

study of the totally below relation.

3.1 Constructive complete distributivity

Recall that ↓(−)∶L → D(L), where L is a complete lattice and D(L) is the

lattice of its down-closed subsets, has a left adjoint given by ⋁, and that L is

CCD precisely when ⋁ has a left adjoint ⇓(−). The definition of such a left

adjoint dictates that

⇓(x) = {y ∈ L ∣ y⋘ x}

in the sense of the totally below relation y⋘ x, namely that for all S ⊆ L

with x ≤ ⋁S there exists s ∈ S with y ≤ s.

Even if L is not CCD, the definition above still yields a functor ⇓(−)∶L→
D(L). Consider the functor ⊔∶D(L)→ L given by

⊔S =⋁{x ∈ L ∣ ⇓(x) ⊆ S}.

Proposition 3.1. The following conditions for a complete lattice L are equiv-

alent:

1. For all a⋘ b, if b ≤ ⋁S, then a⋘ s for some s ∈ S.

2. The functor ⇓(−) is a left adjoint.

Proof. Assuming the first condition, we show that ⇓(−) ⊣ ⊔. It suffices to

demonstrate the unit and counit conditions, namely x ≤ ⊔⇓(x) and ⇓(⊔S) ⊆
S, of which the former is trivial. For the latter, suppose x ⋘ ⋁{y ∈ L ∣
⇓(y) ⊆ S}, so, by the assumed condition, x⋘ y for some y with ⇓(y) ⊆ S,

thus x ∈ S. For the converse, note that if ⇓(−) is a left adjoint and b ≤ ⋁S,

then ⇓(b) ⊆ ⇓(⋁S) = ⋃{⇓(s) ∣ s ∈ S}.

Proposition 3.2. If the background set theory admits the Axiom of Choice,

then, for all complete lattices L, the functor ⇓(−) is a left adjoint.

Proof. We demonstrate the first condition of Proposition 3.1. Proceeding by

contradiction, suppose a⋘ b, b ≤ ⋁S, and yet a⋘ s holds for not a single

s ∈ S. Choose, for each s ∈ S, a set Ts with s ≤ ⋁Ts and so that a ≤ t fails

for all t ∈ Ts. The set T = ⋃{Ts ∣ s ∈ S} contradicts a⋘ ⋁S.

18
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Remark 3.3. We proceed under the assumption that for all lattices L con-

cerning us, the functor ⇓(−) admits a right adjoint. In light of Proposi-

tion 3.2, this is automatic if the Axiom of Choice holds. Otherwise, the

assumption we are making is that we restrict to those lattices that are suffi-

ciently constructive to admit the required right adjoint.

For any complete lattice L let CCD(L) = {x ∈ L ∣ ⋁⇓(x) = x}, which we

call the CCD core of L. It is easily seen that the CCD core of L is a complete

join sublattice of it, but it need not itself be CCD. We obtain the following

play on words.

Theorem 3.4. Let L be a complete lattice. The following conditions are

equivalent (and define what it means for L to be CCD):

• ⋁ has a left adjoint

• ⋁ = ⊔

• CCD(L) = L.

3.2 Tensor product of complete join lattices

The category CJLat of complete join lattices is well known to support a

symmetric closed monoidal structure ([17, 24]). The tensor product of com-

plete lattices L1, L2 is a function β∶L1×L2 → L1⊗L2 that is universal among

all functions L1 ×L2 → L that are join preserving in each variable. Much as

in ring theory, the tensor product can be constructed as a quotient of a free

lattice. Writing x⊗ y for β(x, y), and referring to such elements as elemen-

tary tensors, every element in L1 ⊗L2 is a join of elementary tensors, for all

x > � in L1 and y > � in L2 we have that x⊗ y ≤ x′ ⊗ y′ if, and only if, both

x ≤ x′ and y ≤ y′, ⋀i xi ⊗ yi = ⋀i xi ⊗⋀i yi, and x⊗⋁S = ⋁{x⊗ s ∣ s ∈ S}.
Thus meets are computed point-wisely in L1 ⊗ L2. The join of arbitrary

elementary tensors, however, does not admit such a simple formula.

The following result is [23, Lemma 37]:

Theorem 3.5. If L1 and L2 are CCD, then so is their tensor product.

We require a refinement of this result and an analysis of the totally below

relation in the tensor product. It is convenient to use the fact ([17]) that

L1 ⊗L2 ≅CJLat(L1, L
op
2 )

op,
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the opposite of the complete lattice of join preserving morphisms L1 → L
op
2

(see [13] for a detailed description). In this model, the elementary tensors

are given by

β(x, y)(a) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

⊺ if a = �,

y if � < a ≤ x,

� if a ≰ x,

and an arbitrary element f ∈ L1 ⊗L2 has the canonical presentation

f = ⋁
x∈L1

β(x, f(x))

as a join of elementary tensors.

It is straightforward that if a ⊗ b⋘ x ⊗ y, then both a⋘ x and b⋘

y. The following result will assist in obtaining conditions for the converse

implication.

Lemma 3.6. Let S be a subset of the tensor product

L1 ⊗L2 ≅CJLat(L1, L
op
2 )

op

of two complete lattices and write s for the point-wise join of S, i.e. s(x) =
⋁g∈S g(x) computed in L2 for all x ∈ L1. Now define

f(x) = ⋀
x′⋘x

s(x′)

for all x ∈ L1, again computed in L2. The following properties hold.

1. f is an upper bound of S in L1 ⊗L2.

2. If h is an upper bound of S, then f(x) ≤ h(x) for all x ∈ CCD(L1).

3. (⋁S)(x) = f(x) for all x ∈ CCD(L1).

Proof. Recall that ⇓(−) is a left adjoint.

1. Firstly, f ∶L1 → L
op
2 belongs to L1 ⊗ L2, namely it preserves joins,

since

f(⋁A) = ⋀
x′∈⇓(⋁A)

s(x′) = ⋀
a∈A

⋀
x′∈⇓(a)

s(x′) = ⋀
a∈A

f(a).
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Now, for any g ∈ S and x′⋘ x, clearly, g(x) ≤ g(x′) ≤ s(x′), show-

ing that g(x) ≤ f(x) point-wisely, and thus f is an upper bound of

S.

2. An upper bound h clearly satisfies s(x′) ≤ h(x′). Assuming that x ∈

CCD(L1), we obtain that

f(x) ≤ ⋀
x′⋘x

h(x′) = h( ⋁
x′⋘x

x′) = h(x).

3. Immediate.

Proposition 3.7. Let L1 and L2 be complete lattices, a ⋘ x in L1, and

b⋘ y in L2. If x ∈ CCD(L1), then a⊗ b⋘ x⊗ y.

Proof. Suppose that x⊗ y ≤ ⋁S for some S ⊆ L1 ⊗L2. By Lemma 3.6 and

the given conditions we have that

b⋘ y ≤ (⋁S)(x) = ⋀
x′⋘x

⋁
g∈S

g(x′) ≤ ⋁
g∈S

g(a),

and so b ≤ g0(a) for some g0 ∈ S. Therefore

a⊗ b = β(a, b) ≤ g0

as can be seen from the expression for β(a, b), recalling that g0 is antitone.

We summarise as follows.

Theorem 3.8. For complete lattices L1 and L2, if x ∈ CCD(L1) and y ∈

CCD(L2), then x⊗ y ∈ CCD(L1⊗L2) and t⋘ x⊗ y if, and only if, t ≤ a⊗ b

with a⋘ x and b⋘ y. If L1 and L2 are CCD at ⊺ and are sierpiński, then

L1 ⊗L2 is sierpiński.

Proof. The characterisation of t⋘ x⊗ y follows from the observation that

x⊗ y = ⋁{a⊗ b ∣ a⋘ x, b⋘ y} as soon as x ∈ CCD(L1) and y ∈ CCD(L2),
from which x⊗y ∈ CCD(L1⊗L2) is immediate. With this property, the claim

about the sierpiński property follows from a⊗b∨a′⊗b′ ≤ (a∨a′)⊗(b∨b′).
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3.3 Coproducts of complete join lattices

Coproducts in CJLat ([17]) are particularly simple to describe, due to its

strong self duality: if f ∶L1 → L2 is join preserving, then it has a right adjoint

g∶L2 → L1, which, when written as f op∶L
op
2 → L

op
1 , is join preserving, and

thus yields an isomorphism CJLat → CJLatop. The product L of lattices

{Lk}k∈I is given by the usual product of the underlying sets, equipped with

component-wise operations. The projections πk∶L→ Lk preserve meets, and

so admit left adjoints ιk∶Lk → L. It then holds that L with these morphisms

is the coproduct in CJLat, and πk ○ ιk = IdLk
.

Proposition 3.9. Let {Lk}k∈I be a collection of complete lattices. Then a⋘

x in the coproduct ∐Lk if, and only if, there exists k0 ∈ I and ā ∈ Lk0 such

that ā⋘ πk0(x) and a = ιk0(ā).

Proof. Clearly, x = ⋁{ιk(πk(x)) ∣ k ∈ I}, so for a⋘ x the existence of k0
follows from Proposition 3.2.

3.4 Coproducts of commutative quantales

Since the category of commutative quantales is cMon(CJLat), it follows

from general considerations that it is cocomplete (and complete). We require

a concrete enough description of coproducts, sufficient to see that topologi-

cal quantales admit coproducts.

It is a simple matter that, much as in the case of commutative rings, finite

coproducts in cQnt are given by the tensor product. This follows again

from general considerations of commutative monoid objects in a symmetric

closed monoidal category. In a nutshell, the multiplication of a commutative

quantale Q is a function Q ×Q → Q, preserving joins in each variable, and

thus corresponds to a morphism ⌊⋅⌋∶Q ⊗Q → Q from the tensor product of

the underlying lattice. If Q1 and Q2 are commutative quantales, then one

obtains a binary operation on Q1 ⊗Q2, namely the one corresponding to

(Q1 ⊗Q2)⊗ (Q1 ⊗Q2)→ (Q1 ⊗Q1)⊗ (Q2 ⊗Q2)
⌊⋅⌋⊗⌊⋅⌋
ÐÐÐ→ Q1 ⊗Q2

utilising the canonical symmetry isomorphism Q2 ⊗ Q1 → Q1 ⊗ Q2. It is

easily seen that then Q1 ⊗Q2 is a commutative quantale, and that with the

evident morphisms Q1 → Q1 ⊗Q2 ← Q2 it is the coproduct in cQnt.
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Theorem 3.10. The category tQnt of topological quantales, as a full sub-

category of cQnt, is closed under finite coproducts, and ε ⋘ ⊺ holds in

Q1 ⊗ ⋅ ⋅ ⋅ ⊗ Qn if, and only if, there exist εk ∈ Qk with εk ⋘ ⊺ such that

ε ≤ ε1 ⊗ ⋅ ⋅ ⋅ ⊗ εn.

Proof. The empty coproduct is the quantale B = {� < ⊺} of boolean truth

values, and it is clearly topological. The characterisation of ε⋘ ⊺ in this

case simply says that all ε ∈ B satisfy ε⋘ ⊺. Suppose that Q1 and Q2 are

topological quantales. It is clear that Q = Q1 ⊗Q2 is affine and the rest of

the claims follow from the fact that the underlying lattice of Q is the tensor

product in CJLat, together with Theorem 3.8.

This leaves the case of infinite coproducts. As in any category, directed

colimits together with finite coproducts suffice to construct all coproducts,

as follows. For a set I consider the poset Fin(I) of all finite subsets of I ,

under inclusion. For a small collection {Qk}k∈I of commutative quantales

indexed by I their coproduct is the colimit

∐
k∈I

Qk = colim
Fin(I)

(S ↦⊗
k∈S

Qk).

Directed colimits are (again) particularly simple in cQnt, namely they are

created by the functor cQnt → CJLat (see [16, C1.1, Lemma 1.1.8], and

the discussion surrounding it).

We continue to use the elementary tensor notation x1 ⊗ ⋅ ⋅ ⋅ ⊗ xn to stand

for ι1(x1)∨⋅ ⋅ ⋅∨ιn(xn), where ιk is the canonical injection into the (possibly

infinite) coproduct.

Theorem 3.11. The category tQnt of topological quantales, as a full sub-

category of cQnt, is closed under infinite coproducts, and ε⋘ ⊺ holds in

⊗k∈I Qk if, and only if, there exist finitely many εk ∈ Qk with ε⋘ ⊺ such

that ε ≤ ε1 ⊗ ⋅ ⋅ ⋅ ⊗ εn.

Proof. Combine Proposition 3.9 with Theorem 3.8 and the form of the infi-

nite coproduct of commutative quantales.

To conclude this section we note that coproducts of quantales occur nat-

urally in applications. For instance, recall the quantales [0,1] with multi-

plication and [0,∞]op with addition. Their coproduct is usually denoted by
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∆, the quantale of distance distribution functions. Small ∆-categories are

also known as probabilistic metric spaces. Since the constituent quantales

are topological, so is ∆. This quantale was in circulation long before it was

realised that it is simply the coproduct of two very naturally occurring quan-

tales. Further, it is clear that [0,1] ≅ [0,∞]op as quantales, and so, up to

isomorphism, ∆ is simply the coproduct of [0,∞]op with itself. This can be

iterated to any cardinality, yielding a transfinite ladder of topological quan-

tales. See [6] for more details.

4. Limits of spaces

In this section we construct limits in TQCatcont. The novelty, of course,

is not in the completeness of the category but in the techniques used. The

interest in these techniques is their very existence. Not all formalisms are

created equal; while it is fairly straightforward to define the product topol-

ogy in terms of open sets, doing so in terms of closed sets is not readily

achieved. It is thus not a priori clear that an enriched-categorically flavoured

construction of products exists.

It suffices to construct all small products and all equalisers. For a Q-

category X and a subset A ⊆ X of its objects, the full subcategory on A is

the Q-category with A(x, y) =X(x, y).

Theorem 4.1. The equaliser of f, g∶X → Y in TQCatcont is the full subcat-

egory of X on E = {x ∈X ∣ f(x) = g(x)}.

Proof. Straightforward.

We now turn to products, so fix a family {Xk}k∈I of objects in TQCatcont,

indexed by a set I . Each Xk is a small Qk-category where Qk is a topolog-

ical quantale. Let Q = ∐k∈I Qk be the coproduct in the category of cQnt,

equipped with the canonical injections ιk∶Qk → Q. Let X be the Q-category

with

ob(X) =∏
k∈I

ob(Xk) and X(x, y) =⋁
k∈I

ιk(Xk(πk(x), πk(y)))

with the join computed in Q. It is easily seen to be a small Q-category, by

extending the fact that, for elementary tensors in Q1 ⊗Q2, (a⊗ b) ⋅ (c⊗ d) =
(a ⋅ c)⊗ (b ⋅ d), to the coproduct of quantales.
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In the next proof, we use the following observation. A function f ∶X → Y

is continuous at x precisely when for all ε⋘ ⊺ there exists δ⋘ ⊺ such that

X(x, y) ≤ δ Ô⇒ Y (fx, fy) ≤ ε. The equivalency with the definition of

continuity as given above follows from the fact that ⇓(−) is a left adjoint.

Theorem 4.2. With the evident projection functions X →Xk, the Q-category

X is the product of {Xk}k∈I in TQCatcont.

Proof. The quantale Q is topological, and it is clear that the projection func-

tions are continuous. It remains to establish the universal property, so as-

sume continuous functions fk∶Y → Xk from some small R-category Y are

given, where R is some topological quantale. The function g∶Y → X we

seek is dictated to be the unique one satisfying πk ○ g = fk, so we only need

to show that g is continuous. For that, let y ∈ Y and ε ⋘ ⊺ be given,

where ε is chosen in Q. By Theorem 3.11, ε ≤ ιk1(ε1) ∨ ⋅ ⋅ ⋅ ∨ ιkn(εn),
where εki ⋘ ⊺ holds in Qki . By the continuity of fki , there exists δki ⋘ ⊺

in R such that δki ≤ Y (y, y′) Ô⇒ εki ≤ Xki(fki(y), fki(y
′)). Let δ =

δk1 ∨ ⋅ ⋅ ⋅ ∨ δkn , which satisfies δ ⋘ ⊺ since R is sierpiński. We claim that

δ ≤ Y (y, y′) Ô⇒ ε ≤ X(g(y), g(y′)), namely that g is continuous at y.

Assume δ ≤ Y (y, y′), and fix ki. Then certainly δki ≤ Y (y, y′), and thus

εki ≤ Xki(fki(y), fki(y
′)) = Xki(πki(g(y)), πki(g(y

′))). Upon applying ιki
we obtain that ιki(εki) ≤ X(g(y), g(y

′)), and as this holds for k1, . . . , kn, it

follows that ιk1(εk1)∨ ⋅ ⋅ ⋅ ∨ ιkn(ε(kn)) ≤X(g(y), g(y
′)). By the choice of ε

this inequality completes the proof.

To conclude, let us speculate on the applicability of this last construction

in data analysis. Any data analysis endevour starts with recording the data,

very often as a point-cloud data structure, i.e., a metric space or, in our termi-

nology, a small [0,∞]op-category. Often, the data does not naturally appear

in metric form and some manipulation, including simplification or arbitrary

choice, is required in order to obtain a metric space. Higher dimensional

data is often encoded in terms of some metric on Rn, again possibly skew-

ing the data. Having more quantales at hand provides more flexibility. For

instance, suppose data is collected coordinate wise as ordinary metric spaces

Xi, but the data analysis requires patching the coordinates together. The last

theorem provides a canonical metrisation for the entire space of coordinates.

It is expected to introduce less bias or distortion into the data, while ensuring

the topologicity of the scenario.
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