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LIMITS OF TOPOLOGICAL SPACES

AS ENRICHED CATEGORIES

Derek Scott Cook and Ittay Weiss

Résumé. Le lien entre les espaces métriques et la topologie repose sur cer-

taines propriétés du treillis des réels non négatifs. En raison de la célèbre

observation de Lawvere selon laquelle la théorie des espaces métriques est

une branche de la théorie des catégories enrichies, il est naturel d’étudier

dans quelle mesure le lien avec la topologie survit lors de l’enrichissement

dans d’autres petits cosmos. En même temps, l’essor récent des techniques

topologiques en science des données soulève la question de savoir quelles

propriétés théoriques du treillis des réels non négatifs jouent un rôle vital,

dans le but d’axiomatiser ces propriétés afin d’améliorer l’applicabilité des

techniques au-delà métrique classique. Nous considérons ces deux motiva-

tions comme les faces théorique et applicable d’une même médaille mathé-

matique. Nous identifions une large classe de quantales comme réponse

commune aux deux questions, et utilisons les résultats pour présenter une

construction de limites d’espaces qui est classiquement équivalente à la con-

struction topologique, mais qui a un potentiel constructif différent.

Abstract. The link between metric spaces and topology relies on various

lattice theoretic properties of the non-negative reals. Due to Lawvere’s fa-

mous observation that metric space theory is a branch of enriched category

theory, it is natural to study the extent to which the link with topology sur-

vives when enriching in other small cosmoses. At the same time, the recent

flourish of topological techniques in data science raises the question of which

lattice theoretic properties of the non-negative reals play a vital role, with the

aim of axiomatising just those properties in order to enhance the applicability

of techniques beyond the classical metric setting. We view these two motiva-
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D. COOK AND I. WEISS SPACES AS ENRICHED CATEGORIES

tions as the theoretical and applicable sides of the same mathematical coin.

We pinpoint a wide class of quantales as the common answer to the two ques-

tions, and use the results to present a construction of limits of spaces that is

classically equivalent to the topological one, but has constructively different

potential.

Keywords. quantale, quantale enrichment, generalised metric space, con-

structive complete distributivity, induced topology, topological data analysis.

Mathematics Subject Classification (2010). 18D20, 18F75, 18B35, 54E35.

1. Introduction and motivation

It is well known ([20]) that it is fruitful to view a metric space as a small

category enriched in the monoidal category [0,∞], with an arrow x→ y pre-

cisely when x ≥ y, and monoidal structure provided by addition. Any aspect

of metric space theory thus becomes a source of enriched categorical inves-

tigation. Our interest is in continuity for a function f ∶X → Y between two

sets, each of which is the set of objects of an enriched category. A suitable

category V to enrich in is a cosmos, i.e., a symmetric closed monoidal co-

complete category ([19]). When V is also small, it is canonically equivalent

to a complete lattice. Such a lattice is then precisely a commutative quantale

Q. Equivalently, a (commutative) quantale is a (commutative) monoid ob-

ject in the category CJLat of complete join lattices with respect to its tensor

product (see [17] and [10]). Let cQnt be the category of commutative quan-

tales with morphisms the join preserving monoidal functors. In more detail,

a quantale Q is a complete lattice with joins ⋁, meets ⋀, bottom element �,

and top element ⊺. It is equipped with a monoidal product, namely an as-

sociative operation ⋅ with a two-sided unit 1, and it distributes over arbitrary

joins, i.e.,

x ⋅⋁S =⋁{x ⋅ s ∣ s ∈ S} and ⋁S ⋅ x =⋁{s ⋅ x ∣ s ∈ S}

for all x ∈ Q and S ⊆ Q. A morphism f ∶Q → Q′ is a monoidal functor,

again necessarily strict, that is also a complete join homomorphism. The

quantale is affine if its monoidal unit is the top element. It is commutative

when its monoidal product is symmetric (necessarily strictly so). Recall

from [11] that a complete lattice L is constructively completely distributive

(CCD) if ⋁∶D(L) → L, as a functor from the lattice of down-closed subsets
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of L, admits a left adjoint ⇓(−). Explicitly, y ∈ ⇓(x) precisely when, for all

subsets S ⊆ Q, the condition x ≤ ⋁S implies that y ≤ s for some s ∈ S. We

then say that y is totally below x, and write y⋘ x. The CCD condition then

amounts to

x =⋁⇓(x),

for all x ∈ L. We shall use the auxiliary notation

↓(x) = {y ∈ L ∣ y ≤ x}, ↡(x) = {y ∈ L ∣ x < y}, and ↟(x) = {y ∈ L ∣ y > x}

for elements in a lattice.

Let Q1 and Q2 be quantales, X a small Q1-category, Y a small Q2-

category, and f ∶X → Y a function between the underlying sets of objects.

We say that f is continuous at x ∈ X if for all ε⋘ ⊺ in Q2 there exists a

δ⋘ ⊺ in Q1 such that

δ⋘X(x, y) Ô⇒ ε⋘ Y (fx, fy).

Expectantly, we say that f is continuous if f is continuous at all points x ∈X .

It is easily seen that the identity function from a small Q-category to itself

is continuous, and that the composition of continuous functions is continu-

ous. Therefore, if Γ is a class of quantales, we obtain the category ΓCatcont
consisting of all small Q-categories, where Q is of class Γ, with all contin-

uous functions as morphisms. For instance, if Γ = {[0,∞]}, then ΓCatcont
is the category of all Lawvere metric spaces with morphisms all functions

satisfying the usual cauchy condition of continuity.

A quantale is a value quantale ([12]) when it is affine, its underlying

lattice is CCD, and ⇓(⊺) is closed under finite joins. The following result

was noted in [32, 7].

Theorem 1.1. Let F be the class of all value quantales. The open ball topol-

ogy functor O∶FCatcont → Top is an equivalence of categories. In fact, it

is the unique equivalence between these categories as concrete categories.

As a consequence, there arises a translation mechanism between topol-

ogy and the language of enriched categories. Given any topological concept,

one may ask whether it is captured enriched categorically in a natural fash-

ion. For instance, since Top is complete, so is FCatcont. If X and Y are two
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objects of FCatcont, their product may be computed as Φ((O(X)×O(Y ))),
where the product is computed in Top and Φ∶Top→ FCatcont is any choice

of an equivalency. Of course, this is not what we mean by capturing products

enriched categorically. Instead, we insist on treating X and Y as enriched

categories and remain firmly within the category FCatcont, without passing

to the equivalent Top. Doing so, suppose that X and Y are enriched, respec-

tively, in the quantales Q1 and Q2. Suppose further that a suitable coproduct

quantale Q = Q1∐Q2 exists. It is then natural to define the Q-enriched

category X × Y with ob(X × Y ) = ob(X) × ob(Y ) and

(X × Y )((x, y), (x′, y′)) =X(x, x′)⊗ Y (y, y′)

where, for elements x ∈ Q1 and y ∈ Q2, we write x⊗y for the element ι1(x) ⋅
ι2(y) ∈ Q1∐Q2, namely the monoidal product in the coproduct Q1∐Q2, of

the canonical injections of x and y in it. We will show that this construction

is legitimate and that it results in the categorical product of X and Y in

FCatcont. A fortiori, the open ball topology O(X × Y ) must coincide with

the usual product topology ofO(X) andO(Y ). We will treat all small limits

in this enriched categorical sense.

1.1 The plan of the article

The rest of the introduction discusses the foundational aspect of the approach

above to topological data analysis, and quickly surveys related work. This is

a potential application we see to the approach we present, but the presenta-

tion itself is of independent interest. Section 2 leads to the identification of

topological quantales, namely lattice-theoretic conditions that guarantee that

the classical link between metric spaces and topology extends to the quan-

tale enrichment case. Section 3 develops the infrastructure of coproducts of

commutative quantales required for the main result. Throughout the paper,

and particularly in that section, we pay attention to the constructive validity

of the results. Section 4 then presents the construction of all small limits,

deliberately by the use of essentially metric techniques. The proof can be

seen as a very elementary ǫ − δ style proof. However, its correctness rests

upon the precise lattice theoretic machinery developed earlier. In particular,

the construction of limits of spaces is as constructive as the lattices that are

used for metrising each of the ingredient spaces.
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1.2 Connection to topological data analysis

In topological data analysis (TDA) the starting point is a point cloud, which

is nothing but a finite metric space. Of course, in practice all data is finite,

but mathematically the restriction to finite metric spaces is artificial. Drop-

ping it, the starting point of TDA is a metric space. Equivalently, the starting

point of TDA is a small [0,∞]-enriched category. The techniques used are

then topological. Topology is by design blind to small perturbations in the

presentation of a metric space, and this precisely leads to robustness in the

analysis of the data to various types of contamination (see [3]). TDA tech-

niques typically result in what is known as a bar code; a combination of the

blindness of topology together with the rigidity of the metric presentation of

the problem. Stated more formally, the algorithm is performed on the metric

space X and not on its open ball topology O(X). The metric presentation is

crucial.

A categorical understanding of TDA, as begun in [4], must handle the

tension (see [29]) between the metric presentation of the problem and the

topological techniques. In particular, any topological technique that can be

used for TDA must allow the scale ε to affect the computation. This is of-

ten achieved by converting the given metric space with a chosen scale ε, into

purely topological form, and running a computation on that. The work below

presents a rather harmonious passage from the metric to topology, primarily

without changing the objects of the category. This phenomenon may sim-

plify the interaction between the metric input and the topological processing

inherent to TDA.

Going back to the importance of the metric presentation of the point

cloud, the current phrasing of TDA is limited to operate only on classical

metric spaces. In this work we present an equivalency TQCatcont ≃ Top,

where the objects of the category on the left-hand side are generalised metric

spaces, taking values in lattices more general than [0,∞]. The approach we

take singles out such suitable lattices that ensure the results are constructive.

In other words, TDA remains applicable for data presented as an object in

TQCatcont. This increases the domain of applicability of TDA and allows

greater flexibility when modelling data. We also mention the importance and

subtleties of developing algebraic topology constructively. For instance, it is

vital for the basics of algebraic topology that a space admits the path joining
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property (see [21]). Classically, this is not an issue, but in order to lead to ex-

ecutable algorithms, the underlying mathematics must be constructive. For

a metric space, rather than just a topological space, the path joining property

can be inferred under suitable condition (again, see [21]). By exhibiting Top

as equivalent to TQCatcont, we open up the possibility of developing alge-

braic topology for generalized metric spaces, and in a constructive manner.

Already the case of the product of two spaces (alluded to above) demon-

strates the potential of our approach. Suppose that X and Y are metric

spaces, each thought of as the input for analysis. Applying TDA to X × Y

then represents a case of multidimensional persistence; a well-known prob-

lem ([5]). A related scenario is that of multiparameter persistence, requiring

sophisticated tools as developed in [14]. A metric in the classical sense for

which O(X × Y ) is the product topology surely exists, e.g., the Euclidean

metric or the inf metric. From a TDA perspective, the choice of which met-

ric is used is paramount. The bar code that will be produced with either of

the mentioned metrics does not record features as they occur in X and Y

independently. Our approach offers an alternative: a metrisation of X × Y

taking values in [0,∞] ⊗ [0,∞] as an approach to multiparameter analysis.

As mentioned, since our results are constructive, existing TDA techniques

are still applicable. Approaches to the foundations of TDA in general, and

addressing multidimensionality in particular, that take a similar path to ours

are, respectively, [9] and [8], emphasising constructive methods and topos

theory.

1.3 Relation to other work

There is plenty of existing literature on quantale enriched categories, a sur-

vey of which is not intended. We point out here the references we are aware

of that, at least tangentially, touch upon the issues we consider. We start

off by mentioning [33], by the second named author. That work provides

a comparison between Flagg’s value quantales and their precursor concept,

namely Kopperman’s value semigroups. Some attempts were made there to-

ward a construction of limits, but the background lattice theory was clunky

and is much improved in this current work.

[30] discusses extension of functors in the context of quantale enrich-

ment, clearly noting what happens when the quantale is constructively com-

8



D. COOK AND I. WEISS SPACES AS ENRICHED CATEGORIES

pletely distributive. In particular, in that case, the Pompeiu-Hausdorff metric

is obtained as such a functor extension. In this context we mention [1] and

[26].

Quantale enrichment in a single quantale, namely QCat, are studied in

[28] as a rich source of concretely symmetric closed-monoidal topological

categories. It is shown, conversely, that such a topological category induces

a quantale. That article works toward characterising those categories equiv-

alent to QCat. The emphasis there is on a single quantale, and enriched

functors as morphisms. In light of the information in the introduction above,

it is interesting to extend the question and ask which categories occur, up to

equivalence, as ΓCatcont for a class Γ of quantales.

Categories enriched in quantales (and quantaloids, see [27]) are well

studied in computer science. Here we mention [31], offering a topologi-

cally flavoured study, and [25], emphasising a dynamical interpretation. The

latter notes that it is the abandonment of the commutativity of the quantale

that results in dynamics. It is also primarily concerned with the categorical

consequences of the complete distributivity of the quantale. Both aspects

appear in our work, as we are careful to trace the role of commutativity, and

the effects lattice properties have on the enrichment.

It is interesting that [2], when proving that Topop is a quasi-variety, uses

complete distributivity, while we require complete distributivity when pre-

senting Top as a category of enriched categories. Constructive complete

distributivity features prominently in [22], which elaborates further on [2].

Finally, in [15] quantaloid enrichment is considered from a topological

perspective close to ours. In particular, the authors associate with such an

enrichment a closure operator and note simple conditions for the closure op-

erator to land in topological spaces. Our work below addresses the closure

operator alongside its interior operator twin, in the case of quantale enrich-

ment. We expect that a similar story unfolds for quantaloid enrichment.

2. Topological quantales

For a metric space X , the closure operator is a monad on P(X), the interior

operator is a monad on P(X)op, and each monad determines the other via set

complementation. The aim of this section is to identify a class of quantales

Q for which this phenomenon holds for all small Q-categories X . We do so

9
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by examining what holds in general, and how lattice-theoretic properties of

Q affect the situation. We start by furnishing such an X with closure and

interior operators.

Definition 2.1. Let Q be a quantale, X a small Q-category, and S ⊆X a set

of objects. We write

X(x,S) =⋁{X(x, s) ∣ s ∈ S}

where x ∈X is an arbitrary object. The closure of S is the set

cl(S) = {x ∈X ∣X(x,S) = ⊺},

and its interior is

in(S) = {x ∈ S ∣ ∃ε⋘ ⊺∶ ε⋘X(x, y) Ô⇒ y ∈ S}.

For r ∈ L and x ∈X , the open ball of radius r about x is

Br(x) = {y ∈X ∣ r⋘X(x, y)},

so that x ∈ in(S) is equivalently the existence of ε⋘ ⊺ with Bε(x) ⊆ S, as

usual.

Remark 2.2. When Q = [0,∞], these concepts attain the usual interpre-

tations in a metric space. Unlike the definition of the closure operator,

the interior operator requires justification. The inadequacy of naively us-

ing Bε(x) = {y ∈ X ∣ r < X(x, y)} instead is gleaned from Theorem 1.1

above — its validity depends on using⋘.

Let End be the category of endofunctors; its objects are a category C

together with a functor F ∶C → C , with a typical morphism (G,θ)∶ (C , F )→
(C ′, F ′) consisting of a functor G∶C → C ′ and a natural transformation

θ∶F ′G ⇒ GF . Let End∗ be the category of pointed endomorphisms, i.e.,

(F, η), where η∶ IdC ⇒ F is a natural transformation, and those morphisms

(G,θ) that respect the points, in the sense that Gθ = θη′G. There is an

evident forgetful functor Mon→ End∗ from the category of monads.

A consequence of the Axiom of Choice is that in any complete lattice L,

if x⋘ ⋁S, then x⋘ s for some s ∈ S (see Proposition 3.2 below). This

plays an important role in the final part of the following result.

10
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Theorem 2.3. Let Q be an affine quantale. The assignments X ↦ (P(X), clX)
and X ↦ (P(X)op, inX) are the object parts of the functors

Mon

QCatop End∗

cl−

in−

cl− U

θ

to the category of pointed endofunctors, each of which acts on a Q-functor

f ∶X → Y by sending f to the inverse image function f←. The functor cl−

factorises through monads, and the two functors are related by the natural

transformation θ carried by the set complementation functor ¬∶P(X) →
P(X)op.

Proof. The claim that clX is a functor is that S ⊆ S′ Ô⇒ clX(S) ⊆ clX(S′),
which is clear. The claim that it is a pointed functor is that S ⊆ clX(S), which

is just as clear. Similarly, and as trivially, inX is a functor since S ⊆ S′ Ô⇒
inX(S) ⊆ inX(S′), and it is pointed since S ⊇ inX(S). The claim that clX is

a monad is that cl2X(S) ⊆ clX(S), so let x ∈X satisfy X(x, clX(S)) = ⊺, and

we must show that X(x,S) = ⊺. It suffices to show, for a given y ∈ clX(S),
that X(x, y) ≤X(x,S). And indeed, using affineness,

X(x, y) =X(x, y) ⋅ ⊺ =X(x, y) ⋅X(y,S) ≤X(x,S)

by the distributivity law in the quantale and the composition inequality in

X . Finally, the existence of the natural transformation θ is the claim that

inX(¬S) ⊆ ¬(clX(S)). To see its validity, assume to the contrary that x ∈

inX(¬S) ∩ clX(S), namely there exists ε⋘ ⊺ with ε⋘ X(x, y) Ô⇒ y ∉

S, and X(x,S) = ⊺. But then ε ⋘ X(x,S) and so, by Proposition 3.2

below, it must be that ε⋘X(x, s) for some s ∈ S, a contradiction.

Remark 2.4. A situation where in∶P(X)op → P(X)op fails to be a monad

is given in Example 2.11.

Historically, Kuratowski favoured closed sets for the axiomatisation of

topology while Sierpiński pioneered open sets. We allow this anecdote to

dictate our choice of terminology.

11
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Definition 2.5. A quantale Q is sierpiński if ε⋘ t implies ε⋘ t ⋅⋁⇓(⊺),
for all t ∈ Q.

Proposition 2.6. Let Q be a quantale and X a small Q-category. If Q is

sierpiński, then in(Br(x)) = Br(x), for all r ∈ Q, and in∶P(X)op → P(X)op

is a monad.

Proof. Fix x ∈ X , r ∈ Q, and y ∈ Br(x), i.e., r⋘ X(x, y). We require a

δ⋘ ⊺with Bδ(y) ⊆ Br(x). Now, since r⋘X(x, y)⋅⋁⇓(⊺) = ⋁{X(x, y)⋅
δ ∣ δ⋘ T}, a δ⋘ ⊺ exists with r⋘X(x, y) ⋅δ (again by Proposition 3.2).

If δ⋘X(y, z), then

r⋘X(x, y) ⋅ δ ≤X(x, y) ⋅X(y, z) ≤X(x, z)

and so z ∈ Br(x), as required. The fact that in is now a monad, namely that

in(S) ⊆ in2(S), follows at once.

In the classical case Q = [0,∞], the monad clX is a kuratowski clo-

sure operator, namely its carrier functor S ↦ cl(S) preserves finite unions.

Similarly, the functor inX preserves finite intersections. In other words, if

reEnd∗ denotes the full subcategory of End∗ spanned by right exact endo-

functors, then the functors cl− and in− factorise via the inclusion reEnd∗ →
End∗. Neither claim holds generally.

Example 2.7. Consider the quantale Q = P(S) of all subsets of a set S.

Viewed as a closed monoidal category with intersection as monoidal product,

its self-enrichment structure yields the Q-category X with ob(X) = P(S)
and X(x, y) = {s ∈ S ∣ s ∈ x Ô⇒ s ∈ y} = ¬x ∨ y. For a collection

A ⊆ X we have X(x,A) = ¬x ∨⋁A, and thus cl(A) = P(⋁A)— it need

not preserve finite joins. Direct computation shows that ε⋘ ⊺ if, and only

if, ε is a sub-singleton. Noting that

B{s}(x) =
⎧⎪⎪
⎨
⎪⎪⎩

P(X) s ∉ x

{y ⊆ S ∣ s ∈ y} s ∈ x

shows that in(A) = {a ∈ A ∣ ∃s ∈ a∶ s ∈ y Ô⇒ y ∈ A} — it need not

preserve finite meets.

12
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Definition 2.8. Let L be a complete lattice. If ↡(⊺) is closed under finite

joins, then L is kuratowski. If ⇓(⊺) is closed under finite joins, then L is

sierpiński.

We say that a quantale Q is kuratowski if its underlying lattice is. We say

that Q is entirely sierpiński if both it and its underlying lattice are sierpiński.

Proposition 2.9. Let Q be an affine quantale and X a small Q-category. If

Q is kuratowski, then cl is a kuratowski closure operator.

Proof. We only need to verify preservation of finite unions. For binary

unions it suffices to show that cl(S ∪ S′) ⊆ cl(S) ∪ cl(S′), which follows

at once since X(x,S ∪ S′) = X(x,S) ∪ X(x,S′). It remains to see that

cl(∅) = ∅, and indeed, if x ∈ cl(∅), then X(x,∅) = ⊺, but the former is �,

forcing Q to collapse. But then ↡(⊺) is not closed under the empty join.

In agreement with our historical convention, we call the set-theoretic

dual of a kuratowski closure operator, namely a comonad in∶P(X)→ P(X)
that preserves finite meets, a sierpiński interior operator. Recall from [18]

the theory of free monads on (pointed) functors. It is clear that in admits a

free monad; its value on S is inα(S), where α is a sufficiently large ordinal

ensuring the stabilisation of the decreasing chain {inβ(S)}β , where in
β+1 =

in(inβ(S)) and, for a limit ordinal γ, inγ(S) = ⋂{inβ ∣ β < γ}.

Proposition 2.10. Let Q be an affine quantale and X a small Q-category.

If the underlying lattice of Q is sierpiński, then in preserves finite meets,

and the free monad on it is a sierpiński interior operator. If Q is entirely

sierpiński, then in is already a sierpiński interior operator.

Proof. Assuming the underlying lattice is sierpiński, the equality in(S∩S′) =
in(S) ∩ in(S′) follows at once since if x ∈ in(S) ∩ in(S′), witnessed by

ε, ε′ ⋘ ⊺, respectively, then ε ∨ ε′ ⋘ ⊺ witnesses that x ∈ in(S ∩ S′). In

order to show that in(X) =X , note that the only obstruction to that equality

is if Q admits no ε⋘ ⊺ at all, which can happen only if Q collapses. But

then ⇓(⊺) is not closed under the empty join.

It is now clear that if Q is entirely sierpiński, then in is a sierpiński in-

terior operator. If we only know that in is a pointed finite-union preserving

functor but not necessarily a monad, it is clear that the finite-union preserva-

tion survives the free monad construction, thus yielding a sierpiński interior

operator.

13
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In the classical case Q = [0,∞], it is well known that open and closed

sets are dual concepts: S is open/closed if, and only if, X ∖S is closed/open.

Stated differently, set complementation ¬∶P(X) → P(X)op, since it is a

complete lattice isomorphism, induces an isomorphism ¬∶Monad(P(X))→
coMonad(P(X)), given by (¬F )S = ¬(F (¬S)), that restricts to an iso-

morphism between the kuratowski and sierpiński operators. Thus, when

Q = [0,∞], the natural transformation θ∶ in− → cl− (which is carried by ¬) is

a natural isomorphism. Direct verification shows that in the case considered

in Example 2.7, one has that inX(¬S) = ¬clX(S), namely the component of

θ is an isomorphism. We shall shortly see why that holds true for all small

Q-categories X for Q = P(S). We first observe that the same phenomenon

does not hold true for arbitrary quantales.

Example 2.11. Let Q be a complete boolean algebra, viewed as a quantale

with operation given by ∧ (since any complete boolean algebra is a frame,

this is legitimate). Let X be Q as a Q-category, thus X(x, y) = ¬x∨y, where

¬ is the boolean complement operator. Clearly then, for A ⊆ X , X(x,A) =
¬x ∨⋁A, and so cl(A) = ↓(⋁A). Computing the interior operator requires

knowledge of the set ⇓(⊺). Let us consider two extremes: the atomic and

atom-less cases. If Q is an atomic complete boolean algebra, then Q ≅ P(S),
⇓(⊺) is the set of sub-atomic elements, and the situation reduces to that of

Example 2.7. If Q is atom-less, then ⇓(⊺) = {�}, and it follows that

B�(x) = {y ∈X ∣ �⋘ ¬x ∨ y} =
⎧⎪⎪
⎨
⎪⎪⎩

X x < ⊺

↟(�) x = ⊺

using the simple observation that in any lattice, �⋘ x holds precisely when

x ≠ �. Therefore,

in(A) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

X A =X

{⊺} A = ↟(�)

∅ otherwise

and in particular, in2(↟(�)) ⊊ in(↟(�)). The interior operator is thus not a

monad. Since the closure operator is always a monad, it is thus impossible

that θ is a natural isomorphism in this case.

The final piece of this section is a lattice-theoretic property under which

θ is necessarily a natural isomorphism. The following terminology is ex-

plained in Subsection 3.1.

14
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Definition 2.12. A complete lattice L is CCD at ⊺ if ⊺ = ⋁⇓(⊺).

We say that Q is CCD at ⊺ if its underlying lattice is. Obviously, any CCD

lattice is CCD at ⊺, and so, certainly, P(S) is CCD at ⊺ (cf. Example 2.7). A

non-atomic complete boolean algebra satisfies ⋁⇑(⊺) = �, so it is far from

being CCD at ⊺ (cf. Example 2.11). The following results clarify much of

the mechanics in both examples.

Proposition 2.13. Let Q be an affine quantale. If Q is CCD at ⊺, then θ∶ cl−⇒
in− is a natural isomorphism.

Proof. Since in(¬S) ⊆ ¬cl(S) always holds, we only need to show the re-

verse inclusion, so assume X(x,S) < ⊺. Since⋁⇓(⊺) = ⊺, there exists some

ε⋘ ⊺ such that X(x,S) ≱ ε. But then Bε(x) ⊆ ¬S, since ε⋘ X(x, y)
together with y ∈ S leads to the contradiction X(x,S) ≥X(x, y) ≥ ε.

Proposition 2.14. If an affine quantale Q is CCD at ⊺, then Q is sierpiński.

Proof. We need to show that if ε⋘ t, then ε⋘ t ⋅⋁⇓(⊺). But ⋁⇓(⊺) = ⊺,

and ⊺ is the quantale unit.

As a consequence, if Q is an affine quantale that is CCD at ⊺, then in,

and not just cl, is guaranteed to be a monad. The next result is slightly less

immediate.

Proposition 2.15. If Q is an affine quantale that is CCD at ⊺, then Q is

kuratowski if, and only if, Q is entirely sierpiński.

Proof. See [7, Proposition 3].

The above considerations highlight certain quantales as foundational in

topology.

Definition 2.16. A topological quantale is a commutative affine quantale Q

that is CCD at ⊺ and kuratowski (and thus entirely sierpiński).

Remark 2.17. The commutativity of Q was not required in any of the re-

sult so far. The effect of commutativity is of importance when we come to

consider coproducts of quantales below.
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The following theorems embody the idea of viewing topological spaces

as enriched categories.

Theorem 2.18. Consider the diagrams

Mon reMon

QCat End∗ QCat Mon

Mon reMon

TopK

QCat Top

TopS

cl

in

cl

cl

in

cl

in

F

O

θ θ θ−1

where Q is an affine quantale. Regarding the functor cl∶QCat → End∗
factoring over Mon, the functor in∶QCat → End∗, and the natural trans-

formation cl⇒ in from Theorem 2.3, we can specify that:

1. If Q is sierpiński, then in∶QCat→ End∗ factors over Mon.

2. if Q is kuratowski, then in factors over reMon.

3. if Q is entirely sierpiński, then in factors over reMon.

4. if Q is CCD at ⊺, then cl⇒ in is a natural isomorphism.

5. if Q is kuratowski and CCD at ⊺, then all the above happens; in other

words, both closure and interior operators are topological and specify

the same topological space.

Theorem 2.19. Let TQ be the class of topological quantales and consider

the category TQCatcont whose objects are all small Q-categories where Q

16
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is a topological quantale, and morphisms the cauchy continuous functions

f ∶X → Y , namely those satisfying the familiar ε−δ condition as described

in the introduction. The unique functor TQCatcont → Top above, which we

denote by X ↦ O(X), is the functor that associates with a small Q-category

its (unique!) topology, and acts as the identity on morphisms (which is valid

since any ε − δ continuous function is also continuous with respect to the

open ball topology). This functor takes the familiar form where U ⊆ X is

declared open precisely when

∀x ∈ U ∃ε⋘ ⊺∶ Bε(x) ⊆ U.

These functors, for the various topological quantales Q, patch up together

to form the functor

O∶TQCatcont → Top

and this functor is an equivalence of categories.

Proof. The proof is essentially due to [12]. Obviously, O is faithful, and

due to open balls being open sets, the standard textbook proof shows O is

full. Flagg utilised the free frame construction Ω∶Set → Frm, with frames

viewed as quantales. In more detail, Ω(X) is the collection of all down

closed collections of finite subsets of X , ordered by inclusion. Let us show

that Ω(X) is kuratowski, so suppose a, b < ⊺, which means a misses a finite

subset Fa, and b misses a finite subset Fb. But then if a ∨ b = ⊺, then F =

Fa ∪Fb must be there, which would force it into either a or b. Since Fa ⊆ F ,

it cannot belong to a. b is similarly prohibited. To see that Ω(X) is CCD at

⊺ it suffices to note that a⋘ ⊺ precisely when there exists a finite subset

Fa ⊆X such that a consists only of subsets of Fa. The join of such elements

a is thus the entire collection ⊺ of all finite subsets of X . In other words, Ω

lands in topological quantales. Now, to show that O is surjective on objects,

given a topology τ on X , let X(x, y) ∈ Ω(τ) be the collection of all finite

subsets of τx→y, where τx→y = {U ∈ τ ∣ x ∈ U Ô⇒ y ∈ U}.

3. Coproducts of commutative quantales

The construction of limits in TQCatcont relies on coproducts of commu-

tative quantales, and those rely on colimits of complete join lattices. We
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are particularly interested in stability properties of topological quantales un-

der coproducts, and so proceed to introduce the relevant notions alongside a

study of the totally below relation.

3.1 Constructive complete distributivity

Recall that ↓(−)∶L → D(L), where L is a complete lattice and D(L) is the

lattice of its down-closed subsets, has a left adjoint given by ⋁, and that L is

CCD precisely when ⋁ has a left adjoint ⇓(−). The definition of such a left

adjoint dictates that

⇓(x) = {y ∈ L ∣ y⋘ x}

in the sense of the totally below relation y⋘ x, namely that for all S ⊆ L

with x ≤ ⋁S there exists s ∈ S with y ≤ s.

Even if L is not CCD, the definition above still yields a functor ⇓(−)∶L→
D(L). Consider the functor ⊔∶D(L)→ L given by

⊔S =⋁{x ∈ L ∣ ⇓(x) ⊆ S}.

Proposition 3.1. The following conditions for a complete lattice L are equiv-

alent:

1. For all a⋘ b, if b ≤ ⋁S, then a⋘ s for some s ∈ S.

2. The functor ⇓(−) is a left adjoint.

Proof. Assuming the first condition, we show that ⇓(−) ⊣ ⊔. It suffices to

demonstrate the unit and counit conditions, namely x ≤ ⊔⇓(x) and ⇓(⊔S) ⊆
S, of which the former is trivial. For the latter, suppose x ⋘ ⋁{y ∈ L ∣
⇓(y) ⊆ S}, so, by the assumed condition, x⋘ y for some y with ⇓(y) ⊆ S,

thus x ∈ S. For the converse, note that if ⇓(−) is a left adjoint and b ≤ ⋁S,

then ⇓(b) ⊆ ⇓(⋁S) = ⋃{⇓(s) ∣ s ∈ S}.

Proposition 3.2. If the background set theory admits the Axiom of Choice,

then, for all complete lattices L, the functor ⇓(−) is a left adjoint.

Proof. We demonstrate the first condition of Proposition 3.1. Proceeding by

contradiction, suppose a⋘ b, b ≤ ⋁S, and yet a⋘ s holds for not a single

s ∈ S. Choose, for each s ∈ S, a set Ts with s ≤ ⋁Ts and so that a ≤ t fails

for all t ∈ Ts. The set T = ⋃{Ts ∣ s ∈ S} contradicts a⋘ ⋁S.
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Remark 3.3. We proceed under the assumption that for all lattices L con-

cerning us, the functor ⇓(−) admits a right adjoint. In light of Proposi-

tion 3.2, this is automatic if the Axiom of Choice holds. Otherwise, the

assumption we are making is that we restrict to those lattices that are suffi-

ciently constructive to admit the required right adjoint.

For any complete lattice L let CCD(L) = {x ∈ L ∣ ⋁⇓(x) = x}, which we

call the CCD core of L. It is easily seen that the CCD core of L is a complete

join sublattice of it, but it need not itself be CCD. We obtain the following

play on words.

Theorem 3.4. Let L be a complete lattice. The following conditions are

equivalent (and define what it means for L to be CCD):

• ⋁ has a left adjoint

• ⋁ = ⊔

• CCD(L) = L.

3.2 Tensor product of complete join lattices

The category CJLat of complete join lattices is well known to support a

symmetric closed monoidal structure ([17, 24]). The tensor product of com-

plete lattices L1, L2 is a function β∶L1×L2 → L1⊗L2 that is universal among

all functions L1 ×L2 → L that are join preserving in each variable. Much as

in ring theory, the tensor product can be constructed as a quotient of a free

lattice. Writing x⊗ y for β(x, y), and referring to such elements as elemen-

tary tensors, every element in L1 ⊗L2 is a join of elementary tensors, for all

x > � in L1 and y > � in L2 we have that x⊗ y ≤ x′ ⊗ y′ if, and only if, both

x ≤ x′ and y ≤ y′, ⋀i xi ⊗ yi = ⋀i xi ⊗⋀i yi, and x⊗⋁S = ⋁{x⊗ s ∣ s ∈ S}.
Thus meets are computed point-wisely in L1 ⊗ L2. The join of arbitrary

elementary tensors, however, does not admit such a simple formula.

The following result is [23, Lemma 37]:

Theorem 3.5. If L1 and L2 are CCD, then so is their tensor product.

We require a refinement of this result and an analysis of the totally below

relation in the tensor product. It is convenient to use the fact ([17]) that

L1 ⊗L2 ≅CJLat(L1, L
op
2 )

op,
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the opposite of the complete lattice of join preserving morphisms L1 → L
op
2

(see [13] for a detailed description). In this model, the elementary tensors

are given by

β(x, y)(a) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

⊺ if a = �,

y if � < a ≤ x,

� if a ≰ x,

and an arbitrary element f ∈ L1 ⊗L2 has the canonical presentation

f = ⋁
x∈L1

β(x, f(x))

as a join of elementary tensors.

It is straightforward that if a ⊗ b⋘ x ⊗ y, then both a⋘ x and b⋘

y. The following result will assist in obtaining conditions for the converse

implication.

Lemma 3.6. Let S be a subset of the tensor product

L1 ⊗L2 ≅CJLat(L1, L
op
2 )

op

of two complete lattices and write s for the point-wise join of S, i.e. s(x) =
⋁g∈S g(x) computed in L2 for all x ∈ L1. Now define

f(x) = ⋀
x′⋘x

s(x′)

for all x ∈ L1, again computed in L2. The following properties hold.

1. f is an upper bound of S in L1 ⊗L2.

2. If h is an upper bound of S, then f(x) ≤ h(x) for all x ∈ CCD(L1).

3. (⋁S)(x) = f(x) for all x ∈ CCD(L1).

Proof. Recall that ⇓(−) is a left adjoint.

1. Firstly, f ∶L1 → L
op
2 belongs to L1 ⊗ L2, namely it preserves joins,

since

f(⋁A) = ⋀
x′∈⇓(⋁A)

s(x′) = ⋀
a∈A

⋀
x′∈⇓(a)

s(x′) = ⋀
a∈A

f(a).
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Now, for any g ∈ S and x′⋘ x, clearly, g(x) ≤ g(x′) ≤ s(x′), show-

ing that g(x) ≤ f(x) point-wisely, and thus f is an upper bound of

S.

2. An upper bound h clearly satisfies s(x′) ≤ h(x′). Assuming that x ∈

CCD(L1), we obtain that

f(x) ≤ ⋀
x′⋘x

h(x′) = h( ⋁
x′⋘x

x′) = h(x).

3. Immediate.

Proposition 3.7. Let L1 and L2 be complete lattices, a ⋘ x in L1, and

b⋘ y in L2. If x ∈ CCD(L1), then a⊗ b⋘ x⊗ y.

Proof. Suppose that x⊗ y ≤ ⋁S for some S ⊆ L1 ⊗L2. By Lemma 3.6 and

the given conditions we have that

b⋘ y ≤ (⋁S)(x) = ⋀
x′⋘x

⋁
g∈S

g(x′) ≤ ⋁
g∈S

g(a),

and so b ≤ g0(a) for some g0 ∈ S. Therefore

a⊗ b = β(a, b) ≤ g0

as can be seen from the expression for β(a, b), recalling that g0 is antitone.

We summarise as follows.

Theorem 3.8. For complete lattices L1 and L2, if x ∈ CCD(L1) and y ∈

CCD(L2), then x⊗ y ∈ CCD(L1⊗L2) and t⋘ x⊗ y if, and only if, t ≤ a⊗ b

with a⋘ x and b⋘ y. If L1 and L2 are CCD at ⊺ and are sierpiński, then

L1 ⊗L2 is sierpiński.

Proof. The characterisation of t⋘ x⊗ y follows from the observation that

x⊗ y = ⋁{a⊗ b ∣ a⋘ x, b⋘ y} as soon as x ∈ CCD(L1) and y ∈ CCD(L2),
from which x⊗y ∈ CCD(L1⊗L2) is immediate. With this property, the claim

about the sierpiński property follows from a⊗b∨a′⊗b′ ≤ (a∨a′)⊗(b∨b′).
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3.3 Coproducts of complete join lattices

Coproducts in CJLat ([17]) are particularly simple to describe, due to its

strong self duality: if f ∶L1 → L2 is join preserving, then it has a right adjoint

g∶L2 → L1, which, when written as f op∶L
op
2 → L

op
1 , is join preserving, and

thus yields an isomorphism CJLat → CJLatop. The product L of lattices

{Lk}k∈I is given by the usual product of the underlying sets, equipped with

component-wise operations. The projections πk∶L→ Lk preserve meets, and

so admit left adjoints ιk∶Lk → L. It then holds that L with these morphisms

is the coproduct in CJLat, and πk ○ ιk = IdLk
.

Proposition 3.9. Let {Lk}k∈I be a collection of complete lattices. Then a⋘

x in the coproduct ∐Lk if, and only if, there exists k0 ∈ I and ā ∈ Lk0 such

that ā⋘ πk0(x) and a = ιk0(ā).

Proof. Clearly, x = ⋁{ιk(πk(x)) ∣ k ∈ I}, so for a⋘ x the existence of k0
follows from Proposition 3.2.

3.4 Coproducts of commutative quantales

Since the category of commutative quantales is cMon(CJLat), it follows

from general considerations that it is cocomplete (and complete). We require

a concrete enough description of coproducts, sufficient to see that topologi-

cal quantales admit coproducts.

It is a simple matter that, much as in the case of commutative rings, finite

coproducts in cQnt are given by the tensor product. This follows again

from general considerations of commutative monoid objects in a symmetric

closed monoidal category. In a nutshell, the multiplication of a commutative

quantale Q is a function Q ×Q → Q, preserving joins in each variable, and

thus corresponds to a morphism ⌊⋅⌋∶Q ⊗Q → Q from the tensor product of

the underlying lattice. If Q1 and Q2 are commutative quantales, then one

obtains a binary operation on Q1 ⊗Q2, namely the one corresponding to

(Q1 ⊗Q2)⊗ (Q1 ⊗Q2)→ (Q1 ⊗Q1)⊗ (Q2 ⊗Q2)
⌊⋅⌋⊗⌊⋅⌋
ÐÐÐ→ Q1 ⊗Q2

utilising the canonical symmetry isomorphism Q2 ⊗ Q1 → Q1 ⊗ Q2. It is

easily seen that then Q1 ⊗Q2 is a commutative quantale, and that with the

evident morphisms Q1 → Q1 ⊗Q2 ← Q2 it is the coproduct in cQnt.
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Theorem 3.10. The category tQnt of topological quantales, as a full sub-

category of cQnt, is closed under finite coproducts, and ε ⋘ ⊺ holds in

Q1 ⊗ ⋅ ⋅ ⋅ ⊗ Qn if, and only if, there exist εk ∈ Qk with εk ⋘ ⊺ such that

ε ≤ ε1 ⊗ ⋅ ⋅ ⋅ ⊗ εn.

Proof. The empty coproduct is the quantale B = {� < ⊺} of boolean truth

values, and it is clearly topological. The characterisation of ε⋘ ⊺ in this

case simply says that all ε ∈ B satisfy ε⋘ ⊺. Suppose that Q1 and Q2 are

topological quantales. It is clear that Q = Q1 ⊗Q2 is affine and the rest of

the claims follow from the fact that the underlying lattice of Q is the tensor

product in CJLat, together with Theorem 3.8.

This leaves the case of infinite coproducts. As in any category, directed

colimits together with finite coproducts suffice to construct all coproducts,

as follows. For a set I consider the poset Fin(I) of all finite subsets of I ,

under inclusion. For a small collection {Qk}k∈I of commutative quantales

indexed by I their coproduct is the colimit

∐
k∈I

Qk = colim
Fin(I)

(S ↦⊗
k∈S

Qk).

Directed colimits are (again) particularly simple in cQnt, namely they are

created by the functor cQnt → CJLat (see [16, C1.1, Lemma 1.1.8], and

the discussion surrounding it).

We continue to use the elementary tensor notation x1 ⊗ ⋅ ⋅ ⋅ ⊗ xn to stand

for ι1(x1)∨⋅ ⋅ ⋅∨ιn(xn), where ιk is the canonical injection into the (possibly

infinite) coproduct.

Theorem 3.11. The category tQnt of topological quantales, as a full sub-

category of cQnt, is closed under infinite coproducts, and ε⋘ ⊺ holds in

⊗k∈I Qk if, and only if, there exist finitely many εk ∈ Qk with ε⋘ ⊺ such

that ε ≤ ε1 ⊗ ⋅ ⋅ ⋅ ⊗ εn.

Proof. Combine Proposition 3.9 with Theorem 3.8 and the form of the infi-

nite coproduct of commutative quantales.

To conclude this section we note that coproducts of quantales occur nat-

urally in applications. For instance, recall the quantales [0,1] with multi-

plication and [0,∞]op with addition. Their coproduct is usually denoted by
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∆, the quantale of distance distribution functions. Small ∆-categories are

also known as probabilistic metric spaces. Since the constituent quantales

are topological, so is ∆. This quantale was in circulation long before it was

realised that it is simply the coproduct of two very naturally occurring quan-

tales. Further, it is clear that [0,1] ≅ [0,∞]op as quantales, and so, up to

isomorphism, ∆ is simply the coproduct of [0,∞]op with itself. This can be

iterated to any cardinality, yielding a transfinite ladder of topological quan-

tales. See [6] for more details.

4. Limits of spaces

In this section we construct limits in TQCatcont. The novelty, of course,

is not in the completeness of the category but in the techniques used. The

interest in these techniques is their very existence. Not all formalisms are

created equal; while it is fairly straightforward to define the product topol-

ogy in terms of open sets, doing so in terms of closed sets is not readily

achieved. It is thus not a priori clear that an enriched-categorically flavoured

construction of products exists.

It suffices to construct all small products and all equalisers. For a Q-

category X and a subset A ⊆ X of its objects, the full subcategory on A is

the Q-category with A(x, y) =X(x, y).

Theorem 4.1. The equaliser of f, g∶X → Y in TQCatcont is the full subcat-

egory of X on E = {x ∈X ∣ f(x) = g(x)}.

Proof. Straightforward.

We now turn to products, so fix a family {Xk}k∈I of objects in TQCatcont,

indexed by a set I . Each Xk is a small Qk-category where Qk is a topolog-

ical quantale. Let Q = ∐k∈I Qk be the coproduct in the category of cQnt,

equipped with the canonical injections ιk∶Qk → Q. Let X be the Q-category

with

ob(X) =∏
k∈I

ob(Xk) and X(x, y) =⋁
k∈I

ιk(Xk(πk(x), πk(y)))

with the join computed in Q. It is easily seen to be a small Q-category, by

extending the fact that, for elementary tensors in Q1 ⊗Q2, (a⊗ b) ⋅ (c⊗ d) =
(a ⋅ c)⊗ (b ⋅ d), to the coproduct of quantales.
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In the next proof, we use the following observation. A function f ∶X → Y

is continuous at x precisely when for all ε⋘ ⊺ there exists δ⋘ ⊺ such that

X(x, y) ≤ δ Ô⇒ Y (fx, fy) ≤ ε. The equivalency with the definition of

continuity as given above follows from the fact that ⇓(−) is a left adjoint.

Theorem 4.2. With the evident projection functions X →Xk, the Q-category

X is the product of {Xk}k∈I in TQCatcont.

Proof. The quantale Q is topological, and it is clear that the projection func-

tions are continuous. It remains to establish the universal property, so as-

sume continuous functions fk∶Y → Xk from some small R-category Y are

given, where R is some topological quantale. The function g∶Y → X we

seek is dictated to be the unique one satisfying πk ○ g = fk, so we only need

to show that g is continuous. For that, let y ∈ Y and ε ⋘ ⊺ be given,

where ε is chosen in Q. By Theorem 3.11, ε ≤ ιk1(ε1) ∨ ⋅ ⋅ ⋅ ∨ ιkn(εn),
where εki ⋘ ⊺ holds in Qki . By the continuity of fki , there exists δki ⋘ ⊺

in R such that δki ≤ Y (y, y′) Ô⇒ εki ≤ Xki(fki(y), fki(y
′)). Let δ =

δk1 ∨ ⋅ ⋅ ⋅ ∨ δkn , which satisfies δ ⋘ ⊺ since R is sierpiński. We claim that

δ ≤ Y (y, y′) Ô⇒ ε ≤ X(g(y), g(y′)), namely that g is continuous at y.

Assume δ ≤ Y (y, y′), and fix ki. Then certainly δki ≤ Y (y, y′), and thus

εki ≤ Xki(fki(y), fki(y
′)) = Xki(πki(g(y)), πki(g(y

′))). Upon applying ιki
we obtain that ιki(εki) ≤ X(g(y), g(y

′)), and as this holds for k1, . . . , kn, it

follows that ιk1(εk1)∨ ⋅ ⋅ ⋅ ∨ ιkn(ε(kn)) ≤X(g(y), g(y
′)). By the choice of ε

this inequality completes the proof.

To conclude, let us speculate on the applicability of this last construction

in data analysis. Any data analysis endevour starts with recording the data,

very often as a point-cloud data structure, i.e., a metric space or, in our termi-

nology, a small [0,∞]op-category. Often, the data does not naturally appear

in metric form and some manipulation, including simplification or arbitrary

choice, is required in order to obtain a metric space. Higher dimensional

data is often encoded in terms of some metric on Rn, again possibly skew-

ing the data. Having more quantales at hand provides more flexibility. For

instance, suppose data is collected coordinate wise as ordinary metric spaces

Xi, but the data analysis requires patching the coordinates together. The last

theorem provides a canonical metrisation for the entire space of coordinates.

It is expected to introduce less bias or distortion into the data, while ensuring

the topologicity of the scenario.
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THE DERIVATOR OF SETOIDS

Michael Shulman

Résumé. Sans l’axiome du choix, la complétion exacte libre de la catégorie

des ensembles (i.e. la catégorie des “sétoides”) peut ne pas être complète ou

cocomplète. Nous montrerons que, néanmoins, elle peut être enrichie d’un

dérivateur : la structure formelle des catégories de diagrammes reliés par des

foncteurs d’extension de Kan. De plus, ce dérivateur est la cocomplétion

libre d’un point dans une classe de “1-dérivateurs tronqués” (qui se comporte

comme une 1-catégorie plutôt que comme une catégorie d’ordre supérieur).

En mathématiques classiques, la cocomplétion libre d’un point par rap-

port à l’ensemble des dérivateurs est la théorie de l’homotopie des espaces.

Ainsi, s’il existe une théorie de l’homotopie dont on peut montrer qu’elle pos-

sède cette propriété universelle de manière constructive, sa 1-troncature doit

contenir non seulement des ensembles, mais aussi des sétoïdes. Ceci suggère

que soit les sétoïdes sont un aspect inévitable de la théorie de l’homotopie

constructive, soit on a besoin d’une modification plus radicale de la notion de

théorie d’homotopie.

Abstract. Without the axiom of choice, the free exact completion of the cate-

gory of sets (i.e. the category of setoids) may not be complete or cocomplete.

We will show that nevertheless, it can be enhanced to a derivator: the for-

mal structure of categories of diagrams related by Kan extension functors.

Moreover, this derivator is the free cocompletion of a point in a class of “1-

truncated derivators” (which behave like a 1-category rather than a higher

category).

In classical mathematics, the free cocompletion of a point relative to all

derivators is the homotopy theory of spaces. Thus, if there is a homotopy

theory that can be shown to have this universal property constructively, its

1-truncation must contain not only sets, but also setoids. This suggests that

either setoids are an unavoidable aspect of constructive homotopy theory, or
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more radical modifications to the notion of homotopy theory are needed.

Keywords. derivator, setoid, exact completion, constructive mathematics,

axiom of choice, anafunctor
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1. Introduction

Can homotopy theory be developed in constructive mathematics, or even in

ZF set theory without the axiom of choice? Recently this question has be-

gun to attract more attention, due partly to the rise of interest in Homotopy

Type Theory and Univalent Foundations [Uni13]. The latter is a construc-

tive type theory whose first model was nevertheless relentlessly classical,

using the Kan–Quillen model category of simplicial sets [KL19]. Since then,

constructive models of homotopy type theory have been found in categories

of cubical sets [BCH14, BCH19, CCHM16, ABC+17, ACC+21], and the

model category of simplicial sets has been developed constructively [Hen19,

GSS19, GH19, GHSS21], though not quite to the point of strictly modeling

type theory.
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In particular, there are now at least two constructive homotopy theories

— the aforementioned simplicial sets and the equivariant cartesian cubical

sets of [ACC+21] — that can classically be shown to present the homotopy

theory of spaces. However, it is not known whether they are constructively

equivalent to each other. Thus one may naturally wonder: if they are not

equivalent, which is the “correct” constructive homotopy theory of spaces?1

Or, perhaps, are they both “incorrect”? What does “correct” even mean?

In fact, both of these homotopy theories have a property that at first

may seem peculiar: their 1-truncations (meaning their subcategory of ho-

motopy 0-types) are not equivalent to the category of (constructive) sets that

we started from. The 1-truncation of simplicial sets appears to be equiva-

lent to the free exact completion Setex of Set [CM82], a.k.a. the category

of “setoids” (Simon Henry, personal communication). The 1-truncation of

equivariant cartesian cubical sets may not be equivalent to Setex (Andrew

Swan, personal communication), but neither is it equivalent to Set. This is

a significant departure from both classical mathematics and homotopy type

theory, in which sets can be regarded, up to equivalence, as homotopy 0-

types. (Note that the inclusion Set →֒ Setex is an equivalence if and only if

the axiom of choice holds.)

In particular, this means that when homotopy type theory is interpreted in

one of these constructive model categories, its internally-defined “sets” will

be interpreted in the model as some kind of setoid rather than as actual sets.

This is somewhat disturbing for the prospect of constructive applications of

homotopy type theory and its semantics. At a stretch, one might even regard

it as evidence for the incorrectness of both of these model categories.

In this paper we propose one possible correctness criterion for a con-

structive homotopy theory of spaces. Moreover, we provide some evidence

that, the foregoing remarks notwithstanding, the 1-truncation of any theory

satisfying this criterion must contain at least Setex, not just Set. In a moment

we will discuss possible interpretations of this fact, but first let us explain the

criterion and the evidence.

Classically, the homotopy theory of spaces has a universal property: it is

1By “space” we mean some combinatorial notion of∞-groupoid. It is probably not rea-

sonable to expect a theory of∞-groupoids to be constructively equivalent to the homotopy

theory of topological spaces, as continuous functions are much less flexible constructively

than classically.
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the free cocomplete (∞, 1)-category generated by a point [Lur09, 5.1.5.6],

just as Set is the free cocomplete 1-category generated by a point. However,

this is somewhat circular as a characterization, since an (∞, 1)-category is

defined to have spaces as hom-objects.2 One possible way around this would

be to work with presentations of (∞, 1)-categories using 1-categorical struc-

tures such as Quillen model categories. However, universal properties of

(∞, 1)-categories (as opposed to universal properties of objects in an (∞, 1)-
category) are hard to express at this level — indeed, this is one of the main

reasons for the recent explicit use of (∞, 1)-categories instead of model cate-

gories in applications such as [Lur09]. Moreover, although in classical math-

ematics most interesting complete and cocomplete (∞, 1)-categories (in-

cluding all locally presentable ones) can be presented by model categories,

we ought not to assume a priori that this will still be the case constructively.

Instead, we can work with a 1-categorical quotient of an (∞, 1)-category.

The ordinary homotopy category, obtained by identifying equivalent pairs of

parallel morphisms, is too coarse for this purpose; but an enhancement of it

(due to Heller [Hel88], Grothendieck [Gro91], and Franke [Fra96]) turns out

to be sufficient. Namely, given a complete and cocomplete (∞, 1)-category

C , we consider the homotopy 1-categories of the functor (∞, 1)-categories

C A for all small 1-categories A, together with the restriction functors relat-

ing them and their left and right adjoints (homotopy Kan extensions). This

structure is nowadays called a derivator (after Grothendieck), and it retains

a surprising amount of information about C .

In particular, Heller [Hel88] and Cisinski [Cis06] have shown, in clas-

sical mathematics, that the derivator Space of spaces is the free cocomple-

tion of a point. This means that for any other derivator D , the category of

cocontinuous morphisms Space → D (those that preserve the “formal left

Kan extensions” included in the structure of a derivator) is equivalent to the

category D(1) of “diagrams of shape 1” in D (i.e. “objects of D”; here 1

denotes the terminal category). Although a derivator is intuitively a homo-

topical, i.e. (∞, 1)-categorical, object, formally this universal property lives

at the same categorical level as the universal property of Set: derivators, like

2To be sure, not all definitions of (∞, 1)-category explicitly incorporate hom-spaces.

But the question of the correct constructive definition of (∞, 1)-category seems likely to be

at least as difficult as that of the correct constructive definition of∞-groupoid, i.e. homotopy

space.
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1-categories, form a 2-category, and the universal property is an equivalence

involving hom-categories therein. In the words of Cisinski [Cis10a]:

This provides a first argument that the usual homotopy theory of sim-

plicial sets plays a central role. . . and for this, we didn’t take for granted

that homotopy types should be that important: its universal property

is formulated with category theory only.. . . derivators provide a trun-

cated version of higher category theory which gives us the language

to characterize higher category theory using only usual category the-

ory, without any emphasis on any particular model (in fact, without

assuming we even know any).

Thus, a natural correctness criterion for a constructive homotopy theory

of spaces would be that it defines a derivator Space that is the free cocom-

pletion of a point.

Of course, it is not a priori clear that such a derivator even exists in con-

structive mathematics. We will not attempt to construct one in this paper.

Instead, we will attempt to understand how Space would behave, if it exists,

by studying derivators that ought to be localizations of it. By this we mean

derivators that should be obtained from Space by universally inverting some

class of morphisms among cocontinuous morphisms, although in good situ-

ations this equivalent to being a reflective subcategory of Space (a reflective

localization).

Classically, Space has many interesting reflective localizations, such as

those that invert some set of prime numbers. More relevantly for us, for all

integers n ≥ −2 it has a reflective localization Spacen consisting of homo-

topy n-types. In particular, Space0 is just the category Set of sets (regarded

as a derivator), while Space−1 is the poset Prop of truth values (which, clas-

sically, is the two-element lattice) and Space−2 is the terminal derivator.

Moreover, each Spacen is the free cocompletion of a point in the world of

“(n+1)-truncated derivators” — those that behave like (n+1, 1)-categories

rather than (∞, 1)-categories.3 In particular, this universal property for Set

generalizes its ordinary one, giving it a mapping property into all 1-truncated

derivators, not just those that arise from 1-categories.

3These “n-truncated derivators” are distinct from the “n-derivators” of [Rap19]. The

former are 1-derivators (in the terminology of [Rap19]) that act as if they arose from an

(n, 1)-category, while the latter generalize the definition of derivator to use n-categories in

place of 1-categories.
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In this paper we will exhibit, in constructive mathematics, derivators

Spacen that have this universal property for n = 0,−1,−2. In fact, for

n = 0 and −1 (and thus presumably for all n ≥ −1) the notion of “(n+1)-
truncated derivator” multifurcates constructively into several different no-

tions, with several different corresponding localizations.

For one natural notion of “1-truncated derivator”, we find that Set is the

free cocompletion of a point. However, there are intuitively “1-categorical”

derivators that are not 1-truncated in this sense. Notably, we will show that

for any complete category E having small coproducts preserved by pullback,

its exact completion Eex can be enhanced to a derivator, which is not “1-

truncated” in the naive Set-based sense. There is a weaker notion of 1-

truncatedness that does encompass these examples, but in this world Set is

no longer the free cocompletion of the point: instead that role is taken by

Setex.
4 There is also an intermediate notion of “1-truncatedness”, whose

free cocompletion of a point is a derivator version of Setreg, the free regular

completion of Set. We will refer to these three notions of 1-truncatedness as

being Set-local, Setex-local, and Setreg-local respectively.

A similar thing happens one dimension down: in addition to the lattice

Prop, we have a derivator version of Setpos, the preorder reflection of Set.

Each of them is the free cocompletion of a point in its corresponding world

of local derivators.

The class of Setex-local derivators is broader than that of Set-local ones,

and in particular there is a cocontinuous map of derivators Setex → Set but

not conversely. Thus, if both were realized as reflective subcategories of

Space, then Setex would be the larger one. This provides our evidence that

if a free cocompletion of a point exists constructively, its 1-truncation must

involve Setex and not just Set.5

4It is unclear exactly how this universal property of the derivator Setex is related to the

usual universal property of the category Setex. But it is reminiscent of the result of [Car95,

Corollary to Lemma 4.1] that classically, the free exact completion of the small-coproduct

completion of a small category is equivalent to its presheaf category, i.e. its free cocomple-

tion. (Note that Set is the free small-coproduct completion of a point, as well as the free

cocompletion of a point.)
5There is the possibility that this 1-truncation could be something even larger than Setex.

It is not clear whether (Setex)ex can be made into a derivator at all, but if it could be then it

would be one possible candidate. In addition, the 1-truncation of cubical sets may also be

larger than Setex (Andrew Swan, personal communication), so it is another possibility.
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I can think of at least three responses to this observation. The first is to

bite the bullet and accept that the correct homotopy theory of spaces is con-

structively the “∞-exact completion” of Set, and in particular its 0-truncated

objects are setoids rather than sets. Thus, when applying homotopy theory

constructively, we would be forced to use setoids, either exclusively or in

tandem with sets.

This may be satisfying if our motivations for constructivity are purely

philosophical. Indeed, some constructivist schools start from a foundation

whose primitive objects are not sets but some kind of “pre-set” or “type”

that lacks quotients entirely, such as some formalizations of Bishop’s con-

structive mathematics [BB85] or Martin-Löf’s original constructive type the-

ory [ML84]. In this case, if “the category of sets” is to be exact, it must be

defined as a free exact completion of the category of pre-sets, and so the

appearance of an exact completion is entirely unproblematic.6

However, if we also care about categorical semantics, the appearance of

setoids is troubling. When interpreting constructive mathematics internally

in a category, it is the sets, not the setoids, that correspond to objects of that

category. If our category of interest happens itself to be an exact comple-

tion of some other category, we might be able to interpret our mathematics

in the latter, with the former category appearing as the exact completion of

the latter. However, although some important categories are exact comple-

tions (such as some presheaf toposes and realizability toposes), many are not

(such as most sheaf toposes), so this approach cannot work for them. This is

related to the problem of constructing “realizability higher toposes” whose

underlying 1-topos is an ordinary realizability topos [Uem19, SU19].

Another problem with exact completions is that they destroy impredica-

tivity: even if Set has a subobject classifier, Setex generally will not. Again, a

philosophical predicativist may be unbothered by this, but it is disconcerting

to choose to work with an impredicative category Set and nevertheless be

forced into the predicative Setex as soon as we start trying to do homotopy

theory.

The second response is to reject our proposed “correctness criterion” for

the homotopy theory of spaces. And indeed, there are obvious grounds on

which to do so. Namely, our notion of derivator is based on small categories

6Relatedly, note that the model category of simplicial objects constructed in [GHSS21]

requires only a category with finite limits and extensive countable coproducts.
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and functors between them; but there are good arguments that in the absence

of the axiom of choice, the correct notion of morphism between categories is

instead that of an anafunctor [Mak96, Bar06, Rob12]. This suggests that we

should instead be considering “ana-derivators” defining using anafunctors.

In that world, it might be the case that the free cocompletion of a point con-

sists of spaces and anafunctors between them, and has Set as its 1-truncation.

However, there are difficulties involved in making this work. Already

for categories, it is impossible to prove even in ZF set theory that the bi-

category of categories and anafunctors is locally small, cartesian closed,

or complete [aK17]. (There are much weaker axioms than AC that suf-

fice for local smallness and cartesian closure, such as SCSA [Mak96] and

WISC [Rob12], but their constructive status is arguable, and it is unclear

whether they imply completeness as well.) It seems likely that similar prob-

lems would arise in building a derivator out of 1-groupoids and anafunctors,

let alone∞-groupoids and∞-anafunctors.

It may be more feasible to construct only a left derivator of groupoids

and anafunctors, which has colimits but not limits. However, there are ap-

plications for which this would be insufficient; for instance, defining and

constructing stacks requires taking limits over infinite sieves to define cate-

gories of descent data.

Finally, the third response is to reject the whole idea of defining spaces

constructively out of sets, and instead start from a foundational theory such

as homotopy type theory [Uni13], in which spaces are primitive objects.

(Note that “computably” constructive flavors of homotopy type theory are

also now available, such as the cubical type theories of [CCHM16, ABC+17].)

This allows “sets” to be defined as homotopy 0-types, without forcing the

appearance of any exact completion. Semantically, this means working with

the internal language of an (∞, 1)-topos, within which sits the internal lan-

guage of a 1-topos. This would be my personal preferred approach; I will

comment on it further in Remark 8.7.

Background theory

We work in an informal constructive set theory, assuming neither the axiom

of choice nor the law of excluded middle, with one universe to define a

size boundary between large and small categories. Most or all of our results
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could probably be formalized in the internal language of an elementary topos

containing a universe [Str05]; or in a membership-based set theory like IZF

with a universe (or a weaker variant, since we probably do not need much

replacement or collection); or in a dependent type theory with UIP, function

extensionality, and quotients, like XTT [SAG19]. The arguments should

be predicative, as long as we allow Prop, like Set, to be a large category.

Importantly, however, we do require effective quotients, so that our category

Set of sets is exact.
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2. The free exact completion

We start by reviewing the free exact completion. Recall that an exact cate-

gory (in the sense of Barr) is a category with finite limits and such that every

internal equivalence relation has a pullback-stable quotient of which it is the

kernel.

Let E be a 1-category with finite limits; we recall from [CM82] how to

build an exact category Eex from it freely.7 A first thought might be to take

the equivalence relations in E as the objects of Eex, each such standing in for

the quotient of itself. This produces a category in which every equivalence

relation coming from E has an effective quotient (see Example 5.19), but

7Eex is sometimes written Eex/lex, to emphasize that we started from a category E with

only finite limits (i.e. one that is left exact, or “lex”). This is to distinguish it from other

exact completions such as Eex/reg, which requires E to be a regular category, and unlike the

ex/lex completion is an idempotent operation.
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it also introduces new equivalence relations that do not yet have quotients.

Thus, we need something more general, which turns out to be the following.

Definition 2.1. A pseudo-equivalence relation in E consists of:

• Objects X0 and X1, with morphisms s, t : X1 ⇒ X0.

• A morphism r : X0 → X1 such that sr = tr = 1.

• A morphism v : X1 → X1 such that sv = t and tv = s.

• A morphism m : X1
t×s

X0
X1 → X1 such that sm = sπ1 and tm = tπ2.

In other words, a pseudo-equivalence relation has the operations of an

internal groupoid, but without any axioms. In particular, any object X ∈ E

induces a “discrete” pseudo-equivalence relation with X1 = X0 = X; this

provides a functor E →֒ Eex to the category Eex defined as follows:

Definition 2.2. The free exact completion Eex of E has:

• As objects, pseudo-equivalence relations.

• As morphisms X → Y , equivalence classes of pairs of morphisms

f0 : X0 → Y0 and f1 : X1 → Y1 in E with sf1 = f0s and tf1 = f0t,
modulo the relation that (f0, f1) ∼ (g0, g1) if there exists a morphism

h : X0 → Y1 with sh = f0 and th = g0.

We refer to a pair (f0, f1) as a morphism representative, and an h as a

witness of equality of two such.

Remark 2.3. A pseudo-equivalence relation can also be defined as an inter-

nal bicategory in E such that any two parallel 1-cells are related by a unique

2-cell and all 1-cells are equivalences. The tricategory of such “locally bidis-

crete bigroupoids” is “locally tridiscrete”, and its homotopy 1-category (ob-

tained by identifying naturally equivalent functors) is Eex. Our results about

Eex could be obtained by specializing facts about bicategories and tricate-

gories, but we will give concrete proofs instead.
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It is proven in [CM82] that Eex is an exact category, and that this construc-

tion defines a left pseudo-adjoint to the forgetful 2-functor from exact cate-

gories to categories with finite limits. In particular, the inclusion E →֒ Eex

preserves finite limits; but even if E was already exact, this functor does not

in general preserve quotients of equivalence relations. The only exception is

if E is exact and satisfies the “axiom of choice” that regular epimorphisms

are split, in which case the inclusion E →֒ Eex is an equivalence.

We will not repeat the proofs of these facts, but we sketch the following:

Lemma 2.4. Eex has finite limits.

Proof. The terminal object has T0 = T1 = 1. For pullbacks, let X
f
−→ Z

g
←−

Y be a cospan in Eex, select representatives (f0, f1) and (g0, g1) and define

P0 = (X0 × Y0)×(Z0×Z0) Z1

P1 = (P0 × P0)×(X0×X0×Y0×Y0) (X1 × Y1).

The particular objects P0 and P1 constructed above depend on the chosen

representatives (f0, f1) and (g0, g1). Thus, in the absence of the axiom of

choice (now meaning the usual axiom of choice in Set), Eex does not have

a specified pullback functor (Eex)
→← → Eex, even if E has such a functor.

(Although it does have a specified binary product functor.) The situation

with infinite diagrams is even worse: without choice we have no way to

select representatives for all the morphisms in the diagram simultaneously,

so even if E is complete, Eex may not be.

Remark 2.5. The category of setoids is complete and cocomplete if we regard

it as an E-category, i.e. a category enriched over setoids (see e.g. [Ac21]).

Indeed, from the perspective of Remark 2.3, the E-category of setoids is a

tricategory of certain bicategories, so it can be complete even if its homotopy

category is not. We will not pursue this direction; the point of this paper is

to observe that setoids arise unavoidably in homotopy theory even if we try

our best to remain in the world of ordinary categories. See §8 for further

discussion.

We can avoid all these problems with limits and colimits by considering

a notion of coherent diagrams in Eex.

Definition 2.6. Let A be a small category. A coherent A-diagram in Eex is:
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• For each object a ∈ A, an object Xa ∈ Eex.

• For each morphism α : a → a′ in A, a morphism representative Xα :
Xa → Xa′ , consisting of morphisms Xα,0 : Xa,0 → Xa′,0 and Xα,1 :
Xa,1 → Xa′,1 in E with sXα,1 = Xα,0s and tXα,1 = Xα,0t.

• For each a ∈ A, a morphism Xr : Xa,0 → Xa,1 with sXr = 1 and

tXr = X1a,0 (i.e. a witness that X1a ∼ 1).

• For each α : a → a′ and α′ : a′ → a′′, a morphism Xα,α′ : Xa,0 →

Xa′′,1 with sXα,α′ = Xα′,0Xα,0 and tXα,α′ = Xα′α,0 (i.e. a witness that

Xα′Xα ∼ Xα′α).

For coherent A-diagrams X, Y , a morphism representative f : X → Y is:

• For each a ∈ A, morphisms fa,0 : Xa,0 → Ya,0 and fa,1 : Xa,1 → Ya,1
with sfa,1 = fa,0s and tfa,1 = fa,0t (i.e. a representative of a morphism

Xa → Ya).

• For each α : a → a′ in A, a morphism fα : Xa,0 → Ya′,1 with sfα =
Yα,0fa,0 and tfα = fa′,0Xα,0 (i.e. a witness that Yαfa ∼ fa′Xα).

A witness of equality between two such representatives is

• a family of morphisms ha : Xa,0 → Ya,1 with sha = fa,0 and tha = ga,0.

The morphisms of coherent diagrams are the equivalence classes of mor-

phism representatives, modulo the existence of a witness of equality. This

defines the category of coherent diagrams, which we denote Eex(A).

Lemma 2.7. If A = 1 is the terminal category, then Eex(1) ≃ Eex.

Proof. This is not a definitional equality, since an object of Eex(1) contains

the additional data of an endomorphism representative with witnesses that it

is idempotent and equal to the identity. But it is straightforward to see that

these additional data are redundant.

Remark 2.8. The 1-category Eex is also the hom-wise quotient of a 1-category

of pseudo-equivalence relations and morphism representatives, as studied

in [KP14]. But the same is not true of Eex(A): its morphism represen-

tatives cannot be composed associatively (though they become associative

after quotienting by witnesses of equality). From the perspective of Re-

mark 2.3, Eex(A) is the homotopy 1-category of a tricategory of trifunctors.

40



M. SHULMAN THE DERIVATOR OF SETOIDS

Remark 2.9. If the axiom of choice holds, then because the equivalence re-

lation on morphisms in Eex(A) makes no reference to fa,1 or fα, instead of

including the latter as data in a morphism we can simply assert that for each

a or α such a morphism exists. Similarly, since the definition of morphisms

makes no reference to Xr or Xα,α′ , up to equivalence of categories we can

simply assert that these exist. The latter assertion then says simply that X is

a functor A→ Eex, and similarly the former says that morphism is just a nat-

ural transformation. Thus, the axiom of choice implies that Eex(A) ≃ (Eex)
A.

Note that this is the axiom of choice for the ambient set theory, not the “ax-

iom of choice” that regular epimorphisms split in E (though of course the

two coincide if E = Set). In addition, even in the absence of the axiom of

choice this holds whenever A is a finite category.

Example 2.10. If u : A → B is a functor between small categories and

X ∈ Eex(B), we have a coherent diagram u∗X ∈ Eex(A) defined by pre-

composing all the data of X with the action of u on objects and morphisms.

This defines a restriction functor u∗ : Eex(B) → Eex(A). In particular, the

functor pA : A → 1 induces for any X ∈ Eex ≃ Eex(1) a constant coherent

diagram p∗AX ∈ Eex(A).

Theorem 2.11. Suppose E is complete, with specified limit functors E A →

E for all small categories A. Then each functor p∗A : Eex → Eex(A) has a

right adjoint.

Proof. We define the “limit” of a coherent diagram Y ∈ Eex(A) as follows.

Let L0 be the equalizer of the following parallel pair in E :

(
∏

a∈A

Ya,0 ×
∏

α:a→a′

Ya′,1

)
∏

α:a→a′

(Ya′,0 × Ya′,0).

Here the components of the first morphism at α : a → a′ are Yα,0 : Ya,0 →
Ya′,0 and 1Ya′,0

, while those of the second morphism are s : Ya′,1 → Ya′,0 and

t : Ya′,1 → Ya′,0. Then let L1 be the pullback

(L0 × L0) ×∏
a∈A(Ya,0×Ya,0)

∏
a∈A Ya,1.
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Note that Y contains all the necessary data to define these objects, without

any choices necessary. It is straightforward to show that L is a pseudo-

equivalence relation.

Now we define a counit p∗AL → Y . For each a, the components L0 →

Ya,0 and L1 → Ya,1 are just the evident projections; and likewise for the

morphisms L0 → Ya′,1 for each α : a→ a′.
It remains to show that any morphism f : p∗AX → Y factors uniquely

through L. Choose a representative of f ; then the components fa,0 : X0 →

Ya,0 and fa,1 : X1 → Ya,1 and fα : X0 → Ya′,1 are exactly what is needed

to define morphisms f 0 : X0 → L0 and f 1 : X1 → L1 with sf 1 = f 0s and

tf 1 = f 0t. Moreover, the representatives of the composite p∗AX → p∗AL →
Y are literally equal in E to those of f , so we can choose ha = rfa,0 to

exhibit this composite as equal to f in Eex(A).

Finally, suppose g : X → L is such that the composite p∗AX
g
−→ p∗AL →

Y is equal to f in Eex(A). Choosing a representative for g, we obtain compo-

nents ga,0 : X0 → Ya,0 and gα : X0 → Ya′,1 and ga,1 : X1 → Ya,1 satisfying

the appropriate equations. Choosing a witness of equality to f , we have mor-

phisms ha : Xa → Ya,1 with sha = fa,0 and tha = ga,0. But this is exactly

what we need to define a witness h : X0 → L1 exhibiting f ∼ g in Eex.

For the case of colimits, we need E to admit certain free constructions.

Since our eventual interest is mainly in the case E = Set, we will not worry

about the minimum this requires of E , instead merely noting:

Lemma 2.12. Suppose E has finite limits, and countable coproducts pre-

served by pullback. Then for any parallel pair R ⇒ X0, there is a pseudo-

equivalence relation X1 ⇒ X0 with a map η : R→ X1 over X0 ×X0, such

that for any pseudo-equivalence relation Y1 ⇒ Y0 and morphism f0 : X0 →

Y0 with g : R → Y1 over f0 × f0, there exists a f1 : X1 → Y1 over f0 × f0
such that f1η = g:

R

X1 Y1

X0 Y0.

∃
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Proof. Define

X1 =
∑

n∈N

ε1,...,εn∈{+1,−1}

Rε1 ×X0
Rε2 ×X0

· · · ×X0
Rεn

where R+1 means the given span X0 ← R → X0 and R−1 means the re-

versed span. (The summand for the case n = 0 is just X0.) In the internal

language of E , X1 is the object of zigzags such as

x0
r1
−→ x1

r2
←− x2

r3
←− · · ·

rn
−→ xn

in which each arrow is labeled by an element of R, with the two maps R ⇒

X0 regarded as source and target, and each arrow in the zigzag can point

in either direction. The resulting X1 ⇒ X0 is actually the free internal †-

category on the directed graph R ⇒ X0.

Finally, given f0 and g as in the statement, we define f1 on each summand

of X1 by applying g to each factor of R, then the symmetry operation of Y
to each factor with εk = −1, and then some bracketing of the transitivity

operation of Y to combine all the factors into one (in the case n = 0 this

means the reflexivity operation of Y ). The inclusion η is the summand with

n = 1 and ε1 = +1, where no operations are needed other than g, so we

have f1η = g.

We refer to X1 ⇒ X0 as in Lemma 2.12 as the free pseudo-equivalence

relation generated by R ⇒ X0, although to be precise it is only “weakly

free” (the morphism f1 is not unique).

Theorem 2.13. If E has finite limits and small coproducts preserved by pull-

back, then each functor p∗A : Eex → Eex(A) has a left adjoint.

Although we only require E to have coproducts, here A is an arbitrary

small category; thus Eex has more “colimits” (in this sense) than E does.

Proof. Given X ∈ Eex(A), let C0 be the coproduct
∑

a∈AXa,0, and let C1

be the pseudo-equivalence relation on C0 freely generated (Lemma 2.12) by

∑

α:a→a′

(
Xa,0 ×Xa′,0

Xa′,1

)
C0.
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Here the pullback is the “object of triples (x, x′, ξ)” where x ∈ Xa,0, x
′ ∈

Xa′,0, and ξ ∈ Xa′,1 is a witness that Xα,0(x) ∼ x′. The projection to C0

picks out x and x′ in the summands Xa,0 and Xa′,0. (Note that neither of

these is the copy of Xa′,0 that we pull back over; that is Xα,0(x).)
Now we define a unit X → p∗AC. For each a, the component Xa,0 → C0

is just the coproduct inclusion. To define the component Xa,1 → C1, the

idea is to send a witness ξ ∈ Xa,1 that x ∼ x′ to the image under η of the

witness that X1a,0(x) ∼ x ∼ x′ obtained by transitivity from ξ and Xr. And

to define the witness Xa,0 → C1 of naturality associated to α : a → a′, the

idea is to send x ∈ Xa,0 to (the image under η of) the reflexivity witness that

Xα,0(x) ∼ Xα,0(x).
It remains to show that any morphism f : X → p∗AY factors uniquely

through C. Choose a representative of f ; then the components fa,0 : Xa,0 →

Y0 define a morphism C0 → Y0, while the components fa,1 : Xa,1 → Y1
and fα : Xa,0 → Y1 can be combined with transitivity, and the freeness of

C, to induce a morphism f : C → Y . The composite components Xa,0 →

(p∗AC)a,0 → (p∗AY )a,0 = Y0 are then literally equal to fa,0 : Xa,0 → Y0, so

we can use ha = rfa,0 to exhibit this composite as equal to f in Eex(A).

Finally, suppose g : C → Y is such that the composite X → p∗AC
g
−→

p∗AY is equal to f in Eex(A). Choosing a representative for g, we have com-

ponents ga,0 : Xa,0 → Y0 and gα : Xa,0 → Y1 and ga,1 : Xa,1 → Y1. And

choosing a witness of its equality to f , we have morphisms ha : Xa,0 → Y1
with sha = fa,0 and tha = ga,0. But this is exactly what we need to define a

witness h : C0 → Y1 exhibiting f ∼ g in Eex.

Thus, although Eex does not have infinite limits or colimits, or specified

pullbacks, there is a sense in which it is strongly complete and cocomplete.

In §4 we will see that derivators give us a way of making this precise.

Remark 2.14. Combining Remark 2.9 and Theorem 2.11, we see that if the

axiom of choice holds and E is complete, then so is Eex (as an ordinary

category). This was already observed by [HT96]; in their construction, the

axiom of choice enters in the fact that epimorphisms of presheaves are closed

under arbitrary products.

Similarly, combining Remark 2.9 and Theorem 2.13, we see that if the

axiom of choice holds and E has small coproducts preserved by pullback,

then Eex is cocomplete. Related facts were observed by [Men00] and [CV98];
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the axiom of choice is hidden because they deal explicitly only with finite

coproducts.

3. Derivators

A derivator is an abstraction of the structure possessed by the homotopy cate-

gories of diagrams in a complete and cocomplete (∞, 1)-category. Early au-

thors such as [Hel88, Gro91, Fra96] chose slightly different sets of axioms,

but nowadays the community seems to have mostly settled on the definition

of Grothendieck. As is often the case, we have to rephrase the definition

to make it constructively useful. We will also follow [Hel88, Col20] in dis-

tinguishing left and right derivators that have only “colimits” and “limits”,

respectively.

Let Cat and CAT be the 2-categories of small and large categories. For

A ∈ Cat , let A0 denote the discrete category on its objects, with inclusion

ιA : A0 → A.

Definition 3.1. A prederivator is a 2-functor D : Catop → CAT . A pred-

erivator is a semiderivator if:

(Der1) D : Catop → CAT preserves products indexed by projective8 sets.

That is, if I is projective, the functor D(
∑

i∈I Ai)→
∏

i∈I D(Ai)
is an equivalence, in the constructive sense that we have a specified

quasi-inverse to it.

(Der2) For any A ∈ Cat , the functor ι∗A : D(A)→ D(A0) is conservative

(that is, isomorphism-reflecting).

A left derivator is a semiderivator such that

(Der3L) Each functor u∗ : D(B)→ D(A) has a specified left adjoint u!.

(Der4L) Given functors u : A → C and v : B → C in Cat , let (u/v)
denote their comma category, with projections p : (u/v)→ A and

q : (u/v) → B. If B is a discrete category, then the canonical

mate-transformation q! p
∗ → v∗u! is an isomorphism.

8A set I is projective if every surjection J ։ I has a section. Thus finite sets are always

projective, and the axiom of choice is equivalently “all sets are projective”.
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Dually, a right derivator is a semiderivator such that

(Der3R) Each functor u∗ : D(B)→ D(A) has a specified right adjoint u∗.

(Der4R) Given u and v as in (Der4L), if instead A is a discrete category,

then the mate-transformation u∗v∗ → p∗q
∗ is an isomorphism.

A derivator is a semiderivator that is both a left derivator and a right deriva-

tor. Finally, a prederivator is strong if

(Der5) For any A ∈ Cat , the induced functor D(A × 2) → D(A)2 is

full and essentially surjective, where 2 = (0 → 1) is the interval

category.

We immediately record the most basic class of examples.

Example 3.2. Let C be an ordinary category, and C (A) = C A the functor

category, with 2-functorial action by restriction. This 2-functor preserves

all products, and (Der2) holds because isomorphisms in functor categories

are pointwise, while (Der5) is obvious since the functor in question is an

isomorphism. Thus C defines a strong semiderivator, which we call a rep-

resentable semiderivator and abusively denote also by C .

If C is cocomplete, the restriction functors admit left adjoints given by

pointwise Kan extensions; thus (Der3L) holds, and (Der4L) asserts that these

Kan extensions are pointwise, so C is a left derivator. Similarly, if C is

complete, it is a right derivator. In particular, Set is a derivator.

Remark 3.3. The usual definition, as e.g. in [Gro13, Col20], differs in that:

• Axiom (Der1) is asserted for all products, not just projectively indexed

ones.9

• Axiom (Der2) asserts that the family of functors a∗ : D(A) → D(1)
are jointly conservative, for all objects a ∈ A. This is equivalent to

(Der2) in the presence of the classical (Der1), since A0
∼=
∑

a∈A 1.

9Although sometimes Cat is replaced in the definition by a smaller 2-category, such

as the 2-category of finite categories, finite posets, or finite direct categories. In this case

(Der1) is weakened to refer only to the coproducts that exist therein, such as finite ones.
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• Axiom (Der4L) requires that B be the terminal category 1, and dually

for (Der4R). However, by [Gro13, Prop. 1.26], in the presence of the

classical (Der1) and (Der2) this implies that the same statements hold

without any restriction on B (see Lemma 3.6 below), including in par-

ticular our (Der4).

Thus, the substantial difference is the weakening of (Der1), which is only

weaker in the absence of the axiom of choice.10 Our weaker version ap-

pears to be necessary constructively; for some explanation, see the proof of

Lemma 4.2.

Perhaps surprisingly, our definition suffices for most of the theory of

derivators; axiom (Der1) is rarely needed, and usually only for finite prod-

ucts. Intuitively, while a classical (pre)derivator has an underlying ordinary

category D(1), one of our (pre)derivators has an underlying Set-indexed cat-

egory consisting of the categories D(I) where I is a discrete category. We

can then reproduce the usual theory by using indexed categories in place

of ordinary ones. (Note that a prederivator is, in particular, a Cat-indexed

category.)

For instance, (Der3L) implies that any left derivator admits “colimit”

functors given by (pA)! for the functor pA : A → 1, left adjoint to the “con-

stant diagram” functor (pA)
∗, and dually for right derivators and limits. The

standard (Der4) axioms then says that the general “Kan extension” functors

u∗ and u! can be computed in terms of these, by the usual formula [ML98,

Theorem X.3.1]. Our (Der4) says the same in “indexed” or “internal” lan-

guage, referring not only to “global elements” c : 1 → C0 but to arbitrary

“generalized elements” v : I → C0, where I is a set.

We now give some examples of how such “indexed reasoning” can be

used to reproduce some of the basic results about derivators from the cited

references.

10The assertion of (Der1) for all projective sets is admittedly a fairly transparent trick for

forcing the definition to collapse to the classical one in the presence of the axiom of choice,

only slightly less blatant than starting with “if the axiom of choice holds, then. . . ”. Probably

more natural constructively would be to assert (Der1) only for finite products.
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Definition 3.4. For a left derivator D , a square 2-cell in Cat :

A B

C D

p

q u

v

is D-exact if the induced map q! p
∗ → v∗u! is an isomorphism in D . Dually,

if D is a right derivator, such a square is D-exact if the map u∗v∗ → p∗q
∗

is an isomorphism. (If D is a derivator, then these two maps are adjunction

conjugates, hence the two conditions are equivalent.)

A square is left (resp. right) homotopy exact if it is D-exact for all

left (resp. right) derivators D , and homotopy exact if it is D-exact for all

derivators D .

Note that left and right homotopy exactness are stronger than homotopy

exactness, oppositely to how being a derivator is stronger than being a left

or right derivator. The functoriality property of mates (e.g. [KS74]) imply

that horizontal and vertical pasting preserves (left and right) homotopy exact

squares.

Observe that for a set I , an I-indexed family of small categories A : I →
Cat can equivalently be regarded as a category A equipped with a functor

A → I , where I denotes also the corresponding discrete category. That is,

Cat I ≃ Cat/I . Moreover, if f, g : A→ B are functors between two objects

of Cat/I , any natural transformation f ⇒ g in Cat must in fact lie in Cat/I ,

since I is discrete. In particular, a morphism in Cat/I has a left or right

adjoint in Cat/I if and only if it does so in Cat .

Lemma 3.5 (cf. [Gro13, Proposition 1.18]). For a set I , let r : A→ B be a

right adjoint in Cat/I . Then the identity 2-cell is left homotopy exact:

A B

I I

r

ur u

Proof. If ℓ is the left adjoint of r, then the map (ur)! r
∗ → u! is conjugate

to u∗ → ℓ∗(ur)∗, which is an identity since the entire adjunction lies over I;

hence it is also an isomorphism.
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Lemma 3.6 (cf. [Gro13, Proposition 1.26]). Any comma square is left and

right homotopy exact:

(u/v) A

B C

p

q u

v

Proof. We prove the left case. By (Der2) and (Der4), it suffices to prove

that the pasted rectangle on the left below is homotopy exact, in which the

left-hand square is also a comma:

(q/ι) (u/v) A

B0 B C

p

q u

ι v

=

(q/ι) (u/vι) A

B0 B0 C

p

q u

vι

But this is equal to the pasted rectangle on the right above, where the right-

hand square is a comma and the left-hand square is an identity. And the

induced functor (q/ι) → (u/vι) is a right adjoint, so by Lemma 3.5 and

(Der4) both of these squares are homotopy exact.

Lemma 3.7 (cf. [Gro13, Proposition 1.24]). If u is a cloven Grothendieck

opfibration, then the identity in any pullback square is left homotopy exact:

A B

C D

p

q y
u

v

Dually, if v is a cloven Grothendieck fibration, such a pullback square is

right homotopy exact.

Proof. We prove the left case. Let ι∗D(B) be the pullback

ι∗D(B) B

D0 D

y u

ιD
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Then there is an induced functor ι∗D(B) → (u/ιD), and the cleaving of u
supplies a left adjoint to it over D0. Similarly, since q is also a cloven op-

fibration, the induced functor ι∗C(A) → (q/ιC) is a right adjoint over C0.

Therefore, by (Der2) and (Der4) and Lemma 3.5, it suffices to prove that the

following pasting is homotopy exact:

ι∗C(A) (q/ιC) A B

C0 C0 C D.

p

q
y

u

ιC v

But this factors as

ι∗C(A) ι∗D(B) (u/ιD) B

C0 D0 D0 D.

y u

v0 ιD

Here the left- and right-hand squares are homotopy exact by (Der4), while

the middle square is homotopy exact by Lemma 3.5.

Definition 3.8. A morphism of prederivators is a pseudonatural transfor-

mation, and a transformation is a modification. We say a morphism G :
D → D ′ of left derivators is cocontinuous if for any functor u : A → B,

the canonical mate-transformation

D(A) D ′(A)

D(B) D ′(B)

G

u! u!

G

is an isomorphism. We denote the category of morphisms and transforma-

tions by Hom(D ,D ′), and its full subcategory of cocontinuous morphisms

by Homcc(D ,D
′).11

Lemma 3.9. A morphism G : D → D ′ is cocontinuous if and only if the

above condition holds when B is discrete.

11Sometimes the notation Hom! is used, but I find this insufficiently visually distinctive.
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Proof. By functoriality of mates, combined with (Der2) and (Der4), we can

deduce the condition for arbitrary u : A → B from the condition for q :
(u/ιB)→ B0.

Theorem 3.10 (in classical mathematics). Every Quillen model category M

induces a derivator Ho(M). If sSet denotes the Kan–Quillen model category

of simplicial sets, then Space = Ho(sSet) is the free cocompletion of a point:

there is an object ∗ ∈ Space(1) such that for any derivator D , the induced

functor

Homcc(Space,D)→ D(1)

is an equivalence of categories.

Proof. Essentially due to Heller [Hel88] and Cisinski [Cis06, Cis04].

We will also need two-variable morphisms of derivators, as in [GPS14].

Lemma 3.11 (cf. [GPS14, Theorem 3.11]). For prederivators D1,D2,D3, to

give a morphism D1 ×D2 → D3 is equivalent to giving a family of functors

D1(A)×D2(B)→ D3(A× B)

varying pseudonaturally over Catop × Catop.

If ⊛ is such a two-variable morphism, we write ⊛A : D1(A)×D2(A)→
D3(A) for its components in the ordinary (or “internal”) sense, and ⊛ :
D1(A) × D2(B) → D3(A × B) for the above equivalent “external” com-

ponents. The relationship is that M ⊛A N ∼= ∆∗A(M ⊛N) while M ⊛N ∼=
π∗1M ⊛A×B π

∗
2N .

Definition 3.12. A morphism ⊛ : D1 × D2 → D3 of left derivators is co-

continuous in its first variable if for any u : A → B and M ∈ D1(A)
and N ∈ D2(C), the following mate-transformation is an isomorphism in

D3(B × C):
(u× 1)! (M ⊛N) −→ (u!M)⊛N.

See [GPS14, Warning 3.6] for why this has to be formulated with the ex-

ternal product rather than the internal one. There is a dual notion of coconti-

nuity in the second variable, and an analogue of Lemma 3.9 for two-variable

morphisms.
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Finally, since D(A) → D(A) × D(A) is equivalent to ∇∗ : D(A) →
D(A+A) (this uses (Der1) for finite coproducts), in a right derivator the for-

mer functor also has a right adjoint. Thus any right derivator D is “cartesian

monoidal”, with a product morphism × : D ×D → D .

Definition 3.13. We say a derivator D is distributive if this × is cocontinu-

ous in both variables.12

For example, a complete and cocomplete category regarded as a derivator

as in Example 3.2 is distributive if binary products preserve colimits in each

variable, in the usual sense. In particular, Set is distributive.

4. The derivator of setoids

Let E be, to start with, a category with finite limits.

Lemma 4.1. Eex : Cat
op → CAT is a 2-functor.

Proof. First, the restriction functors u∗ : Eex(B) → Eex(A) are strictly

functorial, being given by simple composition with the data of u. Second,

given a natural transformation µ : u ⇒ v : A → B with components

µa : ua → va, for any X ∈ Eex(B) we have an induced family of mor-

phisms Xµa,0 : Xua,0 → Xva,0 and Xµa,1 : Xua,1 → Xva,1. Third, for

α : a → a′, by applying the pseudo-transitivity m to Xuα,µa′
and Xµa,vα,

we have morphisms Xua,0 → Xva′,1 exhibiting naturality. Thus, we obtain

a morphism of coherent diagrams u∗X → v∗X . The 2-functoriality axioms

follow straightforwardly.

Lemma 4.2. Eex satisfies (Der1).

Proof. For any coproduct of categories, the functor Eex(
∑

iAi)→
∏

i Eex(Ai)
is bijective on objects. To show that it is full, we must select representatives

for a family of morphisms in each Eex(Ai) to assemble them into a represen-

tative for a morphism in Eex(
∑

iAi); this is possible when I is projective.

Similarly, to show that it is faithful, we must select witnesses of equality in

each Eex(Ai) to assemble into such a witness in Eex(
∑

iAi), which is also

possible when I is projective.

12Technically this definition does not require D to be a full derivator, only a “left derivator

with binary products”, but we will have no use for that generality.
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Lemma 4.3. Eex satisfies (Der2).

Proof. Let f : X → Y be a (representative of a) morphism in Eex(A), with

components fa,0, fa,1, and fα. If it is invertible in Eex(A0), then we have

families of morphisms ga,0 : Ya,0 → Xa,0 and ga,1 : Ya,1 → Xa,1 representing

morphisms of pseudo-equivalence relations Ya → Xa, and such that gf ∼ 1
and fg ∼ 1 in Eex(A0). The latter mean that there exist ha : Xa,0 → Ya,1 with

sha = ga,0fa,0 and tha = 1, and also ka : Ya,0 → Xa,1 with ska = fa,0ga,0
and tka = 1. Using a chosen such h and k, we can define (copying the usual

proof that a pointwise invertible natural transformation is invertible in the

functor category) for each α : a→ a′ a morphism gα : Ya,0 → Xa′,1 making

g a representative of a morphism in Eex(A). The same h and k then witness

that gf = 1 and fg = 1 in Eex(A).

Lemma 4.4. If E is complete, then Eex is a right derivator. If E has pullback-

stable coproducts, then Eex is a left derivator.

Proof. We can use the classical construction of pointwise Kan extensions

[ML98, Theorem X.3.1] essentially verbatim, due to the fact that the con-

structions in Theorems 2.11 and 2.13 are not just adjoints, but have a con-

structive universal property with respect to representatives of morphisms and

witnesses of equality. That is, there is a function which, given a representa-

tive for a morphism (pA)
∗X → Y in Eex(A), produces a representative for

the corresponding morphism X → L, where L is the limit constructed in

Theorem 2.11; and similarly for witnesses of equality between morphisms,

and for colimits. The construction of these functions is essentially contained

in the proofs of Theorems 2.11 and 2.13.

Consider the case of limits; the case of colimits is analogous. Given

u : A → B, for any b ∈ B we have the comma category (b/u) with pro-

jection qb : (b/u) → A. For X ∈ Eex(A) and b ∈ B, define (u∗X)b =
(pb/u)∗q

∗
bX , with the limit functor (pb/u)∗ constructed as in Theorem 2.11.

For a morphism β : b → b′ in B, the above remark implies that we can give

a morphism representative (u∗X)b → (u∗X)b′ by giving a morphism rep-

resentative (pb′/u)
∗(pb/u)∗q

∗
bX → q∗b′X , consisting of morphism representa-

tives (pb/u)∗q
∗
bX → Xa for all morphisms β′ : b′ → ua, with compatibility

witnesses. These latter representatives can be given by the projections from

(pb/u)∗q
∗
bX corresponding to the composite β′β : b → ua, and similarly for
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the compatibility witnesses. Likewise, the same principles yield witnesses

of functoriality and a universal property of u∗ as a right adjoint of u∗. Thus

(Der3R) holds. To prove (Der4R), in a comma square with A discrete:

(u/v) A

B C,

p

q u

v

the construction above shows that (u∗v∗X)a and (p∗q
∗X)a are limits (as in

Theorem 2.11) of the restrictions of X to a pair of isomorphic categories

(ua/v) and (a/p). Thus, these limits are isomorphic, in a constructive way

that can be done simultaneously for all a ∈ A.

Lemma 4.5. Eex satisfies (Der5).

Proof. Analogously to Remark 2.9, since 2 is finite, the functor in question

is actually an equivalence.

Theorem 4.6. For any complete category E with small coproducts preserved

by pullback, Eex is a strong distributive derivator.

Proof. We have verified all the strong derivator axioms in Lemmas 4.2 to 4.5,

so it remains only to prove distributivity. For this, we note that if in Theo-

rem 2.11 A is discrete, we can replace the construction given there by the

simpler L0 =
∏

a Ya,0 and L1 =
∏

a Ya,1. Now since the “colimits” in Theo-

rem 2.13 are constructed out of pullbacks and coproducts, and both of these

are preserved in each variable by finite products, it follows that the derivator

products in Eex preserve its left Kan extensions in each variable.

Corollary 4.7. Setex is a strong distributive derivator.

Remark 4.8. The free exact completion is not in general idempotent. In par-

ticular, we can have (Setex)ex 6≃ Setex. However, since Setex is not complete

or cocomplete as a category, Theorem 4.6 does not imply that (Setex)ex is a

derivator. It is unclear whether there is a notion of “exact completion of a

derivator”.
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5. Equivalences and locality

As suggested in the introduction, we are interested in derivators that satisfy

a relative version of Theorem 3.10, being a free cocompletion of a point in

a world of “1-categorical derivators”. Thus, we may start by asking what it

is that makes a derivator 1-categorical. Intuitively, an (∞, 1)-category “is”

a 1-category if all its hom-spaces are 0-truncated; but a derivator does not

have explicit hom-spaces.

However, we can detect the same information using limits and colimits

of constant diagrams. For instance, for any object M of an (∞, 1)-category,

the limit of the constant diagram

M ⇒M

is the free loop space object LM of M , which is equivalent to M just when

M is 0-truncated. Similarly, one dimension down, the product M ×M is

equivalent to M just when M is (−1)-truncated, i.e. subterminal. Thus, the

“1-categorical” or “0-categorical” nature of an (∞, 1)-category is detected

by limits of constant diagrams of this shape.

More generally, in any derivator there is the following relative notion.

Definition 5.1. Let u : A → B and v : B → I be functors, where I is a

discrete set. We say u is a D-equivalence over I , for a prederivator D , if u∗

is fully faithful on the image of v∗.

Lemma 5.2. If D is a left derivator, then u is a D-equivalence over I if

and only if the map (vu)! (vu)
∗ → v! v

∗ is an isomorphism. Dually, if D is

a right derivator, then u is a D-equivalence over I if and only if the map

v∗ v
∗ → (vu)∗ (vu)

∗ is an isomorphism.

Proof. By the Yoneda lemma, the stated condition for left derivators is equiv-

alent to saying that

D(I)(v! v
∗X, Y )→ D(I)((vu)! (vu)

∗X, Y )

is a bijection for all X, Y ∈ D(I). But this map is isomorphic to

D(I)(v∗X, v∗Y )→ D(I)(v∗u∗X, v∗u∗Y ),

and this being a bijection for all X, Y is Definition 5.1.
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The above considerations might lead us to say that a prederivator D is 1-

categorical if the functor (·⇒ ·)→ 1 is a D-equivalence, and 0-categorical

if the functor (1 + 1) → 1 is a D-equivalence. However, as we will see,

things are a bit more subtle than this. We begin by recording some basic

properties of the D-equivalences.

Lemma 5.3. If f : I → J is a function between discrete sets and u : A→ B
is a D-equivalence over J , for a left or right derivator D , then the pullback

f ∗(u) is a D-equivalence over I:

f ∗A f ∗B I

A B J

f∗u

y

f∗v

y f

u v

Proof. We prove the left case. Any functor with discrete codomain is a

cloven opfibration, so by Lemma 3.7 f ∗ transforms v! and (vu)! into (f ∗v)!
and ((f ∗v)(f ∗u))!. Since it also commutes with v∗ and (vu)∗ by functorial-

ity, it preserves the property in Lemma 5.2.

Lemma 5.4. Let I =
∑

j∈J Ij be a coproduct of sets, with injections gj :
Ij → I , such that the indexing set J is projective. If u : A→ B is a functor

over I such that each g∗j (u) is a D-equivalence over Ij for a left or right

derivator D , then u is a D-equivalence over I .

Proof. By (Der1), isomorphisms in D(I) are detected in each D(Ij), and

restriction along gj commutes with the relevant functors as in Lemma 5.3.

Corollary 5.5. Assuming the axiom of choice, u : A→ B is a D-equivalence

over I if and only if its fiber ui : Ai → Bi over each i ∈ I is a D-equivalence

over 1.

Corollary 5.5 explains why in classical mathematics, D-equivalences are

defined without reference to an indexing set I . Note also that for any f : I →
J , a D-equivalence over I is also a D-equivalence over J . In particular, any

D-equivalence over I is also a D-equivalence over 1. Dually, for any functor

u : A → B there is a strongest sort of D-equivalence that it can be, namely

over the set I = π0(B) of connected components of B.
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Lemma 5.6. For any prederivator D , the D-equivalences are saturated,

in the sense that if a morphism u in Cat/I becomes an isomorphism in

(Cat/I)[(WD
I )
−1], where WD

I denotes the D-equivalences over I , then u
is a D-equivalence. Therefore, the D-equivalences satisfy the 2-out-of-3

property, the 2-out-of-6 property, and are closed under retracts.

Proof. For fixed X, Y ∈ D(I), there is a functor ΦX,Y : Cat/I → Setop

sending v : A → I to D(A)(v∗X, v∗Y ). Since ΦX,Y inverts all D-equiv-

alences, it factors through (Cat/I)[(WD
I )
−1]; and therefore, if u becomes an

isomorphism in (Cat/I)[(WD
I )
−1], it is inverted by ΦX,Y . But if u is inverted

by ΦX,Y for all X, Y , then it is a D-equivalence by definition.

We now give some examples of D-equivalences.

Proposition 5.7. For any complete or cocomplete category C , regarded as

a derivator, a functor u : A→ B is a C -equivalence over I if:

• For each i ∈ I , the functor on fibers ui : Ai → Bi induces a bijection

on sets of connected components, π0(ui) : π0(Ai) ∼= π0(Bi).

The converse holds for C = Set.

Proof. In the cocomplete case, we observe that for v : B → I where I is

discrete, and X ∈ C I , we have (v! v
∗X)i = π0(Bi) ·Xi, the copower of Xi

by the set π0(Bi). Thus the map (vu)! (vu)
∗ → v! v

∗ consists of copowers

by π0(ui), so it is an isomorphism if these functions are bijections. The

converse when C = Set follows by taking Xi = 1.

In particular, the functor (· ⇒ ·) → 1 above is a C -equivalence for any

such C .

Definition 5.8. If T and D are prederivators and every T -equivalence is a

D-equivalence, we say that D is T -local.

Thus Proposition 5.7 says that any complete or cocomplete category C

is Set-local. For many such C the converse also holds (i.e. Set is C -local),

but not all.

Proposition 5.9. If C is a complete lattice, regarded as a derivator, then

u : A→ B is a C -equivalence over I if:
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• For each i ∈ I , if Bi is inhabited then so is Ai.

The converse holds when C = Prop is the poset of truth values. Thus, every

complete lattice is Prop-local.

Proof. For v : B → I with I discrete, and X ∈ C I , we have (v! v
∗X)i =∨

b∈Bi
Xi, and the join of a constant family (a copower in a lattice) depends

only on the support of the indexing set. The converse when C = Prop

follows by taking Xi = ⊤.

Remark 5.10. The condition in Proposition 5.9 is equivalent to saying that

ui induces an isomorphism of supports π−1(Ai) ∼= π−1(Bi), where π−1(C)
is the subterminal set corresponding to the proposition “C is inhabited”.

Remark 5.11. A functor u : A→ B is an Set-equivalence over I if and only

if it is a Set-equivalence over 1, since π0(A) ∼=
∑

i π0(Ai). However, this is

not the case for Prop-equivalences.

Moving down one more categorical dimension, we have the trivial case:

Proposition 5.12. If Contr denotes the terminal derivator, every functor is a

Contr-equivalence.

The subtlety mentioned above is that our derivators of exact completions,

though intuitively “1-categorical”, are nevertheless not Set-local.

Proposition 5.13. Let E be a complete category with small coproducts pre-

served by pullback. Then u : A → B is an Eex-equivalence over I if the

following hold:

• There is a function s : B0 → A0.

• There is a function sending any β : b → b′ to a zigzag in A from sb to

sb′ (and hence similarly for any zigzag in B).

• There is a function sending each b ∈ B to a zigzag in B from b to usb.

• There is a function sending each a ∈ A to a zigzag in A from a to sua.

The converse holds if E = Set. Thus, every Eex is Setex-local.

58



M. SHULMAN THE DERIVATOR OF SETOIDS

Note that the existence of the zigzags, plus discreteness of I , ensures that

s must also be a map over I , i.e. consist of functions (Bi)0 → (Ai)0.

Proof. Let u : A → B satisfy the stated conditions and v : B → I a

functor with I discrete. Let X, Y ∈ Eex(I), consisting essentially of an I-

indexed family of pseudo-equivalence relations. We must show that u∗ is

fully faithful on morphisms between v∗X and v∗Y .

For faithfulness, suppose f, g : v∗X → v∗Y are morphism representa-

tives and we have a witness of equality consisting of maps ha : Xvua,0 →

Yvua,1. Then hsb, for b ∈ B, witness that f and g are equal at objects of the

form usb. And since v∗X and v∗Y both act as the identity on all morphisms

of B, equality of components of f and g transfers, constructively, across all

naturality squares. Thus, the assumed zigzags in B can be used to construct

a witness that f ∼ g.

For fullness, suppose f : u∗v∗X → u∗v∗Y is a morphism representative.

Given b ∈ B, we obtain components gb,0 = fsb,0 and gb,1 = fsb,1 representing

a morphism gb : (v
∗X)b → (v∗Y )b. For any β : b→ b′ in B, by assumption

we have a zigzag from sb to sb′; composing naturality squares along this

zigzag we can construct a witness gβ making g a morphism representative

v∗X → v∗Y . Finally, for any a ∈ A, the assumption yields a zigzag from a
to sua, which we can use to construct a witness that u∗(g) ∼ f .

For the converse, suppose u : A → B is a Setex-equivalence over I ,

and let X ∈ Setex(I) be constant at the terminal pseudo-equivalence rela-

tion. Then by the construction in Theorem 2.13, (v! v
∗X)i is the pseudo-

equivalence relation on the set (Bi)0 of objects of Bi freely generated by re-

flexivities and the arrows of Bi. Thus, its relations are essentially bracketed

zigzags in Bi. Similarly, ((vu)! (vu)
∗X)i is the set (Ai)0 with relations be-

ing bracketed zigzags in Ai. The stated conditions are then (modulo adding

and removing brackets, which is trivial) precisely what it means for these

induced maps to be an isomorphism in Setex(I).

Remark 5.14. For v : A → 1 and T ∈ Setex(1) the terminal object, the

pseudo-equivalence relation v! v
∗T described above can be regarded as the

setoid of connected components ofA, so we might naturally denote it πex
0 (A).

Thus, the conditions of Proposition 5.13 are equivalent to saying that u in-

duces an equivalence of such setoids, πex
0 (u) : πex

0 (A) ∼= πex
0 (B).
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Note that the conditions in Proposition 5.13 are stronger than those in

Proposition 5.7. Thus Set is Setex-local, but Setex is not Set-local. Moreover,

in the absence of choice, this inequality is strict;

Proposition 5.15. Setex is Set-local if and only if the axiom of choice holds.

Proof. Let p : E → B be a surjection of sets. Regard B as a discrete

groupoid, and make E a groupoid such that p is fully faithful (i.e. equip it

with the kernel pair of p, regarded as an equivalence relation). Then π0(E) ∼=
π0(B) = B, so p is an Set-equivalence. But if it is a Setex-equivalence, then

p is split.

However, the functor (· ⇒ ·) → 1 is a Setex-equivalence, so Setex is

still intuitively “1-categorical”. Two more examples will help to clarify the

situation.

Example 5.16. Let E be a category with small products and coproducts. For

a small category A, let Epos(A) denote the following category:

• An object consists of an object Xa ∈ E for all a ∈ A, together with a

morphism Xα : Xa → Xa′ for all α : a→ a′ in A.

• A morphism representative f : X → Y consists of a morphism fa :
Xa → Ya for all a ∈ A. Any two such representatives are equivalent.

Thus Epos(A) is a (large) preorder, and in particular Epos(1) is (equivalent to)

the preorder reflection of E .

Arguments like those of Lemmas 4.2 and 4.3, but simpler, show that Epos

satisfies (Der1) and (Der2). The constant diagram functor (pA)
∗ : Epos(1)→

Epos(A) has a right and left adjoint given by taking products and coproducts

respectively. We can then use these to construct pointwise Kan extensions

as in Lemma 4.4, showing that Epos is a derivator. If binary products in E

preserve coproducts in each variable, then Epos is a distributive derivator.

Proposition 5.17. For E a category with small products and coproducts, a

functor u : A→ B is an Epos-equivalence over I if:

• There is a function B0 → A0 over I .

The converse holds if E = Set.
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Proof. ForX ∈ Epos(I), by construction (v! v
∗X)i is the copower (Bi)0 ·Xi,

and similarly ((vu)! (vu)
∗X)i = (Ai)0 ·Xi. Thus, the condition given yields

a map backwards, hence an isomorphism in Epos(I). The converse follows

by letting Xi be the terminal object.

Remark 5.18. For a categoryA, write πex
−1(A) forA0 regarded as an object of

Setpos, a sort of “setoid support”. Then similarly to Remarks 5.10 and 5.14,

the condition of Proposition 5.17 is equivalent to saying that u induces an

equivalence of such supports, πex
−1(u) : π

ex
−1(A)

∼= πex
−1(B).

As with the relationship between Set and Setex, the condition of Proposi-

tion 5.17 is stronger than that of Proposition 5.9. Thus Prop is Setpos-local,

but Setpos is not Prop-local. Indeed, Setpos is not even Set-local, though it is

still “0-categorical” in that the functor (1 + 1)→ 1 is a Setpos-equivalence.

It is true that Setpos is Setex-local. It is also local for the following inter-

mediate derivator Setreg:

Example 5.19. For a category E with finite limits, its reg/lex completion

Ereg is defined to be the full subcategory of Eex on the pseudo-equivalence

relations that are kernel pairs. Such kernel pairs are, in particular, actual

equivalence relations; and if E is already exact (like Set), then they include

all the equivalence relations.

If we define Ereg(A) as a similar subcategory of Eex(A), then it is closed

under the limits of Theorem 2.11 but not the colimits of Theorem 2.13. How-

ever, the (regular epi, mono) factorization of a pseudo-equivalence relation

always yields an equivalence relation. Thus, if E is exact, then Ereg(A) is

reflective in Eex(A); so we can define left Kan extensions in Ereg(A) by com-

posing the reflection with those of Eex(A). Since the reflections commute

with the restriction functors, (Der4) holds.

In sum, if E is complete, exact, and has small coproducts preserved by

pullback, then Ereg(A) is a derivator. Since products preserve image factor-

izations, Ereg(A) is also a distributive derivator.

Remark 5.20. Analogously to Remark 2.3, we can view Setreg as the homo-

topy category of the bicategory of “bidiscrete groupoids” (those in which

any two parallel arrows are equal). See [KP14, Kin98].

Proposition 5.21. Let E be complete, exact, and have small coproducts pre-

served by pullback. Then u : A → B is an Ereg-equivalence over I if the

following hold:
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Setex

Setreg

Setpos Set

Prop

Contr

Figure 1: Part of the preorder of relative free cocompletions of a point

• There is a function s : B0 → A0.

• For any β : b → b′ in B, there exists a zigzag in A from sb to sb′ (and

hence likewise for any zigzag in B).

• For any b ∈ B, there exists a zigzag in B from b to usb.

• For any a ∈ A, there exists a zigzag in A from a to sua.

The converse holds if E = Set. Thus, every Ereg is Setreg-local.

Proof. In Ereg, witnesses of equality are unique when they exist; thus it suf-

fices to assert that they exist rather than specifying them functionally. Hence,

we can copy the proof of Proposition 5.13, but without specified zigzags.

Remark 5.22. Continuing the trend of Remarks 5.10, 5.14 and 5.18, for v :
A → 1 and T ∈ Setreg(1) the terminal object, the object v! v

∗T ∈ Setreg(1)
is an “equivalence relation of connected components” that we may denote

πreg
0 (A), and the conditions of Proposition 5.21 are equivalent to saying that

u induces an equivalence of such, πreg
0 (u) : πreg

0 (A) ∼= πreg
0 (B).

Clearly Setreg is Setex-local while Set is Setreg-local. Also, Setpos is

Setreg-local. Thus, in the preorder where D1 ≤ D2 means “D1 is D2-local”,

we have the fragment shown in Figure 1. In §8 we will speculate about

extending this upwards.
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6. Setex is a relative free cocompletion

We will show each of the derivators in Figure 1 is the free cocompletion of

a point in the sub-universe of derivators that are local for it, in the following

sense.

Definition 6.1. A left derivator T is a relative free cocompletion of a point

if for any T -local left derivator D , the “evaluation at the terminal object

∗ ∈ T (1)” functor

Homcc(T ,D)→ D(1)

is an equivalence of categories.

How do we prove such universal properties? As observed by [Hel88],

there is a derivator that can easily be shown to map into any other left deriva-

tor, namely the complete and cocomplete category Cat . More generally, we

have:

Lemma 6.2. For any left derivator D , there is a morphism ⊙ : Cat ×D →

D . Moreover, if u : E → F is a morphism in CatA such that
∑

a ua is a

D-equivalence over A0, then u⊙M : E⊙M → F ⊙M is an isomorphism

in D .

Proof. As in [GPS14, Theorem 3.11], to define such a two-variable mor-

phism it suffices to give functors ⊙ : Cat(A) × D(B) → D(A × B) that

vary pseudonaturally in A and B. The components ⊙A : (Cat × D)(A) =
Cat(A) × D(A) → D(A) of a pseudonatural transformation are then ob-

tained by composing with restriction along the diagonal A→ A× A.

Given E ∈ CatA, let pE :
∫
E → A be its Grothendieck construction,

which is a split opfibration. Then we have the following diagram:

∫
E × B B

A× B

π2

pE×1

Therefore, given M ∈ D(B), we can define

E ⊙M = (pE × 1)! (π2)
∗(M) ∈ D(A× B).
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Pseudonaturality is immediate.

Now suppose u : E → F is such that
∑

a ua is a D-equivalence over A0.

To show that u⊙M is an isomorphism, by (Der2) it suffices to restrict it to

A0 × B0. And since pE × 1 and pF × 1 are opfibrations, by Lemma 3.7 the

following square is exact, along with the analogous one for F :

(
∑

aEa)× B0

∫
E × B

A0 × B0 A× B

(pE)0×1
y

pE×1

Moreover, the restriction of M ∈ D(B) to (
∑

aEa) × B0 factors through

its restriction to B0 and also to A0 × B0. Now the desired statement simply

reduces to the fact that (
∑

a ua) × 1B0
is a D-equivalence over A0 × B0,

which follows from the hypothesis and Lemma 5.3.

Since left extensions in D commute with each other,⊙ is cocontinuous in

its second variable. If it were also cocontinuous in its first variable, defining

E 7→ E ⊙ 1 would give a cocontinuous morphism Cat → D . This is not

generally the case, essentially because
∫
E is a oplax colimit ofE rather than

a homotopy colimit. However, we can make it true by “localizing Cat” in a

way that forces such oplax colimits to become “colimits” in a derivator.

Classically, there is a universal way to do this, using the Thomason model

structure [Tho80] on Cat , which is Quillen equivalent to simplicial sets. This

is roughly the approach of [Hel88, Cis06, Cis04]. Model categories for rel-

ative free cocompletions of a point can then be obtained by left Bousfield

localization. It would be interesting to see whether this approach can be

reproduced constructively, but we will not attempt to do that here.

Instead, since Figure 1 contains a maximal element Setex, we will just

prove explicitly that Setex is a relative free cocompletion of a point, and then

deduce the same property for the other derivators in Figure 1. Of course, a

more abstract approach will probably be required to extend these results to

higher dimensions.

Definition 6.3. For X ∈ Setex(1), let X̃ be the category with object set

X0 +X1 and nonidentity arrows ξ → sξ and ξ → tξ for all ξ ∈ X1.
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Then X̃ ⊙ 1 ∈ Setex(1) is the set X0 + X1 with pseudo-equivalence

relation freely generated by ξ ∼ sξ and ξ ∼ tξ.

Lemma 6.4. X̃ ⊙ 1 is isomorphic to X in Setex.

Proof. In one direction, we have a map X → X̃ ⊙ 1 that is the inclusion

of the summand X0, and sending a witness ξ that sξ ∼ tξ to the composite

witness sξ ∼ ξ ∼ tξ. In the other direction, we can act as the identity on X0

and send ξ ∈ X1 to sξ (say), with the generating witnesses of equality ξ ∼ sξ
sent to the reflexivity witness for sξ, and the generating witnesses ξ ∼ tξ sent

to the witness ξ that sξ ∼ tξ. The composite on X0 is the identity, while the

composite on X̃ ⊙ 1 is equal to the identity via the witnesses ξ ∼ sξ.

We would like to represent a coherent diagram X ∈ Setex(A) similarly

by an object of CatA. However, since X is only functorial up to witnesses

of equality, a naive pointwise construction does not produce a functor (or

even a pseudofunctor) X̃ : A → Cat . More importantly, the morphisms in

Setex(A) are not natural or even pseudonatural for this construction. Thus,

we need some kind of strictification.

Remark 6.5. At this point we could attempt to proceed in roughly the same

way that derivators are usually constructed in classical homotopy theory (see

e.g. [Cis10b] or [Gro13, Proposition 1.30]), by building some kind of model

category of setoids and morphism representatives whose homotopy category

would be Setex(1). We would then lift this model category to a model struc-

ture on strict A-shaped diagrams and strict natural transformations, whose

homotopy category would be equivalent to Setex(A). The machinery of

Quillen adjunctions would then give an alternative approach to the construc-

tion of the derivator Setex, and the strictness of the morphisms in the model

category would make it easier to lift the construction X̃ to diagrams.

The first step of this approach to Setex was achieved in [Hen20, §4.1]

with the construction of a weak model category of setoids whose homotopy

category is Setex(1). However, the lifting of weak model structures to cate-

gories of diagrams does not exist in the literature yet. Rather than develop

this machinery here, I have elected to give an explicit construction, which

has the additional advantage of being more accessible to a reader without

experience in model category theory. But it should be clear that this is only

feasible because of the very simple nature of the derivator Setex; more com-

plicated examples require more advanced techniques.
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Definition 6.6. For X ∈ Setex(A), let X̃ : A → Cat be the following

functor.

• For c ∈ A, the category X̃c has two classes of objects:

(i) Triples (a, α, x) where α : a → c and x ∈ Xa,0, which can be

drawn as:
x

a cα

(ii) Tuples (a, α, x, a′, α′, x′, ξ) where α : a→ a′ in A and x ∈ Xa,0,

while α′ : a′ → c in A and x′ ∈ Xa′,0, and ξ ∈ Xa′,1 satisfies

sξ = Xα,0(x) and tξ = x′, as shown:

x Xα,0(x) x′

a a′ c

ξ

α α′

• The nonidentity morphisms in X̃c are of the form

(a, α, x, a′, α′, x′, ξ)→ (a, α′α, x) and

(a, α, x, a′, α′, x′, ξ)→ (a′, α′, x′).

• For γ : c → c′ in A, the functor X̃γ : X̃c → X̃c′ is defined on objects

by

X̃γ(a, α, x) = (a, γα, x)

X̃γ(a, α, x, a
′, α′, x′, ξ) = (a, α, x, a′, γα′, x′, ξ)

For a morphism representative f : X → Y , let f̃ : X̃ → Ỹ be the natural

transformation whose component f̃c : X̃c → Ỹc is defined on objects by

f̃c(a, α, x) = (a, α, fa,0(x))

f̃c(a, α, x, a
′, α′, x′, ξ) = (a, α, fa,0(x), a

′, α′, fa,0(x
′),m(fα(x), fa,1(ξ))),

where m is the transitivity operation on equality witnesses in Ya′ .
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Lemma 6.7. For any X ∈ Setex(A) we have a specified isomorphism X̃ ⊙
∗ ∼= X , where ∗ ∈ Setex(1) is the terminal object. Similarly, for any mor-

phism representative f : X → Y we have a specified witness that the evident

square commutes:

X̃ ⊙ ∗ X

Ỹ ⊙ ∗ Y

∼=

f̃⊙∗ f

∼=

Proof. By definition, X̃ ⊙ ∗ is the left extension of the constant diagram

at ∗ along the functor pX̃ :
∫
X̃ → A. Since this functor is a cloven (in-

deed, split) opfibration, this extension can be computed using colimits, as

in Theorem 2.13, over the fibers. The fiber over c ∈ A is the category

X̃c as defined above. Thus, (X̃ ⊙ ∗)c has underlying set consisting of the

triples (a, α, x) and tuples (a, α, x, a′, α′, x′, ξ), with pseudo-equivalence re-

lation freely generated by witnesses (a, α′α, x) ∼ (a, α, x, a′, α′, x′, ξ) and

(a, α, x, a′, α′, x′, ξ) ∼ (a′, α′, x′).

In one direction, we define a morphism representative g : X̃ ⊙ ∗ → X
by

gc,0(a, α, x) = Xα,0(x)

gc,0(a, α, x, a
′, α′, x′, ξ) = Xα′,0(x

′)

gc,1((a, α
′α, x) ∼ (a, α, x, a′, α′, x′, ξ)) = m(Xα,α′(x), Xα′,1(ξ))

gc,1((a, α, x, a
′, α′, x′, ξ) ∼ (a′, α′, x′)) = r(Xα′,0(x

′))

gγ(a, α, x) = Xα,gm(x)

gγ(a, α, x, a
′, α′, x′, ξ) = Xα′,gm(x

′)

(extending to all of (X̃ ⊙∗)c,1 by freeness). In the other direction, we define

a morphism representative h : X → X̃ ⊙ ∗ by

hc,0(x) = (c, 1c, x)

hc,1(ξ) = (c, 1c, sξ, c, 1c, tξ,m(Xr(sξ), ξ))

hγ(x) =
(
(c, γ, x) ∼ (c, γ, x, c′, 1c′ , Xγ,0(x), r(Xγ,0(x))) ∼ (c′, 1c′ , Xγ,0(x))

)
.

The composite in one direction, h ◦ g, sends (a, α, x) to (c, 1c, Xα,0(x)), for
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which we have

(a, α, x) ∼ (a, α, x, c, 1c, Xα,0(x), r(Xα,0(x))) ∼ (c, 1c, Xα,0(x)).

And it sends (a, α, x, a′, α′, x′, ξ) to (c, 1c, Xα′,0(x
′)), for which we have

(a, α, x, a′, α′, x′, ξ) ∼ (a′, α′, x′)

together with a zigzag like that above. And the composite in the other direc-

tion, g ◦ h, sends x ∈ Xc to X1c,0(x), which is identified with x by Xr(x).
Thus, g and h together represent an isomorphism in Setex(A).

For the second statement, note that f̃ ⊙ 1 : X̃ ⊙ ∗ → Ỹ ⊙ ∗ sends

(a, α, x) to (a, α, fa,0(x)). Thus, the composite X → X̃ ⊙ ∗ → Ỹ ⊙ ∗ and

X → Y → Ỹ ⊙ ∗ both send x to (c, 1c, fc,0(x)).

We emphasize, however, that the construction f 7→ f̃ does not define

any kind of functor yet. Specifically, it is only defined on morphism repre-

sentatives, which do not compose associatively, and the composite of two

morphisms of the form f̃ may no longer be of that form. Thus, we need

some way to also detect witnesses of equality at the categorical level. For

this we use the following “path space”.

Definition 6.8. For X ∈ Setex(A), let ℘X̃ : A → Cat be the following

functor.

• For c ∈ A, the category ℘X̃c hos two classes of objects:

(i) Triples (a, α, ζ) where α : a→ c and ζ ∈ Xa,1.

(ii) Tuples (a, α, ζ, a′, α′, ζ ′, ξ, ξ′) where α : a → a′ and ζ ∈ Xa,1,

while α′ : a′ → c and ζ ′ ∈ Xa′,1, and ξ, ξ′ ∈ Xa′,1 satisfy

sξ = Xα,0(sζ), tξ = sζ ′, sξ′ = Xα,0(tζ), and tξ′ = tζ ′.

• The nonidentity morphisms in ℘X̃c are of the form:

(a, α, ζ, a′, α′, ζ ′, ξ, ξ′)→ (a, α′α, ζ)

(a, α, ζ, a′, α′, ζ ′, ξ, ξ′)→ (a′, α′, ζ ′).
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• For γ : c → c′ in A, the functor ℘X̃γ : ℘X̃c → ℘X̃c′ is defined on

objects by

X̃γ(a, α, ζ) = (a, γα, ζ)

X̃γ(a, α, ζ, a
′, α′, ζ ′, ξ, ξ′) = (a, α, ζ, a′, γα′, ζ ′, ξ, ξ′).

There are two natural transformations σ, τ : ℘X̃ → X̃ defined on objects by

σc(a, α, ζ) = (a, α, sζ)

σc(a, α, ζ, a
′, α′, ζ ′, ξ, ξ′) = (a, α, sζ, a′, α′, sζ ′, ξ)

τc(a, α, ζ) = (a, α, tζ)

τc(a, α, ζ, a
′, α′, ζ ′, ξ, ξ′) = (a, α, tζ, a′, α′, tζ ′, ξ′).

Finally, there is a natural transformation ρ : X̃ → ℘X̃ defined on objects by

ρc(a, α, x) = (a, α, rx)

ρc(a, α, x, a
′, α′, x′, ξ) = (a, α, rx, a′, α′, rx′, ξ, ξ),

where r is the witness of reflexivity in X .

Lemma 6.9. We have σρ = τρ = 1X̃ , and the functors
∑

a ρa,
∑

a σa, and∑
a τa are Setex-equivalences over A0.

Proof. The first statement is evident. For the second, by the 2-out-of-3 prop-

erty (Lemma 5.6) it suffices to show that
∑

a ρa is a Setex-equivalence. Since

(
∑

a σa)◦(
∑

a ρa) = 1, it suffices to connect each object of ℘X̃a to its image

under ρaσa with a zigzag.

First we need a zigzag between (a, α, ζ) and (a, α, rsζ), for which we

can use

(a, α, rsζ)← (a, 1a, ζ, a, α, rsζ, rsζ, ζ)→ (a, α, ζ).

Next we need a zigzag between

(a, α, ζ, a′, α′, ζ ′, ξ, ξ′) and (a, α, rsζ, a′, α′, rsζ ′, ξ, ξ),

for which we compose the zigzag constructed as above for (a′, α′, ζ ′) with

the maps

(a, α, rsζ, a′, α′, rsζ ′, ξ, ξ)→ (a′, α′, rsζ ′) and

(a′, α′, ζ ′)← (a, α, ζ, a′, α′, ζ ′, ξ, ξ′).
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In homotopical language, Lemma 6.9 says that ℘X̃ is a “path space”

relative to the Setex-equivalences.

Definition 6.10. For morphisms φ, ψ : X̃ → Ỹ in CatA, a right homotopy

φ ∼ ψ is a morphism θ : X̃ → ℘Ỹ such that σθ = φ and τθ = ψ.

Lemma 6.11. If f, g : X → Y are morphism representatives in Setex(A)

and h : f ∼ g is a witness of equality, then f̃ and g̃ are right homotopic.

Proof. We define h̃ : X̃ → ℘Ỹ on objects by h̃(a, α, x) = (a, α, ha(x)) and

h̃(a, α, x, a′, α′, x′, ξ) =

(a, α, ha(x), a
′, α′, ha′(x

′),m(fα(x), fa,1(ξ)),m(gα(x), ga,1(ξ))).

We can now use this path-space to remedy the problems of functoriality.

Lemma 6.12. If X
f
−→ Y

g
−→ Z are morphism representatives in Setex(A),

then g̃f̃ and g̃f are right homotopic.

Proof. By definition, we have

g̃c(f̃c(a, α, x)) = (a, α, ga,0(fa,0(x)))

g̃c(f̃c(a, α, x, a
′, α′, x′, ξ)) = (a, α, ga,0(fa,0(x)), a

′, α′, ga,0(fa,0(x
′)),

m(gα(fa,0(x)), ga,1(m(fα(x), fa,1(ξ)))))

g̃f c(a, α, x) = (a, α, ga,0(fa,0(x)))

g̃f c(a, α, x, a
′, α′, x′, ξ) = (a, α, ga,0(fa,0(x)), a

′, α′, ga,0(fa,0(x
′)),

m((gf)α(x), ga,1(fa,1(ξ))))

where (gf)α is the composite witness of naturality. Now define m̃ : X̃ →

℘Z̃ by

m̃c(a, α, x) = (a, α, r(ga,0(fa,0(x))))

m̃c(a, α, x, a
′, α′, x′, ξ) = (a, α, r(ga,0(fa,0(x))), a

′, α′, r(ga,0(fa,0(x
′))),

m(gα(fa,0(x)), ga,1(m(fα(x), fa,1(ξ)))),

m((gf)α(x), ga,1(fa,1(ξ)))).
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Lemma 6.13. For X ∈ Setex(A), the morphisms 1̃X and 1X̃ are right ho-

motopic.

Proof. We can define ĩ : X̃ → ℘X̃ by

ĩc(a, α, x) = (a, α, rx)

ĩc(a, α, x, a
′, α′, x′, ξ) = (a, α, rx, a′, α′, rx′,m((1X)α(x), ξ), ξ).

Now we show that right homotopies are inverted in Setex-local derivators.

Lemma 6.14. Let D be a Setex-local left derivator. For any X ∈ Setex(A)
and M ∈ D(B), we have

σX ⊙ 1M = τX ⊙ 1M

as morphisms ℘X̃⊙M → X̃⊙M in D(A×B). Therefore, if φ, ψ : X̃ → Ỹ
are right homotopic, then φ⊙ ℓ = ψ ⊙ ℓ for any ℓ.

Proof. By functoriality of ⊙, we have

(σ ⊙ 1M) ◦ (ρ⊙ 1M) = (τ ⊙ 1M) ◦ (ρ⊙ 1M).

However, by Lemma 6.9,
∑

a ρa is a Setex-equivalence over A0, and hence

also a D-equivalence since D is Setex-local. Therefore, by Lemma 6.2, ρ⊙
1M is an isomorphism, and thus cancellable. So σ ⊙ 1M = τ ⊙ 1M .

For the last statement, a right homotopy is a θ with σθ = φ and τθ = ψ.

Thus, σ ⊙ 1M = τ ⊙ 1M implies φ⊙ ℓ = ψ ⊙ ℓ by functoriality.

This implies that ⊙ descends from Cat to Setex via (̃−).

Definition 6.15. For X ∈ Setex(A) and M ∈ D(B), define X ⊙̃ M =

X̃ ⊙M . Similarly, for f : X → Y in Setex(A) and ℓ : M → N in D(B),

we choose a representative of f and define f ⊙̃ ℓ = f̃ ⊙ ℓ.

Proposition 6.16. If D is Setex-local, the definition of f ⊙̃ g is independent

of the choice of representative for f , and defines a functor

⊙̃ : Setex(A)×D(B)→ D(A× B).

71



M. SHULMAN THE DERIVATOR OF SETOIDS

Proof. By Lemma 6.11, any witness of equality h : f ∼ g between two mor-

phism representatives yields a right homotopy f̃ ∼ g̃. Thus, by Lemma 6.14,

we have f ⊙̃ ℓ = f̃ ⊙ ℓ = g̃ ⊙ ℓ = g ⊙̃ ℓ. Functoriality on Setex(A) follows

similarly from Lemmas 6.12 and 6.13.

Now we must show that these functors vary pseudonaturally in A and B.

Definition 6.17. For X ∈ Setex(B) and u : A→ B, let ωX,u : ũ∗X → u∗X̃
be the natural transformation defined on objects by

ωX,u(a, α, x) = (ua, uα, x)

ωX,u(a, α, x, a
′, α′, x′, ξ) = (ua, uα, x, ua′, uα′, x′, ξ).

Lemma 6.18. Let X, Y ∈ Setex(C) and A
v
−→ B

u
−→ C, and f : X → Y a

morphism representative. Then the map ωX,1A : X̃ → X̃ is equal to 1X̃ , and

the following diagrams commute:

ṽ∗u∗X v∗(ũ∗X)

v∗u∗X̃

ωu∗X,v

ωX,uv
v∗ωX,u

ũ∗X ũ∗Y

u∗X̃ u∗Ỹ .

ũ∗f

ωu∗X,u ωY,u

u∗f̃

Proof. By inspection of the definitions.

Lemma 6.19. The functor
∑

a ωX,u,a is a Setex-equivalence over A0.

Proof. First, we must define s : u∗X̃0 → ũ∗X0. The first kind of object

of (u∗X̃)c is (b, β, x) for β : b → uc and x ∈ Xb,0. We send this to

(c, 1c, Xβ,0(x)) in (ũ∗X)c. The second kind of object of (u∗X̃)c is

(b, β, x, b′, β′, x′, ξ)

for β : b → b′, x ∈ Xb,0, β
′ : b′ → uc, x′ ∈ Xb′,0, and ξ ∈ Xb′,1 a witness

that Xβ,0(x) ∼ x′. We send this to

(c, 1c, Xβ′β,0(x), c, 1c, Xβ′,0(x
′),m(Xβ,β′(x), Xβ′,1(ξ)))

in (ũ∗X)c, where Xβ,β′(x) is a functoriality witness of X .
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Second, we must send morphisms in (u∗X̃)c to zigzags in (ũ∗X)c. We

send a morphism (b, β, x, b′, β′, x′, ξ) → (b, β′β, x) to the one-morphism

zigzag

(c, 1c, Xβ′β,0(x), c, 1c, Xβ′,0(x
′), Xβ′,1(ξ))→ (c, 1c, Xβ′β,0(x)),

and similarly we send a morphism (b, β, x, b′, β′, x′, ξ) → (b′, β′, x′) to the

one-morphism zigzag

(c, 1c, Xβ′,0(Xβ,0(x)), c, 1c, Xβ′,0(x
′), Xβ′,1(ξ))→ (c, 1c, Xβ′,0(x

′))

Third, we must relate each object of (u∗X̃)c by a zigzag to its roundtrip

image. For (b, β, x), we have

(b, β, x)← (b, β, x, uc, 1uc, Xβ,0(x), r(Xβ,0(x)))→ (uc, 1uc, Xβ,0(x)),

while for (b, β, x, b′, β′, x′, ξ) we have

(b, β, x, b′, β′, x′, ξ)→ (b, β′β, x)← • → (uc, 1uc, Xβ′β,0(x))

← (uc, 1uc, Xβ′β,0(x), uc, 1uc, Xβ′,0(x
′), Xβ′,1(ξ))

where the middle zigzag is as above.

Fourth and finally, we must relate each object of (ũ∗X)c by a zigzag to

its roundtrip image. For (a, α, x) we have

(a, α, x)← (a, α, x, c, 1c, Xuα,0(x), r(Xuα,0(x)))→ (c, 1c, Xuα,0(x)),

while for (a, α, x, a′, α′, x′, ξ) we have

(a, α, x, a′, α′, x′, ξ)→ (a, α′α, x)← • → (c, 1c, Xu(α′α),0(x))

← (c, 1c, Xu(α′α),0(x), c, 1c, Xuα′,0(x
′),m(Xuα,uα′(x), Xuα′,1(ξ)))

where again the middle zigzag is as above.

Proposition 6.20. For any Setex-local left derivator D , the functors ⊙̃ of

Proposition 6.16 vary pseudonaturally inA,B ∈ Cat . Therefore, they define

a morphism of derivators

⊙̃ : Setex ×D → D .
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Proof. For u : A→ A′ and v : B → B′, the pseudonaturality constraint is

u∗X ⊙̃ v∗M = (ũ∗X ⊙ v∗M)
ω
−→
∼

(u∗X̃ ⊙ v∗M)

∼= (u∗ × v)(X̃ ⊙M) = (u∗ × v)(X ⊙̃M).

The map induced by ωX,u is an isomorphism by Lemma 6.19, while the sec-

ond isomorphism is the pseudofunctoriality of ⊙. The axioms for a pseudo-

natural transformation follow from those of ⊙ and Lemma 6.18.

Proposition 6.21. The above-defined ⊙̃ is cocontinuous in both variables.

Proof. Cocontinuity in the second argument follows from that of ⊙. For co-

continuity in the first argument, by (the two-variable version of) Lemma 3.9

it suffices to show that for u : A → I in Cat , with I discrete, and X ∈
Setex(A) and M ∈ D(B), the transformation (u×1)!(X ⊙̃M)→ u!X ⊙̃M
is an isomorphism.

Since I is discrete, we can let (u!X)i be the colimit of X restricted to

Ai as constructed in Theorem 2.13, and put these together into a coherent

diagram u!X . We then have the adjunction unit η : X → u∗u!X , consist-

ing of the injections into these colimits. The map we must show to be an

isomorphism is the composite

(u× 1)!(X̃ ⊙M)
η̃
−→ (u× 1)!(ũ∗u!X ⊙M)
ω
−→ (u× 1)!(u

∗(ũ!X)⊙M)
∼−→ (u× 1)! (u× 1)∗(ũ!X ⊙M)

−→ ũ!X ⊙M.

Now, the composite ωη̃ induces a map
∫
ωη̃ on Grothendieck constructions:

∫
X̃

∫
ũ!X

A I,

p
X̃

∫
ωη̃

p
ũ!X

u

and the desired map can then be identified with

(u×1)! (pX̃×1)! (π2)
∗M ∼−→ (pũ!X

×1)! (
∫
ωη̃)! (π2)

∗M → (pũ!X
×1)! (π2)

∗M.
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where both projections
∫
X̃ × B → B and

∫
ũ!X × B → B are denoted

π2. Therefore, as in the proof of Lemma 6.2, it will suffice to show that∫
ωη̃ :

∫
X̃ →

∫
ũ!X is a Setex-equivalence over I .13

The objects of
∫
X̃ are those of X̃c for all c ∈ A, hence of the two forms

(a, α, x) and (a, α, x, a′, α′, x′, ξ) as usual. But its morphisms incorporate

the morphisms of A, by the Grothendieck construction; thus we have

(a, γα′α, x)← (a, α, x, a′, α′, x′, ξ)→ (a′, γα′, x′) (6.22)

for any γ : c→ c′.

Since I is discrete,
∫
ũ!X is essentially (up to an inessential modification

by Xr witnesses) the simple construction of Definition 6.3 applied to u!X .

Thus, as objects it has both elements of (u!X)0, which are pairs (a, x) with

x ∈ Xa,0, and elements of (u!X)1. By construction of u!X , the latter sort of

element is a sequence

Ξ = (a0, x0, α1, ξ1, a1, x1, α2, ξ2, . . . , αn, ξn, an, xn),

where each xk ∈ Xak,0, and for each k either

• αk : ak−1 → ak and ξk is a witness that Xαk,0(xk−1) ∼ xk, or

• αk : ak → ak−1 and ξk is a witness that Xαk,0(xk) ∼ xk−1.

Such a sequence then comes with morphisms to both (a0, x0) and (an, xn).
The functor

∫
ωη̃ is defined on objects by

∫
ωη̃(a, α, x) = (a, x)∫

ωη̃(a, α, x, a′, α′, x′, ξ) = (a, x, α, ξ, a′, x′).

As always, we use the characterization of Proposition 5.13.

First, to define a function s : (
∫
ũ!X)0 → (

∫
X̃)0, we send (a, x) to

(a, 1a, x), and a zigzag sequence Ξ as above to (a0, 1a0 , x0).
Second, we can send the morphism Ξ → (a0, x0) to the identity. Before

deciding what to do with the morphism Ξ → (an, xn), note that given α :

13This explains our earlier comment that the failure of ⊙ to be cocontinuous in its first

variable is due to
∫

being an oplax colimit rather than a homotopy colimit.
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a→ a′ and ξ a witness that Xα,0(x) ∼ x′, we have a zigzag

(a, 1a, x)← (a, 1a, x, a, 1a, x, r(x))→ (a, α, x)

← (a, α, x, a′, 1a′ , x
′, ξ)→ (a′, 1a′ , x

′)

in which the second morphism uses the extra flexibility of (6.22), with γ =
α. Now by concatenating these zigzags, possibly reversed as necessary, we

obtain a zigzag from (a0, 1a0 , x0) to (an, 1an , xn) from any Ξ, which is what

we needed.

Third, we need to relate any object of
∫
ũ!X to its roundtrip image by a

zigzag. But an object of the form (a, x) is equal to its roundtrip image, while

Ξ comes with a basic morpism to its roundtrip image (a0, x0).

Fourth and finally, we must relate any object of
∫
X̃ to its roundtrip im-

age. The roundtrip image of (a, α, x) is (a, 1a, x), for which we have

(a, 1a, x)← (a, 1a, x, a, 1a, x, r(x))→ (a, α, x).

And the roundtrip image of (a, α, x, a′, α′, x′, ξ) is (a, 1a, x), for which we

have the previous zigzag together with

(a, α, x)← (a, 1a, x, a, α, x, r(x))→ (a, α′α, x)← (a, α, x, a′, α′, x′, ξ)

Here the middle map uses the extra flexibility of (6.22) with γ = α′.

Corollary 6.23. For any Setex-local left derivator D and any M ∈ D(1),
there is a cocontinuous morphism (−⊙̃M) : Setex → D such that ∗ ⊙̃M ∼=
M , where ∗ ∈ Setex(1) is the terminal object.

Proof. It remains to show that ∗ ⊙̃M ∼= M . By definition, ∗ ⊙̃M = ∗̃⊙M ,

where ∗̃ is (· ⇒ ·). But the functor ∗̃ → 1 is, as noted previously, a Setex-

equivalence. Thus the induced map ∗̃ ⊙M → M is an isomorphism, since

D is Setex-local.

Theorem 6.24. If D is a Setex-local left derivator, then the functor

Homcc(Setex,D)→ D(1),

induced by evaluation at ∗ ∈ Setex(1), is an equivalence of categories. In

other words, Setex is a relative free cocompletion of a point.
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Proof. The construction of Corollary 6.23 is functorial and the isomorphism

is natural. Thus, it suffices to construct, for any cocontinuous G : Setex →
D , an isomorphism GX ∼= X ⊙̃ G(∗), natural in G and in X ∈ Setex(A).
For this we have

GX ∼= G(X̃ ⊙ ∗)

= G((pX̃ × 1)! (π2)
∗(∗))

∼= (pX̃ × 1)! (π2)
∗G(∗)

= X̃ ⊙G(∗)

= X ⊙̃G(∗),

where the first isomorphism is Lemma 6.7, and the second is because G is

cocontinuous. Naturality in G is evident, while naturality in X follows from

the second part of Lemma 6.7.

7. Other relative free cocompletions

Once we have one relative free cocompletion — in our case, Setex— it is

much easier to construct other Setex-local ones. First we note that if D is

distributive (Definition 3.13), then the whole two-variable morphism ⊙̃ :
Setex ×D → D is determined by the functor L : Setex → D defined by

LX = X ⊙̃ ∗.

Lemma 7.1. If D is distributive and Setex-local, we have a natural isomor-

phism

X ⊙̃M ∼= LX ×M

for X ∈ Setex(A) and M ∈ D(B).

Here × on the right-hand side denotes the functor D(A) × D(B) →
D(A× B) induced by the cartesian product of D .
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∫
X̃ × A0

∫
Ỹ × A0 A0

A× A0

p
X̃
×1

π2

p
Ỹ
×1

π2

∑
a X̃a

∑
a Ỹa A0

A0

Figure 2: Diagrams for the proof of Corollary 7.2

Proof. By definition,

X ⊙̃M = (pX̃ × 1)! π
∗
2(M)

∼= (pX̃ × 1)! π
∗
2(∗ ×M)

∼= (pX̃ × 1)! π
∗
2(∗)×M (by distributivity)

= (X ⊙̃ ∗)×M

= LX ×M.

Corollary 7.2. If D is distributive and Setex-local, and f : X → Y is a

morphism representative in Setex(A) such that Lf is an isomorphism, then∑
a f̃a is a D-equivalence over A0.

Proof. By Lemma 7.1, the assumption implies that f ⊙̃M is an isomorphism

for any M ∈ D(B). In particular, for M ∈ D(A0) the induced map

(pX̃ × 1)! π
∗
2(M)→ (pỸ × 1)! π

∗
2(M)

is an isomorphism, where the functors fit into the diagram on the left of

Figure 2.

The two functors pX̃×1 and pỸ×1 are split opfibrations, and the pullback

of f̃ ×1 along (ιA×1A0
) : A0 → A×A0 is

∑
a f̃a. Thus, the corresponding

map for the diagram on the right of Figure 2 is also an isomorphism; but this

is precisely to say that
∑

a f̃a is a D-equivalence over A0.
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Theorem 7.3. If T is Setex-local and distributive, and L : Setex → T has

a right adjoint with invertible counit, then T is a relative free cocompletion

of a point.

Proof. Let D be a T -local left derivator; we must show that the precompo-

sition functor (−◦L) : Homcc(T ,D)→ Homcc(Setex,D) is an equivalence.

We have a commutative square

Homcc(T ,D) Homcc(Setex,D)

Hom(T ,D) Hom(Setex,D)

(−◦L)

(−◦L)

in which the vertical functors are fully faithful. But the bottom functor has a

left adjoint (− ◦ R), where R is the right adjoint of L, with invertible unit,

and hence is also fully faithful. Thus the top functor is also fully faithful.

So it suffices to show it is split essentially surjective, i.e. that any cocontin-

uous G : Setex → D factors through L, up to isomorphism, by a specified

cocontinuous morphism.

To start with, we have a canonical morphism GR : T → D . We also

have a unit map η : 1Setex → RL, and since the counit of the adjunc-

tion is invertible, Lη is an isomorphism. Thus, by Corollary 7.2, for any

X ∈ Setex(A), if we choose a representative for ηX , then
∑

a(η̃X)a is a

T -equivalence over A0. Since D is T -local, this means it is also a D-

equivalence. And since G is of the form (− ⊙̃M) for some M ∈ D(1), by

Theorem 6.24, it follows that G also inverts ηX . In other words, Gη is an

isomorphism G ∼= GRL.

It remains to show that GR is cocontinuous. This means to show that the

mate u!GR → GRu! of the isomorphism GRu∗ ∼= u∗GR is again an iso-

morphism. The latter isomorphism is the pasting composite of the following

squares:

T (A) Setex(A) Setex(A) D

T (B) T (B) Setex(B) D

R

∼= ∼=

G

∼=u∗ Ru∗

R

u∗

G

u∗
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Therefore, by the functoriality of mates, its mate is the pasting composite of

the following squares:

T (A) Setex(A) Setex(A) D

T (B) T (B) Setex(B) D

R

u! u!L u!

G

u!

R G

The left-hand square is the counit LR → 1T , which is an isomorphism by

assumption. The right-hand square is an isomorphism since G is cocontin-

uous. Finally, the middle square is the unit 1Setex → RL, which as we just

showed is inverted by G. Thus, the pasting composite is also an isomor-

phism, so GR is cocontinuous.

Remark 7.4. If we omit the hypothesis of distributivity in Theorem 7.3, the

same argument implies that T is a localization of Setex, in the sense that the

precomposition functor Homcc(T ,D) → Homcc(Setex,D) is fully faithful,

and its full image consists of the morphisms Setex → D that invert the same

morphisms that are inverted by L : Setex → T . (More abstractly, this can

be expressed as a coinverter in the 2-category of derivators: a 2-categorical

colimit that universally forces some 2-cell to become invertible.) Distribu-

tivity enables us to reexpress this as T being a relative free cocompletion of

a point, without explicit reference to L : Setex → T .

We have already observed that all the derivators in Figure 1 are Setex-

local and distributive. Thus, it suffices to show that their L-functors all have

right adjoints.

Example 7.5. For T = Set, L computes the quotient of each pseudo-

equivalence relation in a coherent diagram, obtaining an ordinary diagram

of sets. This has a right adjoint that assigns to any set the identity (pseudo-

)equivalence relation on it, of which it is the quotient. Thus, Set is a relative

free cocompletion of a point.

Example 7.6. For T = Prop, L computes the support π−1(X0) of each

pseudo-equivalence relation in a coherent diagram. Since the quotient of

a pseudo-equivalence relation is inhabited if and only if X0 is, this factors

through Set via the standard support functor Set → Prop. The latter has a

right adjoint assigning to each proposition the corresponding subsingleton,
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which is its own support. Thus, Prop is a relative free cocompletion of a

point.

We leave the trivial case T = Contr to the reader.

Example 7.7. For T = Setpos, L sends each pseudo-equivalence relation to

X0 +X1, which is isomorphic in Setpos to X0. This has a right adjoint that

sends each object X of Setpos to the full (pseudo-)-equivalence relation on

it, i.e. X0 = X and X1 = X ×X . The counit is evidently an isomorphism,

so Setpos is a free cocompletion of a point.

Example 7.8. Finally, for T = Setreg, L sends each pseudo-equivalence in a

coherent diagram to its image, which is an actual equivalence relation. This

has a right adjoint that sends each equivalence relation to itself as a pseudo-

equivalence relation. Thus, Setreg is also a free cocompletion of a point.

8. Conclusions and speculations

We have constructed three different relative free cocompletions of a point,

Set, Setreg, and Setex, which are nevertheless all intuitively “1-categorical”.

Similarly, both Prop and Setpos are intuitively “0-categorical” (i.e. posetal).

Thus we may reasonably wonder, what happens in higher dimensions? The

obvious candidate for a 2-categorical (or, more precisely, (2, 1)-categorical)

relative free cocompletion of a point is a derivator of groupoids; but we have

multiple notions of groupoid.

On the one hand, we have the standard notion of groupoid, with hom-

sets. These should yield a derivator Gpd: the objects of Gpd(A) are pseudo-

functors A → Gpd, and its morphisms are isomorphism classes of pseudo-

natural transformations. In particular, the isomorphisms in the derivator Gpd

would be the equivalences of groupoids, in the usual constructive sense with

a specified pseudo-inverse functor.

On another hand, we can consider E-groupoids, “groupoids enriched

over setoids” (see e.g. [HS98, BD08] for E-categories). These should yield

a derivator EGpd. And there is a third notion in between, of groupoids en-

riched over equivalence relations, which should yield a derivator RGpd. It

seems likely that we should have an analogous three notions of n-groupoid

for all finite n, where the top level is enriched either over Set, Setreg, or

Setex. But in the limit n → ∞, where there is no longer a “top level”, it
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seems reasonable to expect the difference to disappear, so that there would

be only one absolute free cocompletion of a point Space.

Conjecture 8.1. One can constructively define an absolute free cocomple-

tion of a point using some kind of cubical sets, simplicial sets, or semisim-

plicial sets, along with three reflective localizations of it for each finite n,

consisting of the n-groupoids enriched over sets, setoids, and equivalence

relations at the top dimension.

However, something funny happens with the locality preorder at dimen-

sion 2. Just as the Set-equivalences are the functors inducing an isomor-

phism under the reflection π0 of categories into sets, we expect the Gpd-

equivalences should be the functors inducing an equivalence under the re-

flection Π1 of categories into groupoids. But since Π1(A) has the same set

of objects as A, if f : A → B is a Gpd-equivalence then we have an actual

functionB0 → A0, suggesting that a Gpd-equivalence should also be not just

a Set-equivalence but a Setreg-equivalence. Thus Setreg should be Gpd-local,

and similarly we expect Setex to be RGpd-local, leading to the placements of

Gpd, RGpd, and EGpd in the extension of Figure 1 shown in Figure 3.

The diagonal rows14 of this diagram are at constant “categorical dimen-

sion” while moving vertically downwards passes to the subcategory of trun-

cated objects. That is, the categories of subterminal objects in Set and Setreg
are equivalent to Prop and Setpos respectively, and we expect the categories

of 0-truncated objects in Gpd and RGpd to be equivalent to Setreg and Setex
respectively. Since Setpos is also the category of subterminal objects in Setex,

and Setex should also be the category of 0-truncated objects in EGpd, it is nat-

ural to extend the diagram further to the left in a way that “stabilizes” after a

certain number of steps, as we have done in gray. One can thus view “exact

completion” as adding an additional dimension to the Baez–Dolan “periodic

table of n-categories” [BD95], which stabilizes along the n-categorical row

at the (n+ 2)nd stage.

It is worth noting that although the derivators in the “middle” of this di-

agram are, like all the others, relative free cocompletions of a point, they are

not as well-endowed with exactness properties. For instance, Set and Setex

14They are diagonal rather than horizontal, of course, so that the picture is still a sort of

“Hasse diagram” of the locality relation (although we do not mean to exclude the possible

existence of further intermediate objects not drawn).

82



M. SHULMAN THE DERIVATOR OF SETOIDS

Space Spaceana
. . .

. . .
...

. . . EGpd
...

...

. . . Setex RGpd
...

. . . Setpos Setex Gpd
...

Contr Setpos Setreg Gpdana

Contr Setpos Set

Contr Prop

Contr

Figure 3: A conjectural enlargement of Figure 1

83



M. SHULMAN THE DERIVATOR OF SETOIDS

are both exact, but Setreg is not: an internal equivalence relation in Setreg is

a pseudo-equivalence relation in Set, but it can only be effective in Setreg if

it is an actual equivalence relation. Similarly, but perhaps more surprisingly,

Gpd is not exact as a (2, 1)-category (in a sense like that of [Str82]): for if it

were, its subcategory of 0-truncated objects would be exact as a 1-category,

but this subcategory is Setreg.

I expect RGpd to also fail to be (2, 1)-exact, though less obviously since

its subcategory of 0-truncated objects should be Setex, which is 1-exact. But

Setex should also be the subcategory of 0-truncated objects in EGpd, which

should be (2, 1)-exact. This is analogous to how Setpos is the subcategory

of subterminal objects in both Setex and Setreg, though only the former is

1-exact.

Is there a different 2-dimensional relative free cocompletion of a point

whose category of 0-truncated objects is Set? To guess what this might be,

note that in the parts of Figure 3 that we understand precisely so far, moving

to the right can be achieved by passing to a localization. For instance, if we

localize Setpos by inverting the surjections, we obtain Prop. Similarly, if in

Setex we invert the morphisms f : X → Y that reflect equality (in the sense

that if there exists a witness that f0(x) ∼ f0(x
′) then there exists a witness

that x ∼ x′) and such that f0 is split surjective, we obtain Setreg. If we

further invert the morphisms that reflect equality and such that f0 is merely

surjective, we obtain Set.

Analogously, it is natural to guess that RGpd should be obtainable from

EGpd by inverting functors that are split-surjective on objects, split-full on

morphisms, and reflect equality of parallel morphisms; while Gpd should be

similarly obtainable from RGpd by inverting functors that are split-surjective

on objects, merely full on morphisms, and reflect equality of parallel mor-

phisms. This suggests that the “missing link” should be obtained from Gpd

by inverting the functors that are fully faithful and merely surjective on ob-

jects. This is equivalent to inverting the weak equivalences: functors that are

fully faithful and essentially surjective.15 The morphisms in this localization

are anafunctors [Mak96, Bar06, Rob12, Rob18], so we denote it Gpdana.

Similarly, if we present Set as a localization of Setex, we could call its

morphisms anafunctions and write Set ≃ (Setex)ana. Equivalently, we can

15Recall that every weak equivalence is an equivalence if and only if the axiom of choice

holds.
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observe that since Set is already exact, it is equivalent to its own exact com-

pletion as a regular category, i.e. Set ≃ Setex/reg; in general we can present

the ex/reg completion as consisting of setoids or equivalence relations with

anafunctions between them (“total and functional relations”). This suggests

that the missing link Gpdana should be the “(2, 1)-exact completion of Set as

a regular category”. This makes sense because the definition of Gpdana, un-

like that of Gpd, incorporates some information about the regular structure

of Set, i.e. the surjective functions of sets.

There are, however, issues with actually performing the localization lead-

ing to the hypothetical Gpdana. In particular, unlike RGpd and Gpd, it is not a

reflective localization of EGpd. Worse, even in ZF set theory, with excluded

middle but no choice, it is impossible to prove that Gpdana is locally small,

cartesian closed, or complete [aK17], and hence it seems unlikely to be a

derivator. (This also implies that it cannot be presented by any sort of model

category, although weaker structures like a fibration or cofibration category

are a possibility.) However, it may be easier to obtain at least a left derivator

of this sort, with colimits but not necessarily limits.

Conjecture 8.2. There is a left derivator Gpdana composed of groupoids and

anafunctors. Moreover:

• Gpdana is a relative free cocompletion of a point, and is “(2, 1)-exact”.

• Every weak equivalence of categories is a Gpdana-equivalence.

• Set is Gpdana-local, but Setreg and Setpos are not.

• The subcategory of 0-truncated objects in Gpdana is Set.

Of course, we can ask analogous questions about n-groupoids for 2 ≤
n ≤ ∞.

Conjecture 8.3. There is a left derivator Spaceana composed of “∞-groupoids

and anafunctors”. Moreover:

• Spaceana is a relative free cocompletion of a point, and is “(∞, 1)-
exact”.

• Every weak equivalence of categories is an Spaceana-equivalence.
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• Set and Gpdana are Spaceana-local, but Setpos, Setreg, and Gpd are not.

• The subcategory of 1-truncated objects in Spaceana is Gpdana.

These conjectural derivators Gpdana and Spaceana are closely related to

the issue raised in §1 that perhaps our definition of derivator is wrong: maybe

we should use Catana instead of Cat .16 Since Catana is equivalent to the

bicategory obtained by inverting the weak equivalence functors in Cat , a

natural definition of ana-derivator would be simply as a derivator such that

u∗ : D(B) → D(A) is a (perhaps weak) equivalence whenever u : A → B
is a weak equivalence.

Of the derivators considered in this paper, Set and Prop are ana-derivators,

while it seems that the others are not (though I do not have a formal proof).

For instance, let u : A→ B be a weak equivalence functor with B discrete,

and X ∈ Setpos(B). Then (u∗u
∗X)b is the power X

u−1(b)0
b of the set Xb by

the objects in the u-preimage of b. The adjunction unitX → u∗u
∗X consists

of the diagonals Xb → X
u−1(b)0
b , but there seems no way to define a family

of functions in the other direction without choosing elements of the fibers to

give factors to project onto.

Conjecture 8.4. Gpdana and Spaceana are left ana-derivators. Moreover,

Spaceana is the free cocompletion of a point among ana-derivators, while

Gpdana is a relative free cocompletion of a point therein.

Remark 8.5. It is natural to wonder, if the right-hand column in Figure 3

has its “own notion of derivator” (the above-defined ana-derivators), why

is that not the case for the other columns? In fact, there are other ways to

vary the notion of derivator. The notion of derivator we have worked with

corresponds roughly to the second column from the right; but one could also

replace the 2-categories Cat and/or CAT by E-2-categories of E-categories,

16It seems that replacing CAT by CAT ana makes less of a difference. Since functors

are in particular anafunctors, all our examples such as Setex are still derivators with this

generalized definition. And as long as all the functors u∗, u!, u∗ in the target D , and the

components of derivator morphisms, are generalized to anafunctors simultaneously, I would

expect essentially the same arguments for their universality to go through.
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or R-2-categories of R-categories.17 I have not pursued this direction; the

goal of this paper was to show that even if we try as hard as possible to

take sets and set-based categories as our basic notions, we seem to be led,

ineluctably, either to setoids and E-groupoids, or to anafunctors.

The next question is, if only the right-hand column of Figure 3 consists

of Catana-derivators, why does the whole figure consist of Cat-derivators,

rather than just the two right-hand columns? In fact, I would expect that if

we define Setex (for instance) as an ECat-derivator, it would not be a “Cat-

derivator” in the sense that u∗ is an equivalence for any E-functor u that is

inverted by the reflection of ECat into Cat . The difference is that Cat is a

reflective localization of ECat , so that we can make the ECat-derivator Setex
into a Cat-derivator in a different way by simply restricting its domain to the

sub-2-category Cat of ECat . The latter restriction is the derivator we have

called Setex in this paper.

Remark 8.6. The referee has pointed out another interesting question: can

the equivalences in the derivators D of Figure 3 be characterized using iso-

morphisms of “homotopy groups”? We have seen in Proposition 5.7 and Re-

marks 5.10, 5.14, 5.18 and 5.22 that the D-equivalences in the cases we’ve

studied can all be characterized as “πn-equivalences” for a notion of πn that

varies with the column as well as the row. In the next dimension, we ex-

pect an equivalence of groupoids to be a functor inducing an isomorphism

of π0 and isomorphisms of π1 at all basepoints; but each such “homotopy

group” could be a set, an equivalence relation, or a pseudo-equivalence rela-

tion. Presumably the EGpd-equivalences involve setoids πex
0 and πex

1 , while

the Gpdana-equivalences involve sets π0 and π1, and the others are in be-

tween. Relatedly, note that by [Hen20, Proposition 5.2.6], the equivalences

of fibrant simplicial sets (a possible model for Space) are characterized con-

structively by isomorphims of setoid homotopy groups.

A positive solution to the above conjectures would, I believe, give a sys-

tematic explanation of many confusing aspects of homotopy theory in set-

based constructive mathematics. However, it is not clear whether it would

conclusively answer the question of what the “correct” constructive theory

17To continue getting new notions beyond the fourth column, one would need to general-

ize to “n-derivators” in the sense of [Rap19], with the domain Cat replaced by some version

of (n, 1)-Cat . That is, the notion of derivator can vary not only with the column but also

with the row.
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of spaces is, since both candidates Space and Spaceana have drawbacks: the

former truncates to Setex rather than Set, while the latter is not locally small,

cartesian closed, or complete.

Of course, such bifurcations of classical notions are not uncommon in

constructive mathematics. However, in this case there is more to be said:

if we are willing to modify the background theory (while still keeping it

“constructive” in at least some sense), we can make Gpdana and Spaceana
much better-behaved.

It is known that local smallness and cartesian closure of Gpdana (and also,

presumably, Spaceana) requires much less than the full axiom of choice: it

suffices to assume SCSA [Mak96] or WISC [Rob12] (a.k.a. AMC [vdB12]).

These weak choice axioms have at least some claim to being constructive, as

they often hold in large classes of models of constructive mathematics, such

as Grothendieck toposes, realizability toposes, and exact completions. I do

not know whether these axioms make Gpdana complete, but there is another

axiom that should do so: the Axiom of Stack Completions [BH11], which

implies that Gpdana is equivalent to a reflective localization of Gpd (hence

also of EGpd), whose objects are the “intrinsic stacks” relative to surjections

of sets. The constructive nature of ASC is perhaps debatable, but at least it

holds in all Grothendieck toposes [JT91].

Another approach is to choose instead to do constructive homotopy the-

ory based on a foundational system in which spaces are primitive objects,

such as homotopy type theory. This is my preferred solution, so I will con-

clude with some remarks about its advantages.

Remark 8.7. As noted in [Lum20], the diagonals of Figure 3 bear a strong re-

semblance to the hierarchy of saturation or univalence conditions on higher-

categorical structures defined in homotopy type theory [AKS15, ANST21].

When a groupoid is presented by a diagram on an inverse-category signa-

ture as in [Mak95, ANST21], it has three ranks of type dependency, corre-

sponding to the objects, morphisms, and equalities. Roughly speaking, E-

groupoids correspond to unrestricted categories of this sort, while R-groupoids

are univalent at the top rank (equalities), and ordinary groupoids are univa-

lent at the top two ranks (equalities and morphisms).

In a set-based foundation, it is not possible to be more univalent than

this; but in homotopy type theory, we can also impose univalence condi-

tions at the bottom rank of objects. The resulting homotopy theory UGpd of
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univalent groupoids is a reflective localization of Gpd18 at the weak equiva-

lences, closely related to the category of “intrinsic stacks” mentioned above

in connection with ASC. Hence, UGpd plays a similar role to Gpdana, but

without the attendant disadvantages. In particular, it is locally small, carte-

sian closed, exact, and has limits as well as colimits, while its subcategory of

0-truncated objects is Set. Similarly, the category of univalent∞-groupoids

(spaces) plays the expected role of Spaceana.

In fact, a “univalent groupoid” is equivalently just a type with the prop-

erty of being a 1-type, while a “univalent space” is simply a type with no

restrictions. That is, in homotopy type theory the primitive objects are the

objects of Spaceana rather than those of Set, so that none of the elaborate

work involved in defining higher groupoids and homotopy spaces is neces-

sary. (The related notions of higher category, however, are still nontrivial.)

I expect that the primitive spaces in homotopy type theory form a deriva-

tor (although proving this may require an enhanced theory such as [ACK17]).

It is unclear whether the resulting derivator of univalent spaces would be a

free cocompletion of a point; the answer might depend on how univalent the

1-categories in Cat are assumed to be, and/or on strong classicality axioms

such as AC∞,−1 from [Uni13, Exercise 7.8]. (In particular, since univalent

1-categories are now a reflective localization of non-univalent ones, it seems

likely that all the other derivators in Figure 3 will still exist even if we re-

place Cat by UCat . Thus Spaceana may not be a free cocompletion of a point

unless there is a classicality axiom to collapse the columns.)

However, the “correctness criterion” advanced in this paper for a homo-

topy theory of spaces is not justified for homotopy type theory anyway. This

criterion seeks to characterize the homotopy theory of spaces in terms of sets

(or at most 1-categories); thus it makes sense in a world whose primitive ob-

jects are sets, but not in a world where spaces are already present as primitive

objects.

18For the expert, note that here we interpret “groupoids” as particular precategories in the

sense of [AKS15, Uni13], with no dimension restriction on their type of objects.
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A LOGICAL ANALYSIS OF

FIXPOINT THEOREMS

Arij BENKHADRA and Isar STUBBE

Résumé. Nous démontrons un théorème du point fixe pour des contractions

sur des catégories Cauchy-complètes enrichies dans un quantale. Il est val-

able pour tout quantale dont le treillis sous-jacent est continu, et s’applique

à des contractions dont la fonction de contrôle est séquentiellement semi-

continue inférieurement. Des conditions suffisantes pour l’unicité du point

fixe sont établies. Les exemples comprennent des théorèmes du point fixe

connus et nouveaux pour les espaces métriques, les ordres flous, et les es-

paces métriques aléatoires.

Abstract. We prove a fixpoint theorem for contractions on Cauchy-complete

quantale-enriched categories. It holds for any quantale whose underlying

lattice is continuous, and applies to contractions whose control function is

sequentially lower-semicontinuous. Sufficient conditions for the uniqueness

of the fixpoint are established. Examples include known and new fixpoint

theorems for metric spaces, fuzzy orders, and probabilistic metric spaces.

Keywords. Quantale, Enriched Category, Fixpoint Theorem.

Mathematics Subject Classification (2020). 06F07, 18D20, 47H10, 54H25.

Introduction

A beautiful and important result in metric space theory, is Banach’s fixpoint

theorem [2] from 1922: ªEvery contraction on a non-empty complete metric

space admits a unique fixpoint.º The gist of the proof is wonderfully sim-

ple: take any element x of the space (X, d) and, iterating the contraction
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f : X → X , prove that the sequence (fnx)n∈N is Cauchy. In the complete

space (X, d) this sequence converges, and one then shows that it does so to

a (necessarily unique) fixpoint of f . Many generalizations and applications

of Banach’s theorem have been, and are still, studied.

In 1972, Lawvere [17] famously showed that metric spaces are a par-

ticular instance of enriched categories. More impressively still, Lawvere

also showed how convergence of Cauchy sequences can adequately be un-

derstood via representability of left adjoint distributors, thus lifting the very

concept of Cauchy completeness to the level of enriched categories. In his

words, ªspecializing the constructions and theorems of general category the-

ory we can deduce a large part of general metric space theory.º

It is thus natural to investigate whether fixpoint theorems still make sense

in the vast context of enriched categories. This is precisely the subject of this

paper.

More precisely, we shall take quantale-enriched categories as generaliza-

tion of metric spaces. That is to say, we fix a quantale Q, and work with cat-

egories, functors and distributors enriched in Q. Our contribution shows that

fixpoint theorems for Q-categories depend on the interplay between three

essential parameters. Indeed, a given contraction must be ªstrong enoughº

(we shall measure its strength by means of a control function); the space on

which it acts must be ªcomplete enoughº for the Picard iteration to converge

to a fixpoint (we shall take this to be Cauchy-completeness in the sense of

Lawvere); but we also need sufficiently strong algebraic properties of the

underlying quantale Q to allow for the formulation of precisely that conver-

gence.

In concreto, we shall prove a fixpoint theorem for Cauchy-complete Q-

categories1 that holds for any quantale Q whose underlying complete lattice

is continuous and for a specific notion of contraction. Besides, we make

plain when and why such a fixpoint is unique (up to isomorphism). As ex-

amples we find the classical Banach fixpoint theorem for metric spaces, and

Boyd and Wong’s [3] generalization thereof (taking the underlying quantale

1To stay faithful to Banach’s theorem in the metric case, we have chosen to study

fixpoints for contractions on Cauchy-complete Q-categories. Let us mention, though,

that other authors have studied other kinds of completeness, e.g. Wagner [27] chooses

liminf-complete Q-categories, whereas Ackerman [1] works with spherically complete Q-

categories (and both use a commutative quantale Q).
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to be the positive real numbers); but we also formulate new results for fuzzy

ordered sets (when working over a left-continuous t-norm) and for proba-

bilistic metric spaces (now the quantale is the tensor product of the positive

reals with a left-continuous t-norm).

In Section 1 we shall provide all the necessary notions from quantale-

enriched category theory to make this paper reasonably self-contained; we

follow [25] for the general theory, and [13] specifically for the comparison

between categorical and sequential Cauchy-completeness. In Section 2 we

first introduce the contractions that we are interested in, then we show how

these contractions determine Cauchy distributors under the appropriate al-

gebraic condition on the quantale Q, and finally we formulate the resulting

fixpoint theorem for Cauchy-complete Q-categories. The examples in Sec-

tion 3 show how our fixpoint theorem generalizes known results from the

literature, and provides for new results too. We end with a short conclusion

in Section 4.

1. Quantale-enriched categories

1.1 Q-enriched categories, functors and distributors

In this section we recall some key notions from [25] on quantale-enriched

categories2; we encourage the reader to go back-and-forth to Subsection 1.2

for the relevant examples.

Throughout, we fix a quantale Q = (Q,
∨

, ◦, 1): it is a complete sup-

lattice (Q,
∨

) endowed with a monoid3 structure (Q, ◦, 1) such that the prod-

uct distributes over arbitrary suprema:

s ◦ (
∨

i

ti) =
∨

i

(s ◦ ti) and (
∨

i

si) ◦ t =
∨

i

(si ◦ t).

In other words, but more abstractly, a quantale is a monoid in the sym-

metric monoidal closed category Sup of complete lattices and supremum-

preserving morphisms.

2That reference actually treats the more general quantaloid-enriched category theory,

but the reader will easily convert those results to the simpler quantale-enriched case. See

also [26] for a gentle introduction to the subject.
3We do not assume that 1, the unit of the monoid, is the top element of the lattice.
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A Q-enriched category C (or Q-category C for short) consists of a set

C0 (of ªobjectsº) together with a Q-valued (ªhomº) predicate

C : C0 × C0 → Q : (x, y) 7→ C(x, y)

satisfying, for all x, y, z ∈ C0, the following (ªcompositionº and ªidentityº)

conditions:

C(x, y) ◦ C(y, z) ≤ C(x, z) and 1 ≤ C(x, x).

A Q-functor F : C → D between two Q-categories is a function

F : C0 → D0 : x 7→ Fx

satisfying, for all x, x′ ∈ C0, the (ªfunctorialityº) condition

C(x′, x) ≤ D(Fx′, Fx).

Two such Q-functors F : A → B and G : B → C can be composed in the

obvious way to produce a new functor G◦F : A → C, and the identity func-

tion on A0 provides for the identity functor 1A : A → A. Thus Q-categories

and Q-functors are the objects and morphisms of a (large) category Cat(Q).
AQ-distributor (also called bimodule or profunctor) Φ: C ❝ //D between

two Q-categories is a Q-valued predicate

Φ: D0 × C0 → Q : (y, x) 7→ Φ(y, x)

satisfying, for all x, x′ ∈ C0 and y, y′ ∈ C0, the (ªactionº) condition

D(y′, y) ◦ Φ(y, x) ◦ C(x, x′) ≤ Φ(y′, x′).

Two such distributors, say Φ: A ❝ //B and Ψ: B ❝ //C, compose as

(Ψ ◦ Φ): C0 × A0 7→ Q : (z, x) 7→
∨

y∈B0

Ψ(z, y) ◦ Φ(y, x).

The identity distributor on C is the ªhomº predicate C : C0 × C0 → Q it-

self, and soQ-categories andQ-distributors form a (large) category Dist(Q).
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However, there is more: the elementwise ordering of distributors makes

Dist(Q) a 2-category4.

Applying general 2-categorical algebra, we may now say that two Q-

distributors Φ: A ❝ //B and Ψ: B ❝ //A are (left/right) adjoint, denoted as

Φ ⊣ Ψ, if

A ≤ Ψ ◦ Φ and Φ ◦Ψ ≤ B.

Every functor F : A → B represents an adjoint pair of distributors F∗ ⊣ F ∗

defined by

F∗(b, a) = B(b, Fa) and F ∗(a, b) = B(Fa, b).

With this, the inclusion functor

Cat(Q) → Dist(Q) :
(

F : A → B

)

7→
(

F∗ : A ❝ //B

)

naturally makes Cat(Q) a locally ordered category by defining, for any

F,G ∈ Cat(Q),

F ≤ G
def
⇐⇒ F∗ ≤ G∗.

Whenever F ≤ G and G ≤ F , we write F ∼= G and say that these functors

are isomorphic.

For a fixed Q-category C, we may consider, for any other Q-category A,

the map which assigns to any functor F : A → C the left adjoint distributor

F∗ : A ❝ //C:

Cat(Q)(A,C) → LAdjDist(Q)(A,C) : F 7→ F∗.

This map is (by definition of the local order in Cat(Q)) order-preserving and

order-reflecting. If, for each A, this maps is also surjective (in words: every

left adjoint distributor into C is representable by a functor), then we say that

C is Cauchy-complete.

Let 1 be the Q-category defined by 10 = {∗} and 1(∗, ∗) = 1. A distrib-

utor ϕ : 1 ❝ //C is called a (contravariant) presheaf on C. There is a natural

bijection between Q-functors 1 → C and elements of C0. In particular, for

any c ∈ C0 there is a Q-functor ∆c : 1 → C : ∗ 7→ c which represents the

4Much better still: Dist(Q) is a quantaloid, i.e. a category enriched in Sup. Since we do

not need this very rich structure in this paper, we shall not dwell on it here.
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left adjoint presheaf (∆c)∗ : C0 × 10 → Q : (x, ∗) 7→ C(x, c). Therefore, by

putting

c ≤ c′
def
⇐⇒ ∆c ≤ ∆c′ ⇐⇒ C(−, c) ≤ C(−, c′) ⇐⇒ 1 ≤ C(c, c′)

the set C0 becomes an order (C0,≤). If both c ≤ c′ and c′ ≤ c hold, then

we write c ∼= c′ and we say that these objects of C are isomorphic. It is

furthermore a result in Q-category theory (which holds in greater generality

too) that C is Cauchy-complete if and only if

Cat(Q)(1,C) → LAdjDist(Q)(1,C)

is surjective; in words, C is Cauchy-complete if and only if each left adjoint

presheaf on C is representable.

The importance of Cauchy-complete Q-categories was made very clear

in Lawvere’s seminal paper [17] on the subject, via its relation to Cauchy

sequences. We shall briefly recall a small portion of this, using Hofmann

and Reis [13, Section 4.3] as reference.

Given a sequence x = (xn)n∈N in a Q-category C, we define

Cx :=
∨

N∈N

∧

n≥N

∧

m≥N

C(xn, xm).

and say that x = (xn)n∈N is a Cauchy sequence if Cx ≥ 1. On the other had,

we also define

ϕx : C0 → Q : y 7→
∨

N∈N

∧

n≥N

C(y, xn)

ψx : C0 → Q : y 7→
∨

N∈N

∧

n≥N

C(xn, y)

and then have for these Q-valued predicates that:

Proposition 1.1.1 For any sequence x = (xn)n∈N of objects in aQ-category

C, both ϕx and ψx are Q-enriched distributors. Furthermore, the sequence

x = (xn)n∈N is Cauchy (i.e. Cx ≥ 1) if and only if ϕx ⊣ ψx.

Thus it makes perfect sense to speak of (convergence of) Cauchy sequences

in any Q-category C, via the representability of the associated adjoint pair

of distributors, which is exactly what we shall need to do in the proof of

Proposition 2.2.3 further on.
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1.2 Examples of Q-enriched categories

In the rest of the paper, our examples of Q-enriched categories will be:

Example 1.2.1 (Ordered sets) The simplest non-trivial example of a quan-

tale is the two-element Boolean algebra Q = ({0, 1},∨,∧, 1). In this case, a

Q-category is an ordered set (P,≤), seen as a set P equipped with a binary

relation ≤ whose characteristic function P×P → {0, 1} : (x, y) 7→ [[ x ≤ y ]]
satisfies the following axioms:

(1) [[ x ≤ y ]] ∧ [[ y ≤ z ]] ≤ [[ x ≤ z ]] ,

(2) 1 ≤ [[ x ≤ x ]] .

(This order-relation need not be anti-symmetric; some call this a ªpreorderº.)

AQ-functor between suchQ-categories is a monotone map between ordered

sets. It is well-known (and easy to verify) that every ordered set is, viewed

as an enriched category, Cauchy-complete.

Example 1.2.2 (Metric spaces) Let Q = ([0,∞],
∧

,+, 0) be Lawvere’s

quantale of extended positive real numbers, i.e. it is the segment [0,∞] (with

∞ included) with the converse (!) of the natural (linear) order, and with the

sum as binary operation. As pointed out by Lawvere [17], a Q-category is

precisely a generalised metric space (X, d), that is, a set X together with a

distance function d : X ×X → [0,∞] such that

(1) d(x, y) + d(y, z) ≥ d(x, y),

(2) 0 ≥ d(x, x).

The adjective ªgeneralizedº here indicates that such a metric need not be

finitary (so d(x, y) = ∞ is allowed) nor symmetric (so d(x, y) ̸= d(y, x) is

allowed), nor separated (so d(x, y) = 0 = d(y, x) for x ̸= y is allowed).

A Q-functor between such Q-categories is a non-expanding map between

(generalized) metric spaces. Lawvere [17] famously showed that a metric

space is Cauchy-complete as enriched category if and only if all Cauchy

sequences (in the usual sense for metric spaces) converge.
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Example 1.2.3 (Fuzzy orders) A so-called left-continuous t-norm is pre-

cisely a commutative and integral quantale whose underlying (linear) su-

plattice is ([0, 1],
∨

) (see e.g. [15, 26]); the multiplication of such a quantale

is then typically written as x ∗ y. Examples include x ∗ y = xy (the ªprod-

uct t-normº), x ∗ y = min{x, y} (the ªminimum t-normº) and x ∗ y =
max{x + y − 1, 0} (the ªLukasiewicz t-normº); in fact, every continuous

t-norm (meaning that the multiplication is a continuous function) is in a

precise sense an amalgamation of these three (see e.g. [11]). These quan-

tales are the corner stone of ªfuzzyº logic: the truth values in this logic can

vary between 0 and 1, conjunction is computed with ∗, and implication is

computed with the adjoint to multiplication. A category enriched in a left-

continuous t-norm ([0, 1],
∨

, ∗, 1) thus consists of a set P together with a

map P × P → [0, 1] : (x, y) 7→ [[ x ≤ y ]] satisfying

(1) [[ x ≤ y ]] ∗ [[ y ≤ z ]] ≤ [[ x ≤ z ]] ,

(2) 1 ≤ [[ x ≤ x ]] .

Following [28, 20, 5, 18], we call this a fuzzy (pre)order: the truth value

[[ x ≤ y ]] ∈ [0, 1] is interpreted as ªthe extent to which x ≤ y holds in P º.

A Q-functor between such Q-categories is a map between fuzzy preorders

that does not decrease the value of the ªfuzzyº order. By Theorem 4.19 of

[13] (and the definition of Cauchy sequence in a Q-category recalled above)

it follows that a fuzzy order is categorically Cauchy-complete if and only if

all Cauchy sequences (in the usual sense for fuzzy orders, see Definition 4.1

in [5]) converge.

Example 1.2.4 (Probabilistic metric space) Fix a left-continuous t-norm

([0, 1],
∨

, ∗, 1). It was shown by Hofmann and Reis [13], and further ex-

plained in [6], that the set

∆ = {f : [0,∞] → [0, 1] | f(t) =
∨

s<t

f(s)}

of so-called distance distributions5 is a quantale for pointwise suprema, with

5Because domain and codomain are continuous lattices, these are precisely the lower

semicontinuous functions, see [8, Proposition II-2.1]; and because domain and codomain

are complete linear orders, these are precisely the supremum-preserving maps, see [6, Ex-

ample 2.1.10].
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the convolution product

(f ∗ g)(t) =
∨

r+s=t

f(r) ∗ g(s)

as binary operation, and

e(t) =

{

0 if t = 0,
1 else

as two-sided unit. Indeed, it is shown in [9, Examples 2.1.10 and 2.3.36] that

the quantale Q = (∆,
∨

, ∗, e) is the tensor product in the category of suplat-

tices, as well as the coproduct in the category of commutative quantales,

of the Lawvere quantale ([0,∞],
∧

,+, 0) and the left-continuous t-norm

([0, 1],
∨

, ∗, 1). A Q-category has been called a (generalized) probabilis-

tic metric space by some [13, 12], and a (generalized) fuzzy metric space by

others [16, 7]; it consists of a set X together with a probabilistic distance

function d : X ×X × [0,∞] → [0, 1] such that

(0) d(x, y, t) =
∨

s<t d(x, y, s),

(1) d(x, x, t) = 1 for t > 0,

(2) d(x, y, r) ∗ d(y, z, s) ≤ d(x, z, r + s).

Such an object is often denoted (X, d, ∗), to stress the importance of the

t-norm. The intended meaning of d(x, y, t) is that it expresses ªthe prob-

ability that the distance from x to y is strictly less than tº. (Again, we do

not insist on finiteness, symmetry or separatedness for such a space, each of

which can be expressed suitably; see also [24].) A Q-enriched functor is a

map between such spaces that does not decrease such probabilistic distances.

Hofmann and Reiss [13] proved that a probabilistic metric space is categor-

ically Cauchy-complete if and only if all Cauchy sequences (as traditionally

defined in probabilistic metric spaces, see [4, 13]) converge.

2. Fixpoints for contractions on Q-categories

2.1 Contractions on a Q-enriched category

Let Q be any quantale (and write 0 for its bottom element), and C any Q-

enriched category.
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Definition 2.1.1 If φ : Q→ Q and f : C0 → C0 are maps such that

1. φ(t) ≥ t for all t ∈ Q,

2. if φ(t) = t then t = 0 or 1 ≤ t,

3. for all x, y ∈ C, C(fx, fy) ≥ φ(C(x, y)),

then we say that f is a φ-contraction, and we say that φ is a control function

for f .

A control function φ is thus bigger than the identity function on the whole

of Q, and strictly so except possibly in t = 0 or t ≥ 1. Note too that a

φ-contraction f is always a Q-functor f : C → C, but not every Q-functor

is φ-contractive for some control function φ.

We wish to investigate the possible fixpoints of such contractions. Let us

first make this formal:

Definition 2.1.2 Let f : C → C be a Q-functor. A fixpoint for f is an u ∈ C

such that fu ∼= u in C, that is to say, we have both 1 ≤ C(fu, u) and

1 ≤ C(u, fu).

In general, such fixpoints are of course not unique. However, if f is a φ-

contraction, and both fu ∼= u and fu′ ∼= u′ hold, then it follows from the

triangular inequality in C that

C(u, u′) ≥ C(u, fu) ◦ C(fu, fu′) ◦ C(fu′, u′)

≥ 1 ◦ C(fu, fu′) ◦ 1

= C(fu, fu′)

≥ φ(C(u, u′))

≥ C(u, u′)

Since φ(t) > t for all 0 ̸= t ̸≥ 1, we must have C(u, u′) = 0 or C(u, u′) ≥ 1.

Exchanging u and u′ one sees that also C(u′, u) = 0 or C(u′, u) ≥ 1. Hence

there are exactly four possibilities:
{

C(u, u′) ≥ 1
C(u′, u) ≥ 1

or

{

C(u, u′) ≥ 1
C(u′, u) = 0

or

{

C(u, u′) = 0
C(u′, u) ≥ 1

or

{

C(u, u′) = 0
C(u′, u) = 0

Under mild assumptions on C we can now formulate uniqueness results for

fixpoints.
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Proposition 2.1.3 Let C be a Q-category all of whose homs are non-zero,

and f : C → C any φ-contraction. If fu ∼= u and fu′ ∼= u′ then u ∼= u′.

Proof. In the four possible cases above, only the first is compatible with

non-zero homs in C. ✷

ForQ-categories with homs that can be equal to 0, we have a different result.

Proposition 2.1.4 Let C be symmetric Q-category (meaning that C(x, y) =
C(y, x) for all x, y ∈ C) and f : C → C any φ-contraction. If fu ∼= u and

fu′ ∼= u′ then either u ∼= u′ or C(u, u′) = 0.

Proof. In the four possible cases above, only the first and the last are com-

patible with symmetry in C. ✷

Reckoning that any symmetric Q-category decomposes as a categorical sum

of symmetric subcategories, each of which has all homs non-zero, the latter

Proposition says that any two distict fixpoints of f : C → C must be in

different summands of C.

2.2 From contractions to adjoint presheaves

Given any φ-contraction f on a Q-category C and an object x ∈ C0, it

follows from Proposition 1.1.1 that the sequence (fnx)n∈N determines two

distributors,

ϕx,f : 1 ❝ //C and ψx,f : C ❝ //1,

with elements

ϕx,f (y) =
∨

N∈N

∧

n≥N

C(y, fnx) and ψx,f (y) =
∨

N∈N

∧

n≥N

C(fnx, y).

We now wish to identify sufficient conditions on Q and φ : Q → Q in order

to prove an adjunction between these distributors.

To that end, we first recall some pertinent definitions from [8]. Let L be

a complete lattice. A subset D ⊆ L is directed if it is non-empty and, for

any x, y ∈ D there exists a z ∈ D such that x ∨ y ⊆ z. For two elements

a, b ∈ L we write a ≪ b, and we say that a is way below b, if, for every

directed subset D ⊆ L, b ≤
∨

D implies the existence of a d ∈ D such that

a ≤ d.
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Definition 2.2.1 We say that a complete lattice L is continuous if, for each

a ∈ L,

a =
∨

{u ∈ L | u≪ a}.

It is well-known that every continuous lattice is meet-continuousÐmeaning

that (binary) meets distribute over (all) directed suprema. Finally, we shall

be interested in a weak variant6 of lower-semicontinuity:

Definition 2.2.2 We say that a function φ : L → M between complete lat-

tices is sequentially lower-semicontinuous if, for any sequence (tn)n∈N in

L,

φ(
∨

N∈N

∧

n≥N

tn) ≤
∨

N∈N

∧

n≥N

φ(tn).

Taking inspiration from the ªmetricº case discussed in [3], we now prove:

Proposition 2.2.3 Let Q be a quantale whose underlying complete lattice

is continuous7, and let f : C → C be a φ-contraction on a Q-category for

which the control function φ : Q→ Q is sequentially lower-semicontinuous.

For any x ∈ C0 such that C(x, fx) ̸= 0 ̸= C(fx, x) we have ϕx,f ⊣ ψx,f .

Proof. Putting Cx,f :=
∨

N∈N

∧

n≥N

∧

m≥N C(fnx, fmx) ∈ Q, we recall

from Proposition 1.1.1 that ϕx,f ⊣ ψx,f if and only if Cx,f ≥ 1. We shall

show that Cx,f ̸≥ 1 leads to a contradiction.

(i) Picking an x ∈ C0 such that C(x, fx) ̸= 0 ̸= C(fx, x), we put

cn := C(fnx, fn+1x) ∈ Q for all n ∈ N. By assumption, 0 < c0 ≤ 1 and

the conditions on φ imply that c0 ≤ φ(c0) ≤ c1. Repeating the argument we

find that cn ≤ φ(cn) ≤ cn+1, so the sequence is increasing and strictly above

0. Therefore we can compute, using the conditions on φ, that:

∨

N∈N

cN =
∨

N∈N

cN+1

6A function f : L → M between complete lattices is lower-semicontinuous if the sup-

inf condition in Definition 2.2.2 holds for all nets in L (i.e. a family of elements indexed by

a directed poset).
7It is tempting to speak of a continuous quantale, yet this terminology is in conflict with

that of continuous t-norm. Indeed, the underlying lattice of any t-norm is the continuous

lattice [0, 1], yet not every t-norm is continuous (as a function in two variables). So we shall

stick to the somewhat cumbersome ªquantale with underlying continuous latticeº.
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=
∨

N∈N

∧

n≥N

cn+1

≥
∨

N∈N

∧

n≥N

φ(cn)

≥ φ(
∨

N∈N

∧

n≥N

cn)

= φ(
∨

N∈N

cN)

≥
∨

N∈N

cN

We thus find a fixpoint of φ which is not 0, so it must satisfy 1 ≤
∨

N∈N
cN .

(ii) Similarly, the sequence (an := C(fn+1x, fnx))n∈N must also satisfy

1 ≤
∨

∈N
an.

(iii) Next, suppose that 1 ̸≤ Cf,x; by continuity of the underlying com-

plete lattice of Q, this means that there exists an ϵ ≪ 1 such that ϵ ̸≤ Cf,x

(and so in particular ϵ ̸= 0). Using the definition of Cf,x as a sup-inf, we

may infer:

ϵ ̸≤
∨

k∈N

(

∧

n≥k

∧

m≥k

C(fnx, fmx)

)

=⇒ ∀k ∈ N : ϵ ̸≤
∧

n≥k

∧

m≥k

C(fnx, fmx)

=⇒ ∀k ∈ N, ∃nk,mk ≥ k : ϵ ̸≤ C(fnkx, fmkx)

In the last line above, it cannot be the case that mk = nk, because otherwise

C(fnkx, fnkx) ≥ 1 (by the ªidentityº axiom for the Q-category C), which

would then also be above ϵ ≪ 1. So suppose that nk < mk, then we can

replace mk by

m′
k := min{m > nk | ϵ ̸≤ C(fnkx, fmx)}

and so we still have ϵ ̸≤ C(fnkx, fm′

kx), but now also ϵ ≤ C(fnkx, fmk−1x).
Similarly, if nk > mk then we may replace nk by

n′
k := min{n > mk ∈ N | ϵ ̸≤ C(fnx, fmkx)}
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and we still have ϵ ̸≤ C(fn′

kx, fmkx), but now also ϵ ≤ C(fn′

k
−1x, fmkx).

That is to say, we can always pick nk,mk ≥ k to ensure that

ϵ ̸≤ C(fnkx, fmkx) and

{

either C(fnkx, fmk−1x) ≥ ϵ (A)
or C(fnk−1x, fmkx) ≥ ϵ (B)

Now denote, for each such pick of nk,mk ≥ k ∈ N,

dk := C(fnkx, fmkx);

and let us insist that ϵ ̸≤ dk for all k ∈ N. In case condition (A) holds for dk,

then in particular mk > nk so mk ≥ 1, and we can use the ªcompositionº

axiom in C to get

ϵ ◦ cmk−1 ≤ C(fnkx, fmk−1x) ◦ C(fmk−1x, fmkx)

≤ C(fnkx, fmkx)

= dk

In case condition (B) holds for dk we can similarly prove that

ank−1 ◦ ϵ ≤ dk.

Hence, using in (∗) that a continuous lattice is always meet-continuous, and

that both sequences

(

∧

{dk | k ≥ N and (A) holds}
)

N∈N

(

∧

{dk | k ≥ N and (B) holds}
)

N∈N

are increasing, we may compute that

∨

N∈N

∧

k≥N

dk =
∨

N∈N0

∧

k≥N

dk

=
∨

N∈N0

(

∧

{dk | k ≥ N and (A) holds}

∧
∧

{dk | k ≥ N and (B) holds}
)
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(∗)
=

(

∨

N∈N0

∧

{dk | k ≥ N and (A) holds}

)

∧

(

∨

N∈N0

∧

{dk | k ≥ N and (B) holds}

)

≥

(

∨

N∈N0

∧

{ϵ ◦ cmk−1 | k ≥ N and (A) holds}

)

∧

(

∨

N∈N0

∧

{ank−1 ◦ ϵ | k ≥ N and (B) holds}

)

≥

(

∨

N∈N

∧

m≥N

ϵ ◦ cm

)

∧

(

∨

N∈N

∧

m≥N

an ◦ ϵ

)

≥

(

ϵ ◦ (
∨

N∈N

∧

m≥N

cm)

)

∧

(

(
∨

N∈N

∧

m≥N

an) ◦ ϵ

)

=

(

ϵ ◦ (
∨

N∈N

cN)

)

∧

(

(
∨

N∈N

aN) ◦ ϵ

)

= (ϵ ◦ 1) ∧ (1 ◦ ϵ)

= ϵ

So, even though ϵ ̸≤ dk (for all k ∈ N), we do have 0 ̸= ϵ ≤
∨

N∈N

∧

k≥N dk.

(iv) Using the ªcompositionº axiom in C, we have for every k ≥ N ∈ N

(recall that nk,mk ≥ k too) that

dk ≥ cnk
◦C(fnk+1x, fmk+1x) ◦amk

≥ cnk
◦φ(dk) ◦amk

≥ cN ◦φ(dk) ◦aN

and so we may compute that
∨

N∈N

∧

k≥N

dk ≥
∨

N∈N

∧

k≥N

(cN ◦ φ(dk) ◦ aN)

≥
∨

N∈N

(

cN ◦ (
∧

k≥N

φ(dk)) ◦ aN

)

(∗)
=

(

∨

N∈N

cN

)

◦

(

∨

N∈N

∧

n≥N

φ(dk)

)

◦

(

∨

N∈N

aN

)
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= 1 ◦

(

∨

N∈N

∧

k≥N

φ(dk)

)

◦ 1

≥ φ(
∨

N∈N

∧

n≥N

dk)

≥
∨

N∈N

∧

n≥N

dk

where in (∗) we use that the involved sequences are increasing8. This means

that
∨

N∈N

∧

k≥N dk is a fixpoint of φ which ± as we showed earlier ± is not

0, so we must have 1 ≤
∨

N∈N

∧

k≥N dk.

(v) Since ϵ ≪ 1 ≤
∨

N∈N

∧

k≥N dk, and the latter supremum is directed,

by continuity of Q there must exist an N0 ∈ N such that ϵ ≤
∧

k≥N0
dk.

Yet, we established earlier that ϵ ̸≤ dk for all k ∈ N. This is the announced

contradiction. ✷

2.3 Fixpoint for a contraction on a Cauchy-complete Q-category

In the above Subsection we discovered sufficient conditions for a φ-con-

traction f : C0 → C0 to determine adjoint distributors. If the Q-category C

is Cauchy-complete, this adjoint pair is represented by an object of C. We

will now show that this representing object is a fixpoint for the contraction.

Proposition 2.3.1 LetQ be any quantale and f : C → C anyQ-functor on a

Cauchy-completeQ-category. If there exists an x ∈ C0 such that ϕx,f ⊣ ψx,f

then f has a fixpoint.

Proof. By Cauchy-completeness of C, the presheaves ϕx,f and ψx,f are rep-

resentable; so suppose that ϕx,f = C(−, u) and ψx,f = C(u,−) for some

u ∈ C0. Now we can compute that

C(fu, u) = ϕx,f (fu)

=
∨

N∈N

∧

n≥N

C(fu, fnx)

8For two sequences (an)n∈N and (bn)n∈N of elements in Q, distributivity of product

over suprema in Q assures that (
∨

n
an)◦(

∨

m
bm) =

∨

n,m
(an ◦bm). However, when both

sequences are increasing, i.e. n ≤ n′ implies an ≤ an′ and bn ≤ bn′ , then this is further

equal to
∨

n
(an ◦ bn). The argument obviously extends to three increasing sequences.
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=
∨

N∈N0

∧

n≥N

C(fu, fnx)

(∗)

≥
∨

N∈N

∧

n≥N

C(u, fnx)

= ϕx,f (u)

= C(u, u)

≥ 1

using the ªfunctorialityº axiom for f in (∗). Similarly one computes that

C(u, fu) ≥ 1. Therefore we have both u ≥ fu and fu ≥ u in (the underly-

ing order of) C, which means that u ∼= fu, as wanted. ✷

Putting Propositions 2.2.3 and 2.3.1 together, we arrive at:

Theorem 2.3.2 (Fixpoint theorem) Let Q be quantale whose underlying

lattice is continuous, and let f : C → C a φ-contraction on a Cauchy-

complete Q-category, for which the control function φ : Q → Q is sequen-

tially lower-semicontinuous. If there exists an x ∈ C0 such that C(x, fx) ̸=
0 ̸= C(fx, x) then f has a fixpoint, namely the object representing the ad-

junction ϕx,f ⊣ ψx,f .

In the above Theorem, the obtained fixpoint depends on the element x ∈ C

chosen such that C(x, fx) ̸= 0 ̸= C(fx, x). However, let us recall that

Propositions 2.1.3 and 2.1.4 provide mild conditions on C to make the fix-

point of a contraction unique.

3. Examples and counterexamples

The examples in this section show how Theorem 2.3.2 generalizes known

fixpoint theorems from the literature, and provides new ones too. Also, we

mention a counterexample to show that the conditions cannot be weakened

unless supplementary conditions are considered.

3.1 Orders

The two-element boolean algebra being a continuous lattice, the quantale

Q = ({0, 1},∨,∧, 1) satisfies the condition in Theorem 2.3.2, so this Theo-
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rem can potentially say something about ordered sets. Note that the functions

φ1 : {0, 1} → {0, 1} :

{

0 7→ 0
1 7→ 1

and φ2 : {0, 1} → {0, 1} :

{

0 7→ 1
1 7→ 1

are the only possible control functions (according to Definition 2.1.1). A

map f : (P,≤) → (P,≤) is a φ1-contraction if and only if f is monotone;

and it is a φ2-contraction if and only if f is essentially constant (fx ∼= fy

for all x, y ∈ P ). Any non-empty ordered set is Cauchy-complete as a Q-

enriched category. It is part of the hypotheses in Theorem 2.3.2 that there

exists an x ∈ P such that x ≤ fx and fx ≤ x; in other words, by hypoth-

esis there exists a fixpoint fx ∼= x. Of course this makes the conclusion of

the Theorem (namely, the existence of a fixpoint) trivial! Moreover, the fix-

point that is constructed in the proof (as an object representing a left adjoint

presheaf) is in this particular case precisely isomorphic to the fixpoint given

as hypothesis. So, for the two-element Boolean algebra, Theorem 2.3.2 does

not give any result; the Theorem can thus only be meaningful for ªricherº

quantales. (We hasten to add that there exist of course very important fix-

point theorems for ordered sets; but these usually require more stringent

completeness conditions on the ordered set and/or more stringent continuity

conditions on the map. See e.g. [8].)

3.2 Metric spaces

Lawvere’s quantale Q = ([0,∞],
∧

,+, 0) is linear, and therefore continu-

ous9. It is also an integral quantale: the unit 0 for the monoid structure is the

top element of the lattice (note again that the order on [0,∞] is the reverse

of the natural order!). This makes the notion of contraction in Definition

2.1.1 slightly simpler, so by application of Theorem 2.3.2 we can produce

the following result:

Corollary 3.2.1 Let φ : [0,∞] → [0,∞] be an upper-semicontinuous func-

tion so that φ(t) < t for any t ̸∈ {0,∞} and φ(0) = 0. Let f : X → X

be a map on a Cauchy-complete generalized metric space (X, d) such that

9Any complete linear lattice L is completely distributive and (therefore) also continuous.

In fact, we have a ≪ b if and only if either a = 0, or a < b, or (a = b and b ̸=
∨

{x ∈ L |
x < b}), see [8].
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d(fx, fy) ≤ φ(d(x, y)) for all x, y ∈ X . If there is an x ∈ X such that

d(x, fx) ̸= ∞ ≠ d(fx, x) then the sequence (fnx)n∈N converges to a fix-

point of f .

If (X, d) is a finitary generalized metric space (i.e. no distance is infinite),

then any x ∈ X will produce a convergent sequence (fnx)n∈N; and Proposi-

tion 2.1.3 implies that all such sequences (fnx)n∈N converge to an essentially

unique fixpoint of f (unique if the space is also separated).

If (X, d) is a symmetric generalized metric space, then any x ∈ X

such that d(x, fx) ̸= ∞ will produce a convergent sequence (fnx)n∈N; and

Proposition 2.1.4 implies that any two fixpoints of f are either isomorphic

(equal if the space is also separated) or at distance ∞ from each other (i.e.

the space (X, d) decomposes as a categorical sum of two non-empty spaces,

and the fixpoints are in different summands).

In particular, for ordinary metric spaces we may note:

Example 3.2.2 Let (X, d) be a Cauchy-complete metric space, and suppose

that φ : [0,∞] → [0,∞] is an upper-semicontinuous function that maps 0
to 0 and so that φ(t) < t for any t ̸∈ {0,∞}. Then any map f : X → X

satisfying d(fx, fy) ≤ φ(d(x, y)) for all x, y ∈ X has a unique fixpoint,

and for any x ∈ X the sequence (fnx)n∈N converges to that fixpoint.

Some conditions in this statement can be weakened somewhat. For instance,

it is enough to require that φ is (defined on and) upper-semicontinuous on

the closure of {d(x, y) | x, y ∈ X}. Indeed, in the proofs of Propositions

2.1.3, 2.1.4 and 2.2.3, the control function is only applied to (sequences of)

elements in that closed set. This is how the above example is formulated by

Boyd and Wong [3, Theorem 1] (see also [22]).

On the other hand, the control function defined by φ(t) = k · t for 0 <
k < 1 certainly satisfies the conditions in Corollary 3.2.1, so we find the

following particular case:

Example 3.2.3 Let f : X → X be a map on a Cauchy-complete generalized

metric space (X, d) for which there exists a 0 < k < 1 such that d(fx, fy) ≤
k · d(x, y) for all x, y ∈ X . If there is an x ∈ X such that d(x, fx) ̸= ∞ ≠
d(fx, x) then the sequence (fnx)n∈N converges to a fixpoint of f .

115



A. BENKHADRA AND I. STUBBE FIXPOINT THEOREMS

If (X, d) is an ordinary metric space, we find here the well-known Banach

Fixpoint Theorem.

Finally, we mention that Ackerman [1] has produced an example of a

non-expansive contraction ± whose control function merely satisfies φ(t) ≤
t instead of φ(t) < t for t ̸∈ {0,∞} ± on a Cauchy-complete metric space

which does not have a fixpoint. This shows that this condition on the control

map cannot be weakened without strenghtening some other conditions in

Corollary 3.2.1.

3.3 Fuzzy orders

The quantale Q = ([0, 1],
∨

, ∗, 1), where ∗ is a left-continuous t-norm, is

linear (thus continuous, see a previous footnote) and integral. Hence, by

application of Theorem 2.3.2 we find:

Corollary 3.3.1 Let (P, [[ · ≤ · ]] ) be a complete fuzzy preorder. Suppose

that f : P → P is a function such that [[ fx ≤ fy ]] ≥ φ( [[ x ≤ y ]] ) for some

lower-semicontinuous function φ : [0, 1] → [0, 1] satisfying φ(t) > t for all

0 < t < 1, and φ(1) = 1. If there is an x ∈ P such that [[ x ≤ fx ]] ̸= 0 ̸=
[[ fx ≤ x ]] , then the sequence (fn(x))n∈N converges to a fixpoint of f .

This is a (straightforward) generalization of Corollary 3.2.1, since Lawvere’s

quantale ([0,∞],
∧

,+, 0) is isomorphic to the product t-norm ([0, 1],
∨

, ·, 1)
by the order-reversing map [0,∞] → [0, 1] : t 7→ exp(−t).

3.4 Probabilistic metric spaces

The integral quantale (∆,
∨

, ∗, e) of distance distributions (wrt. a left-con-

tinuous t-norm ∗) is completely distributive10, hence continuous, so we can

apply Theorem 2.3.2.

Corollary 3.4.1 Let φ : ∆ → ∆ be a lower-semicontinuous function satis-

fying φ(u) > u for all 0 < u < e, and φ(e) = e. Suppose that f : X → X

is a function on a Cauchy-complete generalized probabilistic metric space

10Indeed, the complete distributivity of the underlying suplattices follows from [9, The-

orem 2.1.17], who show that the tensor product of completely distributive complete lattices

is completely distributive.
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(X, d, ∗) such that d(fx, fy, t) ≥ φ(d(x, y, t) for all t. If there exists an

x ∈ X such that d(x, fx, t) ̸= 0 ̸= d(fx, x, t) then f has a fixpoint.

It follows furthermore from Proposition 2.1.3 that, if d(x, y,∞) = 1 for all

x, y ∈ X (i.e. the space is finitary), then the fixed point is unique.

There are indeed examples of control functions φ : ∆ → ∆ that the

above statement asks for, e.g.

φ(u)(t) :=

{

1
2
(u(t) + 1) if 0 < t ≤ ∞

0 if t = 0

Unfortunately though, the ªBanach control functionº which is appropriate in

the setting of probabilistic metric spaces11,

φ(u)(t) = u(Kt) for some 1 < K <∞,

does not satisfy φ(u) ̸= u for all 0 ̸= u ̸= e (e.g. the ªalmost constantº

functions, defined by u(t) = u0 for 0 < u0 < 1 and 0 < t ≤ ∞, are

fixpoints of φ). One possible solution (hinted at by a result in [10]) would

be to work with finitary probabilistic metric spaces. These can be seen as

categories enriched in the subquantale

∆+ = {u ∈ ∆ | u(∞) = 1} ∪ {0}

of ∆. Restricted to ∆+, the Banach control function does not have fixpoints

other than 0 and e: if u ∈ ∆+ \ {0} satisfies u(t) = u(Kt), then for any

0 < t0 <∞,

1 = u(∞) = u(
∨

n∈N

Knt0) =
∨

n∈N

u(Knt0) = u(t0),

so indeed u = e. However, we do not know whether ∆+ is continuous (we

conjecture that it is not), so we do not know whether we can apply Theorem

2.3.2 without modifications: this will be a topic of futher investigation.

11Contractions with this control function are called probabilistic q-contractions in [11].
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4. Conclusion and further work

With our study of fixpoint theorems for quantale-enriched categories, we ex-

emplified that such results depend not only on the strength of the contraction

and the completeness of the space, but also on the algebraic properties of

the underlying quantale: any fixpoint theorem results from an equilibrum

between those three aspects.

In future work, we want to investigate how several examples of fixpoint

theorems in the literature (see e.g. [5, 10, 11]) fit ± or, perhaps, do not fit

± with our quantale-enriched approach. This could lead to variants on our

Theorem 2.3.2, where different algebraic properties of Q are combined with

different conditions on the control functions of contractions, or with different

completeness conditions on the Q-categories (see e.g. [27]).

We also intend to study fixpoint theorems for quantaloid-enriched cat-

egories. This generalization, far from trivial, has the benefit to include in

particular the theory of partial metric spaces [26, 14] and of probabilistic

partial metric spaces [12], two areas for which only few fixpoint theorems

are known [19, 21, 23].
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