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LIMITS OF TOPOLOGICAL SPACES
AS ENRICHED CATEGORIES

Derek Scott Cook and Ittay Weiss

Résumé. Le lien entre les espaces métriques et la topologie repose sur cer-
taines propriétés du treillis des réels non négatifs. En raison de la célebre
observation de Lawvere selon laquelle la théorie des espaces métriques est
une branche de la théorie des catégories enrichies, il est naturel d’étudier
dans quelle mesure le lien avec la topologie survit lors de 1’enrichissement
dans d’autres petits cosmos. En méme temps, 1’essor récent des techniques
topologiques en science des données souleve la question de savoir quelles
propriétés théoriques du treillis des réels non négatifs jouent un role vital,
dans le but d’axiomatiser ces propriétés afin d’améliorer 1’applicabilité des
techniques au-dela métrique classique. Nous considérons ces deux motiva-
tions comme les faces théorique et applicable d’une méme médaille mathé-
matique. Nous identifions une large classe de quantales comme réponse
commune aux deux questions, et utilisons les résultats pour présenter une
construction de limites d’espaces qui est classiquement équivalente a la con-
struction topologique, mais qui a un potentiel constructif différent.

Abstract. The link between metric spaces and topology relies on various
lattice theoretic properties of the non-negative reals. Due to Lawvere’s fa-
mous observation that metric space theory is a branch of enriched category
theory, it is natural to study the extent to which the link with topology sur-
vives when enriching in other small cosmoses. At the same time, the recent
flourish of topological techniques in data science raises the question of which
lattice theoretic properties of the non-negative reals play a vital role, with the
aim of axiomatising just those properties in order to enhance the applicability
of techniques beyond the classical metric setting. We view these two motiva-
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tions as the theoretical and applicable sides of the same mathematical coin.
We pinpoint a wide class of quantales as the common answer to the two ques-
tions, and use the results to present a construction of limits of spaces that is
classically equivalent to the topological one, but has constructively different
potential.

Keywords. quantale, quantale enrichment, generalised metric space, con-
structive complete distributivity, induced topology, topological data analysis.
Mathematics Subject Classification (2010). 18D20, 18F75, 18B35, 54E35.

1. Introduction and motivation

It is well known ([20]) that it is fruitful to view a metric space as a small
category enriched in the monoidal category [0, oo |, with an arrow = — y pre-
cisely when z > y, and monoidal structure provided by addition. Any aspect
of metric space theory thus becomes a source of enriched categorical inves-
tigation. Our interest is in continuity for a function f: X — Y between two
sets, each of which is the set of objects of an enriched category. A suitable
category V to enrich in is a cosmos, i.e., a symmetric closed monoidal co-
complete category ([19]). When V is also small, it is canonically equivalent
to a complete lattice. Such a lattice is then precisely a commutative quantale
(. Equivalently, a (commutative) quantale is a (commutative) monoid ob-
ject in the category CJLat of complete join lattices with respect to its tensor
product (see [17] and [10]). Let cQnt be the category of commutative quan-
tales with morphisms the join preserving monoidal functors. In more detail,
a quantale () is a complete lattice with joins \/, meets /\, bottom element L,
and top element T. It is equipped with a monoidal product, namely an as-
sociative operation - with a two-sided unit 1, and it distributes over arbitrary
joins, i.e.,

z-\/S=\V{z-s|seS} and \/S-z=\/{s-z|seS}

forall x € @ and S € ). A morphism f:() - ()’ is a monoidal functor,
again necessarily strict, that is also a complete join homomorphism. The
quantale is affine if its monoidal unit is the top element. It is commutative
when its monoidal product is symmetric (necessarily strictly so). Recall
from [11] that a complete lattice L is constructively completely distributive
(ccD) if V:D(L) — L, as a functor from the lattice of down-closed subsets
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of L, admits a left adjoint ||(-). Explicitly, y € |}(z) precisely when, for all
subsets .S € (), the condition x < \/ .S implies that iy < s for some s € 5. We
then say that y is totally below x, and write y << x. The CCD condition then

amounts to
z =\ I(z),

for all x € L. We shall use the auxiliary notation

Wr)={yeLly<z}, z)={yel|r<y}, and F(z)={yeL|y>z}

for elements in a lattice.

Let ); and ()2 be quantales, X a small ();-category, Y a small ()s-
category, and f: X — Y a function between the underlying sets of objects.
We say that f is continuous at x € X if for all ¢ << T in (), there exists a
0 << T in ()1 such that

<< X(x,y) = e <Y (fx, fy).

Expectantly, we say that f is continuous if f is continuous at all points = € X.
It is easily seen that the identity function from a small ()-category to itself
is continuous, and that the composition of continuous functions is continu-
ous. Therefore, if I' is a class of quantales, we obtain the category I'Cat .oy
consisting of all small ()-categories, where () is of class I', with all contin-
uous functions as morphisms. For instance, if I' = {[0, co]}, then I'Cat oy
is the category of all Lawvere metric spaces with morphisms all functions
satisfying the usual cauchy condition of continuity.

A quantale is a value quantale ([12]) when it is affine, its underlying
lattice is CCD, and |[(T) is closed under finite joins. The following result
was noted in [32, 7].

Theorem 1.1. Let F be the class of all value quantales. The open ball topol-
ogy functor O:FCat..,. - Top is an equivalence of categories. In fact, it
is the unique equivalence between these categories as concrete categories.

As a consequence, there arises a translation mechanism between topol-
ogy and the language of enriched categories. Given any topological concept,
one may ask whether it is captured enriched categorically in a natural fash-
ion. For instance, since Top is complete, so is FCat.;. If X and Y are two



D. COOK AND I. WEISS SPACES AS ENRICHED CATEGORIES

objects of FCat oy, their product may be computed as ¢((O(X)xO(Y))),
where the product is computed in Top and ¢: Top - FCat., is any choice
of an equivalency. Of course, this is not what we mean by capturing products
enriched categorically. Instead, we insist on treating X and Y as enriched
categories and remain firmly within the category FCat,,,, without passing
to the equivalent Top. Doing so, suppose that X and Y are enriched, respec-
tively, in the quantales (), and (). Suppose further that a suitable coproduct
quantale ) = ()1 [ Q- exists. It is then natural to define the ()-enriched
category X x Y with ob(X xY) = ob(X) x ob(Y") and

(X xY)((z,9),(2",y")) = X(2,2") @ Y (y,9)

where, for elements x € () and y € (), we write 2 ® y for the element ¢; () -
12(y) € Q111 Q2, namely the monoidal product in the coproduct Q1 [ Q2, of
the canonical injections of x and y in it. We will show that this construction
is legitimate and that it results in the categorical product of X and Y in
FCat . A fortiori, the open ball topology O(X x Y') must coincide with
the usual product topology of O(X ) and O(Y"). We will treat all small limits
in this enriched categorical sense.

1.1 The plan of the article

The rest of the introduction discusses the foundational aspect of the approach
above to topological data analysis, and quickly surveys related work. This is
a potential application we see to the approach we present, but the presenta-
tion itself is of independent interest. Section 2 leads to the identification of
topological quantales, namely lattice-theoretic conditions that guarantee that
the classical link between metric spaces and topology extends to the quan-
tale enrichment case. Section 3 develops the infrastructure of coproducts of
commutative quantales required for the main result. Throughout the paper,
and particularly in that section, we pay attention to the constructive validity
of the results. Section 4 then presents the construction of all small limits,
deliberately by the use of essentially metric techniques. The proof can be
seen as a very elementary € — ¢ style proof. However, its correctness rests
upon the precise lattice theoretic machinery developed earlier. In particular,
the construction of limits of spaces is as constructive as the lattices that are
used for metrising each of the ingredient spaces.



D. COOK AND I. WEISS SPACES AS ENRICHED CATEGORIES

1.2 Connection to topological data analysis

In topological data analysis (TDA) the starting point is a point cloud, which
is nothing but a finite metric space. Of course, in practice all data is finite,
but mathematically the restriction to finite metric spaces is artificial. Drop-
ping it, the starting point of TDA is a metric space. Equivalently, the starting
point of TDA is a small [0, oo ]-enriched category. The techniques used are
then topological. Topology is by design blind to small perturbations in the
presentation of a metric space, and this precisely leads to robustness in the
analysis of the data to various types of contamination (see [3]). TDA tech-
niques typically result in what is known as a bar code; a combination of the
blindness of topology together with the rigidity of the metric presentation of
the problem. Stated more formally, the algorithm is performed on the metric
space X and not on its open ball topology O(X ). The metric presentation is
crucial.

A categorical understanding of TDA, as begun in [4], must handle the
tension (see [29]) between the metric presentation of the problem and the
topological techniques. In particular, any topological technique that can be
used for TDA must allow the scale ¢ to affect the computation. This is of-
ten achieved by converting the given metric space with a chosen scale ¢, into
purely topological form, and running a computation on that. The work below
presents a rather harmonious passage from the metric to topology, primarily
without changing the objects of the category. This phenomenon may sim-
plify the interaction between the metric input and the topological processing
inherent to TDA.

Going back to the importance of the metric presentation of the point
cloud, the current phrasing of TDA is limited to operate only on classical
metric spaces. In this work we present an equivalency TQCat.,,; ~ Top,
where the objects of the category on the left-hand side are generalised metric
spaces, taking values in lattices more general than [0, co]. The approach we
take singles out such suitable lattices that ensure the results are constructive.
In other words, TDA remains applicable for data presented as an object in
TQCat .. This increases the domain of applicability of TDA and allows
greater flexibility when modelling data. We also mention the importance and
subtleties of developing algebraic topology constructively. For instance, it is
vital for the basics of algebraic topology that a space admits the path joining
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property (see [21]). Classically, this is not an issue, but in order to lead to ex-
ecutable algorithms, the underlying mathematics must be constructive. For
a metric space, rather than just a topological space, the path joining property
can be inferred under suitable condition (again, see [21]). By exhibiting Top
as equivalent to TQCat.;, we open up the possibility of developing alge-
braic topology for generalized metric spaces, and in a constructive manner.

Already the case of the product of two spaces (alluded to above) demon-
strates the potential of our approach. Suppose that X and Y are metric
spaces, each thought of as the input for analysis. Applying TDA to X x Y
then represents a case of multidimensional persistence; a well-known prob-
lem ([5]). A related scenario is that of multiparameter persistence, requiring
sophisticated tools as developed in [14]. A metric in the classical sense for
which O(X x Y") is the product topology surely exists, e.g., the Euclidean
metric or the inf metric. From a TDA perspective, the choice of which met-
ric is used is paramount. The bar code that will be produced with either of
the mentioned metrics does not record features as they occur in X and YV
independently. Our approach offers an alternative: a metrisation of X x Y
taking values in [0, 00] ® [0, 0o] as an approach to multiparameter analysis.
As mentioned, since our results are constructive, existing TDA techniques
are still applicable. Approaches to the foundations of TDA in general, and
addressing multidimensionality in particular, that take a similar path to ours
are, respectively, [9] and [8], emphasising constructive methods and topos
theory.

1.3 Relation to other work

There is plenty of existing literature on quantale enriched categories, a sur-
vey of which is not intended. We point out here the references we are aware
of that, at least tangentially, touch upon the issues we consider. We start
off by mentioning [33], by the second named author. That work provides
a comparison between Flagg’s value quantales and their precursor concept,
namely Kopperman’s value semigroups. Some attempts were made there to-
ward a construction of limits, but the background lattice theory was clunky
and is much improved in this current work.

[30] discusses extension of functors in the context of quantale enrich-
ment, clearly noting what happens when the quantale is constructively com-
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pletely distributive. In particular, in that case, the Pompeiu-Hausdorff metric
is obtained as such a functor extension. In this context we mention [1] and
[26].

Quantale enrichment in a single quantale, namely (QCat, are studied in
[28] as a rich source of concretely symmetric closed-monoidal topological
categories. It is shown, conversely, that such a topological category induces
a quantale. That article works toward characterising those categories equiv-
alent to QCat. The emphasis there is on a single quantale, and enriched
functors as morphisms. In light of the information in the introduction above,
it is interesting to extend the question and ask which categories occur, up to
equivalence, as ['Cat,,,; for a class I" of quantales.

Categories enriched in quantales (and quantaloids, see [27]) are well
studied in computer science. Here we mention [31], offering a topologi-
cally flavoured study, and [25], emphasising a dynamical interpretation. The
latter notes that it is the abandonment of the commutativity of the quantale
that results in dynamics. It is also primarily concerned with the categorical
consequences of the complete distributivity of the quantale. Both aspects
appear in our work, as we are careful to trace the role of commutativity, and
the effects lattice properties have on the enrichment.

It is interesting that [2], when proving that Top®? is a quasi-variety, uses
complete distributivity, while we require complete distributivity when pre-
senting Top as a category of enriched categories. Constructive complete
distributivity features prominently in [22], which elaborates further on [2].

Finally, in [15] quantaloid enrichment is considered from a topological
perspective close to ours. In particular, the authors associate with such an
enrichment a closure operator and note simple conditions for the closure op-
erator to land in topological spaces. Our work below addresses the closure
operator alongside its interior operator twin, in the case of quantale enrich-
ment. We expect that a similar story unfolds for quantaloid enrichment.

2. Topological quantales

For a metric space X, the closure operator is a monad on P (X ), the interior
operator is a monad on P( X )°P, and each monad determines the other via set
complementation. The aim of this section is to identify a class of quantales
() for which this phenomenon holds for all small ()-categories X. We do so
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by examining what holds in general, and how lattice-theoretic properties of
() affect the situation. We start by furnishing such an X with closure and
interior operators.

Definition 2.1. Let Q be a quantale, X a small QQ-category, and S € X a set
of objects. We write

X(z,9)=\{X(x,s)|seS}
where x € X is an arbitrary object. The closure of S is the set
cd(S)={reX|X(x,5)=T1},
and its interior is
in(S)={reS|IexT exX(r,y) = yeS}.
Forr e L and x € X, the open ball of radius r about x is
B (z) ={ye X |r «< X(z,y)},

so that x € in(.S) is equivalently the existence of ¢ << T with B.(x) € S, as
usual.

Remark 2.2. When ) = [0, 0], these concepts attain the usual interpre-
tations in a metric space. Unlike the definition of the closure operator,
the interior operator requires justification. The inadequacy of naively us-
ing B.(x) = {y € X | r < X(x,y)} instead is gleaned from Theorem 1.1
above — its validity depends on using <<.

Let End be the category of endofunctors; its objects are a category ¢
together with a functor F: ¢ — €, with a typical morphism (G, 0): (¢, F) —
(¢, F'") consisting of a functor G:4 — %"’ and a natural transformation
0: F'G = GF. Let End, be the category of pointed endomorphisms, i.e.,
(F,n), where n:1d¢, = F' is a natural transformation, and those morphisms
(G, 0) that respect the points, in the sense that GO = 6n'G. There is an
evident forgetful functor Mon — End, from the category of monads.

A consequence of the Axiom of Choice is that in any complete lattice L,
if v << VS, then x << s for some s € S (see Proposition 3.2 below). This
plays an important role in the final part of the following result.

10
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Theorem 2.3. Let Q) be an affine quantale. The assignments X — (P(X),clx)
and X — (P(X)°P,inx) are the object parts of the functors

Mon

cl- U
cl- \

L Y
QCat® \M/ End,

in_

to the category of pointed endofunctors, each of which acts on a Q-functor
f:X =Y by sending f to the inverse image function f=. The functor cl_
factorises through monads, and the two functors are related by the natural
transformation 0 carried by the set complementation functor —:P(X) —

P(X)eP.

Proof. The claim that cly is a functor is that S ¢ S’ = clx(S) ¢ clx(S5’),
which is clear. The claim that it is a pointed functor is that S < clx (S'), which
is just as clear. Similarly, and as trivially, inx is a functor since S € 5’ =—
inx(S) Sinx(S’), and it is pointed since S 2 inx (.5). The claim that clx is
amonad is that cl3 (S) < clx(9), so let z € X satisfy X (z,clx(S)) = T, and
we must show that X (x,S) = T. It suffices to show, for a given y € clx(.5),
that X (z,y) < X(z,S5). And indeed, using affineness,

X(f,y)=X(£L’,y)~T=X(l‘,y)'X(y,S)SX(ZL‘,S)

by the distributivity law in the quantale and the composition inequality in
X. Finally, the existence of the natural transformation 6 is the claim that
inx(=9) € —(clx(S)). To see its validity, assume to the contrary that z €
inx(=95) nclx(S), namely there exists ¢ << T with ¢ << X (z,y) = y ¢
S, and X(x,S) = T. But then ¢ << X («,5) and so, by Proposition 3.2
below, it must be that ¢ << X (z, s) for some s € S, a contradiction. O

Remark 2.4. A situation where in: P(X)°P — P(X)°P fails to be a monad
is given in Example 2.11.

Historically, Kuratowski favoured closed sets for the axiomatisation of
topology while Sierpiniski pioneered open sets. We allow this anecdote to
dictate our choice of terminology.

11
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Definition 2.5. A quantale () is sierpinski if ¢ << t implies € << t-\/ |(T),
forallte Q.

Proposition 2.6. Let () be a quantale and X a small Q-category. If Q) is
sierpiriski, then in(B,.(x)) = B,.(z), forallr € Q, and in: P(X)°P - P(X)°P

is a monad.

Proof. Fix x € X, r € @, and y € B,(z), i.e., r << X(x,y). We require a
§ << T with Bs(y) € B,.(x). Now, since r << X (z,y)-V |(T) = V{X (z,y)-
§|0 << T}, ad << T exists with r << X (x,y)-0 (again by Proposition 3.2).
If § «< X (y, z), then

r<< X(z,y)-0<X(z,y) X(y,2) < X(z,z)

and so z € B, (), as required. The fact that in is now a monad, namely that
in(S) cin?(S), follows at once. O

In the classical case () = [0, 00], the monad clx is a kuratowski clo-
sure operator, namely its carrier functor S — cl(.S) preserves finite unions.
Similarly, the functor inx preserves finite intersections. In other words, if
reEnd, denotes the full subcategory of End, spanned by right exact endo-
functors, then the functors cl_ and in_ factorise via the inclusion reEnd, —
End,. Neither claim holds generally.

Example 2.7. Consider the quantale @) = P(S) of all subsets of a set S.
Viewed as a closed monoidal category with intersection as monoidal product,
its self-enrichment structure yields the Q-category X with ob(X) = P(S)
and X(z,y) = {s€S|sex = sey}=-xvy. Fora collection
A c X we have X(z,A) = -z v VA, and thus cl(A) = P(V.A) — it need
not preserve finite joins. Direct computation shows that € << T if, and only
if, € is a sub-singleton. Noting that

P(X) s¢x
{ycS|sey} sex

Bsy(w) = {

shows that in(A) = {ae A|3Isea: sey = ye A} — it need not
preserve finite meets.

12
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Definition 2.8. Let L be a complete lattice. If {(T) is closed under finite
joins, then L is kuratowski. If |[(T) is closed under finite joins, then L is
sierpinski.

We say that a quantale () is kuratowski if its underlying lattice is. We say
that () is entirely sierpiriski if both it and its underlying lattice are sierpifiski.

Proposition 2.9. Let () be an affine quantale and X a small ()-category. If
Q is kuratowski, then cl is a kuratowski closure operator.

Proof. We only need to verify preservation of finite unions. For binary
unions it suffices to show that cl(S u S’) ¢ cl(S) u cl(S’), which follows
at once since X (z,Su S’") = X(z,5) u X(x,5"). It remains to see that
cl(@) = @, and indeed, if = € cl(@), then X (z,2) = T, but the former is 1,
forcing @ to collapse. But then {(T) is not closed under the empty join. [

In agreement with our historical convention, we call the set-theoretic
dual of a kuratowski closure operator, namely a comonad in: P(X) — P(X)
that preserves finite meets, a sierpinski interior operator. Recall from [18]
the theory of free monads on (pointed) functors. It is clear that in admits a
free monad,; its value on S is in“(.S), where « is a sufficiently large ordinal
ensuring the stabilisation of the decreasing chain {in”(S)} 4, where in”*! =
in(in”(.S)) and, for a limit ordinal v, in”(S) = N{in” | B < 7}.

Proposition 2.10. Let () be an affine quantale and X a small ()-category.
If the underlying lattice of Q) is sierpiriski, then in preserves finite meets,
and the free monad on it is a sierpiriski interior operator. If () is entirely
sierpinski, then in is already a sierpinski interior operator.

Proof. Assuming the underlying lattice is sierpinski, the equality in(SnS”") =
in(S) nin(S”) follows at once since if z € in(S) nin(S’), witnessed by
g,e' << T, respectively, then € v &’ << T witnesses that x € in(Sn.S’). In
order to show that in(X') = X, note that the only obstruction to that equality
is if () admits no € << T at all, which can happen only if () collapses. But
then |}(T) is not closed under the empty join.

It is now clear that if () is entirely sierpiniski, then in is a sierpifiski in-
terior operator. If we only know that in is a pointed finite-union preserving
functor but not necessarily a monad, it is clear that the finite-union preserva-
tion survives the free monad construction, thus yielding a sierpinski interior
operator. [

13
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In the classical case ) = [0, o0], it is well known that open and closed
sets are dual concepts: .S is open/closed if, and only if, X \ S is closed/open.
Stated differently, set complementation —:P(X) — P(X)°P, since it is a
complete lattice isomorphism, induces an isomorphism —: Monad(P (X)) —
coMonad(P(X)), given by (=F)S = —~(F(-S5)), that restricts to an iso-
morphism between the kuratowski and sierpifiski operators. Thus, when
() = [0, o], the natural transformation 6:in_ — cl_ (which is carried by -) is
a natural isomorphism. Direct verification shows that in the case considered
in Example 2.7, one has that iny (-.5) = =clx(.5), namely the component of
6 is an isomorphism. We shall shortly see why that holds true for all small
(Q)-categories X for () = P(.S). We first observe that the same phenomenon
does not hold true for arbitrary quantales.

Example 2.11. Let () be a complete boolean algebra, viewed as a quantale
with operation given by A (since any complete boolean algebra is a frame,
this is legitimate). Let X be @ as a Q)-category, thus X (z,y) = =2 Vy, where
- is the boolean complement operator. Clearly then, for 4 ¢ X, X (z, A) =
-z Vv VA, andsocl(A) = |(V.A). Computing the interior operator requires
knowledge of the set ||(T). Let us consider two extremes: the atomic and
atom-less cases. If () is an atomic complete boolean algebra, then @ = P(S),
J(T) is the set of sub-atomic elements, and the situation reduces to that of
Example 2.7. If ) is atom-less, then ||(T) = {1}, and it follows that

X r<T
ML) z=T7

using the simple observation that in any lattice, 1 << x holds precisely when
x # 1. Therefore,

Bl(x):{yeX]¢<<<ﬂ:ch}:{

X A=X
in(A) = {1} A=1(1)
%) otherwise
and in particular, in*(4(1)) ¢ in(#(1)). The interior operator is thus not a

monad. Since the closure operator is always a monad, it is thus impossible
that ¢ is a natural isomorphism in this case.

The final piece of this section is a lattice-theoretic property under which
6 is necessarily a natural isomorphism. The following terminology is ex-
plained in Subsection 3.1.

14
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Definition 2.12. A complete lattice L is CCD at T if T =V |(T).

We say that () is CCD at T if its underlying lattice is. Obviously, any CCD
lattice is CCD at T, and so, certainly, P(.S) is CCD at T (cf. Example 2.7). A
non-atomic complete boolean algebra satisfies \/ }(T) = L, so it is far from
being CCD at T (cf. Example 2.11). The following results clarify much of
the mechanics in both examples.

Proposition 2.13. Let () be an affine quantale. If () is CCD at T, then 0:cl_ =
in_ is a natural isomorphism.

Proof. Since in(=S) ¢ —cl(S) always holds, we only need to show the re-
verse inclusion, so assume X (z,.S) < T. Since \ |}(T) = T, there exists some
£ << T such that X (z,5) # €. But then B.(z) ¢ -5, since ¢ << X (z,y)
together with y € S leads to the contradiction X (z,S5) > X (z,y) > ¢. O

Proposition 2.14. [f an affine quantale () is CCD at T, then () is sierpiriski.

Proof. We need to show that if ¢ << ¢, then ¢ << ¢-\V/ [[(T). But \V ||(T) =T,
and T is the quantale unit. [

As a consequence, if () is an affine quantale that is CCD at T, then in,
and not just cl, is guaranteed to be a monad. The next result is slightly less
immediate.

Proposition 2.15. If () is an affine quantale that is CCD at T, then Q) is
kuratowski if, and only if, Q) is entirely sierpinski.

Proof. See [7, Proposition 3]. OJ

The above considerations highlight certain quantales as foundational in
topology.

Definition 2.16. A topological quantale is a commutative affine quantale ()
that is CCD at T and kuratowski (and thus entirely sierpiriski).

Remark 2.17. The commutativity of () was not required in any of the re-
sult so far. The effect of commutativity is of importance when we come to
consider coproducts of quantales below.

15
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The following theorems embody the idea of viewing topological spaces
as enriched categories.

Theorem 2.18. Consider the diagrams

QCat \b End. QCat o o~ Mon
N / \/ /
Mon reMon

/ o

QRCat —— Top

\ g

where () is an affine quantale. Regarding the functor cl:(QCat — End,
factoring over Mon, the functor in: QCat - End,, and the natural trans-
formation cl = in from Theorem 2.3, we can specify that:

1. If Q is sierpinski, then in: QCat — End, factors over Mon.
if Q is kuratowski, then in factors over reMon.
if Q) is entirely sierpinski, then in factors over reMon.

if Q) is CCD at T, then cl = in is a natural isomorphism.

AR NS

if Q is kuratowski and CCD at T, then all the above happens; in other
words, both closure and interior operators are topological and specify
the same topological space.

Theorem 2.19. Let TQ be the class of topological quantales and consider
the category TQCat ., whose objects are all small ()-categories where ()

16
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is a topological quantale, and morphisms the cauchy continuous functions
f: X =Y, namely those satisfying the familiar e—0 condition as described
in the introduction. The unique functor TOCat .. — Top above, which we
denote by X — O(X), is the functor that associates with a small QQ-category
its (unique!) topology, and acts as the identity on morphisms (which is valid
since any € — ¢ continuous function is also continuous with respect to the
open ball topology). This functor takes the familiar form where U ¢ X is
declared open precisely when

VeelU Fe<<T: B.(z)cU.

These functors, for the various topological quantales (), patch up together
to form the functor
O: ToCat o, — Top

and this functor is an equivalence of categories.

Proof. The proof is essentially due to [12]. Obviously, O is faithful, and
due to open balls being open sets, the standard textbook proof shows O is
full. Flagg utilised the free frame construction €2: Set — Frm, with frames
viewed as quantales. In more detail, (X)) is the collection of all down
closed collections of finite subsets of X, ordered by inclusion. Let us show
that Q(X) is kuratowski, so suppose a, b < T, which means a misses a finite
subset F,, and b misses a finite subset F};. But thenif a vb = T, then F' =
F,, u F, must be there, which would force it into either a or b. Since F, C F,
it cannot belong to . b is similarly prohibited. To see that (X)) is CCD at
T it suffices to note that a << T precisely when there exists a finite subset
F, € X such that a consists only of subsets of [,. The join of such elements
a is thus the entire collection T of all finite subsets of X . In other words, €2
lands in topological quantales. Now, to show that O is surjective on objects,
given a topology 7 on X, let X (x,y) € (7) be the collection of all finite
subsets of 7,_,,, where 7, ={U eT |z e U = yeU}. O

3. Coproducts of commutative quantales

The construction of limits in TQCat,,; relies on coproducts of commu-
tative quantales, and those rely on colimits of complete join lattices. We

17
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are particularly interested in stability properties of topological quantales un-
der coproducts, and so proceed to introduce the relevant notions alongside a
study of the totally below relation.

3.1 Constructive complete distributivity

Recall that | (-): L - D(L), where L is a complete lattice and D(L) is the
lattice of its down-closed subsets, has a left adjoint given by \/, and that L is
CCD precisely when \/ has a left adjoint |}(—). The definition of such a left
adjoint dictates that
Uz)={yel|y <}

in the sense of the totally below relation y << x, namely that for all S ¢ L
with z </ S there exists s € S with y < s.

Even if L is not CCD, the definition above still yields a functor ||(-): L —
D(L). Consider the functor | : D(L) — L given by

| |S=V{zeL||(z)cS}.

Proposition 3.1. The following conditions for a complete lattice L are equiv-
alent:

1. Forall a << b, if b<\/ S, then a << s for some s € S.
2. The functor ||(-) is a left adjoint.

Proof. Assuming the first condition, we show that ||(—) — . It suffices to
demonstrate the unit and counit conditions, namely = < | ||}(z) and |}(|]S) €
S, of which the former is trivial. For the latter, suppose z << \/{y € L |
I(y) € S}, so, by the assumed condition, 2z << y for some y with |(y) € S,
thus x € S. For the converse, note that if ||(-) is a left adjoint and b < \/ S,

then |}(b) < J(V S) = U{(s) | s € S}. O

Proposition 3.2. If the background set theory admits the Axiom of Choice,
then, for all complete lattices L, the functor ||(-) is a left adjoint.

Proof. We demonstrate the first condition of Proposition 3.1. Proceeding by
contradiction, suppose a << b, b <'\/ S, and yet a << s holds for not a single
s € S. Choose, for each s € S, a set T with s < \/ T, and so that a < ¢ fails
forall t € Ty. The set T = U{Ts | s € S} contradicts a << V/ S. O

18
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Remark 3.3. We proceed under the assumption that for all lattices L con-
cerning us, the functor |[(-) admits a right adjoint. In light of Proposi-
tion 3.2, this is automatic if the Axiom of Choice holds. Otherwise, the
assumption we are making is that we restrict to those lattices that are suffi-
ciently constructive to admit the required right adjoint.

For any complete lattice L let CCD(L) = {z € L | V |(z) = =}, which we
call the CCD core of L. It is easily seen that the CCD core of L is a complete
join sublattice of it, but it need not itself be CCD. We obtain the following
play on words.

Theorem 3.4. Let L be a complete lattice. The following conditions are
equivalent (and define what it means for L to be CCD):

* \/ has a left adjoint
* V=L
e ccD(L) = L.

3.2 Tensor product of complete join lattices

The category CJLat of complete join lattices is well known to support a
symmetric closed monoidal structure ([17, 24]). The tensor product of com-
plete lattices L1, Lo is a function 3: L x Ly — L1 ® L, that is universal among
all functions L, x L, — L that are join preserving in each variable. Much as
in ring theory, the tensor product can be constructed as a quotient of a free
lattice. Writing = ® y for 5(x,y), and referring to such elements as elemen-
tary tensors, every element in L; ® Lo is a join of elementary tensors, for all
x> 1in Ly and y > 1 in L, we have that z ® y < 2’ ® ' if, and only if, both
r<r'andy <y, Nz ®yi= Nz ® N\jy,andz @V S =V{zr®s|seS}.
Thus meets are computed point-wisely in L; ® Ly. The join of arbitrary
elementary tensors, however, does not admit such a simple formula.
The following result is [23, Lemma 37]:

Theorem 3.5. If L, and Ly are CCD, then so is their tensor product.

We require a refinement of this result and an analysis of the totally below
relation in the tensor product. It is convenient to use the fact ([17]) that

Ly ® Ly = CJLat(Ly, Ly")P,
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the opposite of the complete lattice of join preserving morphisms L; - L3”
(see [13] for a detailed description). In this model, the elementary tensors
are given by

T ifa=1,
B(z,y)(a) =<y ifl<a<u,
L ifagur,

and an arbitrary element f € L; ® L, has the canonical presentation

f=\ Bz, f(x))

CCGLl

as a join of elementary tensors.

It is straightforward that if a ® b << = ® ¥, then both ¢ << x and b <<
y. The following result will assist in obtaining conditions for the converse
implication.

Lemma 3.6. Let S be a subset of the tensor product
Li® Ly CJLat(Ll, L;p)op

of two complete lattices and write s for the point-wise join of S, i.e. s(x) =
Vges 9(x) computed in Ly for all x € L,. Now define

fl@)= N s(@)

r’<<x

for all x € Ly, again computed in Lo. The following properties hold.
1. f is an upper bound of S in L1 ® Ls.
2. If h is an upper bound of S, then f(x) < h(x) for all x € CCD(Ly).
3. (VS)(z) = f(x) forall x € cCD(Ly).

Proof. Recall that ||(-) is a left adjoint.

1. Firstly, f:L; — Ly° belongs to L; ® Lo, namely it preserves joins,
since

FVA) = A s@@)=A A s@)= A fla)

z'el(V.A) acAz'e|(a) acA
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Now, for any g € S and 2/ << z, clearly, g(x) < g(x') < s(z'), show-
ing that g(x) < f(x) point-wisely, and thus f is an upper bound of
S.

2. An upper bound h clearly satisfies s(z’) < h(x'). Assuming that x €
ccD(L,), we obtain that

fl@)y< A\ h(@')=h(V o) =h(z

<<z <<z

3. Immediate.
O

Proposition 3.7. Let L, and Lo be complete lattices, a << x in L, and
b<<yin Ly IfxeCCD(Ly), thena®b <<z ®uy.

Proof. Suppose that x ® y < \/ .S for some S € Ly ® L,. By Lemma 3.6 and
the given conditions we have that

b<y<(V9)(x)= N\ Vy@@')<Vgla)

'z geS gesS
and so b < go(a) for some gq € S. Therefore
a®b:5(a,b) < 9o

as can be seen from the expression for 3(a,b), recalling that g, is antitone.
]

We summarise as follows.

Theorem 3.8. For complete lattices Ly and Lo, if x € CCD(Ly) and y €
CCD(Ls), thenx®y € CCD(L1 ® Ly) and t << x ®y if, and only if, t <a®b
with a << x and b << y. If L and Ly are CCD at T and are sierpiriski, then
Ly ® Ly is sierpirnski.

Proof. The characterisation of ¢ << x ® y follows from the observation that
r®y=V{a®b|a<<r,b<<y}assoonaszeCCD(L;)andyeCCD(Ly),
from which z®y € CCD (L1 ® L) is immediate. With this property, the claim
about the sierpiriski property follows from a®@bva’®b’ < (ava’)@(bvd'). [
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3.3 Coproducts of complete join lattices

Coproducts in CJLat ([17]) are particularly simple to describe, due to its
strong self duality: if f: Ly — Lo is join preserving, then it has a right adjoint
g: Ly — Ly, which, when written as f°P: Lo® — L7, is join preserving, and
thus yields an isomorphism CJLat — CJLat®". The product L of lattices
{ Lk }rer is given by the usual product of the underlying sets, equipped with
component-wise operations. The projections 7: L — L preserve meets, and
so admit left adjoints ¢x: Ly, — L. It then holds that L with these morphisms
is the coproduct in CJLat, and 7, o ¢4, = Idy, .

Proposition 3.9. Let { Ly }rc; be a collection of complete lattices. Then a <<
x in the coproduct [] Ly, if, and only if, there exists ko € I and a € Ly, such
that @ << iy, () and a = 1, (a).

Proof. Clearly, x = \/{tx(mr(z)) | k € I}, so for a << z the existence of kg
follows from Proposition 3.2. ]

3.4 Coproducts of commutative quantales

Since the category of commutative quantales is cMon(CJLat), it follows
from general considerations that it is cocomplete (and complete). We require
a concrete enough description of coproducts, sufficient to see that topologi-
cal quantales admit coproducts.

It is a simple matter that, much as in the case of commutative rings, finite
coproducts in cQnt are given by the tensor product. This follows again
from general considerations of commutative monoid objects in a symmetric
closed monoidal category. In a nutshell, the multiplication of a commutative
quantale () is a function ) x () - @), preserving joins in each variable, and
thus corresponds to a morphism |-|:Q ® @ — @ from the tensor product of
the underlying lattice. If ); and ()2 are commutative quantales, then one
obtains a binary operation on (); ® (5, namely the one corresponding to

(1©Q2)®(Q1®Q2) » (Q1®Q1) ®(Q2©Q2) w’ Q1 ® Qs

utilising the canonical symmetry isomorphism (s ® Q)1 - @1 ® (). It is
easily seen that then ), ® ()2 is a commutative quantale, and that with the
evident morphisms (1 - Q)1 ® Q2 < ()5 it is the coproduct in cQnt.
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Theorem 3.10. The category tQnt of topological quantales, as a full sub-
category of cQnt, is closed under finite coproducts, and ¢ << T holds in
Q1 ® - ® Q, if, and only if, there exist €, € Q. with €, << T such that
£<EI® - ®ep.

Proof. The empty coproduct is the quantale 5 = {L < T} of boolean truth
values, and it is clearly topological. The characterisation of € << T in this
case simply says that all € € B satisfy € << T. Suppose that (); and (), are
topological quantales. It is clear that () = ()1 ® () is affine and the rest of
the claims follow from the fact that the underlying lattice of () is the tensor
product in CJLat, together with Theorem 3.8. [

This leaves the case of infinite coproducts. As in any category, directed
colimits together with finite coproducts suffice to construct all coproducts,
as follows. For a set I consider the poset Fin(/) of all finite subsets of I,
under inclusion. For a small collection {Qy }re; of commutative quantales
indexed by I their coproduct is the colimit

H Qi = Colgr)l(S = Q) Qr).

kel Fin keS

Directed colimits are (again) particularly simple in cQnt, namely they are
created by the functor cQnt — CJLat (see [16, C1.1, Lemma 1.1.8], and
the discussion surrounding it).

We continue to use the elementary tensor notation z; ® --- ® x,, to stand
for ¢1(x1) V-V, (x,), where 4 is the canonical injection into the (possibly
infinite) coproduct.

Theorem 3.11. The category tQnt of topological quantales, as a full sub-
category of cQnt, is closed under infinite coproducts, and € << T holds in
Quer Qk if, and only if, there exist finitely many ¢y, € Qy with € << T such
thate <1 ® - Q ¢,

Proof. Combine Proposition 3.9 with Theorem 3.8 and the form of the infi-
nite coproduct of commutative quantales. [

To conclude this section we note that coproducts of quantales occur nat-
urally in applications. For instance, recall the quantales [0, 1] with multi-
plication and [0, oo ]°P with addition. Their coproduct is usually denoted by
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A, the quantale of distance distribution functions. Small A-categories are
also known as probabilistic metric spaces. Since the constituent quantales
are topological, so is A. This quantale was in circulation long before it was
realised that it is simply the coproduct of two very naturally occurring quan-
tales. Further, it is clear that [0,1] = [0, 00]°P as quantales, and so, up to
isomorphism, A is simply the coproduct of [0, co]°P with itself. This can be
iterated to any cardinality, yielding a transfinite ladder of topological quan-
tales. See [6] for more details.

4. Limits of spaces

In this section we construct limits in TQCat..,;. The novelty, of course,
is not in the completeness of the category but in the techniques used. The
interest in these techniques is their very existence. Not all formalisms are
created equal; while it is fairly straightforward to define the product topol-
ogy in terms of open sets, doing so in terms of closed sets is not readily
achieved. It is thus not a priori clear that an enriched-categorically flavoured
construction of products exists.

It suffices to construct all small products and all equalisers. For a Q-
category X and a subset A € X of its objects, the full subcategory on A is
the Q)-category with A(x,y) = X (x,y).

Theorem 4.1. The equaliser of f,g: X — Y in TQCat .y is the full subcat-
egoryof Xon E={xe X | f(x)=g(x)}.
Proof. Straightforward. 0

We now turn to products, so fix a family { X} } xc; of objects in TQCatopt,
indexed by a set /. Each X, is a small ();-category where ()}, is a topolog-
ical quantale. Let ) = [[..; @« be the coproduct in the category of cQnt,
equipped with the canonical injections ¢;: Q) — (). Let X be the ()-category
with

ob(X) =[Job(Xy) and X(z,y) =\ w(Xe(m(2), m(y)))
kel kel
with the join computed in (). It is easily seen to be a small ()-category, by
extending the fact that, for elementary tensors in Q1 ® 2, (a®b) - (c®d) =
(a-c) ® (b-d), to the coproduct of quantales.
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In the next proof, we use the following observation. A function f: X - Y
is continuous at x precisely when for all € << T there exists § << T such that
X(z,y) <0 = Y(fz, fy) < e. The equivalency with the definition of
continuity as given above follows from the fact that |}(-) is a left adjoint.

Theorem 4.2. With the evident projection functions X — Xy, the (Q-category
X is the product of { Xy }rer in TOCat ops.

Proof. The quantale () is topological, and it is clear that the projection func-
tions are continuous. It remains to establish the universal property, so as-
sume continuous functions fj:Y — X} from some small R-category Y are
given, where R is some topological quantale. The function ¢:Y — X we
seek is dictated to be the unique one satisfying 73, o g = f, so we only need
to show that g is continuous. For that, let y € Y and ¢ << T be given,
where ¢ is chosen in (). By Theorem 3.11, ¢ < ¢, (e1) V -+ V 1, (1),
where €5, << T holds in ();,. By the continuity of f;., there exists dy, << T
in R such that 0y, < Y(vy,y") = ex, < Xk, (fr,(¥), fr,(¥")). Letd =
Ok, V --- V 0, , which satisfies 0 << T since R is sierpifiski. We claim that
0 <Y(y,y) = e < X(9(y),9(y")), namely that g is continuous at .
Assume § < Y(y,y’), and fix k;. Then certainly 0, < Y (y,y’), and thus
Ek; < sz(sz(y)7 fkv(y,)) = sz(ﬂ-kz(g(y))? Trkl(g(y,))) Upon applying Uk;
we obtain that ¢, (ex,) < X(g(y),9(y")), and as this holds for k1, ..., ky, it
follows that ¢y, (€g, ) V-V 1k, (€(kn)) < X (g(y), 9(y")). By the choice of ¢
this inequality completes the proof. ]

To conclude, let us speculate on the applicability of this last construction
in data analysis. Any data analysis endevour starts with recording the data,
very often as a point-cloud data structure, i.e., a metric space or, in our termi-
nology, a small [0, oo J°P-category. Often, the data does not naturally appear
in metric form and some manipulation, including simplification or arbitrary
choice, is required in order to obtain a metric space. Higher dimensional
data is often encoded in terms of some metric on R"”, again possibly skew-
ing the data. Having more quantales at hand provides more flexibility. For
instance, suppose data is collected coordinate wise as ordinary metric spaces
X, but the data analysis requires patching the coordinates together. The last
theorem provides a canonical metrisation for the entire space of coordinates.
It is expected to introduce less bias or distortion into the data, while ensuring
the topologicity of the scenario.
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THE DERIVATOR OF SETOIDS

Michael Shulman

Résumé. Sans I’axiome du choix, la complétion exacte libre de la catégorie
des ensembles (i.e. la catégorie des “sétoides”) peut ne pas étre complete ou
cocomplete. Nous montrerons que, néanmoins, elle peut €tre enrichie d’un
dérivateur : la structure formelle des catégories de diagrammes reliés par des
foncteurs d’extension de Kan. De plus, ce dérivateur est la cocomplétion
libre d’un point dans une classe de “1-dérivateurs tronqués” (qui se comporte
comme une 1-catégorie plutdt que comme une catégorie d’ordre supérieur).

En mathématiques classiques, la cocomplétion libre d’un point par rap-

port a I’ensemble des dérivateurs est la théorie de I’homotopie des espaces.
Ainsi, s’il existe une théorie de I’homotopie dont on peut montrer qu’elle pos-
sede cette propriété universelle de maniere constructive, sa 1-troncature doit
contenir non seulement des ensembles, mais aussi des sétoides. Ceci suggere
que soit les sétoides sont un aspect inévitable de la théorie de I’homotopie
constructive, soit on a besoin d’une modification plus radicale de la notion de
théorie d’homotopie.
Abstract. Without the axiom of choice, the free exact completion of the cate-
gory of sets (i.e. the category of setoids) may not be complete or cocomplete.
We will show that nevertheless, it can be enhanced to a derivator: the for-
mal structure of categories of diagrams related by Kan extension functors.
Moreover, this derivator is the free cocompletion of a point in a class of “1-
truncated derivators” (which behave like a 1-category rather than a higher
category).

In classical mathematics, the free cocompletion of a point relative to all
derivators is the homotopy theory of spaces. Thus, if there is a homotopy
theory that can be shown to have this universal property constructively, its
1-truncation must contain not only sets, but also setoids. This suggests that
either setoids are an unavoidable aspect of constructive homotopy theory, or
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more radical modifications to the notion of homotopy theory are needed.
Keywords. derivator, setoid, exact completion, constructive mathematics,
axiom of choice, anafunctor
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1. Introduction

Can homotopy theory be developed in constructive mathematics, or even in
ZF set theory without the axiom of choice? Recently this question has be-
gun to attract more attention, due partly to the rise of interest in Homotopy
Type Theory and Univalent Foundations [Unil3]. The latter is a construc-
tive type theory whose first model was nevertheless relentlessly classical,
using the Kan—Quillen model category of simplicial sets [KL.19]. Since then,
constructive models of homotopy type theory have been found in categories
of cubical sets [BCH14, BCH19, CCHM16, ABC"17, ACC*™21], and the
model category of simplicial sets has been developed constructively [Hen19,
GSS19, GH19, GHSS21], though not quite to the point of strictly modeling
type theory.
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In particular, there are now at least two constructive homotopy theories
— the aforementioned simplicial sets and the equivariant cartesian cubical
sets of [ACC*21] — that can classically be shown to present the homotopy
theory of spaces. However, it is not known whether they are constructively
equivalent to each other. Thus one may naturally wonder: if they are not
equivalent, which is the “correct” constructive homotopy theory of spaces?"
Or, perhaps, are they both “incorrect”? What does “correct” even mean?

In fact, both of these homotopy theories have a property that at first
may seem peculiar: their 1-truncations (meaning their subcategory of ho-
motopy O-types) are not equivalent to the category of (constructive) sets that
we started from. The 1-truncation of simplicial sets appears to be equiva-
lent to the free exact completion Set, of Set [CM82], a.k.a. the category
of “setoids” (Simon Henry, personal communication). The 1-truncation of
equivariant cartesian cubical sets may not be equivalent to Sete, (Andrew
Swan, personal communication), but neither is it equivalent to Set. This is
a significant departure from both classical mathematics and homotopy type
theory, in which sets can be regarded, up to equivalence, as homotopy 0-
types. (Note that the inclusion Set < Set,, is an equivalence if and only if
the axiom of choice holds.)

In particular, this means that when homotopy type theory is interpreted in
one of these constructive model categories, its internally-defined “sets” will
be interpreted in the model as some kind of setoid rather than as actual sets.
This is somewhat disturbing for the prospect of constructive applications of
homotopy type theory and its semantics. At a stretch, one might even regard
it as evidence for the incorrectness of both of these model categories.

In this paper we propose one possible correctness criterion for a con-
structive homotopy theory of spaces. Moreover, we provide some evidence
that, the foregoing remarks notwithstanding, the 1-truncation of any theory
satisfying this criterion must contain at least Sete,, not just Set. In a moment
we will discuss possible interpretations of this fact, but first let us explain the
criterion and the evidence.

Classically, the homotopy theory of spaces has a universal property: it is

'By “space” we mean some combinatorial notion of co-groupoid. It is probably not rea-
sonable to expect a theory of co-groupoids to be constructively equivalent to the homotopy
theory of topological spaces, as continuous functions are much less flexible constructively
than classically.
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the free cocomplete (0o, 1)-category generated by a point [Lur09, 5.1.5.6],
just as Set is the free cocomplete 1-category generated by a point. However,
this is somewhat circular as a characterization, since an (oo, 1)-category is
defined to have spaces as hom-objects.? One possible way around this would
be to work with presentations of (0o, 1)-categories using 1-categorical struc-
tures such as Quillen model categories. However, universal properties of
(00, 1)-categories (as opposed to universal properties of objects in an (oo, 1)-
category) are hard to express at this level — indeed, this is one of the main
reasons for the recent explicit use of (0o, 1)-categories instead of model cate-
gories in applications such as [Lur09]. Moreover, although in classical math-
ematics most interesting complete and cocomplete (oo, 1)-categories (in-
cluding all locally presentable ones) can be presented by model categories,
we ought not to assume a priori that this will still be the case constructively.

Instead, we can work with a 1-categorical quotient of an (0o, 1)-category.
The ordinary homotopy category, obtained by identifying equivalent pairs of
parallel morphisms, is too coarse for this purpose; but an enhancement of it
(due to Heller [Hel88], Grothendieck [Gro91], and Franke [Fra96]) turns out
to be sufficient. Namely, given a complete and cocomplete (oo, 1)-category
¢, we consider the homotopy 1-categories of the functor (oo, 1)-categories
€ for all small 1-categories A, together with the restriction functors relat-
ing them and their left and right adjoints (homotopy Kan extensions). This
structure is nowadays called a derivator (after Grothendieck), and it retains
a surprising amount of information about %’

In particular, Heller [Hel88] and Cisinski [Cis06] have shown, in clas-
sical mathematics, that the derivator Space of spaces is the free cocomple-
tion of a point. This means that for any other derivator &, the category of
cocontinuous morphisms Space — & (those that preserve the “formal left
Kan extensions” included in the structure of a derivator) is equivalent to the
category Z(1) of “diagrams of shape 1” in Z (i.e. “objects of Z”; here 1
denotes the terminal category). Although a derivator is intuitively a homo-
topical, i.e. (00, 1)-categorical, object, formally this universal property lives
at the same categorical level as the universal property of Set: derivators, like

2To be sure, not all definitions of (0o, 1)-category explicitly incorporate hom-spaces.
But the question of the correct constructive definition of (co, 1)-category seems likely to be
at least as difficult as that of the correct constructive definition of co-groupoid, i.e. homotopy
space.
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1-categories, form a 2-category, and the universal property is an equivalence
involving hom-categories therein. In the words of Cisinski [Cis10a]:

This provides a first argument that the usual homotopy theory of sim-
plicial sets plays a central role. . . and for this, we didn’t take for granted
that homotopy types should be that important: its universal property
is formulated with category theory only....derivators provide a trun-
cated version of higher category theory which gives us the language
to characterize higher category theory using only usual category the-
ory, without any emphasis on any particular model (in fact, without
assuming we even know any).

Thus, a natural correctness criterion for a constructive homotopy theory
of spaces would be that it defines a derivator Space that is the free cocom-
pletion of a point.

Of course, it is not a priori clear that such a derivator even exists in con-
structive mathematics. We will not attempt to construct one in this paper.
Instead, we will attempt to understand how Space would behave, if it exists,
by studying derivators that ought to be localizations of it. By this we mean
derivators that should be obtained from Space by universally inverting some
class of morphisms among cocontinuous morphisms, although in good situ-
ations this equivalent to being a reflective subcategory of Space (a reflective
localization).

Classically, Space has many interesting reflective localizations, such as
those that invert some set of prime numbers. More relevantly for us, for all
integers n > —2 it has a reflective localization Space,, consisting of homo-
topy n-types. In particular, Space,, is just the category Set of sets (regarded
as a derivator), while Space_, is the poset Prop of truth values (which, clas-
sically, is the two-element lattice) and Space_, is the terminal derivator.
Moreover, each Space,, is the free cocompletion of a point in the world of
“(n+1)-truncated derivators” — those that behave like (n+1, 1)-categories
rather than (oo, 1)-categories.® In particular, this universal property for Set
generalizes its ordinary one, giving it a mapping property into all 1-truncated
derivators, not just those that arise from 1-categories.

3These “n-truncated derivators” are distinct from the “n-derivators” of [Rap19]. The
former are 1-derivators (in the terminology of [Rap19]) that act as if they arose from an
(n, 1)-category, while the latter generalize the definition of derivator to use n-categories in
place of 1-categories.
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In this paper we will exhibit, in constructive mathematics, derivators
Space,, that have this universal property for n = 0,—1,—2. In fact, for
= 0 and —1 (and thus presumably for all n > —1) the notion of “(n+1)-
truncated derivator” multifurcates constructively into several different no-
tions, with several different corresponding localizations.

For one natural notion of “1-truncated derivator”’, we find that Set is the
free cocompletion of a point. However, there are intuitively “1-categorical”
derivators that are not 1-truncated in this sense. Notably, we will show that
for any complete category & having small coproducts preserved by pullback,
its exact completion &, can be enhanced to a derivator, which is not “1-
truncated” in the naive Set-based sense. There is a weaker notion of 1-
truncatedness that does encompass these examples, but in this world Set is
no longer the free cocompletion of the point: instead that role is taken by
Set.,.* There is also an intermediate notion of “l-truncatedness”, whose
free cocompletion of a point is a derivator version of Set,s, the free regular
completion of Set. We will refer to these three notions of 1-truncatedness as
being Set-local, Setey-local, and Set,.q-local respectively.

A similar thing happens one dimension down: in addition to the lattice
Prop, we have a derivator version of Set,s, the preorder reflection of Set.
Each of them is the free cocompletion of a point in its corresponding world
of local derivators.

The class of Set..-local derivators is broader than that of Set-local ones,
and in particular there is a cocontinuous map of derivators Set., — Set but
not conversely. Thus, if both were realized as reflective subcategories of
Space, then Set., would be the larger one. This provides our evidence that
if a free cocompletion of a point exists constructively, its 1-truncation must
involve Set., and not just Set.’

*It is unclear exactly how this universal property of the derivator Sete, is related to the
usual universal property of the category Setex. But it is reminiscent of the result of [Car95,
Corollary to Lemma 4.1] that classically, the free exact completion of the small-coproduct
completion of a small category is equivalent to its presheaf category, i.e. its free cocomple-
tion. (Note that Set is the free small-coproduct completion of a point, as well as the free
cocompletion of a point.)

SThere is the possibility that this 1-truncation could be something even larger than Set.,.
It is not clear whether (Setex)ex can be made into a derivator at all, but if it could be then it
would be one possible candidate. In addition, the 1-truncation of cubical sets may also be
larger than Sete, (Andrew Swan, personal communication), so it is another possibility.
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I can think of at least three responses to this observation. The first is to
bite the bullet and accept that the correct homotopy theory of spaces is con-
structively the “oco-exact completion” of Set, and in particular its O-truncated
objects are setoids rather than sets. Thus, when applying homotopy theory
constructively, we would be forced to use setoids, either exclusively or in
tandem with sets.

This may be satisfying if our motivations for constructivity are purely
philosophical. Indeed, some constructivist schools start from a foundation
whose primitive objects are not sets but some kind of “pre-set” or “type”
that lacks quotients entirely, such as some formalizations of Bishop’s con-
structive mathematics [BB85] or Martin-Lo6f’s original constructive type the-
ory [ML84]. In this case, if “the category of sets” is to be exact, it must be
defined as a free exact completion of the category of pre-sets, and so the
appearance of an exact completion is entirely unproblematic.®

However, if we also care about categorical semantics, the appearance of
setoids is troubling. When interpreting constructive mathematics internally
in a category, it is the sets, not the setoids, that correspond to objects of that
category. If our category of interest happens itself to be an exact comple-
tion of some other category, we might be able to interpret our mathematics
in the latter, with the former category appearing as the exact completion of
the latter. However, although some important categories are exact comple-
tions (such as some presheaf toposes and realizability toposes), many are not
(such as most sheaf toposes), so this approach cannot work for them. This is
related to the problem of constructing “realizability higher toposes” whose
underlying 1-topos is an ordinary realizability topos [Uem19, SU19].

Another problem with exact completions is that they destroy impredica-
tivity: even if Set has a subobject classifier, Set., generally will not. Again, a
philosophical predicativist may be unbothered by this, but it is disconcerting
to choose to work with an impredicative category Set and nevertheless be
forced into the predicative Set,, as soon as we start trying to do homotopy
theory.

The second response is to reject our proposed “correctness criterion” for
the homotopy theory of spaces. And indeed, there are obvious grounds on
which to do so. Namely, our notion of derivator is based on small categories

®Relatedly, note that the model category of simplicial objects constructed in [GHSS21]
requires only a category with finite limits and extensive countable coproducts.
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and functors between them; but there are good arguments that in the absence
of the axiom of choice, the correct notion of morphism between categories is
instead that of an anafunctor [Mak96, Bar06, Rob12]. This suggests that we
should instead be considering “ana-derivators” defining using anafunctors.
In that world, it might be the case that the free cocompletion of a point con-
sists of spaces and anafunctors between them, and has Set as its 1-truncation.

However, there are difficulties involved in making this work. Already
for categories, it is impossible to prove even in ZF set theory that the bi-
category of categories and anafunctors is locally small, cartesian closed,
or complete [aK17]. (There are much weaker axioms than AC that suf-
fice for local smallness and cartesian closure, such as SCSA [Mak96] and
WISC [Rob12], but their constructive status is arguable, and it is unclear
whether they imply completeness as well.) It seems likely that similar prob-
lems would arise in building a derivator out of 1-groupoids and anafunctors,
let alone oo-groupoids and co-anafunctors.

It may be more feasible to construct only a left derivator of groupoids
and anafunctors, which has colimits but not limits. However, there are ap-
plications for which this would be insufficient; for instance, defining and
constructing stacks requires taking limits over infinite sieves to define cate-
gories of descent data.

Finally, the third response is to reject the whole idea of defining spaces
constructively out of sets, and instead start from a foundational theory such
as homotopy type theory [Unil3], in which spaces are primitive objects.
(Note that “computably” constructive flavors of homotopy type theory are
also now available, such as the cubical type theories of [CCHM16, ABC*17].)
This allows “sets” to be defined as homotopy O-types, without forcing the
appearance of any exact completion. Semantically, this means working with
the internal language of an (oo, 1)-topos, within which sits the internal lan-
guage of a 1-topos. This would be my personal preferred approach; I will
comment on it further in Remark 8.7.

Background theory

We work in an informal constructive set theory, assuming neither the axiom
of choice nor the law of excluded middle, with one universe to define a
size boundary between large and small categories. Most or all of our results
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could probably be formalized in the internal language of an elementary topos
containing a universe [StrO5]; or in a membership-based set theory like IZF
with a universe (or a weaker variant, since we probably do not need much
replacement or collection); or in a dependent type theory with UIP, function
extensionality, and quotients, like XTT [SAG19]. The arguments should
be predicative, as long as we allow Prop, like Set, to be a large category.
Importantly, however, we do require effective quotients, so that our category
Set of sets is exact.
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2. The free exact completion

We start by reviewing the free exact completion. Recall that an exact cate-
gory (in the sense of Barr) is a category with finite limits and such that every
internal equivalence relation has a pullback-stable quotient of which it is the
kernel.

Let & be a 1-category with finite limits; we recall from [CM82] how to
build an exact category &, from it freely.” A first thought might be to take
the equivalence relations in & as the objects of &, each such standing in for
the quotient of itself. This produces a category in which every equivalence
relation coming from & has an effective quotient (see Example 5.19), but

7 &, is sometimes written &, /lex> t0 emphasize that we started from a category & with
only finite limits (i.e. one that is left exact, or “lex”). This is to distinguish it from other
exact completions such as &, /reg, Which requires & to be a regular category, and unlike the
ex/lex completion is an idempotent operation.
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it also introduces new equivalence relations that do not yet have quotients.
Thus, we need something more general, which turns out to be the following.

Definition 2.1. A pseudo-equivalence relation in & consists of:
* Objects Xy and X, with morphisms s,t : X; = X.
* A morphism r : Xy — X such that sy =tr = 1.
* A morphism v : X; — Xj such that sv =t and tv = s.
* A morphism m : X; *x%, X1 — X such that sm = s, and tm = tm,.

In other words, a pseudo-equivalence relation has the operations of an
internal groupoid, but without any axioms. In particular, any object X € &
induces a “discrete” pseudo-equivalence relation with X; = X, = X this
provides a functor & — &, to the category &, defined as follows:

Definition 2.2. The free exact completion &, of & has:
* As objects, pseudo-equivalence relations.

* As morphisms X — Y, equivalence classes of pairs of morphisms
fo : XQ — }/() and f1 : Xy — Yin & with Sf1 = f()S and tfl = f()t,
modulo the relation that (fy, f1) ~ (go, 1) if there exists a morphism
h: Xq — Y; with sh = fyand th = g,.

We refer to a pair (fy, f1) as a morphism representative, and an h as a
witness of equality of two such.

Remark 2.3. A pseudo-equivalence relation can also be defined as an inter-
nal bicategory in & such that any two parallel 1-cells are related by a unique
2-cell and all 1-cells are equivalences. The tricategory of such “locally bidis-
crete bigroupoids” is “locally tridiscrete”, and its homotopy 1-category (ob-
tained by identifying naturally equivalent functors) is &,. Our results about
éwx could be obtained by specializing facts about bicategories and tricate-
gories, but we will give concrete proofs instead.
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Itis proven in [CM82] that &, is an exact category, and that this construc-
tion defines a left pseudo-adjoint to the forgetful 2-functor from exact cate-
gories to categories with finite limits. In particular, the inclusion & — &,
preserves finite limits; but even if & was already exact, this functor does not
in general preserve quotients of equivalence relations. The only exception is
if & is exact and satisfies the “axiom of choice” that regular epimorphisms
are split, in which case the inclusion & — &, is an equivalence.

We will not repeat the proofs of these facts, but we sketch the following:

Lemma 2.4. &, has finite limits.

Proof. The terminal object has Ty = 17 = 1. For pullbacks, let X i> Z &
Y be a cospan in &, select representatives ( fo, f1) and (go, g1) and define

Py = (X x Y)) X (Zox Zo) 41
P = (P x ) X (XoxXoxYyxYp) (X1 xY7). O

The particular objects P and P, constructed above depend on the chosen
representatives (fo, f1) and (go, g1). Thus, in the absence of the axiom of
choice (now meaning the usual axiom of choice in Set), &, does not have
a specified pullback functor (&) 7 — &u, even if & has such a functor.
(Although it does have a specified binary product functor.) The situation
with infinite diagrams is even worse: without choice we have no way to
select representatives for all the morphisms in the diagram simultaneously,
so even if & is complete, &, may not be.

Remark 2.5. The category of setoids is complete and cocomplete if we regard
it as an E-category, i.e. a category enriched over setoids (see e.g. [Ac21]).
Indeed, from the perspective of Remark 2.3, the €-category of setoids is a
tricategory of certain bicategories, so it can be complete even if its homotopy
category is not. We will not pursue this direction; the point of this paper is
to observe that setoids arise unavoidably in homotopy theory even if we try
our best to remain in the world of ordinary categories. See §8 for further
discussion.

We can avoid all these problems with limits and colimits by considering
a notion of coherent diagrams in &,.

Definition 2.6. Let A be a small category. A coherent A-diagram in &, is:

39



M. SHULMAN THE DERIVATOR OF SETOIDS

* For each object a € A, an object X, € &u.

* For each morphism « : @ — a’ in A, a morphism representative X, :
X, — Xy, consisting of morphisms X, o : Xq0 — Xg o and X, :
Xa,l — Xa/71 in & with SXQJ = Xa708 and tXaJ = Xa70t.

* For each a € A, a morphism X, : X,o — X, with sX, = 1 and
tX, = Xy, (i.e. a witness that X;, ~ 1).

e Foreacha : a = d’and o/ : @’ — ", a morphism X, : X0 —
Xor g with s X, o = X 0 X0 and tX,, v = Xyq 0 (i.€. a witness that
X Xa ~ Xara)

For coherent A-diagrams X, Y, a morphism representative / : X — Y is:

* For each a € A, morphisms f,o : Xo0 — Ysoand fo1 : Xo1 — Yo
with sf,1 = faosand tf,1 = faot (i.e. a representative of a morphism
Xao = Yo).

» Foreach o : @ — a' in A, a morphism f, : X,9 — Y, 1 with sf, =
Yaofaoand tfo = for0Xa o (i.e. a witness that Y, f, ~ for X,).

A witness of equality between two such representatives is
* afamily of morphisms h, : X, 0 — Y, 1 with sh, = f,pand th, = g,.0.

The morphisms of coherent diagrams are the equivalence classes of mor-
phism representatives, modulo the existence of a witness of equality. This
defines the category of coherent diagrams, which we denote &, (A).

Lemma 2.7. If A = 1 is the terminal category, then &x (1) ~ &

Proof. This is not a definitional equality, since an object of &, (1) contains
the additional data of an endomorphism representative with witnesses that it
is idempotent and equal to the identity. But it is straightforward to see that
these additional data are redundant. 0

Remark 2.8. The 1-category & is also the hom-wise quotient of a 1-category
of pseudo-equivalence relations and morphism representatives, as studied
in [KP14]. But the same is not true of & (A): its morphism represen-
tatives cannot be composed associatively (though they become associative
after quotienting by witnesses of equality). From the perspective of Re-
mark 2.3, & (A) is the homotopy 1-category of a tricategory of trifunctors.
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Remark 2.9. 1f the axiom of choice holds, then because the equivalence re-
lation on morphisms in &, (A) makes no reference to f,; or f,, instead of
including the latter as data in a morphism we can simply assert that for each
a or o such a morphism exists. Similarly, since the definition of morphisms
makes no reference to X, or X, ., up to equivalence of categories we can
simply assert that these exist. The latter assertion then says simply that X is
a functor A — &, and similarly the former says that morphism is just a nat-
ural transformation. Thus, the axiom of choice implies that &, (A) ~ (& )4.
Note that this is the axiom of choice for the ambient set theory, not the “ax-
iom of choice” that regular epimorphisms split in & (though of course the
two coincide if & = Set). In addition, even in the absence of the axiom of
choice this holds whenever A is a finite category.

Example 2.10. If v : A — B is a functor between small categories and
X € &w(B), we have a coherent diagram u*X € &, (A) defined by pre-
composing all the data of X with the action of « on objects and morphisms.
This defines a restriction functor u* : & (B) — &u(A). In particular, the
functor p4 : A — 1 induces for any X € &, ~ &.(1) a constant coherent
diagram p’ X € & (A).

Theorem 2.11. Suppose & is complete, with specified limit functors &4 —
& for all small categories A. Then each functor py : &ox — Eex(A) has a
right adjoint.

Proof. We define the “limit” of a coherent diagram Y € &.(A) as follows.
Let L, be the equalizer of the following parallel pair in &

<H Yoo X H Ya/,l) — H (Yoo x Yao).
acA aa—a’ a:a—a’

Here the components of the first morphism at o : @ — a’ are Y, o : Y, 0 —
Yu0and 1y, , while those of the second morphism are s : Y,/ 1 — Yo o and
t: Yy 1 — Yy . Then let L; be the pullback

(Lo X Lo) X [Toea Yar-

HaeA(Ya,O xYa,0)
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Note that Y contains all the necessary data to define these objects, without
any choices necessary. It is straightforward to show that L is a pseudo-
equivalence relation.

Now we define a counit p L. — Y. For each a, the components L, —
Y,0 and L; — Y, are just the evident projections; and likewise for the
morphisms Ly — Y/, foreach o : a — d'.

It remains to show that any morphism f : p% X — Y factors uniquely
through L. Choose a representative of f; then the components f, o : Xo —
Yooand f,1 0 X5 — Y, and f, : Xo — Y,/ are exactly what is needed
to define morphisms f, : Xy — Lo and f, : X; — Ly with sf, = f,s and
tf, = fot. Moreover, the representatives of the composite p* X — p* L —
Y are literally equal in & to those of f, so we can choose h, = rf,0 to
exhibit this composite as equal to f in &, (A).

Finally, suppose g : X — L is such that the composite p’ X EN pyL —
Y isequal to f in & (A). Choosing a representative for g, we obtain compo-
nents g, : Xo — Ygoand g, : Xo — Yy 1 and g,1 : X; — Y, 1 satisfying
the appropriate equations. Choosing a witness of equality to f, we have mor-
phisms A, : X, — Y, with sh, = f, and th, = g, 0. But this is exactly
what we need to define a witness h : Xy — L; exhibiting f ~ gin &y. [

For the case of colimits, we need & to admit certain free constructions.
Since our eventual interest is mainly in the case & = Set, we will not worry
about the minimum this requires of &, instead merely noting:

Lemma 2.12. Suppose & has finite limits, and countable coproducts pre-
served by pullback. Then for any parallel pair R = X, there is a pseudo-
equivalence relation X1 = Xogwithamap n: R — Xy over Xy x X, such
that for any pseudo-equivalence relation Y1 = Yy and morphism fy : Xy —
Yo with g : R — Y] over fy X fo, there exists a f1 : X1 — Y] over fy X fy
such that fin = g:

R
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Proof. Define

X1: E R XXOR62XX0"-XXOR6"

neN
€105 en€{+1,-1}

where R*! means the given span X, < R — X, and R~! means the re-
versed span. (The summand for the case n = 0 is just Xy.) In the internal
language of &, X is the object of zigzags such as

T 3

T1 2 Tn
Tog —> T < T -+ —> Ty

in which each arrow is labeled by an element of R, with the two maps R =
Xy regarded as source and target, and each arrow in the zigzag can point
in either direction. The resulting X; = X is actually the free internal -
category on the directed graph R =% X.

Finally, given f; and g as in the statement, we define f; on each summand
of X by applying g to each factor of R, then the symmetry operation of Y
to each factor with ¢, = —1, and then some bracketing of the transitivity
operation of Y to combine all the factors into one (in the case n = 0 this
means the reflexivity operation of Y'). The inclusion 7 is the summand with
n = 1 and £y = +1, where no operations are needed other than g, so we
have fin = g. [

We refer to X; = X as in Lemma 2.12 as the free pseudo-equivalence
relation generated by R = X, although to be precise it is only “weakly
free” (the morphism f; is not unique).

Theorem 2.13. If & has finite limits and small coproducts preserved by pull-
back, then each functor p’y : Eex — Eex(A) has a left adjoint.

Although we only require & to have coproducts, here A is an arbitrary
small category; thus &, has more “colimits” (in this sense) than & does.

Proof. Given X € &u(A), let Cy be the coproduct )", _, X0, and let Cy
be the pseudo-equivalence relation on Cj freely generated (Lemma 2.12) by

Z (Xa,O XXa’,o Xa/71> : Co.

a:a—a’
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Here the pullback is the “object of triples (z,2’,£)” where © € X, 0, 2’ €
Xo o, and & € X4 is a witness that X, o(x) ~ 2. The projection to Cy
picks out x and 2’ in the summands X, and X, o. (Note that neither of
these is the copy of X, o that we pull back over; that is X, o(x).)

Now we define a unit X — p*% C'. For each a, the component X, o, — Cj
is just the coproduct inclusion. To define the component X,; — C, the
idea is to send a witness £ € X, that x ~ 2’ to the image under 7 of the
witness that X, o(x) ~ x ~ 2’ obtained by transitivity from ¢ and X,. And
to define the witness X, o — C of naturality associated to o : @ — a/, the
idea is to send x € X, to (the image under 7 of) the reflexivity witness that
XQ,O(ZI}) ~ Xm()(l').

It remains to show that any morphism f : X — p%Y factors uniquely
through C'. Choose a representative of f; then the components f, o : X, o —
Y, define a morphism Cy — Yj, while the components f,; : X,1 — Y}
and f, : X,0 — Y7 can be combined with transitivity, and the freeness of
C, to induce a morphism f : C' — Y. The composite components Xao —
(p5C)a0 = (P5Y)ao = Yo are then literally equal to f,o : Xa0 — Yo, so
we can use h, = rf, o to exhibit this composite as equal to f in & (A).

Finally, suppose g : C' — Y is such that the composite X — p*C %
piY isequal to f in & (A). Choosing a representative for g, we have com-
ponents g, : Xq0 — Yo and g, : X0 — Yiand go1 : Xo1 — Yi. And
choosing a witness of its equality to f, we have morphisms %, : X,0 — V)
with sh, = f,0 and th, = g, 0. But this is exactly what we need to define a
witness h : Cy — Y; exhibiting f ~ ¢ in &. ]

Thus, although &, does not have infinite limits or colimits, or specified
pullbacks, there is a sense in which it is strongly complete and cocomplete.
In §4 we will see that derivators give us a way of making this precise.

Remark 2.14. Combining Remark 2.9 and Theorem 2.11, we see that if the
axiom of choice holds and & is complete, then so is &, (as an ordinary
category). This was already observed by [HT96]; in their construction, the
axiom of choice enters in the fact that epimorphisms of presheaves are closed
under arbitrary products.

Similarly, combining Remark 2.9 and Theorem 2.13, we see that if the
axiom of choice holds and & has small coproducts preserved by pullback,
then &, is cocomplete. Related facts were observed by [Men00] and [CV98];
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the axiom of choice is hidden because they deal explicitly only with finite
coproducts.

3. Derivators

A derivator is an abstraction of the structure possessed by the homotopy cate-
gories of diagrams in a complete and cocomplete (0o, 1)-category. Early au-
thors such as [Hel88, Gro91, Fra96] chose slightly different sets of axioms,
but nowadays the community seems to have mostly settled on the definition
of Grothendieck. As is often the case, we have to rephrase the definition
to make it constructively useful. We will also follow [Hel88, Col20] in dis-
tinguishing left and right derivators that have only “colimits” and “limits”,
respectively.

Let Cat and CAT be the 2-categories of small and large categories. For
A € Cat, let Ay denote the discrete category on its objects, with inclusion
LA AO — A.

Definition 3.1. A prederivator is a 2-functor & : Cat®® — CAT. A pred-
erivator is a semiderivator if:

(Derl) 2 : Cat°® — CAT preserves products indexed by projective® sets.
That is, if I is projective, the functor (>, ., A;) = [[,c; Z(4)
is an equivalence, in the constructive sense that we have a specified
quasi-inverse to it.

(Der2) Forany A € Cat, the functor %, : Z(A) — Z(Ay) is conservative
(that is, isomorphism-reflecting).

A left derivator is a semiderivator such that
(Der3L) Each functor u* : Z(B) — Z(A) has a specified left adjoint w,.

(Der4L) Given functors u : A — C and v : B — C in Cat, let (u/v)
denote their comma category, with projections p : (u/v) — A and
q : (u/v) — B. If B is a discrete category, then the canonical
mate-transformation ¢ p* — v*u, is an isomorphism.

8A set I is projective if every surjection .J — I has a section. Thus finite sets are always
projective, and the axiom of choice is equivalently “all sets are projective”.
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Dually, a right derivator is a semiderivator such that
(Der3R) Each functor u* : 2(B) — Z(A) has a specified right adjoint w.

(DerdR) Given u and v as in (Der4L), if instead A is a discrete category,
then the mate-transformation v*v, — p.q* is an isomorphism.

A derivator is a semiderivator that is both a left derivator and a right deriva-
tor. Finally, a prederivator is strong if

(Der5) For any A € Cat, the induced functor Z(A x 2) — Z(A)? is
full and essentially surjective, where 2 = (0 — 1) is the interval
category.

We immediately record the most basic class of examples.

Example 3.2. Let € be an ordinary category, and € (A) = € the functor
category, with 2-functorial action by restriction. This 2-functor preserves
all products, and (Der2) holds because isomorphisms in functor categories
are pointwise, while (Der5) is obvious since the functor in question is an
isomorphism. Thus ¢ defines a strong semiderivator, which we call a rep-
resentable semiderivator and abusively denote also by %

If € is cocomplete, the restriction functors admit left adjoints given by
pointwise Kan extensions; thus (Der3L) holds, and (Der4L) asserts that these
Kan extensions are pointwise, so % is a left derivator. Similarly, if & is
complete, it is a right derivator. In particular, Set is a derivator.

Remark 3.3. The usual definition, as e.g. in [Gro13, Col20], differs in that:

* Axiom (Derl) is asserted for all products, not just projectively indexed
9
ones.

* Axiom (Der2) asserts that the family of functors a* : Z(A) — 2(1)
are jointly conservative, for all objects a € A. This is equivalent to

(Der2) in the presence of the classical (Derl), since Ay = Zae 4 1.

9 Although sometimes Cat is replaced in the definition by a smaller 2-category, such
as the 2-category of finite categories, finite posets, or finite direct categories. In this case
(Derl) is weakened to refer only to the coproducts that exist therein, such as finite ones.
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* Axiom (Der4L) requires that B be the terminal category 1, and dually
for (Der4R). However, by [Grol3, Prop. 1.26], in the presence of the
classical (Derl) and (Der2) this implies that the same statements hold
without any restriction on B (see Lemma 3.6 below), including in par-
ticular our (Der4).

Thus, the substantial difference is the weakening of (Derl), which is only
weaker in the absence of the axiom of choice.! Our weaker version ap-
pears to be necessary constructively; for some explanation, see the proof of
Lemma 4.2.

Perhaps surprisingly, our definition suffices for most of the theory of
derivators; axiom (Der1) is rarely needed, and usually only for finite prod-
ucts. Intuitively, while a classical (pre)derivator has an underlying ordinary
category Z(1), one of our (pre)derivators has an underlying Set-indexed cat-
egory consisting of the categories Z(I) where [ is a discrete category. We
can then reproduce the usual theory by using indexed categories in place
of ordinary ones. (Note that a prederivator is, in particular, a Cat-indexed
category.)

For instance, (Der3L) implies that any left derivator admits “colimit”
functors given by (pa); for the functor p4 : A — 1, left adjoint to the “con-
stant diagram” functor (p4)*, and dually for right derivators and limits. The
standard (Der4) axioms then says that the general “Kan extension” functors
u, and u; can be computed in terms of these, by the usual formula [ML98,
Theorem X.3.1]. Our (Der4) says the same in “indexed” or “internal” lan-
guage, referring not only to “global elements” ¢ : 1 — C but to arbitrary
“generalized elements” v : I — C, where [ is a set.

We now give some examples of how such “indexed reasoning” can be
used to reproduce some of the basic results about derivators from the cited
references.

10The assertion of (Der1) for all projective sets is admittedly a fairly transparent trick for
forcing the definition to collapse to the classical one in the presence of the axiom of choice,
only slightly less blatant than starting with “if the axiom of choice holds, then. ..”. Probably
more natural constructively would be to assert (Der1) only for finite products.
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Definition 3.4. For a left derivator &, a square 2-cell in Cat:

AL+ B

| ¢ o

is Z-exact if the induced map ¢ p* — v*u, is an isomorphism in &. Dually,
if & is a right derivator, such a square is Z-exact if the map v v, — p.q*
is an isomorphism. (If Z is a derivator, then these two maps are adjunction
conjugates, hence the two conditions are equivalent.)

A square is left (resp. right) homotopy exact if it is Z-exact for all
left (resp. right) derivators &, and homotopy exact if it is Z-exact for all
derivators 7.

Note that left and right homotopy exactness are stronger than homotopy
exactness, oppositely to how being a derivator is stronger than being a left
or right derivator. The functoriality property of mates (e.g. [KS74]) imply
that horizontal and vertical pasting preserves (left and right) homotopy exact
squares.

Observe that for a set /, an /-indexed family of small categories A : [ —
Cat can equivalently be regarded as a category A equipped with a functor
A — I, where I denotes also the corresponding discrete category. That is,
Cat! ~ Cat/I. Moreover, if f,g: A — B are functors between two objects
of Cat/I, any natural transformation f = ¢ in Cat must in fact lie in Cat /I,
since [ is discrete. In particular, a morphism in Cat/I has a left or right
adjoint in Cat/I if and only if it does so in Cat.

Lemma 3.5 (cf. [Grol3, Proposition 1.18]). Foraset I, letr : A — B bea
right adjoint in Cat /1. Then the identity 2-cell is left homotopy exact:

ER

Proof. 1f / is the left adjoint of r, then the map (ur),r* — w, is conjugate
to u* — ¢*(ur)*, which is an identity since the entire adjunction lies over I;
hence it is also an isomorphism. 0

~<—ﬁ>
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Lemma 3.6 (cf. [Grol3, Proposition 1.26]). Any comma square is left and
right homotopy exact:

(u/v) A

| v ]
Proof. We prove the left case. By (Der2) and (Der4), it suffices to prove

that the pasted rectangle on the left below is homotopy exact, in which the
left-hand square is also a comma:

(4/t) — (ufv) —— A (g/t) — (u/vr) —— A
A N L [
By — B —— C By =——— By —5— C

But this is equal to the pasted rectangle on the right above, where the right-
hand square is a comma and the left-hand square is an identity. And the
induced functor (¢/¢) — (u/ve) is a right adjoint, so by Lemma 3.5 and
(Der4) both of these squares are homotopy exact. 0

Lemma 3.7 (cf. [Grol3, Proposition 1.24]). If u is a cloven Grothendieck
opfibration, then the identity in any pullback square is left homotopy exact:

AL~ B
2
¢ —— D

Dually, if v is a cloven Grothendieck fibration, such a pullback square is
right homotopy exact.

Proof. We prove the left case. Let ¢},(B) be the pullback
t(B) —— B

L2k

DOT>D
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Then there is an induced functor ¢},(B) — (u/tp), and the cleaving of u
supplies a left adjoint to it over I)y. Similarly, since ¢ is also a cloven op-
fibration, the induced functor ¢j,(A) — (q/tc) is a right adjoint over C.
Therefore, by (Der2) and (Der4) and Lemma 3.5, it suffices to prove that the
following pasting is homotopy exact:

te(A) —— (q/ie) A—L2+B

A 2
Co —— () > C D.

Lo v

g

~

But this factors as

te(A) —— (B) —— (u/ip) —— B

I

COU—0>D0:DOT>D-

Here the left- and right-hand squares are homotopy exact by (Der4), while
the middle square is homotopy exact by Lemma 3.5. 0

Definition 3.8. A morphism of prederivators is a pseudonatural transfor-
mation, and a transformation is a modification. We say a morphism G :
2 — ' of left derivators is cocontinuous if for any functor v : A — B,
the canonical mate-transformation

2(A) —%— 2/(A)

ugl / lw

9(B) —5— 7'(B)

is an isomorphism. We denote the category of morphisms and transforma-
tions by Hom(2, 2’), and its full subcategory of cocontinuous morphisms
by Hom..(2, 2').11

Lemma 3.9. A morphism G : 9 — 2’ is cocontinuous if and only if the
above condition holds when B is discrete.

"1Sometimes the notation Hom, is used, but I find this insufficiently visually distinctive.
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Proof. By functoriality of mates, combined with (Der2) and (Der4), we can
deduce the condition for arbitrary v : A — B from the condition for ¢ :
(U / L B) — B(). O

Theorem 3.10 (in classical mathematics). Every Quillen model category M
induces a derivator Ho(M). If sSet denotes the Kan—Quillen model category
of simplicial sets, then Space = Ho(sSet) is the free cocompletion of a point:
there is an object * € Space(1) such that for any derivator 9, the induced

functor
Homc.(Space, ) — 2(1)

is an equivalence of categories.
Proof. Essentially due to Heller [Hel88] and Cisinski [Cis06, Cis04]. O
We will also need two-variable morphisms of derivators, as in [GPS14].

Lemma 3.11 (cf. [GPS14, Theorem 3.11]). For prederivators &, Dy, Y3, to
give a morphism 9, x Yy — D is equivalent to giving a family of functors

91(14) X .@2(3) — 93(14 X B)
varying pseudonaturally over Cat°? x Cat°P. [

If ® is such a two-variable morphism, we write ® 4 : Z;(A) X Z»(A) —
P5(A) for its components in the ordinary (or “internal”) sense, and ® :
D (A) x P5(B) — Z5(A x B) for the above equivalent “external” com-
ponents. The relationship is that M ®@4 N = A% (M ® N) while M @ N =
WTM ®A><B W;N

Definition 3.12. A morphism ® : 9, X Yy, — %5 of left derivators is co-
continuous in its first variable if for any v : A — Band M € %,(A)
and N € 2,(C), the following mate-transformation is an isomorphism in
93(3 x C )2

(ux1)(M&N)— (uyM)® N.

See [GPS14, Warning 3.6] for why this has to be formulated with the ex-
ternal product rather than the internal one. There is a dual notion of coconti-
nuity in the second variable, and an analogue of Lemma 3.9 for two-variable
morphisms.
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Finally, since Z2(A) — Z(A) x Z(A) is equivalent to V* : Z(A) —
2(A+ A) (this uses (Derl) for finite coproducts), in a right derivator the for-
mer functor also has a right adjoint. Thus any right derivator ¥ is “cartesian
monoidal”, with a product morphism X : ¥ x ¥ — 9.

Definition 3.13. We say a derivator ¥ is distributive if this x is cocontinu-
ous in both variables.!?

For example, a complete and cocomplete category regarded as a derivator
as in Example 3.2 is distributive if binary products preserve colimits in each
variable, in the usual sense. In particular, Set is distributive.

4. The derivator of setoids

Let & be, to start with, a category with finite limits.
Lemma 4.1. &, : Cat°® — CAT is a 2-functor.

Proof. First, the restriction functors u* : &u(B) — &u(A) are strictly
functorial, being given by simple composition with the data of u. Second,
given a natural transformation x4 : v = v : A — B with components
fa : ua — va, for any X € & (B) we have an induced family of mor-
phisms X, o 1 Xyso — Xyeo and X, 1 © Xyg1 — Xyg1. Third, for
a : a — a', by applying the pseudo-transitivity m to Xya,,, and X, va.
we have morphisms X, o — X, 1 exhibiting naturality. Thus, we obtain
a morphism of coherent diagrams u* X — v*X. The 2-functoriality axioms
follow straightforwardly. [

Lemma 4.2. &, satisfies (Derl ).

Proof. For any coproduct of categories, the functor &e (>, A;) — [[; ex(As)
is bijective on objects. To show that it is full, we must select representatives
for a family of morphisms in each &, (A;) to assemble them into a represen-
tative for a morphism in &, (D, A;); this is possible when [ is projective.
Similarly, to show that it is faithful, we must select witnesses of equality in
each &, (A;) to assemble into such a witness in &u (D, A;), which is also
possible when [ is projective. 0

12Technically this definition does not require Z to be a full derivator, only a “left derivator
with binary products”, but we will have no use for that generality.
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Lemma 4.3. &, satisfies (Der2).

Proof. Let f : X — Y be a (representative of a) morphism in & (A), with
components f, o, fo1, and f,. If it is invertible in & (Ap), then we have
families of morphisms g, : Y, 0 — Xoqoand g1 : Y51 — X, 1 representing
morphisms of pseudo-equivalence relations Y, — X, and such that gf ~ 1
and fg ~ 1in & (Ap). The latter mean that there exist b, : X, 0 — Y, 1 with
shg = gaofao and th, = 1, and also k, : Y, o — X, 1 with sk, = f4.004,0
and tk, = 1. Using a chosen such h and k&, we can define (copying the usual
proof that a pointwise invertible natural transformation is invertible in the
functor category) for each o : @ — o’ a morphism g, : Y, o — X, making
g a representative of a morphism in &,,(A). The same h and & then witness
that gf = 1 and fg = 1 in & (A). O

Lemma 4.4. If & is complete, then &, is a right derivator. If & has pullback-
stable coproducts, then &, is a left derivator.

Proof. We can use the classical construction of pointwise Kan extensions
[ML98, Theorem X.3.1] essentially verbatim, due to the fact that the con-
structions in Theorems 2.11 and 2.13 are not just adjoints, but have a con-
structive universal property with respect to representatives of morphisms and
witnesses of equality. That is, there is a function which, given a representa-
tive for a morphism (p4)*X — Y in &.(A), produces a representative for
the corresponding morphism X — L, where L is the limit constructed in
Theorem 2.11; and similarly for witnesses of equality between morphisms,
and for colimits. The construction of these functions is essentially contained
in the proofs of Theorems 2.11 and 2.13.

Consider the case of limits; the case of colimits is analogous. Given
u: A — B, forany b € B we have the comma category (b/u) with pro-
jection g, : (b/u) — A. For X € &4(A) and b € B, define (u,. X), =
(Pbju)+q; X, with the limit functor (ps.,). constructed as in Theorem 2.11.
For a morphism 3 : b — b’ in B, the above remark implies that we can give
a morphism representative (u.X), — (u.X)y by giving a morphism rep-
resentative (py /y)* (Do/u)«@; X — ¢y X, consisting of morphism representa-
tives (pou)«q; X — X, for all morphisms 3 : b — ua, with compatibility
witnesses. These latter representatives can be given by the projections from
(Pbju)«q; X corresponding to the composite 5’3 : b — ua, and similarly for
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the compatibility witnesses. Likewise, the same principles yield witnesses
of functoriality and a universal property of u, as a right adjoint of v*. Thus
(Der3R) holds. To prove (Der4R), in a comma square with A discrete:

(u/v) 2 A

| v |

BT>O7

the construction above shows that (u*v,X), and (p.qg*X), are limits (as in
Theorem 2.11) of the restrictions of X to a pair of isomorphic categories
(ua/v) and (a/p). Thus, these limits are isomorphic, in a constructive way
that can be done simultaneously for all a € A. [

Lemma 4.5. &, satisfies (Der)5).

Proof. Analogously to Remark 2.9, since 2 is finite, the functor in question
is actually an equivalence. 0

Theorem 4.6. For any complete category & with small coproducts preserved
by pullback, &, is a strong distributive derivator.

Proof. We have verified all the strong derivator axioms in Lemmas 4.2 to 4.5,
so it remains only to prove distributivity. For this, we note that if in Theo-
rem 2.11 A is discrete, we can replace the construction given there by the
simpler Ly = [, Ya0 and Ly =[], Y, 1. Now since the “colimits” in Theo-
rem 2.13 are constructed out of pullbacks and coproducts, and both of these
are preserved in each variable by finite products, it follows that the derivator
products in &, preserve its left Kan extensions in each variable. 0

Corollary 4.7. Set., is a strong distributive derivator. ]

Remark 4.8. The free exact completion is not in general idempotent. In par-
ticular, we can have (Sete,)ex % Setex. However, since Set,, is not complete
or cocomplete as a category, Theorem 4.6 does not imply that (Setey )ex iS @
derivator. It is unclear whether there is a notion of “exact completion of a
derivator”.
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5. Equivalences and locality

As suggested in the introduction, we are interested in derivators that satisfy
a relative version of Theorem 3.10, being a free cocompletion of a point in
a world of “I-categorical derivators”. Thus, we may start by asking what it
is that makes a derivator 1-categorical. Intuitively, an (oo, 1)-category “is”
a 1-category if all its hom-spaces are O-truncated; but a derivator does not
have explicit hom-spaces.

However, we can detect the same information using limits and colimits
of constant diagrams. For instance, for any object M of an (oo, 1)-category,

the limit of the constant diagram
M=M

is the free loop space object LM of M, which is equivalent to M just when
M is O-truncated. Similarly, one dimension down, the product M x M is
equivalent to M just when M is (—1)-truncated, i.e. subterminal. Thus, the
“1-categorical” or “O-categorical” nature of an (oo, 1)-category is detected
by limits of constant diagrams of this shape.

More generally, in any derivator there is the following relative notion.

Definition 5.1. Let v : A — B and v : B — [ be functors, where [ is a
discrete set. We say u is a Z-equivalence over I, for a prederivator 7, if u*
is fully faithful on the image of v*.

Lemma 5.2. If & is a left derivator, then u is a P-equivalence over I if
and only if the map (vu), (vu)* — v v* is an isomorphism. Dually, if 9 is
a right derivator, then u is a 9-equivalence over I if and only if the map
v, v* = (vu), (vu)* is an isomorphism.

Proof. By the Yoneda lemma, the stated condition for left derivators is equiv-
alent to saying that

21 (v X,Y) = 2(1)((vu) (vu)*X,Y)
is a bijection for all X, Y € 2(I). But this map is isomorphic to
2(1)(v* X, vY) = 2(1)(v'u" X, v*u"Y),

and this being a bijection for all X, Y is Definition 5.1. U
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The above considerations might lead us to say that a prederivator & is 1-
categorical if the functor (- = -) — 1 is a Z-equivalence, and 0-categorical
if the functor (1 + 1) — 1 is a Z-equivalence. However, as we will see,
things are a bit more subtle than this. We begin by recording some basic
properties of the Z-equivalences.

Lemma 5.3. If f : [ — J is a function between discrete sets and v : A — B
is a Y-equivalence over J, for a left or right derivator &, then the pullback
f*(u) is a Z-equivalence over I:

AL g T

[
A > B > J

u v

Proof. We prove the left case. Any functor with discrete codomain is a
cloven opfibration, so by Lemma 3.7 f* transforms v, and (vu), into (f*v),
and ((f*v)(f*u)). Since it also commutes with v* and (vu)* by functorial-
ity, it preserves the property in Lemma 5.2. [

Lemma 54. Let I = ) ies Ij be a coproduct of sets, with injections g; :
I; — I, such that the indexing set J is projective. If u : A — B is a functor
over I such that each g;(u) is a Z-equivalence over I; for a left or right

derivator 9, then u is a P-equivalence over 1.

Proof. By (Derl), isomorphisms in Z(I) are detected in each Z(I;), and
restriction along g; commutes with the relevant functors as in Lemma 5.3.
O

Corollary 5.5. Assuming the axiom of choice, uw : A — B is a Y-equivalence
over I if and only ifits fiber u; : A; — B; overeachi € I is a Y-equivalence
over 1. [

Corollary 5.5 explains why in classical mathematics, Z-equivalences are
defined without reference to an indexing set /. Note also that forany f : [ —
J, a Y-equivalence over [ is also a Z-equivalence over J. In particular, any
Z-equivalence over [ is also a Z-equivalence over 1. Dually, for any functor
u : A — B there is a strongest sort of Z-equivalence that it can be, namely
over the set I = my(B) of connected components of B.
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Lemma 5.6. For any prederivator 9, the P-equivalences are saturated,
in the sense that if a morphism u in Cat/I becomes an isomorphism in
(Cat/I)[(W?)Y], where WY denotes the P-equivalences over I, then u
is a P-equivalence. Therefore, the J-equivalences satisfy the 2-out-of-3
property, the 2-out-of-6 property, and are closed under retracts.

Proof. For fixed X,Y € Z(I), there is a functor ®xy : Cat/] — Set
sending v : A — I to Z(A)(v*X,v*Y). Since ®x y inverts all Z-equiv-
alences, it factors through (Cat /I)[(W7)~!]; and therefore, if u becomes an
isomorphism in (Cat /I)[(W7)~1], itis inverted by ®x y. Butif u is inverted
by ®xy forall X,V thenitis a Z-equivalence by definition. 0

We now give some examples of Z-equivalences.

Proposition 5.7. For any complete or cocomplete category €, regarded as
a derivator, a functor u : A — B is a € -equivalence over I if:

» For each i € I, the functor on fibers u; : A; — B; induces a bijection
on sets of connected components, mo(u;) : mo(A;) = mo(By)-

The converse holds for € = Set.

Proof. In the cocomplete case, we observe that for v : B — [ where [ is
discrete, and X € €, we have (v, v*X); = mo(B;) - X;, the copower of X;
by the set 7y(B;). Thus the map (vu), (vu)* — v v* consists of copowers
by mo(w;), so it is an isomorphism if these functions are bijections. The
converse when ¢ = Set follows by taking X; = 1. O

In particular, the functor (- = -) — 1 above is a ¥-equivalence for any
such @

Definition 5.8. If .7 and Z are prederivators and every .7 -equivalence is a
Z-equivalence, we say that 7 is .7 -local.

Thus Proposition 5.7 says that any complete or cocomplete category €
is Set-local. For many such % the converse also holds (i.e. Set is % -local),
but not all.

Proposition 5.9. If € is a complete lattice, regarded as a derivator, then
u: A — Bisa€-equivalence over I if:
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» Foreachi € I, if B; is inhabited then so is A;.

The converse holds when ¢ = Prop is the poset of truth values. Thus, every
complete lattice is Prop-local.

Proof. For v : B — I with I discrete, and X € %€/, we have (v v*X); =
Ve B, Xi» and the join of a constant family (a copower in a lattice) depends
only on the support of the indexing set. The converse when 4 = Prop
follows by taking X; = T. O

Remark 5.10. The condition in Proposition 5.9 is equivalent to saying that
u; induces an isomorphism of supports m_1(A;) = w_1(B;), where 7_(C)
is the subterminal set corresponding to the proposition “C' is inhabited”.

Remark 5.11. A functor v : A — B is an Set-equivalence over [ if and only
if it is a Set-equivalence over 1, since mo(A) = > . mo(A;). However, this is
not the case for Prop-equivalences.

Moving down one more categorical dimension, we have the trivial case:

Proposition 5.12. If Contr denotes the terminal derivator, every functor is a
Contr-equivalence. 0

The subtlety mentioned above is that our derivators of exact completions,
though intuitively “1-categorical”, are nevertheless not Set-local.

Proposition 5.13. Let & be a complete category with small coproducts pre-
served by pullback. Then v : A — B is an &u-equivalence over I if the
following hold:

* There is a function s : By — Ay.

* There is a function sending any  : b — V' to a zigzag in A from sb to
sb' (and hence similarly for any zigzag in B).

* There is a function sending each b € B to a zigzag in B from b to usb.
* There is a function sending each a € A to a zigzag in A from a to sua.

The converse holds if & = Set. Thus, every &, is Sete-local.
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Note that the existence of the zigzags, plus discreteness of I, ensures that
s must also be a map over 1, i.e. consist of functions (B;)o — (A4;)o-

Proof. Let u : A — B satisfy the stated conditions and v : B — [ a
functor with I discrete. Let X,Y € &.(I), consisting essentially of an /-
indexed family of pseudo-equivalence relations. We must show that u* is
fully faithful on morphisms between v* X and v*Y'.

For faithfulness, suppose f,g : v*X — v*Y are morphism representa-
tives and we have a witness of equality consisting of maps i, @ Xyue0 —
Yiua1- Then hg, for b € B, witness that f and g are equal at objects of the
form usb. And since v* X and v*Y both act as the identity on all morphisms
of B, equality of components of f and g transfers, constructively, across all
naturality squares. Thus, the assumed zigzags in 5B can be used to construct
a witness that f ~ g.

For fullness, suppose f : u*v*X — u*v*Y is a morphism representative.
Given b € B, we obtain components g, o = fs0and g, 1 = fsp,1 representing
a morphism g : (v*X), — (v*Y),. Forany 8 : b — ¥’ in B, by assumption
we have a zigzag from sb to sb’; composing naturality squares along this
zigzag we can construct a witness gg making g a morphism representative
v*X — v*Y. Finally, for any a € A, the assumption yields a zigzag from a
to sua, which we can use to construct a witness that u*(g) ~ f.

For the converse, suppose u : A — B is a Sete-equivalence over I,
and let X € Sete, (/) be constant at the terminal pseudo-equivalence rela-
tion. Then by the construction in Theorem 2.13, (v, v*X); is the pseudo-
equivalence relation on the set (B;), of objects of B; freely generated by re-
flexivities and the arrows of B;. Thus, its relations are essentially bracketed
zigzags in B;. Similarly, ((vu), (vu)*X); is the set (A;)o with relations be-
ing bracketed zigzags in A;. The stated conditions are then (modulo adding
and removing brackets, which is trivial) precisely what it means for these
induced maps to be an isomorphism in Sete, (/). O

Remark 5.14. For v : A — 1 and T" € Set., (1) the terminal object, the
pseudo-equivalence relation v, v*1" described above can be regarded as the
setoid of connected components of A, so we might naturally denote it 7§*(A).
Thus, the conditions of Proposition 5.13 are equivalent to saying that u in-
duces an equivalence of such setoids, 7§*(u) : 7§*(A) = 7¢*(B).
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Note that the conditions in Proposition 5.13 are stronger than those in
Proposition 5.7. Thus Set is Set.,-local, but Set,, is not Set-local. Moreover,
in the absence of choice, this inequality is strict;

Proposition 5.15. Set., is Set-local if and only if the axiom of choice holds.

Proof. Let p : E — B be a surjection of sets. Regard B as a discrete
groupoid, and make £ a groupoid such that p is fully faithful (i.e. equip it
with the kernel pair of p, regarded as an equivalence relation). Then 7y(E) =
mo(B) = B, so p is an Set-equivalence. But if it is a Sete,-equivalence, then
p is split. ]

However, the functor (- = ) — 1 is a Sete,-equivalence, so Sete, is
still intuitively “I-categorical”. Two more examples will help to clarify the
situation.

Example 5.16. Let & be a category with small products and coproducts. For
a small category A, let &,0s(A) denote the following category:

* An object consists of an object X, € & for all a € A, together with a
morphism X, : X, = X, forall a: a — ' in A.

* A morphism representative f : X — Y consists of a morphism f, :
X, — Y, forall a € A. Any two such representatives are equivalent.

Thus &,0s(A) is a (large) preorder, and in particular &,.5(1) is (equivalent to)
the preorder reflection of &.

Arguments like those of Lemmas 4.2 and 4.3, but simpler, show that &}
satisfies (Der1) and (Der2). The constant diagram functor (p4)* : pos(1) —
&pos(A) has a right and left adjoint given by taking products and coproducts
respectively. We can then use these to construct pointwise Kan extensions
as in Lemma 4.4, showing that &, is a derivator. If binary products in &
preserve coproducts in each variable, then &, is a distributive derivator.

Proposition 5.17. For & a category with small products and coproducts, a
functor u : A — B is an &,os-equivalence over I if:

* There is a function By — Ag over I.

The converse holds if & = Set.
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Proof. For X € &,05(I), by construction (v, v*X); is the copower (B;)o - X;,
and similarly ((vu), (vu)*X); = (A;)o - X;. Thus, the condition given yields
a map backwards, hence an isomorphism in &,.(/). The converse follows
by letting X; be the terminal object. ]

Remark 5.18. For a category A, write 7% (A) for Ay regarded as an object of
Setyos, a sort of “setoid support”. Then similarly to Remarks 5.10 and 5.14,
the condition of Proposition 5.17 is equivalent to saying that u induces an
equivalence of such supports, 7 (u) : 7 (A) = 7% (B).

As with the relationship between Set and Set.,, the condition of Proposi-
tion 5.17 is stronger than that of Proposition 5.9. Thus Prop is Set,qs-local,
but Set,s is not Prop-local. Indeed, Set, is not even Set-local, though it is
still “O-categorical” in that the functor (1 + 1) — 1 is a Set,os-equivalence.

It is true that Set,os is Sete,-local. It is also local for the following inter-
mediate derivator Seteg:

Example 5.19. For a category & with finite limits, its reg/lex completion
&reg 1s defined to be the full subcategory of &, on the pseudo-equivalence
relations that are kernel pairs. Such kernel pairs are, in particular, actual
equivalence relations; and if & is already exact (like Set), then they include
all the equivalence relations.

If we define &eg(A) as a similar subcategory of &..(A), then it is closed
under the limits of Theorem 2.11 but not the colimits of Theorem 2.13. How-
ever, the (regular epi, mono) factorization of a pseudo-equivalence relation
always yields an equivalence relation. Thus, if & is exact, then &.4(A) is
reflective in & (A); so we can define left Kan extensions in &eg(A) by com-
posing the reflection with those of & (A). Since the reflections commute
with the restriction functors, (Der4) holds.

In sum, if & is complete, exact, and has small coproducts preserved by
pullback, then &..4(A) is a derivator. Since products preserve image factor-
izations, &eg(A) is also a distributive derivator.

Remark 5.20. Analogously to Remark 2.3, we can view Set,, as the homo-
topy category of the bicategory of “bidiscrete groupoids” (those in which
any two parallel arrows are equal). See [KP14, Kin98].

Proposition 5.21. Let & be complete, exact, and have small coproducts pre-
served by pullback. Then v : A — B is an &,eg-equivalence over I if the
following hold:
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Setey
~
Setreg
| \
Setpos Set
~__ |
Prop

Contr

Figure 1: Part of the preorder of relative free cocompletions of a point

There is a function s : By — Ay.

Forany B : b — U in B, there exists a zigzag in A from sb to sb’ (and
hence likewise for any zigzag in B).

For any b € B, there exists a zigzag in B from b to usb.
» Forany a € A, there exists a zigzag in A from a to sua.
The converse holds if & = Set. Thus, every &g is Setreg-local.

Proof. In &g, Witnesses of equality are unique when they exist; thus it suf-
fices to assert that they exist rather than specifying them functionally. Hence,
we can copy the proof of Proposition 5.13, but without specified zigzags. [l

Remark 5.22. Continuing the trend of Remarks 5.10, 5.14 and 5.18, for v :
A — 1 and T € Set,(1) the terminal object, the object vy v*T" € Set,eq(1)
is an “equivalence relation of connected components” that we may denote
7o 2(A), and the conditions of Proposition 5.21 are equivalent to saying that
u induces an equivalence of such, 78 (u) : 7y 2 (A) = 7, 8(B).

Clearly Set,e, is Sete-local while Set is Set,eg-local. Also, Setpos is
Set,eg-local. Thus, in the preorder where 2, < %, means “%, is %,-local”,
we have the fragment shown in Figure 1. In §8 we will speculate about
extending this upwards.
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6. Set,, is a relative free cocompletion

We will show each of the derivators in Figure 1 is the free cocompletion of
a point in the sub-universe of derivators that are local for it, in the following
sense.

Definition 6.1. A left derivator .7 is a relative free cocompletion of a point
if for any 7 -local left derivator &, the “evaluation at the terminal object
*x € 7 (1)” functor

Hom..(7,2) — 2(1)

is an equivalence of categories.

How do we prove such universal properties? As observed by [Hel88],
there is a derivator that can easily be shown to map into any other left deriva-
tor, namely the complete and cocomplete category Cat. More generally, we
have:

Lemma 6.2. For any left derivator 9, there is a morphism © : Cat X 9 —
9. Moreover, if u : E — F is a morphism in Cat? such that D oaUg s a
PD-equivalence over Ay, thenu® M : E® M — F © M is an isomorphism
in 9.

Proof. As in [GPS14, Theorem 3.11], to define such a two-variable mor-
phism it suffices to give functors ® : Cat(A) x Z(B) — Z(A x B) that
vary pseudonaturally in A and B. The components ®4 : (Cat x Z)(A) =
Cat(A) x Z(A) — Z(A) of a pseudonatural transformation are then ob-
tained by composing with restriction along the diagonal A — A x A.

Given E € Cat4, let pg : f E — A be its Grothendieck construction,
which is a split opfibration. Then we have the following diagram:

[ExB "+ B

pE><1l

Ax B
Therefore, given M € 2(B), we can define

E®M = (pp x 1) (1) (M) € 2(Ax B).

63



M. SHULMAN THE DERIVATOR OF SETOIDS

Pseudonaturality is immediate.

Now suppose v : £ — F'is such that ) _u, is a Z-equivalence over Aj.
To show that u ® M is an isomorphism, by (Der2) it suffices to restrict it to
Ag X By. And since pg x 1 and pr X 1 are opfibrations, by Lemma 3.7 the
following square is exact, along with the analogous one for F":

(>, E.) x By — [Ex B

(pE)oxll - lpExl

AyXx By ——— Ax B

Moreover, the restriction of M € 2(B) to (>, E,) x By factors through
its restriction to By and also to Ay x By. Now the desired statement simply
reduces to the fact that () u,) x 1p, is a Z-equivalence over Ay x By,
which follows from the hypothesis and Lemma 5.3. [l

Since left extensions in 2 commute with each other, © is cocontinuous in
its second variable. If it were also cocontinuous in its first variable, defining
E — E ©® 1 would give a cocontinuous morphism Cat — &. This is not
generally the case, essentially because [ E is a oplax colimit of E rather than
a homotopy colimit. However, we can make it true by “localizing Cat” in a
way that forces such oplax colimits to become “colimits” in a derivator.

Classically, there is a universal way to do this, using the Thomason model
structure [Tho80] on Cat, which is Quillen equivalent to simplicial sets. This
is roughly the approach of [Hel88, Cis06, Cis04]. Model categories for rel-
ative free cocompletions of a point can then be obtained by left Bousfield
localization. It would be interesting to see whether this approach can be
reproduced constructively, but we will not attempt to do that here.

Instead, since Figure 1 contains a maximal element Set,,, we will just
prove explicitly that Set., is a relative free cocompletion of a point, and then
deduce the same property for the other derivators in Figure 1. Of course, a
more abstract approach will probably be required to extend these results to
higher dimensions.

Definition 6.3. For X € Set(1), let X be the category with object set
Xo + X and nonidentity arrows £ — s§ and & — t£ forall € € X;.
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Then X © 1 ¢ Sete (1) is the set Xy + X; with pseudo-equivalence
relation freely generated by & ~ s& and £ ~ €.

Lemma 6.4. X ® 1 is isomorphic to X in Sete,.

Proof. In one direction, we have a map X — X 1 that is the inclusion
of the summand X, and sending a witness & that s§¢ ~ t£ to the composite
witness s& ~ & ~ t&. In the other direction, we can act as the identity on X,
and send £ € X to s€ (say), with the generating witnesses of equality £ ~ s
sent to the reflexivity witness for s&, and the generating witnesses & ~ t£ sent
to the witness & that s ~ t§. The composite on X is the identity, while the
composite on X ® 1 is equal to the identity via the witnesses £ ~ s&. [

We would like to represent a coherent diagram X € Sete,(A) similarly
by an object of Cat?. However, since X is only functorial up to witnesses
of equality, a naive pointwise construction does not produce a functor (or
even a pseudofunctor) X : A — Cat. More importantly, the morphisms in
Sete,(A) are not natural or even pseudonatural for this construction. Thus,
we need some kind of strictification.

Remark 6.5. At this point we could attempt to proceed in roughly the same
way that derivators are usually constructed in classical homotopy theory (see
e.g. [Cis10b] or [Grol3, Proposition 1.30]), by building some kind of model
category of setoids and morphism representatives whose homotopy category
would be Set.,(1). We would then lift this model category to a model struc-
ture on strict A-shaped diagrams and strict natural transformations, whose
homotopy category would be equivalent to Sete(A). The machinery of
Quillen adjunctions would then give an alternative approach to the construc-
tion of the derivator Set.,, and the strictness of the morphisms in the model
category would make it easier to lift the construction X to diagrams.

The first step of this approach to Set., was achieved in [Hen20, §4.1]
with the construction of a weak model category of setoids whose homotopy
category is Sete.(1). However, the lifting of weak model structures to cate-
gories of diagrams does not exist in the literature yet. Rather than develop
this machinery here, I have elected to give an explicit construction, which
has the additional advantage of being more accessible to a reader without
experience in model category theory. But it should be clear that this is only
feasible because of the very simple nature of the derivator Set.,; more com-
plicated examples require more advanced techniques.

65



M. SHULMAN THE DERIVATOR OF SETOIDS

Definition 6.6. For X € Sete(A), let X : A — Cat be the following
functor.

* For ¢ € A, the category X . has two classes of objects:

(i) Triples (a,«,x) where o : a — cand x € X,, which can be

drawn as:
x

a — ¢
(ii) Tuples (a, v, x,a',a/,2',§) where v : @ — @' in A and z € X, ,

while o : ' — cin Aand 2’ € Xy, and £ € X, satisfies
s& = Xqo(x) and t€ = 2/, as shown:

3 2

r — Xao(x)

~
o

a > a
* The nonidentity morphisms in )’Ec are of the form
(a,,x,d', a2, €) = (a,da, x) and
(a,a,z,d ,a 2" &) — (d,d,2).
e For v : ¢ — ¢ in A, the functor )~(7 : )~(C — )?C, is defined on objects
by
)?ﬂ,(a, a,z) = (a,ya, )

X’Y(a7 a? x? al? al? 'r/? é) = <a7 a’ x? a’? ,70/7 xl? 5)

For a morphism representative f : X — Y, let f: X — Y be the natural
transformation whose component f, : X, — Y. is defined on objects by

N ﬁ:(a’ Oé,[E) = (au a’fa,()(x))
fc(a7 «, T, CL/, O/u ‘7;/7 5) = (a7 a, fa,()(x)ﬂ alv O/a fll,(](x/)7 m(fa(x>7 fa,1<£)))7

where m is the transitivity operation on equality witnesses in Y.
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Lemma 6.7. For any X € Set.,(A) we have a specified isomorphism X0
x = X, where * € Sete, (1) is the terminal object. Similarly, for any mor-
phism representative f : X — Y we have a specified witness that the evident
square commutes:

)N(Q*i>X

For| lf

Proof. By definition, X O is the left extension of the constant diagram
at * along the functor pz : [X — A. Since this functor is a cloven (in-
deed, split) opfibration, this extension can be computed using colimits, as
in Theorem 2.13, over the fibers. The fiber over ¢ € A is the category
X, as defined above. Thus, (X ® x). has underlying set consisting of the
triples (a, v, x) and tuples (a, o, z,d’, o/, ', €), with pseudo-equivalence re-
lation freely generated by witnesses (a, /o, ) ~ (a, o, z,d’,a/,2',€) and
(a,a,x,d o 2’ &) ~ (d, o, ).

In one direction, we define a morphism representative g : Xo*x—> X
by

geola, o, x

geola,a,x,d o o

§
gea((a,d'a, ) ~ (a,a,z,d o 2 €)
)

)
)
)
)
) =
)

gea((a,a,z,d' 0 2’ &) ~ (d, ', 2")) = T(X (x’))
gy(a, a,z) = Xo gm(2)
gy (a,a,z,d o 2! &) = Xy gm(2)

(extending to all of ()? ® *).1 by freeness). In the other direction, we define
a morphism representative h : X — X © % by

heo(x) = (¢, 1., )
hea(§) = (¢, 1e, 56, ¢, 1, 1€, m(X,(s6),€))
“/(x) = (<C> v -1') ~ (C> Y T, Cl? Lo, X’%O(x)’ T(X%O(x))) ~ (0/7 Lo, XV,U(J')))'

The composite in one direction, & o g, sends (a, «, ) to (¢, 1., X4 0(x)), for
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which we have
(a,a,2) ~ (a,a,x, ¢, 10 Xoo(x), r(Xao(2))) ~ (¢, 1e, Xao(2)).
And it sends (a, o, z,a’, o/, 2", &) to (¢, 1., Xoro(2')), for which we have
(a,,z,d o 2’ &) ~ (d,, 2")

together with a zigzag like that above. And the composite in the other direc-
tion, g o h, sends x € X, to X;_o(x), which is identified with z by X, (z).
Thus, g and h together represent an isomorphism in Sete,(A).

For the second statement, note that f@ 1: X ©* — Y © * sends
(a,a,z) to (a,a, foo(x)). Thus, the composite X — X ® * — Y © * and

X =Y — Y ®©xboth send z to (¢, 1., feo(z)). O

We emphasize, however, that the construction f — f does not define
any kind of functor yet. Specifically, it is only defined on morphism repre-
sentatives, which do not compose associatively, and the composite of two
morphisms of the form f may no longer be of that form. Thus, we need
some way to also detect witnesses of equality at the categorical level. For
this we use the following “path space”.

Definition 6.8. For X € Sety(A), let pX : A — Cat be the following
functor.

* For ¢ € A, the category p)N(C hos two classes of objects:

(i) Triples (a,a, () where v :a — cand ¢ € X, 1.

(ii) Tuples (a,a,(,a', o/, (', €, &) where o : @ — @’ and ¢ € X, 1,
while o : @/ — cand (' € Xy, and £,& € X, satisfy
8§ = Xo,0(5(), t§ = s(’, s’ = X 0(t(), and t&’ = t(".

* The nonidentity morphisms in p)?c are of the form:

(a7 a? C? al? al? C/7 57 5/) % (a/’ ala? C)
(a7 a? C? al? a/7 C/7 57 5/) —> (a/7 a/7 C/)'
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e For v : ¢ = ¢ in A, the functor p)N(7 : p)N(C — p)N(C/ is defined on
objects by

)A(;’Y(aa Oé, C) = ((l, ’701, C)
‘vav’Y(a” a? C? al? a/’ C’? 57 fl) = (0’7 a? C? a‘/7 P)/O/a CI7 57 5/)
There are two natural transformations o, 7 : p)z — X defined on objects by
O-C(a’7 a? C) = (a7 a’ S<)
O-C(a/7 a? C? a,7 al? C/7 57 5,) (a7 a? 8C7 a/7 G/, s</7 5)
Tc(a/7 a? C) (a7 a? tC)
TC(a7 a) C) al? a’? C/’ 57 6/) (a7 a’ tC7 a”? a’) tg’? 5/)'

Finally, there is a natural transformation p : X - p)N( defined on objects by

pela,a,x) = (a,a,rz)
pC(a7 a? x7 a/7 al? ‘T/7 5) = (a/7 a? Tl" al? al? TI/? f’ 5)7
where r is the witness of reflexivity in X.

Lemma 6.9. We have op = 7p = 15, and the functors . pa, Y, 0o, and
> . Ta are Sete-equivalences over Ay.

Proof. The first statement is evident. For the second, by the 2-out-of-3 prop-
erty (Lemma 5.6) it suffices to show that ) _ _ p, is a Sete.-equivalence. Since

(>-.04)0(>-, pa) = 1, it suffices to connect each object of p.X, to its image
under p,0, with a zigzag.

First we need a zigzag between (a, «, () and (a, o, 7sC), for which we
can use

(a,a,75C) < (a,1q,(,a,a,7rs¢,rs¢,¢) — (a,,().
Next we need a zigzag between
(a7 a? C’ al? a/? C,7§7 gl) and (a7 a? T8C7 a/’ a/7 rSC’?f? 5)7

for which we compose the zigzag constructed as above for (a’, o/, (") with
the maps

(a,a,rsC,a o rs¢’ €,€) — (d,a,rsC) and
(a/’ a/’ Gl) % (a7 a7 C? al’ al) C/7£7€/)' D
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In homotopical language, Lemma 6.9 says that p)z is a “path space”
relative to the Set.,-equivalences.

Definition 6.10. For morphisms ¢, ¢ : X — Y in Cat”, a right homotopy
¢ ~ 1 is amorphism 6 : X — oY such that 06 = ¢ and 76 = ).

Lemma 6.11. If f,g : X — Y are morphism representatives in Sete,(A)
and h : f ~ g is a witness of equality, then f and g are right homotopic.

Proof. We define h : X — pY on objects by h(a, o, z) = (a, o, hq()) and

h(a7 a’ x7 al? a,7 xl? 5) =

(a, a, ha(x)7 alv 0/7 ha’<x/)7 m(fa($)7 fa,l(g))v m(ga(x)a Ya,1 (5))) L

We can now use this path-space to remedy the problems of functoriality.

Lemma 6.12. If XLy % Zare morphism representatives in Sete(A),
then g f and g f are right homotopic.

Proof. By definition, we have

Ge(fela, 0, 7)) = (a, 0, gao(fao()))
Gl fela, 0, m,d o/ 2/, €)) = (a, 0, gao(fao (@), @', &, gao(fan(2')),
(o (fa.0(%)), gar (M(fa (@), fa1(£)))))
gf (a0, x) = (a, 0, gao(fao(x))
()

ﬁc(a,a,x,a’,o/,x’,f) - (aaaaga,()(fao .Z’) ,CL 70[ gaO(faO(x/»?
m((gf)a ) ga,l(fa,l(f))))

where (gf), is the composite witness of naturality. Now define m : X —
©Z by

mC(av «, ZL‘) = (av «, T(ga,o(fmo(l'))))
ﬁ%(a? a,T, alv 0/7 xla f) = (CL, «, T(ga,()(fa,o(x)))? a, O/7 T(.ga O(fa 0($,)))
m(ga(fa,0<x)) Ya, m(fa(aj)vfal( ))))
( ).

(gf)Ot(x)’ga,l(fal( )) O

3
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Lemma 6.13. For X € Set,,(A), the morphisms 1x and 1 5 are right ho-
motopic.

Proof. We can define i : X — p)}: by
ie(a, o, ) = (a, o, rx)
:E/C<a7 a? :E, al? al’ :L"/’ €> = (a7 a? rx? al? al’ rxl? m((lx)a<x)7 5)7 5)' D
Now we show that right homotopies are inverted in Set.,-local derivators.

Lemma 6.14. Let 9 be a Sete,-local left derivator. For any X € Sete(A)
and M € 2(B), we have

UX®1M:TX®1M

as morphisms X ©M — X © M in D(Ax B). Therefore, if p,1) : XY
are right homotopic, then ¢ ® { = ¢ © { for any .

Proof. By functoriality of ©, we have

(c©1n)o(pOly)=(TO1y)o(p®ly).

However, by Lemma 6.9, ) p, is a Sete,-equivalence over A, and hence
also a Z-equivalence since ¥ is Set,-local. Therefore, by Lemma 6.2, p ®
1 1s an 1somorphism, and thus cancellable. So o © 13, =7 © 1.

For the last statement, a right homotopy is a § with 06 = ¢ and 76 = .
Thus, 0 ® 13 = 7 ® 1, implies ¢ © ¢ = 1 © ¢ by functoriality. O

—_—

This implies that ® descends from Cat to Sete, via (—).

Definition 6.15. For X € Set.(A) and M € 2(B), define X & M =
X ® M. Similarly, for f : X — Y in Sete,(A) and ¢ : M — N in Z(B),
we choose a representative of f and define f © ¢ = f ® (.

Proposition 6.16. If 7 is Sete-local, the definition of f ® g is independent
of the choice of representative for f, and defines a functor

® : Sete(A) x 2(B) — 2(A x B).
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Proof. By Lemma 6.11, any witness of equality / : f ~ g between two mor-
phism representatives ylelds a right homotopy f ~ g. Thus, by Lemma 6.14,
wehave f O = f® ¢ =3® (= g® (. Functoriality on Set.,(A) follows
similarly from Lemmas 6.12 and 6.13. ]

Now we must show that these functors vary pseudonaturally in A and B.

Definition 6.17. For X € Sete (B) and u: A — B, letwy, : w*X — u*X
be the natural transformation defined on objects by

wxu(a, o, ) = (ua, ua, )

wxaula, o,z d o 2 ) = (ua, ua, z,ud' ud, ' §).

Lemma 6.18. Let X,Y € Sete (C)and A > B % C,and f - X — Y a

morphism representative. Then the map wx 1 , X — X is equal to 15, and
the following diagrams commute:

v u*X LurXoy v* u* X u—f> u*Y

Wy, * 2 w
v*w u* X, u Y,u
wm l Xou l l

u* f
Proof. By inspection of the definitions. 0
Lemma 6.19. The functor ), wx y,q IS a Setec-equivalence over A,.

Proof. First, we must define s : u*)?o — wX o- The first kind of object
of (u*X). is (b,f,z) for § : b — wuc and x € X,y. We send this to
(¢, 10y Xgo(x)) in (u*X).. The second kind of object of (u*X). is

(b7 67 x? bl) 5/7 'CL‘,, 5)

for:0—=0b,x € Xpp, 5 : 0 — uc, ' € Xy, and £ € Xy 1 a witness
that X5 (x) ~ 2’. We send this to

(Cv L, Xﬁ’ﬂ,o(l/’), ¢ 1o, Xﬁ',o (ZL‘,), m(Xﬂﬁ’ (ZL’), Xﬂ’J(&)))

n (17*)?)0 where Xz 5 () is a functoriality witness of X.
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Second, we must send morphisms in (u*X), to zigzags in (uA*)J( )e. We
send a morphism (b, 5, z, V', 3", 2',&) — (b, 5’3, x) to the one-morphism
zigzag

(C7 1,3, Xﬂ/@o(fb), c, 10, Xﬁ/p(iL’/), X5/71(€)) — (C, 16, Xﬁ/@g(l‘)),

and similarly we send a morphism (b, 5, x,0', 5, 2', &) — (¥, 5, 2) to the
one-morphism zigzag

(C, 167 Xﬁ’,O(X@O(x))? C, 167 Xﬁ’,()(x/)a Xﬁ’,l (5)) - (Cv 167 Xﬁ’,()(x/))

Third, we must relate each object of (u*)N( ). by a zigzag to its roundtrip
image. For (b, 5, z), we have

(ba 67 fL’) < (b7 67 T, uc, 1UCJ Xg’o(x), T(Xﬂ,o(x>)> — (UC, 1UC7 Xﬁp(l’)),
while for (b, B, z,b', 8', ', £) we have
(b7 67 z, bla 6/7 xla 5) — (b7 /B/B7 I’) <o — (UC, 1’MC7 Xﬁ'ﬁ,O(x))
— (UC, luc, Xﬁ/ﬁjo(iﬁ% uc, 1uc, X5/70($/), X/nyl(g))

where the middle zigzag is as above. -
Fourth and finally, we must relate each object of (u*X),. by a zigzag to
its roundtrip image. For (a, a, x) we have

(a,a,2) + (a,0,x,¢, 1y Xuao(2), 7(Xuao(x))) = (¢, 1oy Xuao(2)),
while for (a, a, x,d', o/, 2, ) we have
(a,,2,d o/ 2" &) = (a,da, x) < o = (¢, Le, Xy(wa)0(T))
— (¢, Loy Xu(a)0(2), € Loy Xuaro(2"), m( Xuaue (%), Xuar1(£)))
where again the middle zigzag is as above. 0

Proposition 6.20. For any Sete-local left derivator 9, the functors ® of
Proposition 6.16 vary pseudonaturally in A, B € Cat. Therefore, they define
a morphism of derivators

®:Setex X 2 — D.
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Proof. Foru: A — A"andv : B — B, the pseudonaturality constraint is

wX OvM = (1;‘7(@1)*]\/[) 2 (WX @ v M)
= (u* x 0)(X ®@ M) = (u* x v)(X & M).

The map induced by wy ,, 1s an isomorphism by Lemma 6.19, while the sec-
ond isomorphism is the pseudofunctoriality of ®. The axioms for a pseudo-
natural transformation follow from those of ® and Lemma 6.18. ]

Proposition 6.21. The above-defined ® is cocontinuous in both variables.

Proof. Cocontinuity in the second argument follows from that of ©. For co-
continuity in the first argument, by (the two-variable version of) Lemma 3.9
it suffices to show that for v : A — [ in Cat, with I discrete, and X ¢
Sete(A) and M € 2(B), the transformation (u x 1);(X ® M) — w X & M
is an isomorphism.

Since [ is discrete, we can let (1, X); be the colimit of X restricted to
A; as constructed in Theorem 2.13, and put these together into a coherent
diagram u; X. We then have the adjunction unit n : X — u*w, X, consist-
ing of the injections into these colimits. The map we must show to be an
isomorphism is the composite

(ux )X OM) D (ux 1) (wuX © M)

Di(u"(wX) © M)
S (ux 1), (u x 1) (wX © M)

Now, the composite w1} induces a map [wij on Grothendieck constructions:

[X T pax

A——m— I,
and the desired map can then be identified with

(ux1) (pgx1) (m2)* M = (pﬁ(xl)l (Jwn) (ma)* M — (pu!NXxl)! (o))" M.
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where both projections [ X x B — Band f wX x B — B are denoted
my. Therefore, as in the proof of Lemma 6.2, it will suffice to show that
fwii: [X — [wX is a Sete,-equivalence over 1.3

The objects of | X are those of )?c for all ¢ € A, hence of the two forms
(a,c, ) and (a,a,x,a’, o/, 2’ &) as usual. But its morphisms incorporate
the morphisms of A, by the Grothendieck construction; thus we have

(a,vd'a,x) + (a, o,z a2 &) — (a,ya!, o) (6.22)

forany v :c— (. -

Since I is discrete, [w X is essentially (up to an inessential modification
by X, witnesses) the simple construction of Definition 6.3 applied to w X.
Thus, as objects it has both elements of (u X))o, which are pairs (a, x) with
z € X, 0, and elements of (X );. By construction of u, X, the latter sort of
element is a sequence

E = (ao, o, 1,&1, 01,21, 02,8, . . ., Oy &y A, T,
where each x, € X,, o, and for each £ either
* oy ag—1 — ai and & is a witness that X, o(zx_1) ~ xy, or
* oy ap — ap—1 and & is a witness that X, o(zx) ~ Tp_1.

Such a sequence then comes with morphisms to both (ag, zo) and (a,, ;).
The functor [wi is defined on objects by

Jwi(a,a,z) = (a, z)
Jwn(a, o, z,d o 2! &) = (a, 2,0, ', 2).

As always, we use the characterization of Proposition 5.13.

First, to define a function s : ([wX)y — ([X)o, we send (a, ) to
(a,1,, ), and a zigzag sequence = as above to (ag, 14,, o).

Second, we can send the morphism = — (ag, z¢) to the identity. Before
deciding what to do with the morphism = — (a,, x,), note that given « :

3This explains our earlier comment that the failure of ® to be cocontinuous in its first
variable is due to [ being an oplax colimit rather than a homotopy colimit.
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a — a’ and ¢ a witness that X, o(z) ~ 2/, we have a zigzag

(a,1q4,7) < (a,14, 2,0, 1, 2,7(2)) = (a,a,x)
— (a,a,x a1, 2" &) — (a1, 2")

in which the second morphism uses the extra flexibility of (6.22), with v =
«. Now by concatenating these zigzags, possibly reversed as necessary, we
obtain a zigzag from (ay, 14, Zo) to (an, 1, , z,) from any Z, which is what
we needed. -

Third, we need to relate any object of [w X to its roundtrip image by a
zigzag. But an object of the form (a, x) is equal to its roundtrip image, while
= comes with a basic morpism to its roundtrip image (ag, ).

Fourth and finally, we must relate any object of [ X toits roundtrip im-
age. The roundtrip image of (a, a, x) is (a, 14, ), for which we have

(a,1q,2) < (a,1q,2,a,1,,2,7(x)) = (a,,x).

And the roundtrip image of (a,«, x,a’, o/, 2, §) is (a, 14, x), for which we
have the previous zigzag together with

(a,,x) < (a,1q,2,a,a,2,7(x)) = (a,d'a,x) + (a,a,z,d a2/, §)
Here the middle map uses the extra flexibility of (6.22) with v = /. ]

Corollary 6.23. For any Sete,-local left derivator 9 and any M € 9 (1),
there is a cocontinuous morphism (— ©® M) : Sete, — 2 such that x © M =
M, where % € Sete, (1) is the terminal object.

Proof. Tt remains to show that « ® M = M. By definition, * ® M = %® M,
where * is (- =2 -). But the functor ¥ — 1 is, as noted previously, a Sete,-

equivalence. Thus the induced map x ® M — M is an isomorphism, since
9 is Set,-local. O

Theorem 6.24. If & is a Sete,-local left derivator, then the functor
Home(Setex, ) — 2(1),

induced by evaluation at * € Sete, (1), is an equivalence of categories. In
other words, Sete, is a relative free cocompletion of a point.
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Proof. The construction of Corollary 6.23 is functorial and the isomorphism
is natural. Thus, it suffices to construct, for any cocontinuous G : Set., —
9, an isomorphism GX = X ® G(x), natural in G and in X € Sete,(A).
For this we have

GX ~G(X %)
= G((pg x D (m2)"(x))
= (pg X 1)1 (m2)"G(%)
=X ©G(x)
=X O G(),
where the first isomorphism is Lemma 6.7, and the second is because G is

cocontinuous. Naturality in G is evident, while naturality in X follows from
the second part of Lemma 6.7. [

7. Other relative free cocompletions

Once we have one relative free cocompletion — in our case, Sete,— it is
much easier to construct other Set.,-local ones. First we note that if & is
distributive (Definition 3.13), then the whole two-variable morphism o :
Setex X P — 2 is determined by the functor L : Set., — & defined by

LX = X O .

Lemma 7.1. If & is distributive and Sete,-local, we have a natural isomor-
phism
XOM=ZLX xM

for X € Sete(A) and M € 9(B).

Here x on the right-hand side denotes the functor Z(A) x Z(B) —
P(A x B) induced by the cartesian product of Z.
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ijXAO

20 Xa
N
pexl fiN/XAo = 4o Zaf/a—>A0

|

AXAO AO

p}~,><1

Figure 2: Diagrams for the proof of Corollary 7.2

Proof. By definition,

XOM = (pg x 1), m5(M)

(pg x 1)1 (x x M)

= (pg x )iy (%) x M (by distributivity)

= (XO*)x M

=LX x M. O

I

Corollary 7.2. If & is distributive and Sete-local, and f : X — Y is a
morphism representative in Sete(A) such that Lf is an isomorphism, then

> o fa is a D-equivalence over A,.

Proof. By Lemma 7.1, the assumption implies that f® M is an isomorphism
for any M € Z(B). In particular, for M € Z(A) the induced map

(pg x D m5(M) — (py x 1)1 m3 (M)

is an isomorphism, where the functors fit into the diagram on the left of
Figure 2.

The two functors p z x 1 and py X 1 are split opfibrations, and the pullback
of fx Lalong (14 x14,): Ag — AX Agis Y fa- Thus, the corresponding
map for the diagram on the right of Figure 2 is also an isomorphism; but this
is precisely to say that ) _ f, is a Z-equivalence over Aj. [l
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Theorem 7.3. If .7 is Sete-local and distributive, and L : Sete, — 7 has
a right adjoint with invertible counit, then 7 is a relative free cocompletion
of a point.

Proof. Let 2 be a 7 -local left derivator; we must show that the precompo-
sition functor (—o L) : Homc (.7, Z) — Hom(Sete, Z) is an equivalence.
We have a commutative square

Hom (7, 9) ﬂ Hom,(Setey, 2)

| !

Hom(.7, 2) T Hom(Setey, 2)
in which the vertical functors are fully faithful. But the bottom functor has a
left adjoint (— o R), where R is the right adjoint of L, with invertible unit,
and hence is also fully faithful. Thus the top functor is also fully faithful.
So it suffices to show it is split essentially surjective, i.e. that any cocontin-
uous G : Set, — Z factors through L, up to isomorphism, by a specified
cocontinuous morphism.

To start with, we have a canonical morphism GR : .7 — 2. We also
have a unit map 1 : lse, — [RL, and since the counit of the adjunc-
tion is invertible, L7 is an isomorphism. Thus, by Corollary 7.2, for any
X € Sete(A), if we choose a representative for 7y, then ) (7x), is a
7 -equivalence over Ay. Since ¥ is 7 -local, this means it is also a Z-
equivalence. And since G is of the form (— © M) for some M € 2(1), by
Theorem 6.24, it follows that GG also inverts ny. In other words, G7 is an
isomorphism G = GRL.

It remains to show that G R is cocontinuous. This means to show that the
mate uyGR — GRu, of the isomorphism GRu* = u*GR is again an iso-
morphism. The latter isomorphism is the pasting composite of the following
squares:

T(A) — Setey(A) =—— Setey(4) ——

9
TRu* = Tu* o Tu*
9

T(B) == 7 (B) —5— Sete(B) —(—
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Therefore, by the functoriality of mates, its mate is the pasting composite of
the following squares:

T(A) —E— Seto (A) == Set,(4) ——

boe oo oy )

g(B) T> SeteX(B) T) 9

The left-hand square is the counit LR — 14, which is an isomorphism by
assumption. The right-hand square is an isomorphism since G is cocontin-
uous. Finally, the middle square is the unit 1se,, — [RL, which as we just
showed is inverted by . Thus, the pasting composite is also an isomor-
phism, so G R is cocontinuous. ]

Remark 7.4. 1f we omit the hypothesis of distributivity in Theorem 7.3, the
same argument implies that .7 is a localization of Set.,, in the sense that the
precomposition functor Hom..(.7, 2) — Hom(Sete,, 2) is fully faithful,
and its full image consists of the morphisms Set., — Z that invert the same
morphisms that are inverted by L : Sete, — 7. (More abstractly, this can
be expressed as a coinverter in the 2-category of derivators: a 2-categorical
colimit that universally forces some 2-cell to become invertible.) Distribu-
tivity enables us to reexpress this as .7 being a relative free cocompletion of
a point, without explicit reference to L : Sete, — 7.

We have already observed that all the derivators in Figure 1 are Sete,-
local and distributive. Thus, it suffices to show that their L-functors all have
right adjoints.

Example 7.5. For 7 = Set, L computes the quotient of each pseudo-
equivalence relation in a coherent diagram, obtaining an ordinary diagram
of sets. This has a right adjoint that assigns to any set the identity (pseudo-
)equivalence relation on it, of which it is the quotient. Thus, Set is a relative
free cocompletion of a point.

Example 7.6. For 7 = Prop, L computes the support 7_;(Xj) of each
pseudo-equivalence relation in a coherent diagram. Since the quotient of
a pseudo-equivalence relation is inhabited if and only if X is, this factors
through Set via the standard support functor Set — Prop. The latter has a
right adjoint assigning to each proposition the corresponding subsingleton,
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which is its own support. Thus, Prop is a relative free cocompletion of a
point.

We leave the trivial case .7~ = Contr to the reader.

Example 7.7. For 7 = Set,s, L sends each pseudo-equivalence relation to
Xo + X, which is isomorphic in Set,os to Xy. This has a right adjoint that
sends each object X of Set,s to the full (pseudo-)-equivalence relation on
it, i.e. Xo = X and X; = X x X. The counit is evidently an isomorphism,
S0 Setps 18 a free cocompletion of a point.

Example 7.8. Finally, for .7 = Set,,, L sends each pseudo-equivalence in a
coherent diagram to its image, which is an actual equivalence relation. This
has a right adjoint that sends each equivalence relation to itself as a pseudo-
equivalence relation. Thus, Set,, is also a free cocompletion of a point.

8. Conclusions and speculations

We have constructed three different relative free cocompletions of a point,
Set, Set,eq, and Sete,, which are nevertheless all intuitively “1-categorical”.
Similarly, both Prop and Set, are intuitively “O-categorical” (i.e. posetal).
Thus we may reasonably wonder, what happens in higher dimensions? The
obvious candidate for a 2-categorical (or, more precisely, (2, 1)-categorical)
relative free cocompletion of a point is a derivator of groupoids; but we have
multiple notions of groupoid.

On the one hand, we have the standard notion of groupoid, with hom-
sets. These should yield a derivator Gpd: the objects of Gpd(A) are pseudo-
functors A — Gpd, and its morphisms are isomorphism classes of pseudo-
natural transformations. In particular, the isomorphisms in the derivator Gpd
would be the equivalences of groupoids, in the usual constructive sense with
a specified pseudo-inverse functor.

On another hand, we can consider E-groupoids, “groupoids enriched
over setoids” (see e.g. [HS98, BDOS] for E-categories). These should yield
a derivator EGpd. And there is a third notion in between, of groupoids en-
riched over equivalence relations, which should yield a derivator RGpd. It
seems likely that we should have an analogous three notions of n-groupoid
for all finite n, where the top level is enriched either over Set, Set,eq, or
Sete,. But in the limit n — oo, where there is no longer a “top level”, it
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seems reasonable to expect the difference to disappear, so that there would
be only one absolute free cocompletion of a point Space.

Conjecture 8.1. One can constructively define an absolute free cocomple-
tion of a point using some kind of cubical sets, simplicial sets, or semisim-
plicial sets, along with three reflective localizations of it for each finite n,
consisting of the n-groupoids enriched over sets, setoids, and equivalence
relations at the top dimension.

However, something funny happens with the locality preorder at dimen-
sion 2. Just as the Set-equivalences are the functors inducing an isomor-
phism under the reflection 7 of categories into sets, we expect the Gpd-
equivalences should be the functors inducing an equivalence under the re-
flection II; of categories into groupoids. But since IT;(A) has the same set
of objects as A, if f : A — B is a Gpd-equivalence then we have an actual
function By — Ay, suggesting that a Gpd-equivalence should also be not just
a Set-equivalence but a Set,g-equivalence. Thus Set,, should be Gpd-local,
and similarly we expect Sete, to be RGpd-local, leading to the placements of
Gpd, RGpd, and EGpd in the extension of Figure 1 shown in Figure 3.

The diagonal rows'* of this diagram are at constant “categorical dimen-
sion” while moving vertically downwards passes to the subcategory of trun-
cated objects. That is, the categories of subterminal objects in Set and Set,eg
are equivalent to Prop and Set, respectively, and we expect the categories
of O-truncated objects in Gpd and RGpd to be equivalent to Set,.; and Set.,
respectively. Since Set, is also the category of subterminal objects in Set,,,
and Set,, should also be the category of O-truncated objects in EGpd, it is nat-
ural to extend the diagram further to the left in a way that “stabilizes” after a
certain number of steps, as we have done in gray. One can thus view “exact
completion” as adding an additional dimension to the Baez—Dolan “periodic
table of n-categories” [BD95], which stabilizes along the n-categorical row
at the (n + 2)" stage.

It is worth noting that although the derivators in the “middle” of this di-
agram are, like all the others, relative free cocompletions of a point, they are
not as well-endowed with exactness properties. For instance, Set and Set.,

‘4They are diagonal rather than horizontal, of course, so that the picture is still a sort of
“Hasse diagram” of the locality relation (although we do not mean to exclude the possible
existence of further intermediate objects not drawn).
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Space Space,,,

/

~ 1
.. EGpd
T~
- Setey RGpd
~~ I \ | \ |
. Setpos Setey Gpd :
~ ‘ = L~ T~ I
Contr Setpos Set,eg Gpd,,,
Contr Setpos Set
S0~ |
Contr Prop
\ 1
Contr

Figure 3: A conjectural enlargement of Figure 1
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are both exact, but Set,, is not: an internal equivalence relation in Set,eg is
a pseudo-equivalence relation in Set, but it can only be effective in Set,g if
it is an actual equivalence relation. Similarly, but perhaps more surprisingly,
Gpd is not exact as a (2, 1)-category (in a sense like that of [Str82]): for if it
were, its subcategory of O-truncated objects would be exact as a 1-category,
but this subcategory is Set,eg.

I expect RGpd to also fail to be (2, 1)-exact, though less obviously since
its subcategory of O-truncated objects should be Set.,, which is 1-exact. But
Set., should also be the subcategory of O-truncated objects in EGpd, which
should be (2, 1)-exact. This is analogous to how Set, is the subcategory
of subterminal objects in both Set., and Set,,, though only the former is
1-exact.

Is there a different 2-dimensional relative free cocompletion of a point
whose category of O-truncated objects is Set? To guess what this might be,
note that in the parts of Figure 3 that we understand precisely so far, moving
to the right can be achieved by passing to a localization. For instance, if we
localize Set,os by inverting the surjections, we obtain Prop. Similarly, if in
Sete, we invert the morphisms f : X — Y that reflect equality (in the sense
that if there exists a witness that fo(x) ~ fo(2’) then there exists a witness
that x ~ 2’) and such that f; is split surjective, we obtain Set,,. If we
further invert the morphisms that reflect equality and such that f; is merely
surjective, we obtain Set.

Analogously, it is natural to guess that RGpd should be obtainable from
EGpd by inverting functors that are split-surjective on objects, split-full on
morphisms, and reflect equality of parallel morphisms; while Gpd should be
similarly obtainable from RGpd by inverting functors that are split-surjective
on objects, merely full on morphisms, and reflect equality of parallel mor-
phisms. This suggests that the “missing link” should be obtained from Gpd
by inverting the functors that are fully faithful and merely surjective on ob-
jects. This is equivalent to inverting the weak equivalences: functors that are
fully faithful and essentially surjective.!> The morphisms in this localization
are anafunctors [Mak96, Bar06, Rob12, Rob18], so we denote it Gpd,, .

Similarly, if we present Set as a localization of Set.,, we could call its
morphisms anafunctions and write Set ~ (Sete,)ana. Equivalently, we can

SRecall that every weak equivalence is an equivalence if and only if the axiom of choice
holds.
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observe that since Set is already exact, it is equivalent to its own exact com-
pletion as a regular category, i.e. Set >~ Sete,/req; in general we can present
the ex/reg completion as consisting of setoids or equivalence relations with
anafunctions between them (‘“total and functional relations”). This suggests
that the missing link Gpd,,,, should be the “(2, 1)-exact completion of Set as
a regular category”. This makes sense because the definition of Gpd,,,, un-
like that of Gpd, incorporates some information about the regular structure
of Set, i.e. the surjective functions of sets.

There are, however, issues with actually performing the localization lead-
ing to the hypothetical Gpd,,,. In particular, unlike RGpd and Gpd, itis not a
reflective localization of EGpd. Worse, even in ZF set theory, with excluded
middle but no choice, it is impossible to prove that Gpd,,, is locally small,
cartesian closed, or complete [aK17], and hence it seems unlikely to be a
derivator. (This also implies that it cannot be presented by any sort of model
category, although weaker structures like a fibration or cofibration category
are a possibility.) However, it may be easier to obtain at least a left derivator
of this sort, with colimits but not necessarily limits.

Conjecture 8.2. There is a left derivator Gpd
anafunctors. Moreover:

ana COmposed of groupoids and

» Gpd,,, is a relative free cocompletion of a point, and is “(2,1)-exact”.

Every weak equivalence of categories is a Gpd, . ,-equivalence.

ana

Set is Gpd,,,,-local, but Set,.; and Set,os are not.

The subcategory of O-truncated objects in Gpd,,, is Set.

ana

Of course, we can ask analogous questions about n-groupoids for 2 <
n < oo.

Conjecture 8.3. There is a left derivator Space,,,, composed of “co-groupoids
and anafunctors”. Moreover:

* Space,,,
exact”.

is a relative free cocompletion of a point, and is “(c0,1)-

* Every weak equivalence of categories is an Space,, ,-equivalence.

85



M. SHULMAN THE DERIVATOR OF SETOIDS

* Set and Gpd,,,, are Space,,,-local, but Set,os, Set,eg, and Gpd are not.

ana

* The subcategory of I-truncated objects in Space,,,, is Gpd

ana*

These conjectural derivators Gpd,,,, and Space,,, are closely related to
the issue raised in §1 that perhaps our definition of derivator is wrong: maybe
we should use Cat,,, instead of Cat.'® Since Cat,n, is equivalent to the
bicategory obtained by inverting the weak equivalence functors in Cat, a
natural definition of ana-derivator would be simply as a derivator such that
u*: P(B) — Z(A) is a (perhaps weak) equivalence whenever u : A — B
is a weak equivalence.

Of the derivators considered in this paper, Set and Prop are ana-derivators,
while it seems that the others are not (though I do not have a formal proof).
For instance, let u : A — B be a weak equivalence functor with B discrete,
and X € Set,os(B). Then (u,u*X), is the power X:il(b)o of the set X} by
the objects in the u-preimage of b. The adjunction unit X — w,u* X consists
of the diagonals X, — X' _1(b)°, but there seems no way to define a family
of functions in the other direction without choosing elements of the fibers to
give factors to project onto.

Conjecture 8.4. Gpd
Space,,
Gpd

ana and Space,,, are left ana-derivators. Moreover,
. is the free cocompletion of a point among ana-derivators, while

ana IS a relative free cocompletion of a point therein.

Remark 8.5. It is natural to wonder, if the right-hand column in Figure 3
has its “own notion of derivator” (the above-defined ana-derivators), why
is that not the case for the other columns? In fact, there are other ways to
vary the notion of derivator. The notion of derivator we have worked with
corresponds roughly to the second column from the right; but one could also
replace the 2-categories Cat and/or CAT by £-2-categories of E-categories,

161t seems that replacing CAT by CAT,,, makes less of a difference. Since functors
are in particular anafunctors, all our examples such as Setey are still derivators with this
generalized definition. And as long as a/l the functors u*, w, u, in the target &, and the
components of derivator morphisms, are generalized to anafunctors simultaneously, I would
expect essentially the same arguments for their universality to go through.
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or R-2-categories of R-categories.!” I have not pursued this direction; the
goal of this paper was to show that even if we try as hard as possible to
take sets and set-based categories as our basic notions, we seem to be led,
ineluctably, either to setoids and E-groupoids, or to anafunctors.

The next question is, if only the right-hand column of Figure 3 consists
of Cat,n,-derivators, why does the whole figure consist of Cat-derivators,
rather than just the two right-hand columns? In fact, I would expect that if
we define Set,, (for instance) as an &Cat-derivator, it would not be a “Cat-
derivator” in the sense that v* is an equivalence for any E-functor u that is
inverted by the reflection of £Cat into Cat. The difference is that Cat is a
reflective localization of €Cat, so that we can make the €Cat-derivator Set,
into a Cat-derivator in a different way by simply restricting its domain to the
sub-2-category Cat of ECat. The latter restriction is the derivator we have
called Set,, in this paper.

Remark 8.6. The referee has pointed out another interesting question: can
the equivalences in the derivators & of Figure 3 be characterized using iso-
morphisms of “homotopy groups”? We have seen in Proposition 5.7 and Re-
marks 5.10, 5.14, 5.18 and 5.22 that the Z-equivalences in the cases we’ve
studied can all be characterized as “m,,-equivalences” for a notion of 7, that
varies with the column as well as the row. In the next dimension, we ex-
pect an equivalence of groupoids to be a functor inducing an isomorphism
of my and isomorphisms of m; at all basepoints; but each such “homotopy
group” could be a set, an equivalence relation, or a pseudo-equivalence rela-
tion. Presumably the EGpd-equivalences involve setoids 7§ and 77, while
the Gpd,,-equivalences involve sets my and 7y, and the others are in be-
tween. Relatedly, note that by [Hen20, Proposition 5.2.6], the equivalences
of fibrant simplicial sets (a possible model for Space) are characterized con-
structively by isomorphims of setoid homotopy groups.

A positive solution to the above conjectures would, I believe, give a sys-
tematic explanation of many confusing aspects of homotopy theory in set-
based constructive mathematics. However, it is not clear whether it would
conclusively answer the question of what the “correct” constructive theory

'7To continue getting new notions beyond the fourth column, one would need to general-
ize to “n-derivators” in the sense of [Rap19], with the domain Cat replaced by some version
of (n,1)-Cat. That is, the notion of derivator can vary not only with the column but also
with the row.
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of spaces is, since both candidates Space and Space,,, have drawbacks: the
former truncates to Set, rather than Set, while the latter is not locally small,
cartesian closed, or complete.

Of course, such bifurcations of classical notions are not uncommon in
constructive mathematics. However, in this case there is more to be said:
if we are willing to modify the background theory (while still keeping it
“constructive” in at least some sense), we can make Gpd,,, and Space,,,
much better-behaved.

It is known that local smallness and cartesian closure of Gpd,,,, (and also,
presumably, Space,,,) requires much less than the full axiom of choice: it
suffices to assume SCSA [Mak96] or WISC [Rob12] (a.k.a. AMC [vdB12]).
These weak choice axioms have at least some claim to being constructive, as
they often hold in large classes of models of constructive mathematics, such
as Grothendieck toposes, realizability toposes, and exact completions. I do
not know whether these axioms make Gpd,,, complete, but there is another
axiom that should do so: the Axiom of Stack Completions [BH11], which
implies that Gpd,,, is equivalent to a reflective localization of Gpd (hence
also of EGpd), whose objects are the “intrinsic stacks” relative to surjections
of sets. The constructive nature of ASC is perhaps debatable, but at least it
holds in all Grothendieck toposes [JT91].

Another approach is to choose instead to do constructive homotopy the-
ory based on a foundational system in which spaces are primitive objects,
such as homotopy type theory. This is my preferred solution, so I will con-
clude with some remarks about its advantages.

ana

Remark 8.7. As noted in [Lum20], the diagonals of Figure 3 bear a strong re-
semblance to the hierarchy of saturation or univalence conditions on higher-
categorical structures defined in homotopy type theory [AKS15, ANST21].
When a groupoid is presented by a diagram on an inverse-category signa-
ture as in [Mak95, ANST21], it has three ranks of type dependency, corre-
sponding to the objects, morphisms, and equalities. Roughly speaking, &-
groupoids correspond to unrestricted categories of this sort, while R-groupoids
are univalent at the top rank (equalities), and ordinary groupoids are univa-
lent at the top two ranks (equalities and morphisms).

In a set-based foundation, it is not possible to be more univalent than
this; but in homotopy type theory, we can also impose univalence condi-
tions at the bottom rank of objects. The resulting homotopy theory UGpd of
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univalent groupoids is a reflective localization of Gpd'® at the weak equiva-
lences, closely related to the category of “intrinsic stacks” mentioned above
in connection with ASC. Hence, UGpd plays a similar role to Gpd,,,, but
without the attendant disadvantages. In particular, it is locally small, carte-
sian closed, exact, and has limits as well as colimits, while its subcategory of
0-truncated objects is Set. Similarly, the category of univalent co-groupoids
(spaces) plays the expected role of Space,,,,.

In fact, a “univalent groupoid” is equivalently just a type with the prop-
erty of being a 1-type, while a “univalent space” is simply a type with no
restrictions. That is, in homotopy type theory the primitive objects are the
objects of Space,,, rather than those of Set, so that none of the elaborate
work involved in defining higher groupoids and homotopy spaces is neces-
sary. (The related notions of higher category, however, are still nontrivial.)

I expect that the primitive spaces in homotopy type theory form a deriva-
tor (although proving this may require an enhanced theory such as [ACK17]).
It is unclear whether the resulting derivator of univalent spaces would be a
free cocompletion of a point; the answer might depend on how univalent the
1-categories in Cat are assumed to be, and/or on strong classicality axioms
such as AC, _; from [Unil3, Exercise 7.8]. (In particular, since univalent
1-categories are now a reflective localization of non-univalent ones, it seems
likely that all the other derivators in Figure 3 will still exist even if we re-
place Cat by UCat. Thus Space,,, may not be a free cocompletion of a point
unless there is a classicality axiom to collapse the columns.)

However, the “correctness criterion” advanced in this paper for a homo-
topy theory of spaces is not justified for homotopy type theory anyway. This
criterion seeks to characterize the homotopy theory of spaces in terms of sets
(or at most 1-categories); thus it makes sense in a world whose primitive ob-
jects are sets, but not in a world where spaces are already present as primitive
objects.

18For the expert, note that here we interpret “groupoids” as particular precategories in the
sense of [AKS15, Unil3], with no dimension restriction on their type of objects.
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FIXPOINT THEOREMS
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Résumé. Nous démontrons un théoréme du point fixe pour des contractions
sur des catégories Cauchy-complétes enrichies dans un quantale. II est val-
able pour tout quantale dont le treillis sous-jacent est continu, et s’applique
a des contractions dont la fonction de contrdle est séquentiellement semi-
continue inférieurement. Des conditions suffisantes pour 1’unicité du point
fixe sont établies. Les exemples comprennent des théorémes du point fixe
connus et nouveaux pour les espaces métriques, les ordres flous, et les es-
paces métriques aléatoires.

Abstract. We prove a fixpoint theorem for contractions on Cauchy-complete
quantale-enriched categories. It holds for any quantale whose underlying
lattice is continuous, and applies to contractions whose control function is
sequentially lower-semicontinuous. Sufficient conditions for the uniqueness
of the fixpoint are established. Examples include known and new fixpoint
theorems for metric spaces, fuzzy orders, and probabilistic metric spaces.
Keywords. Quantale, Enriched Category, Fixpoint Theorem.

Mathematics Subject Classification (2020). 06F07, 18D20, 47H10, 54H25.

Introduction

A beautiful and important result in metric space theory, is Banach’s fixpoint
theorem [2] from 1922: “Every contraction on a non-empty complete metric
space admits a unique fixpoint.” The gist of the proof is wonderfully sim-
ple: take any element x of the space (X, d) and, iterating the contraction
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f: X — X, prove that the sequence (f"x),en is Cauchy. In the complete
space (X, d) this sequence converges, and one then shows that it does so to
a (necessarily unique) fixpoint of f. Many generalizations and applications
of Banach’s theorem have been, and are still, studied.

In 1972, Lawvere [17] famously showed that metric spaces are a par-
ticular instance of enriched categories. More impressively still, Lawvere
also showed how convergence of Cauchy sequences can adequately be un-
derstood via representability of left adjoint distributors, thus lifting the very
concept of Cauchy completeness to the level of enriched categories. In his
words, “specializing the constructions and theorems of general category the-
ory we can deduce a large part of general metric space theory.”

It is thus natural to investigate whether fixpoint theorems still make sense
in the vast context of enriched categories. This is precisely the subject of this
paper.

More precisely, we shall take quantale-enriched categories as generaliza-
tion of metric spaces. That is to say, we fix a quantale (), and work with cat-
egories, functors and distributors enriched in (). Our contribution shows that
fixpoint theorems for ()-categories depend on the interplay between three
essential parameters. Indeed, a given contraction must be “strong enough”
(we shall measure its strength by means of a control function); the space on
which it acts must be “complete enough” for the Picard iteration to converge
to a fixpoint (we shall take this to be Cauchy-completeness in the sense of
Lawvere); but we also need sufficiently strong algebraic properties of the
underlying quantale () to allow for the formulation of precisely that conver-
gence.

In concreto, we shall prove a fixpoint theorem for Cauchy-complete -
categories' that holds for any quantale ) whose underlying complete lattice
is continuous and for a specific notion of contraction. Besides, we make
plain when and why such a fixpoint is unique (up to isomorphism). As ex-
amples we find the classical Banach fixpoint theorem for metric spaces, and
Boyd and Wong’s [3] generalization thereof (taking the underlying quantale

To stay faithful to Banach’s theorem in the metric case, we have chosen to study
fixpoints for contractions on Cauchy-complete ()-categories. Let us mention, though,
that other authors have studied other kinds of completeness, e.g. Wagner [27] chooses
liminf-complete ()-categories, whereas Ackerman [1] works with spherically complete Q-
categories (and both use a commutative quantale Q).
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to be the positive real numbers); but we also formulate new results for fuzzy
ordered sets (when working over a left-continuous ¢-norm) and for proba-
bilistic metric spaces (now the quantale is the tensor product of the positive
reals with a left-continuous ¢-norm).

In Section 1 we shall provide all the necessary notions from quantale-
enriched category theory to make this paper reasonably self-contained; we
follow [25] for the general theory, and [13] specifically for the comparison
between categorical and sequential Cauchy-completeness. In Section 2 we
first introduce the contractions that we are interested in, then we show how
these contractions determine Cauchy distributors under the appropriate al-
gebraic condition on the quantale (), and finally we formulate the resulting
fixpoint theorem for Cauchy-complete ()-categories. The examples in Sec-
tion 3 show how our fixpoint theorem generalizes known results from the
literature, and provides for new results too. We end with a short conclusion
in Section 4.

1. Quantale-enriched categories

1.1 Q-enriched categories, functors and distributors

In this section we recall some key notions from [25] on quantale-enriched
categories’; we encourage the reader to go back-and-forth to Subsection 1.2
for the relevant examples.

Throughout, we fix a quantale Q = (@, \/,o,1): it is a complete sup-
lattice (@, \/) endowed with a monoid? structure (Q, o, 1) such that the prod-
uct distributes over arbitrary suprema:

so(\/ti):\/(soti) and (\/si)ot:\/(siot).

In other words, but more abstractly, a quantale is a monoid in the sym-
metric monoidal closed category Sup of complete lattices and supremum-
preserving morphisms.

That reference actually treats the more general quantaloid-enriched category theory,
but the reader will easily convert those results to the simpler quantale-enriched case. See
also [26] for a gentle introduction to the subject.

3We do nor assume that 1, the unit of the monoid, is the top element of the lattice.
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A Q-enriched category C (or QQ-category C for short) consists of a set
Cy (of “objects”) together with a ()-valued (“hom”) predicate

C: CO X CO — Q: (%y) = C(x7y>

satisfying, for all z, y, z € C,, the following (“‘composition” and “identity”)
conditions:

C(z,y) o C(y,2) < C(z,z) and 1< C(z,x).
A Q-functor F': C — D between two ()-categories is a function
F:Cy—Dy:x— Fx
satisfying, for all x, 2’ € Cy, the (“functoriality”) condition
C(2',z) <D(F2', Fz).

Two such Q-functors /': A — B and G: B — C can be composed in the
obvious way to produce a new functor Go F': A — C, and the identity func-
tion on A provides for the identity functor 1, : A — A. Thus ()-categories
and @)-functors are the objects and morphisms of a (large) category Cat(Q).

A Q-distributor (also called bimodule or profunctor) ®: C-e+D between
two ()-categories is a ()-valued predicate

$: Dy x Cy— Q: (y,x) — Dy, x)
satisfying, for all x, 2" € Cy and y, vy’ € Cy, the (“action”) condition
D(y',y) o (y,x) o C(z,2") < O(y', 2").
Two such distributors, say ®: A—e+B and ¥: B-e+C, compose as

(Pod): CoxAg—Q: (z,2) — \/ U(z,y) o ®(y,x).

y€Bo

The identity distributor on C is the “hom” predicate C: Cy x Cy — @ it-
self, and so )-categories and ()-distributors form a (large) category Dist(Q).
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However, there is more: the elementwise ordering of distributors makes
Dist(Q) a 2-category”.

Applying general 2-categorical algebra, we may now say that two ()-
distributors ®: A—-+B and V: B-e+ A are (left/right) adjoint, denoted as
d 4V, if

A<UTod and PoV <B.

Every functor F': A — B represents an adjoint pair of distributors F, 4 F*
defined by

F.(b,a) =B(b,Fa) and F*(a,b) =B(Fa,b).
With this, the inclusion functor
Cat(Q) — Dist(Q): (F: Ao B) o (F A—e—>IB%>

naturally makes Cat(()) a locally ordered category by defining, for any
F,G € Cat(Q),

F<G & p<a,.

Whenever F' < G and G < F, we write F' = G and say that these functors
are isomorphic.
For a fixed ()-category C, we may consider, for any other ()-category A,

the map which assigns to any functor F': A — C the left adjoint distributor
F.: A-C:

Cat(Q)(A,C) — LAdjDist(Q)(A,C): F v F,.

This map is (by definition of the local order in Cat(()) order-preserving and
order-reflecting. If, for each A, this maps is also surjective (in words: every
left adjoint distributor into C is representable by a functor), then we say that
C is Cauchy-complete.

Let 1 be the Q)-category defined by 1, = {*} and 1(x, x) = 1. A distrib-
utor ¢: 1-e+C is called a (contravariant) presheaf on C. There is a natural
bijection between Q)-functors 1 — C and elements of C,. In particular, for
any ¢ € Cy there is a Q-functor A.: 1 — C: % > ¢ which represents the

*Much better still: Dist(Q) is a quantaloid, i.e. a category enriched in Sup. Since we do
not need this very rich structure in this paper, we shall not dwell on it here.
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left adjoint presheaf (A,).: Co x 1y — @Q: (z, %) — C(z, ¢). Therefore, by
putting

c<d 4 A <A, = C(—,0)<C(—,¢) « 1<C(c,c)

the set Cy becomes an order (Cy, <). If both ¢ < ¢ and ¢ < ¢ hold, then
we write ¢ = ¢ and we say that these objects of C are isomorphic. 1t is
furthermore a result in ()-category theory (which holds in greater generality

too) that C is Cauchy-complete if and only if
Cat(Q)(1,C) — LAdjDist(Q)(1,C)

is surjective; in words, C is Cauchy-complete if and only if each left adjoint
presheaf on C is representable.

The importance of Cauchy-complete ()-categories was made very clear
in Lawvere’s seminal paper [17] on the subject, via its relation to Cauchy
sequences. We shall briefly recall a small portion of this, using Hofmann
and Reis [13, Section 4.3] as reference.

Given a sequence * = (,)nen in a Q-category C, we define

Cp = \/ /\ /\ C(xn, Tm).

NeNn>N m>N

and say that x = (z,,)nen is a Cauchy sequence if C;, > 1. On the other had,
we also define

¢m:CO_>Q:y'_> \/ /\ C(y,l’n)

NeNn>N

Vo: Co = Q:y—= \ N\ Clan,y)

NeNn>N

and then have for these ()-valued predicates that:

Proposition 1.1.1 For any sequence v = (,,)nen of objects in a Q-category
C, both ¢, and 1), are Q)-enriched distributors. Furthermore, the sequence
r = () nen is Cauchy (i.e. C, > 1) if and only if ¢, 4 1,.

Thus it makes perfect sense to speak of (convergence of) Cauchy sequences
in any ()-category C, via the representability of the associated adjoint pair
of distributors, which is exactly what we shall need to do in the proof of
Proposition 2.2.3 further on.
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1.2 Examples of Q-enriched categories

In the rest of the paper, our examples of ()-enriched categories will be:

Example 1.2.1 (Ordered sets) The simplest non-trivial example of a quan-
tale is the two-element Boolean algebra @) = ({0, 1}, V, A, 1). In this case, a
()-category is an ordered set (P, <), seen as a set P equipped with a binary
relation < whose characteristic function Px P — {0,1}: (z,y) — [z < y]
satisfies the following axioms:

D) [z <yl Aly<z] < [z<2],
@ 1< [z <zl

(This order-relation need not be anti-symmetric; some call this a “preorder”.)
A @Q-functor between such ()-categories is a monotone map between ordered
sets. It is well-known (and easy to verify) that every ordered set is, viewed
as an enriched category, Cauchy-complete.

Example 1.2.2 (Metric spaces) Let Q = ([0,00], A, +,0) be Lawvere’s
quantale of extended positive real numbers, i.e. it is the segment [0, co| (with
oo included) with the converse (!) of the natural (linear) order, and with the
sum as binary operation. As pointed out by Lawvere [17], a ()-category is
precisely a generalised metric space (X, d), that is, a set X together with a
distance function d: X x X — [0, oo] such that

(D) d(z,y) +d(y, z) > d(z,y),
(2) 0> d(z,x).

The adjective “generalized” here indicates that such a metric need not be
finitary (so d(x,y) = oo is allowed) nor symmetric (so d(z,y) # d(y,x) is
allowed), nor separated (so d(z,y) = 0 = d(y,x) for z # y is allowed).
A @-functor between such ()-categories is a non-expanding map between
(generalized) metric spaces. Lawvere [17] famously showed that a metric
space is Cauchy-complete as enriched category if and only if all Cauchy
sequences (in the usual sense for metric spaces) converge.
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Example 1.2.3 (Fuzzy orders) A so-called left-continuous t-norm is pre-
cisely a commutative and integral quantale whose underlying (linear) su-
plattice is ([0, 1], \/) (see e.g. [15, 26]); the multiplication of such a quantale
is then typically written as = * y. Examples include = * y = xy (the “prod-
uct t-norm”), = * y = min{xz,y} (the “minimum ¢-norm”) and = x y =
max{z + y — 1,0} (the “Lukasiewicz t-norm”); in fact, every continuous
t-norm (meaning that the multiplication is a continuous function) is in a
precise sense an amalgamation of these three (see e.g. [11]). These quan-
tales are the corner stone of “fuzzy” logic: the truth values in this logic can
vary between 0 and 1, conjunction is computed with *, and implication is
computed with the adjoint to multiplication. A category enriched in a left-
continuous ¢-norm ([0, 1],\/, %, 1) thus consists of a set P together with a
map P x P — [0,1]: (z,y) — [« < y] satisfying

M [z<y] = [y<z] < [z <2],
2) 1< [z <=].

Following [28, 20, 5, 18], we call this a fuzzy (pre)order: the truth value
[z < y] € [0,1] is interpreted as “the extent to which x < y holds in P”.
A @Q-functor between such ()-categories is a map between fuzzy preorders
that does not decrease the value of the “fuzzy” order. By Theorem 4.19 of
[13] (and the definition of Cauchy sequence in a ()-category recalled above)
it follows that a fuzzy order is categorically Cauchy-complete if and only if
all Cauchy sequences (in the usual sense for fuzzy orders, see Definition 4.1
n [5]) converge.

Example 1.2.4 (Probabilistic metric space) Fix a left-continuous t-norm
([0,1],\/, %, 1). It was shown by Hofmann and Reis [13], and further ex-
plained in [6], that the set

A={f:[0,00] = [0,1] | f(t) = \/ (s)}

s<t

of so-called distance distributions is a quantale for pointwise suprema, with

SBecause domain and codomain are continuous lattices, these are precisely the lower
semicontinuous functions, see [8, Proposition II-2.1]; and because domain and codomain
are complete linear orders, these are precisely the supremum-preserving maps, see [6, Ex-
ample 2.1.10].
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the convolution product

(fxg)) =\ f(r)*g(s)

r+s=t

e(t):{ 0ift =0,

1 else

as binary operation, and

as two-sided unit. Indeed, it is shown in [9, Examples 2.1.10 and 2.3.36] that
the quantale QQ = (A, \/, *, e) is the tensor product in the category of suplat-
tices, as well as the coproduct in the category of commutative quantales,
of the Lawvere quantale ([0, 00, A,+,0) and the left-continuous ¢-norm
([0,1],\/, *,1). A Q-category has been called a (generalized) probabilis-
tic metric space by some [13, 12], and a (generalized) fuzzy metric space by
others [16, 7]; it consists of a set X together with a probabilistic distance
function d: X x X x [0, 00] — [0, 1] such that

©0) d(z,y,t) =V, d(z,y,s),
(1) d(xz,z,t) = 1fort > 0,
(2) d(z,y,r) *d(y, z,s) < d(z, 2,7+ 5).

Such an object is often denoted (X, d,*), to stress the importance of the
t-norm. The intended meaning of d(z,y,t) is that it expresses “the prob-
ability that the distance from x to y is strictly less than ¢”. (Again, we do
not insist on finiteness, symmetry or separatedness for such a space, each of
which can be expressed suitably; see also [24].) A ()-enriched functor is a
map between such spaces that does not decrease such probabilistic distances.
Hofmann and Reiss [13] proved that a probabilistic metric space is categor-
ically Cauchy-complete if and only if all Cauchy sequences (as traditionally
defined in probabilistic metric spaces, see [4, 13]) converge.

2. Fixpoints for contractions on Q-categories

2.1 Contractions on a Q-enriched category

Let () be any quantale (and write O for its bottom element), and C any (-
enriched category.
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Definition 2.1.1 If p : Q — Q and f : Cy — C, are maps such that
1. o(t) > tforallt € Q,
2. ifp(t)=tthent =0o0r1 <t

3. forallz,y € C, C(fz, fy) = ¢(C(z,y)),
then we say that f is a p-contraction, and we say that  is a control function
for f.
A control function ¢ is thus bigger than the identity function on the whole
of (), and strictly so except possibly in¢ = 0 or £ > 1. Note too that a
p-contraction f is always a ()-functor f: C — C, but not every ()-functor
is -contractive for some control function .

We wish to investigate the possible fixpoints of such contractions. Let us
first make this formal:

Definition 2.1.2 Let f: C — C be a Q)-functor. A fixpoint for f isanu € C
such that fu = w in C, that is to say, we have both 1 < C(fu,u) and
1 < C(u, fu).

In general, such fixpoints are of course not unique. However, if f is a (-

~ ! ~

contraction, and both fu = u and fu’ = « hold, then it follows from the
triangular inequality in C that

C(u,u’) > C(u, fu) o C(fu, fu') o C(fu',u)
>10C(fu, fu')ol
= C(fu, fu')
> o(C(u, )
> C(u,u’)
Since p(t) > tforall 0 # t # 1, we must have C(u, v’) = 0 or C(u,u’) > 1.

Exchanging v and u’ one sees that also C(u',u) = 0 or C(u/,u) > 1. Hence
there are exactly four possibilities:

Clu,u') > 1 Clu,u’) > 1 C(u,u’) =0 C(u,u’) =0
{ C(u',u) >1 o { C(u',u) =0 o { Cu,u)>1 o { C(u,u) =0

Under mild assumptions on C we can now formulate uniqueness results for
fixpoints.
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Proposition 2.1.3 Let C be a QQ-category all of whose homs are non-zero,
and f: C — C any @-contraction. If fu = u and fu' = v’ then u = u/.

Proof. In the four possible cases above, only the first is compatible with
non-zero homs in C. g

For ()-categories with homs that can be equal to 0, we have a different result.

Proposition 2.1.4 Let C be symmetric QQ-category (meaning that C(z,y) =
Cly,z) forall x,y € C)and f: C — C any @-contraction. If fu = u and
fu' = then either u = ' or C(u,u’) = 0.

Proof. In the four possible cases above, only the first and the last are com-
patible with symmetry in C. O

Reckoning that any symmetric ()-category decomposes as a categorical sum
of symmetric subcategories, each of which has all homs non-zero, the latter
Proposition says that any two distict fixpoints of f: C — C must be in
different summands of C.

2.2 From contractions to adjoint presheaves

Given any p-contraction f on a ()-category C and an object z € C,, it
follows from Proposition 1.1.1 that the sequence (f"z),ecn determines two
distributors,

¢r5: 1--C and Y, ;: Ces1,

with elements

6esW) =\ N\ Cly, f'w) and ¢u(y)=\/ A CU"z,y).

NeNn>N NeNn>N

We now wish to identify sufficient conditions on () and ¢: () — (@ in order
to prove an adjunction between these distributors.

To that end, we first recall some pertinent definitions from [8]. Let L be
a complete lattice. A subset D C L is directed if it is non-empty and, for
any z,y € D there exists a z € D such that x V y C 2. For two elements
a,b € L we write a < b, and we say that a is way below b, if, for every
directed subset D C L, b <\/ D implies the existence of a d € D such that
a <d.
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Definition 2.2.1 We say that a complete lattice L is continuous if, for each
aclL,
a:\/{uEL|u<<a}.

It is well-known that every continuous lattice is meet-continuous—meaning
that (binary) meets distribute over (all) directed suprema. Finally, we shall
be interested in a weak variant® of lower-semicontinuity:

Definition 2.2.2 We say that a function ¢ : L — M between complete lat-
tices is sequentially lower-semicontinuous if, for any sequence (t,)nen in

L,
o(\/ N\t <V N elta).

NeNn>N NeNn>N

Taking inspiration from the “metric” case discussed in [3], we now prove:

Proposition 2.2.3 Let () be a quantale whose underlying complete lattice
is continuous’, and let f : C — C be a p-contraction on a QQ-category for

which the control function p: () — Q) is sequentially lower-semicontinuous.
For any x € Cqy such that C(x, fx) # 0 # C(fx,x) we have ¢y 5 4 1y 5.

Proof. Putting Cy 5 = \/ yeny Ausy Amsn C(f", f72) € Q, we recall
from Proposition 1.1.1 that ¢, 4 9, ; if and only if C, ; > 1. We shall

show that C, ; # 1 leads to a contradiction.

(i) Picking an = € C, such that C(zx, fz) # 0 # C(fz,z), we put
cn = C(f"x, f*1z) € Q for all n € N. By assumption, 0 < ¢y < 1 and
the conditions on ¢ imply that ¢y < ¢(cg) < ¢;. Repeating the argument we
find that ¢,, < ¢(c,) < ¢n11, SO the sequence is increasing and strictly above
0. Therefore we can compute, using the conditions on ¢, that:

Voew=\ exn

NeN NeN

A function f: L — M between complete lattices is lower-semicontinuous if the sup-
inf condition in Definition 2.2.2 holds for all nets in L (i.e. a family of elements indexed by
a directed poset).

"It is tempting to speak of a continuous quantale, yet this terminology is in conflict with
that of continuous t-norm. Indeed, the underlying lattice of any ¢-norm is the continuous
lattice [0, 1], yet not every ¢-norm is continuous (as a function in two variables). So we shall
stick to the somewhat cumbersome “quantale with underlying continuous lattice”.
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=V A

NeNn>N

> \/ /\ p(cn)

NeNn>N

Z‘P(\/ /\Cn)

NeNn>N

=o(\/ en)

NeN

Z\/CN

NeN

We thus find a fixpoint of ¢ which is not 0, so it must satisfy 1 < \/ .y cn.

(i) Similarly, the sequence (a,, := C(f""z, f"x)),en must also satisfy
1< VEN -

(iii) Next, suppose that 1 £ C/,; by continuity of the underlying com-
plete lattice of (), this means that there exists an € < 1 such that e £ Cy,
(and so in particular € # 0). Using the definition of C, as a sup-inf, we
may infer:

£V (A Aeurnrm)

keN \n>km>k

—VkeN:ez \ A\ C(f"z, f")

n>k m>k

— Vk e N, dng,my > k:e LC(fx, fMx)

In the last line above, it cannot be the case that m; = ny, because otherwise
C(f™zx, fx) > 1 (by the “identity” axiom for the @)-category C), which
would then also be above ¢ < 1. So suppose that n;, < my, then we can
replace my by

mj, ;= min{m > ny | e £ C(f™x, f™z)}

and so we still have e £ C(f™x, f™sz), but now also € < C(f™x, f™ 1x).
Similarly, if ny > m; then we may replace n; by

ny, :=min{n > my € N | e £ C(f"z, fM™z)}
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and we still have ¢ £ C(f™x, f™z), but now also ¢ < C(f™ 'a, f™x).
That is to say, we can always pick ny, m; > k to ensure that

S either C(f™x, f™ ') >e (A)
e £ C(f™a, f m)and{ or C(f™ 'z, fmz)>e (B)

Now denote, for each such pick of ny, my > k € N,
dy := C(f™ax, f™x);

and let us insist that ¢ £ dj, for all k& € N. In case condition (A) holds for d,
then in particular m; > n; so my; > 1, and we can use the “composition”
axiom in C to get

€0 Cpy—1 < C(f™x, fm’“_lx) o C(fm’“_la:, fmex)
< C(f™w, fMax)

In case condition (B) holds for d; we can similarly prove that
Up,—1 © € < dy.

Hence, using in (x) that a continuous lattice is always meet-continuous, and
that both sequences

(/\fdi | k= N and () holds})

NeN
( Addi | k= N and (B) holds})
are increasing, we may compute that

V Ad=V Ad

NeNE>N NeNg k>N

-\ (/\{dk | k> N and (A) holds}

NeNy

NeN

A A\{dy | k> N and (B) holds})
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—
*
~

( \/ /\{dk | k> N and (A) holds})

A ( \/ /\{dx |k > N and (B) holds})

NeNy

> ( \/ \{eocm—1| k> Nand(A) holds})

A < \/ Afan-10€|k> N and (B) holds})

NeNg

VA o)1 (VAo

NeNm>N NeNm>N

-
(e A=) ()
(

\Y,

()

01 106

[

So, even though € £ dy, (forall k € N), we dohave 0 # € < \/ .y /\kZN dp,.
(iv) Using the “composition” axiom in C, we have for every £k > N € N
(recall that ny, m;, > k too) that

d, > cn, o C(f™ o, f™ ) oa,,, > ¢, 0@(dy)oam, > cxop(dy)oan

and so we may compute that

\/ /\ di, > \/ /\(CNOgo(dk)oaN)

NeN k>N NeN k>N
>\/ <cN o (N ¢ldi)) oaN)
NeN k>N

S () ()
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:10(\/ /\cp(dk)>ol

NeN k>N

290(\/ /\dk)

NeNn>N

=\ A\

NeNn>N

where in () we use that the involved sequences are increasing®. This means
that \/ yey Ags v di s @ fixpoint of ¢ which — as we showed earlier — is not
0, so we must have 1 < \/ v A -

(v) Since € < 1 < \/ vy Agsy i> and the latter supremum is directed,
by continuity of () there must exist an Ny € N such that e < A,y d.
Yet, we established earlier that ¢ £ d,, for all £ € N. This is the announced
contradiction. a

2.3 Fixpoint for a contraction on a Cauchy-complete Q-category

In the above Subsection we discovered sufficient conditions for a ¢-con-
traction f: Cy — C, to determine adjoint distributors. If the ()-category C
is Cauchy-complete, this adjoint pair is represented by an object of C. We
will now show that this representing object is a fixpoint for the contraction.

Proposition 2.3.1 Let () be any quantale and f: C — C any Q-functor on a
Cauchy-complete ()-category. If there exists an x € Cy such that ¢, ¢ = 5 ¢
then f has a fixpoint.

Proof. By Cauchy-completeness of C, the presheaves ¢, s and 1, ¢ are rep-
resentable; so suppose that ¢, ; = C(—,u) and ¢, ; = C(u, —) for some
u € Cy. Now we can compute that

C(fu,u) = ¢u r(fu)

= \/ A\ C(fu, /o)

NeNn>N

8For two sequences (a,,)nen and (by,)nen of elements in @, distributivity of product
over suprema in @ assures that (\/,, a,) o (V,, bm) =V, ,,, (a5 0br). However, when both
sequences are increasing, i.e. n < n’ implies a, < a,/ and b,, < by, then this is further
equal to \/,, (a, o by,). The argument obviously extends to three increasing sequences.
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= \/ A C(fu, frz)
NeNgn>N

—
IV

N\ Clu, f"x)
eNn>N
v (1)

(u, u)

I

v

using the “functoriality” axiom for f in (x). Similarly one computes that
C(u, fu) > 1. Therefore we have both « > fu and fu > w in (the underly-
ing order of) C, which means that v = fu, as wanted. O

Putting Propositions 2.2.3 and 2.3.1 together, we arrive at:

Theorem 2.3.2 (Fixpoint theorem) Let () be quantale whose underlying
lattice is continuous, and let f: C — C a p-contraction on a Cauchy-
complete ()-category, for which the control function ¢: () — @) is sequen-
tially lower-semicontinuous. If there exists an x € Cy such that C(x, fx) #
0 # C(fz,x) then f has a fixpoint, namely the object representing the ad-
Junction ¢ ¢ 3 1, 5.

In the above Theorem, the obtained fixpoint depends on the element x € C
chosen such that C(z, fx) # 0 # C(fxz,x). However, let us recall that
Propositions 2.1.3 and 2.1.4 provide mild conditions on C to make the fix-
point of a contraction unique.

3. Examples and counterexamples

The examples in this section show how Theorem 2.3.2 generalizes known
fixpoint theorems from the literature, and provides new ones too. Also, we
mention a counterexample to show that the conditions cannot be weakened
unless supplementary conditions are considered.

3.1 Orders

The two-element boolean algebra being a continuous lattice, the quantale
Q = ({0,1}, Vv, A, 1) satisfies the condition in Theorem 2.3.2, so this Theo-
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rem can potentially say something about ordered sets. Note that the functions

0—0

o1 {0,1} — {0,1}: { L and o0 {0,1) — {0,1}: { 01

1—1

are the only possible control functions (according to Definition 2.1.1). A
map f: (P, <) — (P, <) is a yp-contraction if and only if f is monotone;
and it is a ypy-contraction if and only if f is essentially constant (fz = fy
for all x,y € P). Any non-empty ordered set is Cauchy-complete as a Q-
enriched category. It is part of the hypotheses in Theorem 2.3.2 that there
exists an x € P such that z < fz and fx < x; in other words, by hypoth-
esis there exists a fixpoint fx = x. Of course this makes the conclusion of
the Theorem (namely, the existence of a fixpoint) trivial! Moreover, the fix-
point that is constructed in the proof (as an object representing a left adjoint
presheaf) is in this particular case precisely isomorphic to the fixpoint given
as hypothesis. So, for the two-element Boolean algebra, Theorem 2.3.2 does
not give any result; the Theorem can thus only be meaningful for “richer”
quantales. (We hasten to add that there exist of course very important fix-
point theorems for ordered sets; but these usually require more stringent
completeness conditions on the ordered set and/or more stringent continuity
conditions on the map. See e.g. [8].)

3.2 Metric spaces

Lawvere’s quantale ) = ([0, 00], A, +,0) is linear, and therefore continu-
ous’. It is also an integral quantale: the unit O for the monoid structure is the
top element of the lattice (note again that the order on [0, oo] is the reverse
of the natural order!). This makes the notion of contraction in Definition
2.1.1 slightly simpler, so by application of Theorem 2.3.2 we can produce
the following result:

Corollary 3.2.1 Let ¢: [0, 00] — [0, 0] be an upper-semicontinuous func-
tion so that p(t) < t forany t ¢ {0,00} and p(0) = 0. Let f: X — X
be a map on a Cauchy-complete generalized metric space (X, d) such that

9 Any complete linear lattice L is completely distributive and (therefore) also continuous.
In fact, we have a < b if and only if either a = 0, 0ora < b, or (a = band b # \/{z € L |
x < b}), see [8].
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d(fzx, fy) < ¢(d(x,y)) for all x,y € X. If there is an © € X such that
d(z, fx) # 0o # d(fx,x) then the sequence (f"x),en converges to a fix-

point of f.

If (X,d) is a finitary generalized metric space (i.e. no distance is infinite),
then any = € X will produce a convergent sequence ( f"x),cn; and Proposi-
tion 2.1.3 implies that all such sequences ( f"z),cn converge to an essentially
unique fixpoint of f (unique if the space is also separated).

If (X,d) is a symmetric generalized metric space, then any z € X
such that d(z, fx) # oo will produce a convergent sequence (f™z),cn; and
Proposition 2.1.4 implies that any two fixpoints of f are either isomorphic
(equal if the space is also separated) or at distance co from each other (i.e.
the space (X, d) decomposes as a categorical sum of two non-empty spaces,
and the fixpoints are in different summands).

In particular, for ordinary metric spaces we may note:

Example 3.2.2 Let (X, d) be a Cauchy-complete metric space, and suppose
that ¢: [0,00] — [0, 00| is an upper-semicontinuous function that maps 0
to 0 and so that ¢(t) < ¢ for any ¢t ¢ {0,00}. Then any map f: X — X
satisfying d(fz, fy) < o(d(z,y)) for all x,y € X has a unique fixpoint,
and for any x € X the sequence (f"z),ecn converges to that fixpoint.

Some conditions in this statement can be weakened somewhat. For instance,
it is enough to require that ¢ is (defined on and) upper-semicontinuous on
the closure of {d(z,y) | x,y € X}. Indeed, in the proofs of Propositions
2.1.3, 2.1.4 and 2.2.3, the control function is only applied to (sequences of)
elements in that closed set. This is how the above example is formulated by
Boyd and Wong [3, Theorem 1] (see also [22]).

On the other hand, the control function defined by ¢(t) = k - ¢ for 0 <
k < 1 certainly satisfies the conditions in Corollary 3.2.1, so we find the
following particular case:

Example 3.2.3 Let f: X — X be a map on a Cauchy-complete generalized
metric space (X, d) for which there exists a0 < k < 1suchthatd(fz, fy) <
k-d(x,y) forall x,y € X. If there is an x € X such that d(x, fz) # oo #
d(fx,x) then the sequence (f"x),cn converges to a fixpoint of f.
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If (X, d) is an ordinary metric space, we find here the well-known Banach
Fixpoint Theorem.

Finally, we mention that Ackerman [1] has produced an example of a
non-expansive contraction — whose control function merely satisfies ¢(t) <
t instead of ¢(t) < t fort ¢ {0,000} — on a Cauchy-complete metric space
which does not have a fixpoint. This shows that this condition on the control
map cannot be weakened without strenghtening some other conditions in
Corollary 3.2.1.

3.3 Fuzzy orders

The quantale @ = ([0, 1],\/, %, 1), where * is a left-continuous t-norm, is
linear (thus continuous, see a previous footnote) and integral. Hence, by
application of Theorem 2.3.2 we find:

Corollary 3.3.1 Let (P,[[- < -]|) be a complete fuzzy preorder. Suppose
that f: P — P is a function such that [ fx < fy] > ¢o([z < y])) for some
lower-semicontinuous function ¢: [0, 1] — [0, 1] satisfying p(t) > t for all
0<t< 1 and (1) = 1. Ifthereisan x € P such that [z < fz] # 0 #
[ fx < z]|, then the sequence (f"(x))nen converges to a fixpoint of f.

This is a (straightforward) generalization of Corollary 3.2.1, since Lawvere’s
quantale ([0, o], A, +, 0) is isomorphic to the product t-norm ([0, 1},\/, -, 1)
by the order-reversing map [0, oo] — [0, 1]: t — exp(—t).

3.4 Probabilistic metric spaces

The integral quantale (A, \/, x, e) of distance distributions (wrt. a left-con-
tinuous t-norm x*) is completely distributive!?, hence continuous, so we can
apply Theorem 2.3.2.

Corollary 3.4.1 Let ¢o: A — A be a lower-semicontinuous function satis-
fying (u) > u forall 0 < u < e, and p(e) = e. Suppose that f : X — X
is a function on a Cauchy-complete generalized probabilistic metric space

10Indeed, the complete distributivity of the underlying suplattices follows from [9, The-
orem 2.1.17], who show that the tensor product of completely distributive complete lattices
is completely distributive.
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(X,d, %) such that d(fx, fy,t) > @(d(x,y,t) for all t. If there exists an
x € X such that d(z, fx,t) # 0 # d(fz,x,t) then [ has a fixpoint.

It follows furthermore from Proposition 2.1.3 that, if d(z, y, c0) = 1 for all
x,y € X (i.e. the space is finitary), then the fixed point is unique.

There are indeed examples of control functions ¢: A — A that the
above statement asks for, e.g.

o(u)(t) = { é<u(t> 1) ii?ié .

Unfortunately though, the “Banach control function” which is appropriate in

the setting of probabilistic metric spaces'!,

o(u)(t) = u(Kt) forsome 1 < K < oo,

does not satisfy p(u) # wu for all 0 # u # e (e.g. the “almost constant”
functions, defined by u(t) = ug for 0 < ug < land 0 < ¢t < oo, are
fixpoints of ¢). One possible solution (hinted at by a result in [10]) would
be to work with finitary probabilistic metric spaces. These can be seen as
categories enriched in the subquantale

AT ={ue Alu(oco) =1} U{0}

of A. Restricted to AT, the Banach control function does not have fixpoints
other than 0 and e: if u € AT\ {0} satisfies u(t) = u(Kt), then for any
0 <ty < oo,

1 =u(c0) = u(\/ K"t) = \/ u(K"ty) = u(to),

neN neN

so indeed © = e. However, we do not know whether A* is continuous (we
conjecture that it is not), so we do not know whether we can apply Theorem
2.3.2 without modifications: this will be a topic of futher investigation.

"'Contractions with this control function are called probabilistic g-contractions in [11].
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4. Conclusion and further work

With our study of fixpoint theorems for quantale-enriched categories, we ex-
emplified that such results depend not only on the strength of the contraction
and the completeness of the space, but also on the algebraic properties of
the underlying quantale: any fixpoint theorem results from an equilibrum
between those three aspects.

In future work, we want to investigate how several examples of fixpoint
theorems in the literature (see e.g. [5, 10, 11]) fit — or, perhaps, do not fit
— with our quantale-enriched approach. This could lead to variants on our
Theorem 2.3.2, where different algebraic properties of () are combined with
different conditions on the control functions of contractions, or with different
completeness conditions on the ()-categories (see e.g. [27]).

We also intend to study fixpoint theorems for quantaloid-enriched cat-
egories. This generalization, far from trivial, has the benefit to include in
particular the theory of partial metric spaces [26, 14] and of probabilistic
partial metric spaces [12], two areas for which only few fixpoint theorems
are known [19, 21, 23].
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