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Résumé. Dans cet article, nous prouvons un théoréme de classification pour

les groupoides doubles (satisfaisant a une condition de remplissage supplémentaire,
tout a fait naturelle) au moyen de troisicmes classes de cohomologie de groupoides.
Dans une seconde étape, indépendante, nous montrons que la classe de coho-
mologie associée a un groupoide double coincide avec I'unique k-invariant

non trivial de sa réalisation géométrique.

Abstract. In this paper, we prove a classification theorem for double groupoids
(satisfying an extra, quite natural, filling condition) by means of third co-
homology classes of groupoids. In a second, independent, step, we prove

that the cohomology class associated to a double groupoid coincides with the
unique non-trivial k-invariant of its geometric realization.
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Introduction and summary

Double groupoids (groupoid objects in the category of groupoids) go back to
Ehresmann [14, 15, 16]. Roughly, they consist of objects, two kinds of mor-
phisms between them, horizontal and vertical, and boxes whose boundaries
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A. M. CEGARRA CLASSIFYING DOUBLE GROUPOIDS

are squares with morphisms as edges, usually depicted

b

aT;p

Y

<
oO—r
T

g

together with horizontal and vertical composition of morphisms and boxes
giving compatible groupoid structures and obeying middle four interchange
on boxes. The double groupoids we encounter in practice, and certainly
in this work, are small and satisfy a natural filling condition: Any filling
problem

finds a solution in the double groupoid. This filling condition on double
groupoids is often assumed in the case of double groupoids arising in dif-
ferent areas of mathematics, such as in weak Hopf algebra theory or in dif-
ferential geometry (see, for instance, Andruskiewitsch and Natale [1] and
Mackenzie [23]), and it is satisfied for those double groupoids that have
emerged with an interest in algebraic topology, mainly thanks to the work of
Brown, Higgins, Spencer, et al., where the connection of double groupoids
with crossed modules and a higher Seifert-van Kampen Theory has been
established (see the surveys by Brown [3, 4, 5] and the references given
there). Thus, the filling condition is easily proven for edge symmetric dou-
ble groupoids (also called special double groupoids) with connections (see
Brown and Higgins [6], Brown and Spencer [7], Brown, Hardie, Kamps and
Porter [8] and Brown, Kamps and Porter [9]), for double groupoid objects
in the category of groups (also termed cat?-groups by Loday [22], see also
Porter [25] and Bullejos, Cegarra and Duskin [10]), or, for example, for 2-
groupoids (regarded as double groupoids where one of the side groupoids
of morphisms is discrete (see for instance Moerdijk and Svensson [24] and
Hardie, Kamps and Kieboom [20]).

Every (small) double groupoid G has a geometric realization, which is
the topological space defined by first taking the double nerve NNG, which
is a bisimplicial set, and then realizing geometrically the diagonal to obtain
a space: |G| = | A NNG|. The usual definition of the homotopy invari-
ants of a double groupoid G involves only its underlying topological space
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|G| and does not take into account the algebraic structure. Our main goal
in this paper is to give a combinatorial definition of the (unique) Postnikov
invariant of a double groupoid with the filling condition using only its al-
gebraic structure. Recall that a (2-dimensional) Postnikov system is a triple
(P, A, k), where P is a groupoid, 4 is an abelian group valued functor on
P,and k € H3(P, A) is a three-cohomology class of P with coefficients in
A. Our definitions and constructions here are suggested by previous work
of the author and collaborators; particularly by the results in [11], where
we address the homotopy types realized from double groupoids satisfying
the filling condition. They are all the (not necessarily path-connected) ho-
motopy 2-types, that is, the homotopy types of all CW-complexes whose
homotopy groups at any base point vanish in degree 3 and higher.

After Section 1, where we briefly fix some notational conventions on
double groupoids, in Sections 2 and 3, we review several needed defini-
tions and results on the (algebraically defined) fundamental groupoid I1G
and the homotopy groups m5(G, a) of a double groupoid G satisfying the fill-
ing condition. Section 4 contains the new definition of the Postnikov invari-
ant of such a double groupoid, which is the equivalence class of a Postnikov
system (I1G, m,G, kG) where kG € H3(IIG, m,G) is a certain characteris-
tic cohomology class of the fundamental groupoid of G with coefficients in
the abelian group valued functor on IIG which assigns the homotopy group
m9(G, a) to each object a of G. In Section 5, we mainly state and prove the
expected classification result:

“The assignment G +— (11G, m2G,KG) induces a bijective correspon-
dence between weak equivalence classes of double groupoids satisfying the
filling condition and equivalence classes of Postnikov systems.”

Finally, in Section 6 we prove

“The Postnikov invariant of a double groupoid G with the filling condi-
tion is equivalent to the Postnikov invariant of its geometric realization |G|.”

As a bonus, we find a new proof of the fact that the assignment G — |G| in-
duces a bijective correspondence between weak-equivalence classes of dou-
ble groupoids satisfying the filling condition and homotopy 2-types.
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1. Some conventions on double groupoids

The notion of double groupoid is well-known, we just specify in this prelim-
inary section some basic terminology and notational conventions. We will
work only with small double groupoids, so that in a double groupoid G we
have a set of objects (usually denoted by a, b, c, .. .), horizontal morphisms
between them (f, g, h, . ..), vertical morphisms between them (x,y, 2, .. .),
both with composition written by juxtaposition, and boxes (o, 3,7, . . .), usu-
ally depicted as

L
(0] TI‘
a

«—
g9

o)

Y

oO—r

where the horizontal morphisms f and g are, respectively, its vertical target
and source and the vertical morphisms y and x are its respective horizontal
target and source. The horizontal composition of boxes is denoted by the
symbol oy:

oo f’f
H

Fatat s Aunals
H

’ g g’g

and, similarly, the vertical composition of boxes is denoted by the symbol

oy

L
vT o Tz A
= = yy'T aoya’ sz’
yT ’ Tm . <_h .
A

Horizontal and vertical identities on objects and morphisms are respectively
denoted by I"a, IVa, "z, I'f, and Ia := I'I"a = I"Va, depicted as

a=—a a = <L a=—a
| o] 1 To (A | 1a ||
a R — <7 a==aq
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and horizontal and vertical inverses of boxes are respectively denoted by
a™ a™V,and o™ = (o)™ = (oY) 7P, that i,

P g i
VR,
oo et oo
. H . (— . . H
g ! f ft

We will use several times the coherence theorem by Dawson and Paré
[13, Theorem 1.2], which assures us that if a compatible arrangement of
boxes in a double groupoid is composable in two different ways, the resulting
pasted boxes are equal. Throughout the paper, an equality between pasting
diagrams of boxes in a double groupoid means that the resulting pasted boxes
are the same.

The double groupoids we are interested in satisfy the so-called filling
condition: Any filling problem

has a solution; that is, for any horizontal morphism g and any vertical mor-
phism y such that the source of y coincides with the target of g, there is a
box whose vertical source is g and whose horizontal target is 3. This con-
dition is more symmetric than it appears thanks to the following lemma by
Andruskiewitsch and Natale [1, Lemma 1.12].

Lemma 1.1. A double groupoid satisfies the filling condition if and only if
any filling problem such as the one below has a solution.

Throughout the paper we make the assumption that the double groupoids
we work with are small and satisfy the filling condition.
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2. The fundamental groupoid 11§

Let G be a double groupoid. If ag, a; are objects of G, we define a path in G
from ag to a; to be a diagram (f, b, x) of the form

a1<—b

IE

Qo

that is, where b is an object, f a horizontal morphism from b to a;, and x a
vertical morphism from a to b. Throughout the paper, we identify paths in
G of the form

a <L ap a1 —aq
[ Te
Qo Qo

with the morphisms f and x respectively; that is, we write

f=(fa0,Vay), z=("ay,a,z).

If (f,b,2) and (g,c,y) are two paths from ag to a;, then we say that
(f, b, x) is homotopic to (g, c,y), denoted by (f, b, z) ~ (g, c,y), if there is

a box « in G of the form

~
@

2)

yz !

[ —— ]

| =1

N—0

that is, whose horizontal target and vertical source are identities, its horizon-
tal source is yx~!, and its its vertical target is f~'g. We call such a box a
homotopy, and we often write v : (f, b, x) ~ (g, ¢, y) whenever we wish to
display the homotopy.

Lemma 2.1. Homotopy is an equivalence relation on the set of paths in G
Jfrom ag to ay.

Proof. Reflexivity: For any path (f, b, z), clearly Ib : (f,b,2) ~ (f, b, z).
Symmetry: If o : (f, b, x) =~ (g, ¢, y) is a homotopy, then the pasted box of

L
Mg~'f) ” Try
c+——0b <— c
g f !
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is a homotopy (g, ¢,y) ~ (f,b, x).
Transitivity: Assume thata : (f,b,2) ~ (g,c,y)and 5 : (g,¢,y) ~ (h,d, 2).
Then, we find a homotopy 7 : (f, b, ) ~ (h,d, z) by pasting the diagram of
boxes

g g 'h

b+ ——c+——d

| Iv(f‘lg)‘ P T -1
be——c c ’

” T Tyw‘l
b c

O

Let [f, b, x] denote the homotopy class of a path (f,b,z) in G.

We define the fundamental groupoid 11G of the double groupoid G to be
a category having as objects all the objects of G. An arrow in IIG from an
object aq to an object a; is the homotopy class of a path in G from ag to a;.
Composition in I1G is as follows:

For each morphism in the fundamental groupoid p € 11G(ag, ay), let us
choose a representative path (f,,b,,z,) of p,

a0, 3)

that is, such that p = [f,, b,, z,]. If ay g & ap are any two composable
morphisms in IIG, by the filling condition on G, we can select a box 6 in G
whose horizontal target is x,, and whose vertical source is f,. Thus, we have
a diagram in G of the form

“)

and we define the composite 1p = [f, f, b, vx,| € 1IG(ay, as).
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Lemma 2.2. The composite 1 p is well-defined, that is, it is independent of
the choices of representative paths of p and 1) and of the choice of 0 in (4).

Proof. Suppose that o, = (f,, b,,2,) = (9, Cp,Yp) and vy = (fyp, by, Ty)
(g4, ¢y, Yy) are homotopies and that we have selected boxes ¢ and ¢ as in
the diagrams below.

Ty f Gy 9

a2<—b¢<—b Qg Cy<—C

wa 0 Tl‘ wa o’ Ty
H

ax fo bP a1 9o €p
sz Typ

a

ao 0

Then, we get a homotopy « : (fyf,b,2x,) =~ (949, c,yy,) by pasting the
diagram

-1
7 Jy 90 g

b< by Cyp 4 c
|

Jowey?
by

For each object a of G, let id, = [I"a,a,Va] € 11G(a, a).
Theorem 2.3. With these definitions, 11G is a groupoid.

Proof. Identity: For every arrow p = [f,,b,,z,] € IIG(aop, a;), the diagrams
ing

@ =a; £-b, Ly —
H I'fp ” fﬂpT Iz, Tfﬁﬂ

a; <—0b, ap = ag

’ Tl’p a”

agp 0
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show that id,, p = p = pidy,.

Associativity: if ag & a9 & ay & ay are any three composable mor-
phisms in I1G, we can choose boxes ¢, 6’ and 6" as in the diagram

as (— b¢ (— b/ b”

e Pele

a2<—bw<—b

w?T P

whence,

((W’)P = [f(bf/? b/7 $,ZL’¢,] P = [f(bf/f”a bl/? xﬂxll'p] = ¢ [fd)fv bv xp] = ¢(¢p)

Inverse: For any morphism p € I1G(ag, a;), we can select a box v in G
of the form

Qa

—1
.

by

=]

)
y Tx
pull
o
and construct p~* = [f, b, 2] € G(a1, ag). From the diagrams in G

—1

f 1
ap+—b+—qg ay <— b, Loy
xT ~ —h Twp— ZPT ,yfv T —1
a) <— bp ag <— b
fo f
o I
Qg aq
it follows that p~'p = id,, and pp~! = id,,. O

Lemma 2.4. (i) For any two composable horizontal morphisms

ag < a1 < Qo
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and for any two composable vertical morphisms
az
Ty
ai
Ta
Qo

the equalities [g][f] = [gf] and [y][x] = [yx] hold in TIG.
(13) For any path (f,b,x) in G, [f,b, x] = [f][z].

(tii) The filling problem in G

aﬁLb

i

C(TCLO

has a solution if and only if [y]|g] = [f][x] in IIG.

Proof. (i) follows from the existence of the first two diagrams below and
(77) by the third one.

agiaﬁiao Ay == Gy = Q9 a1<f—b=b
[ o T Tv | w |

a <T aop ap=—a; b=—0»b
I Tz E

Qo ap ag

For (7ii), suppose first 6 is any solution to the given filling problem.
Then, the diagram

shows that [y][g] = [f,b, 7] W [f][z]. Conversely, assume that [y][x] =
[f][z] w [f, b, x]. By the filling condition on G, we can select a box ¢’ of the
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form

!
G1<—b,

yT 0’ Tz’

C(TCLO

whence, by the already proven part, [y|[g] = [f'][z'] = [f’, V', 2]. Tt follows
that [f, b, z] = [f’, V', 2], and therefore there is a homotopy « : (', ¥/, z") ~
(f,b,x) which gives us the solution 6 that we are seeking for the filling
problem by pasting the diagram

/ 1—1
a Ly Ly

| vr [ Tewm
detty —

yT 0’ I,T Ihg! T:c’

C(TCL[):GO

3. The functor mG : IIG — Ab

For each object a of G, let m3(G, a) denote the set of all boxes o in G of the
form

a
I

a

a=a3
I

that is, whose horizontal source and target are both ['a, the vertical iden-
tity of a, and whose vertical source and target are both I'a, the horizontal
identity of a. By the general Eckman-Hilton argument, the interchange law
on G implies that both operations oy, and o, on m3(G,a) coincide and are
commutative. Thus, mo(G, a) is an abelian group with addition

O+T ! =0O0O,T =00y T,
zero 0 := la, and opposites —c := 0~V = o b,
The assignment a — m3(G,a) is the function on objects of a functor
mG : IIG — Ab, which acts on morphism as follows. There is an abelian

v
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group valued functor on the groupoid of horizontal morphisms which assigns
to each horizontal morphism f : ay — a; the homomorphism

fe 1 m2(G, a0) = (G, ar)

defined by f.o = I'f o, o o, IVf 1,

ag =— Qg aﬁLaO:ao;al
[ S e i
ag = Qg a1<7a0=a0<]:a1

and, similarly, there is an abelian group valued functor on the groupoid of
vertical morphisms which assigns to each vertical morphism = : ag — a;
the homomorphism

Ty © Fg(g,ao) — Wg(g,al)

defined by 2,0 = 1"z o, 0 o, [Pz~ !,

aq ay
T 1h T
wmy A
[ S (R
Q agp

Qo == ag 0
= Thg=1 [zt
T T
aq ay

Lemma 3.1. If

aﬁLb

i T

C(Tao

is any box in G, then the diagram below commutes.

7T2(g, CL1) <f—* 7T2(ga b)

y*T Tm

(G, c) o T2(G, ao)
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Proof. Let us consider, for any o € m2(G, ao), the following pasting diagram

/ 7t
— be———ay

a’l b=
T o ] o
g 9!

c———ay Qg +——¢C

9 g "
c———ap ag +———~c
—h
qu 0~ x_1T Thg—1 Tm—1 o Tyfl
ai (f— b————»b T ay

The two natural ways to paste this diagram yield, on the one hand, f,x.o
and, on other hand, y,g.0. Hence f.z,.0 = y.9.0. O]

For any morphism p € T1G(ay, a;), we define the homomorphism

Px = fp*xp* : 7T2<g7 a()) — 7T2(g7 al)a
where (f,,b,,x,) is a representative path of p.

Lemma 3.2. The homomorphism p, : m2(G,ag) — m(G,a1) does not de-
pend of the choice of representative path of p.

Proof. If (f,,b,,%,) = (gp, ¢, Y,), there is a box in G as below.

f;:lgp
b, L% ¢
[ T
b, ——1b,
Then, by Lemma 3.1, f,.' .. 7, = idrygp,) Or, equivalently, g,y =
JorT . O]

Theorem 3.3. The assignments a — m2(G,a), p — ps define a functor
moG : I1G — Ab.

Proof. That (id,). = id, for any object a of G, is clear. Let a & a; & ag
be two composable morphisms in IIG. For any box € as in (4), we have
Yp = [fuf,b,xz,| Then, by Lemmas 3.2 and 3.1, (¢p). = fyufisZpe =
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3.1 The action of 7,G on boxes of G

For any box in G

; d=d< b d=ddbv d=ddb
delb Il S A N N
oro]e = d=d o |» = d—d«b = d—d«b
Cega v 1y ] sy T ole ] o Te

C==cC+a C==Cta Cs—F—a
Clearly 0 + 0 = 0 and, for any 7,0 € m3(G, d),
d—d—d<p  d—ad (5)
[ S EVA . L
T+(o+0)=d=d=d«b = d=d+b=(1+0)+0
yTIhyTIhyTGTJC yTIhyTGTI
c=c=cC+4+-a c=c+—a
g g
Lemma 3.4. For any o € m5(G,d), any box 6 as above, and any boxes
clq b<+— LA —d
ToT T Tal To]
H a<— “4—cC d(Tb
the following equalities hold,
(c+80)o,d =0+ (0o,9), (6)
(c+0)ony =0+ (0on), (7
aoy (0 +0)=ho+ (aoyb), (8)
Boy(oc+0)=z.04 (6oy0). )
Moreover,
(c+0)"=—flo+o", (10)
(c+0)"=—ylo+67. (11)
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Proof. (6) (the proof of (7) is dual):

d=d< b

| o ||

d=d<+—b

(040)o,0= T 0 T:U—F(@Ov(;)
T o1
.%.
(8) (the proof of (9) is dual):

fg—=adp  g=—gl Iy
[ | o |l H I'h H o || ra-t || () H
a+(c+0)=| a d=d+b e d—d—
T ey
= Ce——a DR i

Q

= h*(0'> + « Oph 0
(10) (the proof of (11) is dual):

(0+0) o (—foo+ 0™ Lo+ (Boy (—fuo +67")
Lot (= fflo+00,67"
D(g—0o)+Ty=0+T1% =T

Lemma 3.5. For any two boxes with the same edges

JEA
o Tx
a

g

!
P
0
g

T Yy

L—
oO—r .

<
oO—r

there is a unique o € m5(G, d) such that o + 60 = 0.
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Proof. Uniqueness. For any o € m5(G, d) and 6 as above,
(0 +0) th_h(i)a—i-(Qth_h) =0+ 1y =00, 1.

Hence, o + 0 determines o as 0 = ((o +0) op, Q*h) o, Iy~
Existence. Taking

we have 0 + 0 = ((0’ op 071 o, Ihy~Lo, Ihy) oh=0o,0 o, =0 0O

4. The Postnikov invariant [I1G, m,G, kG|

Let P be a groupoid. The category Ab” of functors A : P — Ab is abelian
and it has enough injectives and projective objects [19]. We can, thus, form
the right derived functors of the functor @ : Ab” — Ab, which is given by

Hm(A) = {(zo) € TI A(a)| psa =y forevery p:a — bin P},
acObP

where we write p,.x for A(p)(z). The cohomology groups of the groupoid P
with coefficients in a functor A : P — Ab [26], denoted by H"(P, A), are
defined by

H™(P,A) = (R"m)(A),  n=0,1,--.

To exhibit an explicit cochain complex that computes these cohomology
groups, let NP be the nerve of P. That is, the simplicial set whose m-

simplices are the composable sequences § = (fm B £0) of m
arrows in P (objects of P if m = 0). The face d; 3, for 0 < i < m, is obtained
from [ by replacing the morphisms ;,; and (3; by their composition ;1 3;,
while dyf and d,,,3 are obtained by leaving out 50 and Sm, respectively.
The degeneracies s;3 are obtained by inserting in 3 the identity morphism
idg;. This simplicial set NP is a Kan complex whose fundamental groupoid
is P (and whose homotopy groups vanish in degree 2 and higher). Thus,
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every functor A : P — Ab defines a local coefficient system on NP and
the cohomology groups H" (NP, A) are defined [17, 18, 21]. By Illusie [21,
Chap.VI, (3.4.2)] and Gabriel and Zisman [17, Appendix II, Prop. 3.3], there
are natural isomorphisms

H"(P, A) = H"(NP, A) = H"C*(P, A), n=01,---
where
C*(P,A):0— CUP,A) = — C" Y PA) S C™(PA) — -

denotes the complex of normalized cochains of P with coefficients in A.
Here, a normalized m-cochain ¢ € C™ (P, A) is a function

c: NP, — |_| Ala)

acObP

such that ¢(5) € A(Sm) and ¢(5) = 0 whenever some f3; is an identity. Each
C™(P,.A) is an abelian group with pointwise addition, and the coboundary
d:Cm™YP,A) — C™(P, A) is given by

3

de(B) =) c(difB) + (=1)" Bsc(dm ).

i

Il
=)

As usually, we write Z" (P, A) for the groups of n-cocycles of the com-
plex C*(P, A).

In this paper, we will only use the cohomology groups H*(P, A). For
future reference let us specify that a normalized 3-cocycle k € Z3(P, A) is
a function assigning to each three composable morphisms in the groupoid

as & ay & a, & ay an element k(¢,v, p) € A(as) such that, for any four
. s ..
composable morphisms a4 < as ﬁ Qs <i ay Vi ap, the 3-cocycle condition

k0,0, ¢) = k(6,0,19p) + k(0,00 p) — k(0. ¢, p) + 0.k(0, 9, p) = 0.

holds, and k(¢, ¢, p) = 0 if one of the morphisms ¢, ¥ or p is an identity.
A normalized 2-cochain ¢ € C?(P, A) is a function assigning to each

pair of composable morphisms a; & a4y & ay an element c(p,v) € Alaz),
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such that ¢(¢, 1) = 0 whenever ¢ = id,, or 1) = id,,. The coboundary of
such a 2-cochain is the 3-cocycle Oc given by

80((;5, l/Jv p) = C(¢7 w> - C(¢7 IDP) + C(@/’a p) - ¢*C(¢a )0)

Two normalized 3-cocycles k, k' € Z3(P, A) are cohomologous if and only
if there is a normalized 2-cochain ¢ € C?(P, A) such that &' = k + Jc.

Definition 4.1. A (2-dimensional) Postnikov system (P, A, k) consists of a
groupoid P, an abelian group valued functor A : P — Ab, and a coho-
mology class k € H3*(P, A). Two such Postnikov systems (P, A, k) and
(P', A, X') are equivalent if there exists an equivalence f : P = P’ and a
natural isomorphism § : A = §* A’ such that §* (k') = §.(k), where

f: H3(P', A) = H3(P,§#A"), §.: H*(P,A) = H*(P,fA")

are the corresponding induced isomorphisms in cohomology.
Let [P, A, k| denote the equivalence class of a Postnikov system (P, A, k).

Let G be a double groupoid. We associate to G a Postnikov system
(I1G, m2G, kG) as follows. For each morphism in the fundamental groupoid
p € 11G(ap, a1), let us choose a representative path (f,, b,, z,) of p, asin (3).
In particular, if p = id, for some object a of G, we take (I"a, a,'a) as its
representative path.

If ay & a1 & ay are any two composable morphisms in IIG, by Lemma
2.4, we have [£,)fwy] [f,)[e,) = ¥p = [Fyp)[s). whence

[epllfo] = [y W upllzwollz, '] = [fy " Fpllzppt, ']
= [lefWa byp, £L‘¢p:L‘;1],

and therefore we can select a box 0y, , in G as below.

by by, (12)
Loy Oy.p quppl?p
a| <—— bp
fo
In particular, we choose
Oidarp = 1o Opign, = "y (13)

142



A. M. CEGARRA CLASSIFYING DOUBLE GROUPOIDS

If as & as & a1 & ag are any three composable morphisms in IIG, pasting
in the diagrams

Foifo 5 foue Fopdove
by ¢ by < boupp bop ¢ bgyp

—1 —h -1 —
Ty, T 04 T 0 ,p T%wp%p %wT O, Trwpxpl
by ¢ as < byp a; «——b,
e Tee,
by by
f.w pr

le Tup

yields two boxes with the same edges, and therefore, by Lemma 3.5 and
the isomorphism fyy. : m2(G, byy) = m2(G, as), there is a unique element
k9 (¢, 1, p) € ma(G, as) such that

Lok (0,0, 0) + (0,57, 01 Op.p) = O p 0w 0,7 (14)
Note that composing horizontally with 6, ,, on the left in (14), by (8), gives
F3 k(0,9 0) + 0,00 = 0. on (Bgup 0w 07). (15)
More explicitly,
A o Fovp Fou
as < i b¢ < i b¢¢ < ks b¢wp<w—pa3 (16)

Loy 9¢¢,pf Ta;qgwpac;l
) —1
Lo 0, ap «——— bp Ivfdﬂ/)p
IVfe

k9 (9,4, p) = = on Teesi
a2 < b S — b
-1 f"’ 9—%} fz/; 1f1/m ur
Lo .00 T%P%w
as 4 by < — bgyp ¢ as
fo 0 fo fouvp o Touo

In fact, composing vertically with 67, - on the right in (15) yields

Folk(,0,0) + T (f5 fouo) = (060 on (s 0w 053)) 0v 057,
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whence

I'fs on ((ew on (By.p v 055)) O 9&%) on I,
= TI'fy on (£3. k(0,00 p) + T(f 5 foun)) on TS5,
S0, ) + T (ol Fovnf i)
= k9 (¢, 9, p) + 0 = k9 (0,4, p).

Lemma 4.2. So defined, kY € Z?’(Hg,mg), that is, kY is normalized 3-
cocycle of 11G with coefficients in m2G.

Proof. That k9 is a normalized cochain, that is, k9(¢, %, p) = 0 whenever
one of the morphisms ¢, ¥ or p is an identity, follows from the selection in
(13). For instance, if ¢ = id,,, then k9 (id,,, 1, p) = 0 since

Orae. 5 ©n Oidayp = LF " on onlfyp = T(f fup) = O 04 057,
e eidan%P OV 6;’\;

To prove that k9 is a 3-cocycle, suppose as ¢~ az < ay < ai & ag
are morphisms in IIG. By using first horizontal composition in the diagram
below, we see, from (16), that the pasted boxes of the inner regions labeled
with (A), (B) and (C') are

(A) = Ivf(;_1 on k9(8, ¢, 1) oy Ifsswp,

(B) =T"f; " on k9(0, 00, p) on Ifspyp,

(C) = Ivfgl Oh 5*kg(¢7 W p) Sh Ivf5¢wp'
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_ -1 1
b < f5 fso b 5o Toou b Tsgulsove b b
s ¢ 5 € s ¢ Sdp Sdp
L5 056, TsppTy,
s 056 Q9 4# bw v p—1
: ~ I (fwwf&bwﬂ)
; -1 -V
(4) 4 T %0 .
'= ToToy
as < by — b
~ fe ¢ oy o fbfl)
p - -V —1
:L‘é 1 95v¢’¢ x¢wz5¢’¢’
| bg( — b5 —= b5 bg
Soa I5 5w PV frafsgup OV ovp
-1
Tsgpy Ospp,p TspyppTp
- -1
x5 05,40 aq <—fp bp Ih(%éwpx(pul,p) Z5pppT oy
—1 —v —1
(B) Ty 9500 TWEWP
: fo fowe
as < b¢ 3 b¢¢ 1 b¢'1/)p 3 as < b¢¢p
A~ f¢ f¢1/) f¢¢f¢¢p fd’wp A~ T
-1 -1 -1
x h,.—1 x —v x x
5 Mz 5 eé,qu ¢¢p|5¢wp
bs bs ——— bssup
...‘ N N 6 f(s(lslﬂp
Ts Ihgs Ts
i - - -1
Dl To o b < fwlprb Foio
;a3 ¢ < ¢ € gyp 03
%IJ O Toyptp
5 . o
Ty 9¢7¢ aq <—p bp I f¢$p I (f5 1f5¢1/)/))
(©) I'f, :c;lT 0 zpry!
9 < by —— b
~ f"/’ v f’P lpr /w\p
: -1 —v -1
: T 04,00 YT papp
To
Loag< by < — by ¢ a3
: ¢ fo fove e Foup
B -1
Lé_ 1 e o7
f5 Yoppp
bs b bsgup
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Hence, using now vertical composition of inner boxes in it, we see that

Ivf(i_l Oh (kg((sa ¢7 ¢) + kg(57 sta p) + 5*kg(¢7 ¢7 p)) Oh Ivféqﬁwp =

_ -1 -1
be < s Fse b If5¢f5¢¢ b lf&wf‘iWP b b
/5 N o¢ S Sy © dpipp S¢ypp
0 056, O5p,p N 1 1
5 5,¢ 00_\/v 033 I (xéélbpx(pwp) L5y pT popp
N Y,p
-1
. b, < b < b < Tove U 4 Fove b
33 A — A} — A 39
~ fo ¢ fs fou 44 f¢$f¢wp ovp ~ ¢>T1/JP
97V
—1 _ -1 5,
zy M 1 Ts e $¢wp9|3g¢1wp
bs bs <~ bsgyp
~ A s Ssoup
zs has zs
—1 —1 —1
fe fo fou fopfovo Sowp
a Vi b & b b < CL
3% ¢S oY S ¢Yp S 3
T o) 0¢1/) P ~1
’ LoyppLp
z 0 (f—p b Ivfo) (£ 'S, )
¢ R ai p vp 5 Jooyp
—v
IVfe xll .0 mpx;;
fy
9 € by < — b
A~ v fzp fll)ﬂ /w\p
—1 — —1
T 94%‘:&9 ThoThyp
as < by < — by, ¢ as
fé ¢ fo Towp e Foip
1 —1
Zs T Ihxé_l s T
F5 Yoppp
bs b Dsgupp
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b < 5 oo b Tspfsgw b ,f(ngfaqawp b ;
a ¢ S S Spop Sdiop
P 056, O56u,p 1 T 1
Ts 5,4 e(ivv 0:3: Ih(z5¢¢px;wp) £E§¢wpx;wp
b .o
‘fq;/}P f(ﬁd)p
as < b¢< b¢1/1‘ b¢’l/1,0< 3 4 b@bp
= Osv.p ToppTp
o 0 ay ——b, Ty,
I‘Cfd) 9;:;7 qu;;p Ivf¢1llﬂ
12 by ¢ bup
—1 —v 1
e 9510 TYpT
fowp
a3 by ¢ 1 bop ¢ a3 ¢ bowp
[ f¢ fzbdzp dwp . T
ayt UP oyt| Yobue .
%Wféwp
bs bs <= bsgyp
Is Tsowp
_ N .
f5  fse Tsg Fsow ) TsoupToouvp
by s ¢ bsgu 4 bsguo (17)
fﬁé{ 05,0 Ts sty
f
Ts¢ 05, ay —*—b,
= | e xﬂ Oup 2oz,
2 ¢ by 4 - b
A~ fy ¥ flb lfde ;‘lip
1 . B
e 0.0 ZTppT papp
ag < by ¢ _ b
I fo Y F5 Fove e
_ . )
7! 05 60 ToppTshep
- I
f5 H fsowe

Now, we realize that the diagram (17) above is also obtained by using
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vertical composition of inner boxes in the following diagram

_ -1 1
s oo fso Toou TspupToovp
" Tspy 05,9 T:r5¢¢ﬂx;1
: Tog Osp,0 Q1 — I b,
| e T e e
| L b
a2 P TR
: a:_lT 05y ¢ Tve Tac z; !
_ 3¢ _ S¢,p YoTspypp
b I5 foo b ,f5¢1f5¢1pp b
Y 5¢ S dovp
x5¢T Os¢,vp wawi%;
: f
T 95@ Qo < PP bwp
: _ o7 _
(B). z; 1T b0 Tx””’%ép
Loag« b ¢ — b
- fo ¢ B £ s Yo »
L T 05,60 Txmbpxampp
bé s b5 Wb
f51f5¢wp we

where the pasted boxes of the inner regions labeled with (D) and (E) are
easily recognized, by (16), to be

(D) =Tf5 " on k9(66, ¢, p) on I fsgup,
(E) =Tf5 " on k9(8,9,¢p) on I fsgup-
So, the resulting pasted box of the diagram (17) is also
L'f5 " on (K9(66, 10, p) + K9 (6,6, 0p)) on oy

This proves the 3-cocycle condition, that is,

k9(8¢, ¢, p) + K9 (0, &, ¥p) = k9(3,,9) + k9 (8, 9, p) + 6.k (¢, ), p).
[l

Next, we observe the effect of different choices of (f,, b,, z,) and 0, , in
the construction of the 3-cocycle k9.

Lemma 4.3. (i) If the choice of the boxes 0y, , in (12) is changed, then k9
is changed to a cohomologous cocycle. By suitably changing the boxes 0, ,,
kY9 may by changed to any cohomologous cocycle.
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(i1) If the choice of the representative paths (f,,b,, z,) in (3) is changed,
then a suitable new selection of the boxes 0, , leaves the cocycle k9 unal-
tered.

Proof. (i) Let, for each two composable morphisms as ﬁ ai Vil ap in 11G,

It
by, Mbwp

/ -1
wa ew,p wapwp
aq <—f bp
P

be any other selection of boxes in (3), and let kY € Z3(IIG, ) be the
corresponding 3-cocycle.

By Lemma 3.5 and the isomorphism fy, : (G, by) = m(G,a2), we
can write 0, , = fJ*lc(z/J, p) + 0y, for a unique element (v, p) € (G, az),
and a normalized 2-cochain ¢ € C’Q(Hg , m2G) becomes so defined. Then,

for every composable morphisms as & a & a; ¢~ ag, we have

FolK 0,00, 0) + [ c(d,1p) + 0.9

D (1306, ) + ) on((Firfucld, p) + o) ol Fpl e, p) + 0,) ™)
ORI EN (e O RN EN C o CNOR )
2 (fe(0, )+ 00000 (5000, )~ Touu L0l ) 400 0,077)

€ fole(6,9) + frle(dw, p) — [} fomtopeayt fole(w, p)
+ 0,400 (Op,p0v0,,,)

D fle(o,0) + £rlelow, p) — Frl fomtouayl frie(t, p)
+ [ K9 (0,1, p) + Op.p

whence, by Lemma 3.5,

K90, p) + (@, ¥p)
- C(¢7 w) + C(¢¢7 p) - f¢¢*x¢¢*x;if1;*lc(¢u p) + kg(¢7 wa p)
As, by Theorem 3.3 and Lemma 2.4,

-1 — -1 -1
Fownoputyy = (0V)uyy = Quthtiyy = bu fnpuyy = Py,
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we finally conclude that

K9 (6,0, p) = c(6,¥) — c(d,1p) + (@, p) — duc(h, p) + k9 (6,0, p)
= 0c(, ¥, p) + k9(¢, 0, p).

Thus, &’ = ¢ + k9 and therefore k9 and k'Y are cohomologous.
Conversely, suppose ¢ € C*(IIG, 75G) is any normalized 2-cochain and
k = Oc+ k9. Then fJ*lc(w,p) + 0y, is an allowable choice of 0, , for
each pair of composable morphisms (1, p) in [1G, for which, by the already
shown above, the corresponding 3-cocycle just becomes £’ 9= 0c+ k9 =k
(1) Suppose we have choosen another representative path (g,, ¢,, y,) of
each morphism p in IIG. Then, we can select homotopies o, : (f,,b,, z,) =~

(9, ¢p,y,) and construct, for each two morphisms as <£ a; Va agp, the box

-1 -1 -1
Igw fw b /fw pr b ,prgwp
Cyp < P Yp < Cyp
1 ywwll a:bh H H e yw,ﬂ;;
v by ———b byy ——— b
Cy Cyp W 0 Y Yp
_ _ 1 0 1] _
‘WT 0.0 Tywpyp o= Ty ¥op T Way,z, ') |zpez,
b _
aq (T Cp Top "zy  aq bp — )
‘ H CAS
aq aj < b, < C
fo P fp_lgp P

which, by the already proven part (7), we can use to define the corresponding
3-cocycle k'Y € Z3(IIG, mG) from the new selected representative paths.

Then, for any three composable morphisms ag <i as <i aq vl ag,

v, — g v -V -V
gyt on K7 (6,40, p) on I'gsyp = (0.4 on (B, 00 0',0)) 00 04y, =
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—1 ~1 1 —1 —1 —1
9y fo b fo fov b Fouw 90 9oy fov b waprb Fywp9ave
Co < ¢ o ¢ Coy < o) < Pp ¢ Coypp
A~ I A
T N B
yqu;l O(¢ ‘ a(bw : Oé¢.¢, O‘dnlm yqbz/)pmd)d,p
[
[
by ==y Doy Doy Doy bgwp === gy
wgu | ! ’”WW Osv.p T i ToyppTp
[
I h
| aq b, b\p
! 1
| ay” ZpYp
Ih |_ R | R |
To | Opu 1: ay +— b, < c,
A~ P o~
[
¢ b | p YpTp
[
o oag b, b,
[ ~
z,t 1 o . .
| Ty b I ToTyp
[
B by by by by by
— —vh — -1
‘ oy : oy ‘ % TwopYupp
B | | - - - - __ 0 __ _ _
as a9 < b¢ — Cypy < bwp < Cyp
™~ f’wl’ fw l.qw g,j,lfw fwlpr ~
Wp | YppTy,,
—1
Tl a by byp
—1 —v —1
}% O wp T o TYp g
by =1y boyp boyp
T, _ .
%Tqﬁ a,™ Uy ZevpYpypp
Cp by ¢ - Do 5 Coup
9e fo f¢ Tovp fduppgawp
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1 —1 —1 -1
) 9e fé b ¢ f¢ fouw b ,fmz; fopp b f¢zpp9¢wp
Co < ¢ ¢ P < ppp ¢ Conpp
%wT Opu,p Toypty
fo _
¢ 960 a1¢ by I 5 o 9p)
_ v —1 —1 —v
= Moy~ fo) Ly T Oy Tz,
Qg 4 by +— b
~ fTP v fwlfdm }L’\p
-1 —v -1
) 04,10 oL popp
Cp ¢ by < Dgypp = Coup

95 fo 5 foue Fowp900p
=T, " on K9(¢, 4, p) on Igsup-
Hence k9 (¢, v, p) = k9(¢, 1), p), and the 3-cocycle k9 is unchanged. [

Lemmas 4.2 and 4.3 prove that each double groupoid G has a three-
dimensional cohomology class kG = [k9] € H?*(IIG, m,G) associated with
it. We refer to

[Hg7 7T2g, kg]
as the Postnikov invariant of G.

A double functor F' : G — G’ between double groupoids takes objects,
horizontal and vertical morphisms, and boxes in G to objects, horizontal and
vertical morphisms, and squares in G’, respectively, in such a way that all the
structure categories are preserved. Clearly, such a double functor induces a
functor I1F" : TIG — T1G’,

F
Tax — TFx )
Qo Fao

and a natural transformation moF" : moG — (I1F")*mG’, which consists of the
homomorphisms 7o (F, a) : m3(G, a) — me(G’, Fa) given by

a
I

a

a Fa=—Fa
= r |
a Fa= Fa.

e |
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We say that the double functor /' is a weak equivalence, and write
F:G>7,
whenever IIF' is an equivalence of groupoids and 75 F' is an isomorphism.
If, for any double groupoid G we define

7T0g - 7TO(]-_-[g)v

the set of iso-classes of objects of its fundamental groupoid, and, for each
object a of G,
m(G,a) = 11G(a,a),

the group of automorphisms of a in its fundamental groupoid, this notion
of weak equivalence is similar to the usual topological notion. Indeed, one
readily verifies that a double functor F' : G — G’ is a weak equivalence if
and only if F' induces an isomorphism of sets 710G = m,G’ and for every
object a of G isomorphisms of groups 7;(G, a) = m;(G’, Fa) fori = 1,2 (cf.
[11,3.4]).

We define two double groupoid G and G’ to be weak equivalent if there
exists a zig-zag chain of weak equivalences

G=Gr > G & G- &G =G

connecting G and G’ (see Corollary 5.4).
Let [G] denote the weak equivalence class of a double groupoid G.

Theorem 4.4. The Postnikov invariant [11G, moG, kG| of a double groupoid
G only depends on its weak equivalence class [G].

Proof. Let F' : G = G’ be a weak equivalence between double groupoids.
Suppose that the construction of k9 € Z3(I1G, 7,G) has been made by means
of representative paths (f,,b,,z,) of the morphisms p in IIG, as in (3), and
boxes 6y, , for each pair of composable morphisms (¢, p), as in (12). Then,
for the construction of k9 € Z3(I1G', m2G'), we can choose (E'f,, F'b,, Fz,)
as representative paths of the morphisms IIF'p in IIG’ as well as the boxes
Onry,nirp, = F0y,. If we do this, it follows from (16) that, for any triplet
(¢, 1, p) of composable morphisms in T1G,

K9 (IF ¢, IFY, TIFp) = Fk9 (9,7, p).

This means that (TIIF)*(k9") = (moF")(k9), whence (IIF)*(kG) = (ol )(KG).
Thus, [TIG, 726, kG| = [IIG", m»G’, kG']. 0
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5. The Classification Theorem

Theorem 5.1. The mapping [G] — [I1G, m,G, kG| establishes a bijective
correspondence between weak equivalence classes of double groupoids and
equivalence classes of Postnikov systems.

Proof. This follows from the following construction of a double groupoid G*
associated to each normalized 3-cocycle k € Z3(P, A), of any groupoid P
with coefficients in a functor A : P — Ab, and Proposition 5.3 bellow. [l

Let P be a groupoid, A : P — Ab a functor and k¥ € Z3(P, A) a
normalized 3-cocycle of P with coefficients in .A. We construct a double
groupoid, denoted by G*, as follows.

e The objects of G* are the arrows of P.

e For any two arrows of P, there is a unique horizontal (resp. vertical)
morphism in G* between them whenever they have the same target (resp.
source), whereas if they have different target (resp. source) then there are
no horizontal (resp. vertical) morphisms between them. Compositions and
identities are defined in the obvious manner. Thus, a path in G¥

§1¢—
T
&o

consists of three morphisms of P such that £, and 7 have the same source
and n and &; have the same target. Notice that such a path writes uniquely as

SRl QY — gibp
€o vp
with p = &'n, ¢ = n& ! and ¥ = &n~YE; are three composable arrows
as & as b a1 & ay in the groupoid P.
e A box (¢,%, p; u) in G¥, with boundary as below

QY —— php (18)
T G T
¢ — ¢Pa
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consists of three composable arrows in P, ag <£ as ﬁ ai Vil ap, together

with an element u € A(a3).

. s
e For any four composable arrows in P, a4 <+ as ﬁ as ﬁ a Vil aop,
u € A(az) and v € A(ay), the vertical composition of the boxes

0P +——ddipp (19)
T Gevpe) T

QY ——— Pibp,

T Gwpw) T

Y ———p
is given by

(6, 90, p;v)oy (B, 1, p; u) (20)
= (5¢a 77Z)7 P v -+ 5*U + k(67 ¢> 770) - k<57 ¢a 77Z)p)) .

) A
e For any four composable arrows in P, ay ﬁ as i Qs Vil ap < ag, and
u,v € A(ay), the horizontal composition of the boxes

R PYp < PYpA 21)
T @) T (dwprw) T
(R hp+ YpA,

is given by

(6,0, p;u) on (¢, ¥p, A\;v) = (&, 0, pA;u+v). (22)

e The vertical and horizontal identity boxes are respectively defined by

P— Y oY (23)
IV (pe-gw) = || (idaz 6.9:0) | d’f T ($:1idagi0) T
Pe—— v

for any two composable arrows as bl ay b apin P.

Lemma 5.2. With these definitions, G* is a double groupoid (satisfying the
filling condition).
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Proof. We first observe that the vertical composition of boxes in G* is asso-
ciative thanks to the 3-cocycle condition of £. In fact, let

VOPY 4———70¢p
T (dgvpw) T
01 ¢————0¢p
T Govpw) T
T wew T
P Yp

be three vertically composable boxes, defined by five arrows
a5<la4ga3£a2<£a1<ia0
of P and elements u € A(as), v € A(ay) and w € A(as). Then,
(v, ¥000, p;w) oy (6, ¢, p;v)) oy (6,0, p; u)
= (¥8, ¢, pyw + v + k(7,55 ¢0) — k(7, 6, dvop)) oy (6,9, p; u)

= (709, ¥, p;w + v v+k(v,0,00) — k(v, 0; ¢vop) + 1.bu
+k(10,0,¢) — k(19, 6,¥p)),

and, on the other hand,

(7,700, p;w) oy ((8, g1, p;v) oy (6,0, p; 1))
= (7,706, p;w) oy (36,9, p;v + 8. (u) + k(8,0 ¢) — k(8, ¢, ¥p))
= (Y0, ¥, p; WYV + Vebutt + 1k (6, b, ) — 1.k (6, ¢, Pp)
+ k(y,00,0) — k(v,00,¢p)).

Hence the result follows by comparison, using that the cocycle condition of

. . 5 s
k applied to the lists of arrows a5 &oay & as <i as ?—p ap and as &oay &
as ﬁ ao ﬁ ay gives the equalities

Yk (6, 0,0p) + k(7,00,9p) = k(v5, d,¢¥p) + k(7, 0, p1bp) — k(v,6, 9),
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The associativity of the horizontal composition of boxes is easier. Let

Pt e——— ¢ PUPA < PUpAL
T @upw) T @epre) T (dwermw) T
(R Yp+ YpA < YpAu

be boxes, defined by arrows as ﬁ ay <£ as L a, yal a; & ag of P and
elements u, v, w € A(as). Then,

(6,9, s u) o (6, 90p, X;0)) on (6, YpA, s w)

= (¢, ¥, pAsu+v) oy (&, VpA, p3 w)

= (6, ¥, pAsu+ v +w) = (¢,, pyu) on (¢, ¥p, A v + w)
= (¢, ¥, p;u) on ((¢,10p, A;v)) on (¢, YpA, 1 w)).

For any box (¢, v, p; u) as in (18), its respective vertical and horizontal
inverses

Pe———Yp  QYp—— 1)

T (@0,p5u) ™ T T (¢4, p5u) 0 T

QY e——Yp  pp——1b,
are given by

(0,0, psu) ™ =(¢7", 0, pi k(97" 0, ¢p) = k(o7 0, 0) — M),
(0,0, pyu) "= (o, 1h, p~t; —u).

The only non-straightforward verification here is that

(0,1, p;u) oy (o, 9, pyu) ™ =T"(P) < Pip).

which is as follows

(6,0, pyu) oy (67, 0, pr k(67" 6, 0p) — k(67" 6, 0) — 67 )
= (idg, 00, piu+ Guk(d7, 6, 1p) — k(67" 6,0) —u
+ R0, 6, 00) — k(67" 6, op))
= (iday, V10, 5 k(671 6,00p) — k(67" 6,0) + k(67 6, 6)
— k(67" ¢, p))
2 (iduy, 00, 9 k(6,67 0) — k(6,671 )) = (iday, $, p;0)
=T(¢) < ¢iop),

(24)
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where we have used the equality

Ouk(071, 0,0) — k(o 07", ¢vb) = k(d, 07", 9) (25)

which follows from the 3-cocycle and normalization conditions of k for the
-1
sequence of arrows ag i Qs  as ﬁ Qs <£ ay in P.

All other requirements are easily verified, except perhaps the interchange
law which is proved as follows. Suppose given boxes

0P < 0p ¢ OpthpA
T @ovow) T Govpre) T

OICR PYp, 4 PYpA
T @wew) T (dwedn) T

(PR Yp+ PpA

5 A
defined by arrows of P, a5 < a4 <i as ﬁ Qs Vi a1 < ag, and elements
v,v" € A(as) and u, v’ € A(ay). Then,

(6,0, p;v) oy (¢, 0, p3 ) o ((8,P0p, A;v") oy (¢, 10p, A ut))
= (00,0, p;v + 0wt + k(0,0 ¢) — k(8,0,9p)) on (60, ¥p, A; v
+ 8.u' + k(6,0 10p) — k(5, ¢,1pX))
= ((5¢, Y, pA; v + u + v + S + k(5,0 0) — k(0, ¢, w,o)\))
= (6,00, pA; v+ ") oy (0,0, pAsu + )
= ((0, 91, p; v) o (8, ¢vop, \; ) oy ((¢, 0, p5 u) on (d,1hp, A;u')).

]

Proposition 5.3. (i) Let (P, A, k) be a Postnikov system. For any represen-
tative 3-cocycle k € Z3(P, A) of k, the Postnikov invariant of the double
groupoid G* is equivalent to (P, A, k), that is,

[11G*, mG* kG*] = [P, A,K].

(17) Suppose (P, A, k) and (P', A", K') are equivalent Postnikov systems.
Then, for any representative 3-cocycles k € Z3(P, A) and k' € Z3(P', A")
of k and X' respectively, there is a weak equivalence G¥ = G¥'.
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(i) Let G be a double groupoid. For any 3-cocycle k € Z3(11G, 5G)
representative of the cohomology class kG, there is a weak equivalence
Gk > G.

Proof. Firstly notice that the homotopy relation between paths in G* is triv-
ial. In fact, suppose
SRt/ §ie—p
T~ 7
€o &o
are two homotopic paths in G*. This means that there is a box in G* of the
form

I—=

1
||

n

—~

&,,p5u)

<

for some composable arrows ag <i as & a; & ap in P and some u €
A(ag). But then, we have the equalities ) = n = ¥p = ¢ and ¢pyp = p
which imply n = pu.

(i) There is a functor f* : P — IIG* which carries each object a of
P to the identity morphism id,, regarded as an object of G¥, and carries a
morphism p : ay — a; of P to the path

idg, <—p
fp = T
idy,.
If ¢ : a; — ay is another morphism in P, the equality f*(p) = 4 %
follows from the diagram in G
ida, ¢ (R vp
T Goidayp0) T
idy, —p

1

idy,

and, for any object a of P,
1d, =1d,
fkida = ” - idfka.
ud

a
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So, f* is actually a functor which is clearly fully faithful. Indeed, it is an
equivalence of groupoids since any object p : ag — a; is isomorphic in IIG*
to the object f*aq = id,, because of the path

idyy = idy,

.

p.

Now, for any object a of P, the abelian group 7, (G¥, fa) just consists of
all the boxes in G* of the form

id, =——=1d,
|| (idasida,idasu) ||

ida _ ’Lda
with u € A(a). The mapping §* : A(a) — m(G*, fa),
u > (idy, idg, idy; u),

is clearly an isomorphism of groups, for any object a of P, and thus we see
that we are in presence of a natural isomorphism §* : A = {*m,G*.

To complete the proof, it is enough to prove that f**(kG*) = F*(k).
Indeed, we are going to prove that f**(k9") = §*(k) once we select, for each

pair of composable arrows as ﬁ a; & ap in P, the box
Ye——Yp
efkwﬁkp :T (¥yiday ,p;0) T

idg, «—p

in the construction of the 3-cocycle k9" . In fact, for any given composable

arrows as ﬁ Qs i ay Vil ap in P, by (16), the element

PR (6,0, p) = k9, T4, T p) € ma(GF, TFas)
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is the pasted box of the diagram

1d g, 4 ox oY < PUVp ¢ id,,

T @ideg) ]
($riday 0:0) idy, +————p
1Y (idag <) T Widay,pi0)™ T 1¥(¢wpeiday)

idg, ¢ (R Yp
T (driday $p:0) ™ T
id,, 4 b b ¢ i,
Since, by (23) and (24),

¥ (idgy < ¢) = (iday, ida,, $;0),

I (¢hp < iday) = (idag, ptPp, (01Pp)~1;0),

(1, idqy, p;0)™ = (V™1 0, p; —k(¥ 1,9, p)),

(¢, iday, vp; 0)™ = (674, &, ¥p; —k(d7, b, 1p)),

a direct computation, using (22) and (22), gives

K" (5. 0 7p)

= (idagsiday iday; —0,10, k(67" 0, )+ {000, 0" 0p) = k(60,07 )
— Ok(67",6,00) + k(6,071, 0p) — (6,67, 9))

D) (iday, iday, iday; — Sk (V1 0, p)+k(G0, 01 ) — k(G 1, ).

Moreover, since the cocycle condition of £ on the sequence

-1
a3ﬁa1d<}— a2<ia1<iao

yields
S k(U™ 0, p) = k(9,0 p) = k(o™ p) + k(o7 W) = 0

we conclude that

K9 (15, §500, 1) = (iday, iday, iday; k(6,0, p)) = Fk(), 2, p)
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(77) By hypothesis, there is an equivalence f : P = P’, a natural isomor-
phism § : A = §* A’, and a normalized 2-cochain ¢ € C?(P,§*A’) such that
(k') = §.(k) + Oc. A weak equivalence F' : G¥ = G*' is then defined by
the following assignments on objets, horizontal and vertical morphisms, and
boxes

¢\ fofib
prion (e vp) = (0 Fofp), | T | 1
¥ fib
Phe———p  fOfip+ fofvip
T wow T = T (eredsuteon)—covn) |
be—tp b ot

So defined, one verifies easily that F' : G¥ — G* is actually a double
functor. That F' is a weak equivalence follows from the commutativity of
the diagrams

PGk Ala) =2 7y(GF §a)
fl lHF gl J/TI'QF
PISTgY a(fa) S (G )

where f, f* and f* are equivalences of groupoids and, for any object a of P,
¥, §F and §* are isomorphisms of groups.

(4ii) By Lemma 4.3 (4), we can assume that k& = kY for a certain selection
of representative paths (f,,b,,z,) of the morphisms p in IIG and the boxes
8y.p» as in (3) and (12). Then, a double functor F' : GF = G is defined by
the following assignments on objets, horizontal and vertical morphisms, and
boxes

£ op vp b
F(p) =b,, F( <« Vp) = (bp——byp), F| 1T |= T%pﬂﬁf?l )
P by
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-1
f¢zp qup

P —— ipp Dy ¢ D
F T (¢,9,p5u) T = %w%lT Frrpe (@) 0,000 15 T%wp%; .
Y ———Pp by, < — by
fw pr

Many of the details to confirm that F', so defined, is a double functor are
routine and easily verifiable, so are left to the reader. For instance, if ¢, ), p
are any three composable morphisms in G,

F(¢ ) F(¢y < ovp) =[5 oy Fouf gy = 15 Fopo = F (¢ < dp)

and thus we see that /" preserves horizontal composition of morphisms. The
proof that F' preserves composition of boxes is as follows. Suppose two
vertically composable boxes in G¥, as in (19). Then,

F (8,01, p; 1) oy F(, 0, p;7)
= (fé_q;p*r + 95—7;1# on Os,6yp) Ov (f&pl*a + 9;2 oh 05.4p)
L (Frpn(7 = B8, 00 ) + B0 01 033, 0 (50,0 = k(@0 p)
+ Oy, Ov 91;?;)

D fron (T = (8,80, p)) + Togunty, fk (0 = k(.20 )

+ 050 O U5 Ov Opurp O Oy
= i = k(8,00 9)) + Sy f505:(0 = (6,0, ) + bagur 00 6,
E i (T = K(,00,0)) + f5.5.0.(0 = k(6,, ) + O 0v 07
= Froon 7+ 0.0) 4 i (<K (5. 00, p) = k(6. p)) + By O 7,

F (8,9, p;7) oy (6,4, p;7))

D F(0, 0, p:7 + 0.0 + K9 (6, 6,0) — k9(5,6,p))

= fé_gjib*(T + 5*0 + kg((Sv Qb, w) - kg(5> ¢7 ¢p)) + 95_(;1/; Oh 964&,1/1/)
(14)

= Froma (T4 020) + f5, (K9(5,6,0) — k9(6, 6, 0p)) — k9 (50,4, p))
+ Os5¢yp,p Ov 9;";,
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and the result follows from Lemma 3.5, thanks to the 3-cocycle condition
of k. To prove that I' preserves horizontal composition of boxes is easier.
Suppose two horizontally composable boxes in G¥, as in (21). Then,

F(¢a ’QD, 05 U) Oh F(¢a 1/JP7 )\a T)
= (fu@ 053 00 0650) On (F3pT + 0500 Oh O 002)
®)

Foun® F FainT + 053, 00 0.0 0n 0.5, 0n O.pn
= fop (0 4+ 7))+ 037 on 041
= F(¢, ¢, pNi0+7) = F((¢,0, p;0) on (¢, 0p, A; T)).

That F' preserves identity boxes is also easily checked. For instance,

FIV(¢ <~ QW’) = F(ldv ¢7 ?/)7 O) = 01—551(25 Oh Qid,qbzp = Ivf(z)_l Ivf¢¢
=I(f; fop) = TF (¢ < ¢0).

This double functor F'is a weak equivalence. In fact, the induced functor
on fundamental groupoids IIF : IIG*¥ — IIG is an equivalence since its
composition with the equivalence §* : TIG ~ TIG* is the identity functor on
[1G: for any morphism p € 11G(a, b),

) idy <— p bl b,
IIF(fp) = IIF T | = Top | = [fpsbps Tp] = p-
id, u

Furthermore, for any object a of G, the induced map
ToF : mo(GFidy) — 7a(G, a)

is the obvious isomorphism

id, =—=1d, a a
| (idaidaidaio) |+ .
ida ———— Z'da a u

]

Corollary 5.4. Two double groupoids G and G' are weak equivalent if and
only if there is a double groupoid G" with weak equivalences G < G" = G,
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Proof. Suppose G and G’ are weak equivalent. By Theorem 4.4, they have
the same Postnikov invariant, that is, the Postnikov systems (I1G, G, kG)
and (T1G’, moG', kG') are equivalent. Then, by Proposition 5.3 (iz) and (ii7),
for any representative 3-cocycles of kG and kG’, say k and k' respectively,
there is a sequence of weak equivalences

G&EGEn gt g

6. Geometric realization

Theorem 6.1. The Postnikov invariant of a double groupoid G agrees with
the Postnikov invariant of its geometric realization |G|.

Proof. This follows from Proposition 6.2 below. [

For a groupoid P, let us recall from the beginning of Section 4 that NP
denotes its nerve, that is, the simplicial set with m-simplices the composable

sequences § = (Sm A A £0) of m arrows in P. If (P, A, k) is any
Postnikov system and we select any normalized 3-cocycle k € Z3(P, A)
representative of the cohomology class k € H3(P, A), then the equivalence
class [P, A, k]| is justly realized as the unique Postnikov invariant of (the
geometric realization of) the simplicial set homotopy colimit of the functor

K(A,2): P — Sset, a+— K(A(a),2),

twisted by the 3-cocycle k (see, for instance, Goerss and Jardine [18, Chapter
VI, Lemma 5.8]). This simplicial set, which we denote by

hoc}glim K(A,2;k), (26)

has the same simplices as the ordinary homotopy colimit hoc}glim K(A,2),

that is, its set of m-simplices is

| | E(A(Bm),2)m.

ﬁeNP'IIL
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Its face and degeneracy maps are also the same as those of non-twisted ho-
motopy colimit, except the last face maps which are here canonically af-
fected by the cocycle k. This twisted homotopy colimit (26) becomes a
Kan complex that is coskeletal in dimensions higher than three and whose
3-truncation can be described explicitly as below

S0
S0

U ABP =} U A(B2)=SNAR==Nh

BENPs d3 ' BENP,
where, for any 8 € NP, and 0 € A(52)
di(B,0) =d;i8, 0<i<2,
forany 3 € NP; and (09, 01, 03) € A(B83)3,

(d:3, ;) it 0<i<?2,

di(670'070'10'2>:{ (dgﬂ,ﬁg;l(k(ﬁ)—'—ob_gl—'—o-o)) if Z:3,

forany g € NP,
Sz(ﬁ): (Siﬂa())a izovla
and, for any § € NP, and 0 € A(/52),

(soB,0,0,0) if i=0,
si(B,0) =% (s16,0,0,0) if i=1,
(528,0,0,0) if i=2.

Now, for a double groupoid G, let NNG denote its double nerve, that is,
the bisimplicial set where a (p, ¢)-simplex is a subdivision of a box of G as
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a matrix of p x ¢ horizontally and vertically composable boxes of the form

Ipa fiq
(pq < (p—-1q T (1q < (oq
qu/]\ 0p.q /l\zpflq "EllIT 01,4 Tmoq
Apg—1 & Ap—1g—1 QA1q < Aog—1
p% Toa1 P Tq Tq Fra_1 04
0 fr1 0 T o fir 7
Apl < Qp—11 T 11 < ao1
mplT Op,1 Tp—ll xllT 01,1 TJ?Ol
Apo $——— Ay e alp——a
p0 = Ap—10 10 <= Qoo

The bisimplicial face maps are the natural ones, induced by horizontal and
vertical composition of boxes in G, and the degeneracy ones by appropriate
identity boxes. We picture NNG so that the set of (p, ¢)-simplices is the
set in the p-th row and ¢-th column. Thus, its p-th column, NNG,,, is the

nerve of the “vertical” groupoid whose objects are strings - Lo 8 of D
composable horizontal arrows in G and whose arrows are length p sequences
of horizontally composable boxes

9p g1
,,,,,,,,, e
1ol =Tulnl
fp """""" ' fl

Similarly, the ¢-th column, NNG,,, is the nerve of the “horizontal” groupoid
whose objects are length ¢ sequences of composable vertical morphisms in
G and whose arrows are sequences of ¢ vertically composable boxes. In
particular, NNG,, and NNG, are, respectively, the nerves of the groupoids
of vertical and horizontal morphisms of G.

The geometric realization |G| of the double groupoid G is, by definition,
the geometric realization of the simplicial set diagonal of its double nerve,
that is, |G| = | A NNG|. By Cegarra-Remedios [12, Therem 1.1] or Zisman
[27], |G| can be also realized, up to homotopy equivalence, as the geomet-
ric realization of the Artin-Mazur fotal simplicial set [2, Section III] (aka
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codiagonal or W) of the double nerve, V NNG. A direct analysis of this
simplicial set tell us that it is a Kan complex in which any simplex of dimen-
sion higher than two is determined by any three of its faces. In particular, it
is coskeletal in dimensions higher than 3, so that it is completely determined
by its 3-truncation, which is explicitly described as follows. Its vertices are
the objects a of G. The 1-simplices &; are the paths of G

f11
@11 <— ao1

51 . Trm

Qoo

whose faces are dypé; = a1 and d1&; = ag. The 2-simplices & are the
diagrams in G

fo2 fi2
Qg2 <— Q12 <— Qo2

fElzT 012 TwO?

&2t a11 $— Qo1
fi1
Toon
oo
with faces
22 faz2 f12 11
22 L a12 Q22 < Qo2 a1 L Qo1
dOf? - Tml? d1§2 = Tu’vozﬂﬁm dgfg = TCEOl

aiy, oo, oo,

and its 3-simplices &3 are the diagrams in G

f33 f23 f13
33 < Q23 <— A13 < Ap3

1’23T 023 T$13913 Tio:s

Q9o — Q19 @
22 4 412 €75, 402
53: 9912T 012 Tﬂtoz
11 <— Qo1

f11 Tﬂﬁm

Qoo
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with faces
f33 fas3 f33 f23 f13
33 < Q23 <— G413 Q33 < A23 < Ap3
x23T 023 T$13 9623T 02301013 T3303
do&s = A9 < a di&3 = Qoo —— @
053 22 oz 12 153 22 Joz f12 02
T.rlg TQ?OQ-TOI
a, aoo,
f33fe3 f13 f22 f12
Q33— A13<— ap3 Q22 < Q12 < Gp2
I13$12T 0130v012 Tx03x02 IE12T 012 Tl’02
da§3 = ajy <5— aoy d3&s = a1 <— o1
f11 f11
Tﬂcm Tmm
apo, aopo-

Degeneracies are defined by

a=—a a11<ﬁ—1a01=a01 Cl11=a11<f1—1a01
Soa = [ soé1 = T 1eor Toor 5,6, = | |
a a1l == Qo1 Qi1 <— Qo1
|| Teor
Qoo Qoo
fa2 f12 fa2 f12
Q29 < Q12 < Qo2 = A2 Q29 < Q12 == Q12 < Q02
1'12T 012 T Moo T:Coz 9612T ey T 012 T:v02
a1 T ap1 = Qo1 11 == Q11 <— Qo1
8052 = T Mzo1 T5501 8152 = || IVfia ||
Qoo =— Qoo 11 (f_ Qo1
|| " e
apo Qoo

fa2 f12
Q29 == Q29 < Q12 < Qo2

” IVfaz ” IVf12 ”
Q29 <— Q12 < Qo2

5252: 112T 012 va02

a11 < — Qo1
f11
Tﬂcm

oo
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Proposition 6.2. Let G be a double groupoid. For any normalized 3-cocycle
k € Z3(11G, moG) representing the cohomology class kG, there is a weak
equivalence of simplicial sets

r: ho%oglim K(mG,2; k) = VNNG.

Proof. By Lemma 4.3 (i), we can assume that & = k9 for a certain selection
of representative paths (f,, b,,z,) of the morphisms p in IIG and the boxes
6y.p» as in (3) and (12). The claimed simplicial map I', which is completely
defined by its 3-truncation

S0

S0
5o A S0

0 1 do 1/_0\
U w653 ==} | ml§, 92) == NIIG, =2 NIIGy

BENIIG3 d3 " BENIIG,

52 d u/d()/g\ Kdz\
VNNG; =————= VNNG, =——= VNNG, == VNNG,,

d3 d2

is given as follows: I'y is the identity map on the objects of the double
groupoid G. For any morphism p € 11G(aq, a1),

Cl1<f—pbp

Fl (p) = Txp

Qo,

If ay & a1 & a are any two morphisms in IIG and o € mo(G, az),

fw fqzlpr
Qo < bw( bwp

ﬂ?wT Fiu (@404, T%piﬂ?l
FQ(va;o-> = a1<—bp

fo T:(;p

Qo,
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and, for any as & as & a1 & aoin TIG and (0, 01, 02) € m(G, as)?,

—1 —1
. fs b < fo fow b e fop Fowp b
as < ¢S O PYp
Foi(o1=00)
2y | o (00)+0g4 + %wpl“;;
N
04.5°n00,0p
a9 < T bw < bwp
T fﬂ‘i’:l(f;t_)—ffl-i-@?\
Us(0, ¢, p;00,01,02) = o 716 k(b0) | Teots
+
Op.p
a— b
1 f» f)
Tp
ag.

So defined, all the simplicial identities to verify that I' is actually a sim-
plicial map are easily checked, except perhaps that d;I's = I'yd; fori = 1, 2.
For i = 1, the required equality d,I'5(¢, v, p, 09, 01,02) = Ta(p,¥p, 01)
follows from the equalities

(Fi (00)+05,5) on (Flu(o1 = 00) + 65 o0 6)
" 13 (00) + (01 = 00) + 05 00 051 01 O
= [ (01) 4+ 05,4,

The case ¢ = 2 is somewhat more complicated. In this case, the required
equality
dgFg(Qb, 1/}7 P,00,01, 02) = F2(¢1/}7 P, 02)
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follows from the equalities

(frp(a1700) +053.0005.5p) ov (f 0 (00— 01+ 02 +K(8, 0, p) +0y.)
2 fok(01-00) + Topuy L £107 (00— 01+ 0+ k(6,7, p)
+ (053 o0 09,0p) O O
fope(01=00)+ 2 gputp 07 (00 — 01 + 02 + K(¢,90, )
+ (0,1, on Os.0) 0v Oy
2 foh (01 = 00) + T ($0)7 (00 — 01 + 02 + k(6. 0, p))

2. 4(“

+ (6, on 9¢wp Oy 9wp

)
+( ) Oh 9¢wp) oy 9¢p

- fﬁb_wl*oé + qu:pl*k(Q wu P) + (0;72} On 0¢ﬂl’ﬂ) Oy 0¢7p

(14)
= f¢¢*‘72 + QW p-

2. 4(11

That I' induces an isomorphism on the fundamental groupoids follows
from the observation that homotopies (f, b, x) ~ (g, ¢, y) in G between two
paths from an object a to an object aq, as in (2), are in bijection with homo-
topies (f, b, x) ~ (g, ¢, y) in the simplicial set V NNG, by the mapping

1 ai ——a1<g—c
f'g
b — C IVtha Tyx71
| a Tyet = ay «—Db
b=—10 ! T
Qo

Furthermore, for any object a of G, the induced homomorphism by I" on the
second homotopy groups with base a,

o (ho%oglim K(mG,2; k), a) — m(VNNG, a),
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is explicitly given by
t—a=a
(idy, idy; o) 2 |C|L;l|z
g

and clearly is an isomorphism.
Since the homotopy groups of ho%%lim K (793G, 2; k) and of VNNG van-

ish in degree 3 and higher, I' is actually a weak homotopy equivalence. [

As a consequence of Theorems 5.1 and 6.1, we get a new proof of the
following fact (cf. [12, Theorem 13] for a more general result).

Corollary 6.3. The mapping G — |G| induces a bijective correspondence
between weak equivalence classes of double groupoids and weak homotopy
classes of 2-types.
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