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Résumé. Dans cet article, nous prouvons un théorème de classification pour

les groupoı̈des doubles (satisfaisant à une condition de remplissage supplémentaire,

tout à fait naturelle) au moyen de troisièmes classes de cohomologie de groupoı̈des.

Dans une seconde étape, indépendante, nous montrons que la classe de coho-

mologie associée à un groupoı̈de double coı̈ncide avec l’unique k-invariant

non trivial de sa réalisation géométrique.

Abstract. In this paper, we prove a classification theorem for double groupoids

(satisfying an extra, quite natural, filling condition) by means of third co-

homology classes of groupoids. In a second, independent, step, we prove

that the cohomology class associated to a double groupoid coincides with the

unique non-trivial k-invariant of its geometric realization.
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Introduction and summary

Double groupoids (groupoid objects in the category of groupoids) go back to

Ehresmann [14, 15, 16]. Roughly, they consist of objects, two kinds of mor-

phisms between them, horizontal and vertical, and boxes whose boundaries
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are squares with morphisms as edges, usually depicted

d
α

b
f
♦♦

c

y
❖❖

a ,

x
❖❖

g
♦♦

together with horizontal and vertical composition of morphisms and boxes

giving compatible groupoid structures and obeying middle four interchange

on boxes. The double groupoids we encounter in practice, and certainly

in this work, are small and satisfy a natural filling condition: Any filling

problem

d
∃?

·♦♦

c

y
❖❖

a ,

❖❖

g
♦♦

finds a solution in the double groupoid. This filling condition on double

groupoids is often assumed in the case of double groupoids arising in dif-

ferent areas of mathematics, such as in weak Hopf algebra theory or in dif-

ferential geometry (see, for instance, Andruskiewitsch and Natale [1] and

Mackenzie [23]), and it is satisfied for those double groupoids that have

emerged with an interest in algebraic topology, mainly thanks to the work of

Brown, Higgins, Spencer, et al., where the connection of double groupoids

with crossed modules and a higher Seifert-van Kampen Theory has been

established (see the surveys by Brown [3, 4, 5] and the references given

there). Thus, the filling condition is easily proven for edge symmetric dou-

ble groupoids (also called special double groupoids) with connections (see

Brown and Higgins [6], Brown and Spencer [7], Brown, Hardie, Kamps and

Porter [8] and Brown, Kamps and Porter [9]), for double groupoid objects

in the category of groups (also termed cat2-groups by Loday [22], see also

Porter [25] and Bullejos, Cegarra and Duskin [10]), or, for example, for 2-

groupoids (regarded as double groupoids where one of the side groupoids

of morphisms is discrete (see for instance Moerdijk and Svensson [24] and

Hardie, Kamps and Kieboom [20]).

Every (small) double groupoid G has a geometric realization, which is

the topological space defined by first taking the double nerve NNG, which

is a bisimplicial set, and then realizing geometrically the diagonal to obtain

a space: |G| = |△ NNG|. The usual definition of the homotopy invari-

ants of a double groupoid G involves only its underlying topological space
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|G| and does not take into account the algebraic structure. Our main goal

in this paper is to give a combinatorial definition of the (unique) Postnikov

invariant of a double groupoid with the filling condition using only its al-

gebraic structure. Recall that a (2-dimensional) Postnikov system is a triple

(P,A,k), where P is a groupoid, A is an abelian group valued functor on

P , and k ∈ H3(P,A) is a three-cohomology class of P with coefficients in

A. Our definitions and constructions here are suggested by previous work

of the author and collaborators; particularly by the results in [11], where

we address the homotopy types realized from double groupoids satisfying

the filling condition. They are all the (not necessarily path-connected) ho-

motopy 2-types, that is, the homotopy types of all CW-complexes whose

homotopy groups at any base point vanish in degree 3 and higher.

After Section 1, where we briefly fix some notational conventions on

double groupoids, in Sections 2 and 3, we review several needed defini-

tions and results on the (algebraically defined) fundamental groupoid ΠG
and the homotopy groups π2(G, a) of a double groupoid G satisfying the fill-

ing condition. Section 4 contains the new definition of the Postnikov invari-

ant of such a double groupoid, which is the equivalence class of a Postnikov

system (ΠG, π2G,kG) where kG ∈ H3(ΠG, π2G) is a certain characteris-

tic cohomology class of the fundamental groupoid of G with coefficients in

the abelian group valued functor on ΠG which assigns the homotopy group

π2(G, a) to each object a of G. In Section 5, we mainly state and prove the

expected classification result:

“The assignment G 7→ (ΠG, π2G,kG) induces a bijective correspon-

dence between weak equivalence classes of double groupoids satisfying the

filling condition and equivalence classes of Postnikov systems.”

Finally, in Section 6 we prove

“The Postnikov invariant of a double groupoid G with the filling condi-

tion is equivalent to the Postnikov invariant of its geometric realization |G|.”

As a bonus, we find a new proof of the fact that the assignment G 7→ |G| in-

duces a bijective correspondence between weak-equivalence classes of dou-

ble groupoids satisfying the filling condition and homotopy 2-types.
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1. Some conventions on double groupoids

The notion of double groupoid is well-known, we just specify in this prelim-

inary section some basic terminology and notational conventions. We will

work only with small double groupoids, so that in a double groupoid G we

have a set of objects (usually denoted by a, b, c, . . .), horizontal morphisms

between them (f, g, h, . . .), vertical morphisms between them (x, y, z, . . .),

both with composition written by juxtaposition, and boxes (α, β, γ, . . .), usu-

ally depicted as

d
α

b
f
♦♦

c

y
❖❖

a

x
❖❖

g
♦♦

(1)

where the horizontal morphisms f and g are, respectively, its vertical target

and source and the vertical morphisms y and x are its respective horizontal

target and source. The horizontal composition of boxes is denoted by the

symbol ◦h:

·
α′

·
f ′
♦♦

α

·
f ′
♦♦

7→
·

z
❖❖

·
g′
♦♦

❖❖

·g
♦♦

x
❖❖ ·

α′◦hα

·
f ′f
♦♦

·
z
❖❖

·
g′g
♦♦

x
❖❖

and, similarly, the vertical composition of boxes is denoted by the symbol

◦v:

·
α

·
f
♦♦

·
y
❖❖

α′

·♦♦

x
❖❖

7→

·
y′
❖❖

·
h
♦♦

x′
❖❖

·
α◦vα

′

·
f
♦♦

·
yy′
❖❖

·
xx′
❖❖

h
♦♦

Horizontal and vertical identities on objects and morphisms are respectively

denoted by Iha, Iva, Ihx, Ivf , and Ia := IvIha = IhIva, depicted as

a a a ·
Ihx

· ·
Ivf

·
f
♦♦ a

Ia

a

a ·
x
❖❖

·
x
❖❖

· ·
f
♦♦ a a
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and horizontal and vertical inverses of boxes are respectively denoted by

α−h, α−v, and α−hv := (α−h)−v = (α−v)−h; that is,

·
α−h

·
f−1

♦♦ ·
α−v

·
g
♦♦ ·

α−hv

·
g−1

♦♦

·
x

❖❖

·
g−1

♦♦

y
❖❖

·
y−1

❖❖

·
f
♦♦

x−1

❖❖

·
x−1

❖❖

·
f−1

♦♦

y−1

❖❖

We will use several times the coherence theorem by Dawson and Paré

[13, Theorem 1.2], which assures us that if a compatible arrangement of

boxes in a double groupoid is composable in two different ways, the resulting

pasted boxes are equal. Throughout the paper, an equality between pasting

diagrams of boxes in a double groupoid means that the resulting pasted boxes

are the same.

The double groupoids we are interested in satisfy the so-called filling

condition: Any filling problem

· ·♦♦

∃?

·
y
❖❖

·g
♦♦

,
❖❖

has a solution; that is, for any horizontal morphism g and any vertical mor-

phism y such that the source of y coincides with the target of g, there is a

box whose vertical source is g and whose horizontal target is y. This con-

dition is more symmetric than it appears thanks to the following lemma by

Andruskiewitsch and Natale [1, Lemma 1.12].

Lemma 1.1. A double groupoid satisfies the filling condition if and only if

any filling problem such as the one below has a solution.

·
∃?

·
f
♦♦

·

❖❖

· ,
x
❖❖

♦♦

· ·♦♦

∃?

·

❖❖

·g
♦♦

x ,
❖❖ · ·

f
♦♦

∃?

·
y
❖❖

·♦♦

,
❖❖

Throughout the paper we make the assumption that the double groupoids

we work with are small and satisfy the filling condition.
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2. The fundamental groupoid ΠG

Let G be a double groupoid. If a0, a1 are objects of G, we define a path in G
from a0 to a1 to be a diagram (f, b, x) of the form

a1 b
f
♦♦

a0

x
❖❖

that is, where b is an object, f a horizontal morphism from b to a1, and x a

vertical morphism from a0 to b. Throughout the paper, we identify paths in

G of the form

a1 a0
f
♦♦

a0

a1 a1

a0

x
❖❖

with the morphisms f and x respectively; that is, we write

f = (f, a0, I
va0), x = (Iha1, a1, x).

If (f, b, x) and (g, c, y) are two paths from a0 to a1, then we say that

(f, b, x) is homotopic to (g, c, y), denoted by (f, b, x) ≃ (g, c, y), if there is

a box α in G of the form

b
α

c
f−1g
♦♦

b b

yx−1

❖❖ (2)

that is, whose horizontal target and vertical source are identities, its horizon-

tal source is yx−1, and its its vertical target is f−1g. We call such a box a

homotopy, and we often write α : (f, b, x) ≃ (g, c, y) whenever we wish to

display the homotopy.

Lemma 2.1. Homotopy is an equivalence relation on the set of paths in G
from a0 to a1.

Proof. Reflexivity: For any path (f, b, x), clearly Ib : (f, b, x) ≃ (f, b, x).
Symmetry: If α : (f, b, x) ≃ (g, c, y) is a homotopy, then the pasted box of

c

Iv(g−1f)

b
g−1f
♦♦

α−v

b

c b
g−1f

♦♦ c
f−1g

♦♦

xy−1

❖❖

130



A. M. CEGARRA CLASSIFYING DOUBLE GROUPOIDS

is a homotopy (g, c, y) ≃ (f, b, x).
Transitivity: Assume that α : (f, b, x) ≃ (g, c, y) and β : (g, c, y) ≃ (h, d, z).
Then, we find a homotopy γ : (f, b, x) ≃ (h, d, z) by pasting the diagram of

boxes

b
Iv(f−1g)

c
f−1g
♦♦

β

d
g−1h
♦♦

b
α

c
f−1g

♦♦ c

zy−1

❖❖

b c

yx−1

❖❖

Let [f, b, x] denote the homotopy class of a path (f, b, x) in G.

We define the fundamental groupoid ΠG of the double groupoid G to be

a category having as objects all the objects of G. An arrow in ΠG from an

object a0 to an object a1 is the homotopy class of a path in G from a0 to a1.

Composition in ΠG is as follows:

For each morphism in the fundamental groupoid ρ ∈ ΠG(a0, a1), let us

choose a representative path (fρ, bρ, xρ) of ρ,

a1 bρ
fρ
♦♦

a0,
xρ

❖❖
(3)

that is, such that ρ = [fρ, bρ, xρ]. If a2
ψ
← a1

ρ
← a0 are any two composable

morphisms in ΠG, by the filling condition on G, we can select a box θ in G
whose horizontal target is xψ and whose vertical source is fρ. Thus, we have

a diagram in G of the form

a2 bψ
fψ
♦♦

θ

b
f
♦♦

a1

xψ

❖❖

bρ

x

❖❖

fρ

♦♦

a0
xρ

❖❖

(4)

and we define the composite ψρ = [fψf, b, xxρ] ∈ ΠG(a0, a2).
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Lemma 2.2. The composite ψρ is well-defined, that is, it is independent of

the choices of representative paths of ρ and ψ and of the choice of θ in (4).

Proof. Suppose that αρ : (fρ, bρ, xρ) ≃ (gρ, cρ, yρ) and αψ : (fψ, bψ, xψ) ≃
(gψ, cψ, yψ) are homotopies and that we have selected boxes θ and θ′ as in

the diagrams below.

a2 bψ
fψ
♦♦

θ

b
f
♦♦

a1

xψ

❖❖

bρ

x

❖❖

fρ

♦♦

a0
xρ

❖❖

a2 cψ
gψ
♦♦

θ′

c
g
♦♦

a1

yψ
❖❖

cρ

y
❖❖

gρ
♦♦

a0
yρ

❖❖

Then, we get a homotopy α : (fψf, b, xxρ) ≃ (gψg, c, yyρ) by pasting the

diagram

b

θ−h

b2
αψ

f−1

♦♦ cψ
f−1

ψ
gψ

♦♦ c
g

♦♦

bψ
Ihxψ

bψ

yψx
−1

ψ

❖❖

θ′

bρ

x

❖❖

αρ

a2
f−1
ρ

♦♦

xψ
❖❖

a2

xψ
❖❖

cρgρ
♦♦

y

❖❖

bρ

Ihx−1

bρ

yρx
−1
ρ

❖❖

b

x−1

❖❖

b

x−1

❖❖

For each object a of G, let ida = [Iha, a, Iva] ∈ ΠG(a, a).

Theorem 2.3. With these definitions, ΠG is a groupoid.

Proof. Identity: For every arrow ρ = [fρ, bρ, xρ] ∈ ΠG(a0, a1), the diagrams

in G

a1 a1
Ivfρ

bρ
fρ
♦♦

a1 bρ
fρ

♦♦

a0

xρ
❖❖

a1 bρ
fρ
♦♦

Ihxρ

bρ

a0

xρ
❖❖

a0

xρ
❖❖

a0
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show that ida1ρ = ρ = ρ ida0 .

Associativity: if a3
φ
← a2

ψ
← a1

ρ
← a0 are any three composable mor-

phisms in ΠG, we can choose boxes θ, θ′ and θ′′ as in the diagram

a3 bφ
fφ
♦♦

θ′

b′

θ′′

f ′
♦♦ b′′

f ′′
♦♦

a2

xφ

❖❖

bψ

x′
❖❖

fψ

♦♦

θ

b

x′′
❖❖

f
♦♦

a1

x2

❖❖

bρ

x

❖❖

fρ

♦♦

a0

xρ
❖❖

whence,

(φψ)ρ = [fφf
′, b′, x′xψ] ρ = [fφf

′f ′′, b′′, x′′x′xρ] = φ [fψf, b, xρ] = φ(ψρ).

Inverse: For any morphism ρ ∈ ΠG(a0, a1), we can select a box γ in G
of the form

a0
γ

b
f
♦♦

bρ

x−1
ρ

❖❖

a1

x

❖❖

f−1
ρ

♦♦

and construct ρ−1 = [f, b, x] ∈ G(a1, a0). From the diagrams in G

a0 b
f
♦♦

γ−h

a0
f−1

♦♦

a1

x

❖❖

bρ

x−1
ρ

❖❖

fρ

♦♦

a0

xρ
❖❖

a1 bρ
fρ
♦♦

γ−v

a1
f−1
ρ
♦♦

a0

xρ

❖❖

b

x−1

❖❖

f
♦♦

a1

x

❖❖

it follows that ρ−1ρ = ida0 and ρρ−1 = ida1 .

Lemma 2.4. (i) For any two composable horizontal morphisms

a2
g
← a1

f
← a0

133



A. M. CEGARRA CLASSIFYING DOUBLE GROUPOIDS

and for any two composable vertical morphisms

a2

a1

y
❖❖

a0

x
❖❖

the equalities [g][f ] = [gf ] and [y][x] = [yx] hold in ΠG.

(ii) For any path (f, b, x) in G, [f, b, x] = [f ][x].

(iii) The filling problem in G

a1
∃?

b
f
♦♦

c

y
❖❖

a0

x

❖❖

g
♦♦

has a solution if and only if [y][g] = [f ][x] in ΠG.

Proof. (i) follows from the existence of the first two diagrams below and

(ii) by the third one.

a2 a1
g
♦♦

Ivf

a0
f
♦♦

a1 a0
f
♦♦

a0

a2 a2
Ihy

a2

a1

y
❖❖

a1

y
❖❖

a0

x
❖❖

a1 b
f
♦♦

Ib

b

b b

a0

x
❖❖

For (iii), suppose first θ is any solution to the given filling problem.

Then, the diagram

a1 a1
θ

b
f
♦♦

c

y
❖❖

a

x
❖❖

g
♦♦

a0

shows that [y][g] = [f, b, x]
(ii)
= [f ][x]. Conversely, assume that [y][x] =

[f ][x]
(ii)
= [f, b, x]. By the filling condition on G, we can select a box θ′ of the
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form

a1
θ′

b′
f ′
♦♦

c

y
❖❖

a0

x′
❖❖

g
♦♦

whence, by the already proven part, [y][g] = [f ′][x′] = [f ′, b′, x′]. It follows

that [f, b, x] = [f ′, b′, x′], and therefore there is a homotopy α : (f ′, b′, x′) ≃
(f, b, x) which gives us the solution θ that we are seeking for the filling

problem by pasting the diagram

a1
Ivf ′

b′

α

f ′
♦♦ b

f ′−1f
♦♦

d

θ′

b′

Ihx′

f ′
♦♦ b′

xx′−1

❖❖

c

y

❖❖

a0g
♦♦

x′
❖❖

a0

x′
❖❖

3. The functor π2G : ΠG → Ab

For each object a of G, let π2(G, a) denote the set of all boxes σ in G of the

form

a
σ

a

a a

that is, whose horizontal source and target are both Iva, the vertical iden-

tity of a, and whose vertical source and target are both Iha, the horizontal

identity of a. By the general Eckman-Hilton argument, the interchange law

on G implies that both operations ◦h and ◦v on π2(G, a) coincide and are

commutative. Thus, π2(G, a) is an abelian group with addition

σ + τ := σ ◦h τ = σ ◦v τ,

zero 0 := Ia, and opposites −σ := σ−v = σ−h.

The assignment a 7→ π2(G, a) is the function on objects of a functor

π2G : ΠG → Ab, which acts on morphism as follows. There is an abelian
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group valued functor on the groupoid of horizontal morphisms which assigns

to each horizontal morphism f : a0 → a1 the homomorphism

f∗ : π2(G, a0)→ π2(G, a1)

defined by f∗σ = Ivf ◦h σ ◦h I
vf−1,

a0
σ

a0
f∗
7→

a0 a0

a1
Ivf

a0
f
♦♦

σ

a0
Ivf−1

a1
f−1

♦♦

a1 a0
f
♦♦ a0 a1

f−1

♦♦

and, similarly, there is an abelian group valued functor on the groupoid of

vertical morphisms which assigns to each vertical morphism x : a0 → a1
the homomorphism

x∗ : π2(G, a0)→ π2(G, a1)

defined by x∗σ = Ihx ◦v σ ◦v I
hx−1,

a0
σ

a0
x∗7→

a0 a0

a1
Ihx

a1

a0

x
❖❖

σ

a0

x
❖❖

a0
Ihx−1

a0

a1

❖❖

x−1

a1
x−1
❖❖

Lemma 3.1. If

a1
θ

b
f
♦♦

c

y
❖❖

a0

x

❖❖

g
♦♦

is any box in G, then the diagram below commutes.

π2(G, a1) π2(G, b)
f∗
♦♦

π2(G, c)

y∗

❖❖

π2(G, a0)g∗
♦♦

x∗

❖❖
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Proof. Let us consider, for any σ ∈ π2(G, a0), the following pasting diagram

a1
θ

b

Ihx

f
♦♦ b

θ−h

a1
f−1

♦♦

c
Ivg

y
❖❖

a0
σ

x

❖❖

g
♦♦ a0

Ivg−1

x

❖❖

c
g−1

♦♦

y
❖❖

c
θ−v

a0
g

♦♦

Ihx−1

a0
θ−hv

c
g−1

♦♦

a1

y−1

❖❖

b
f

♦♦

❖❖

x−1

b
x−1

❖❖

a1
f−1

♦♦

y−1

❖❖

The two natural ways to paste this diagram yield, on the one hand, f∗x∗σ

and, on other hand, y∗g∗σ. Hence f∗x∗σ = y∗g∗σ.

For any morphism ρ ∈ ΠG(a0, a1), we define the homomorphism

ρ∗ := fρ∗xρ∗ : π2(G, a0)→ π2(G, a1),

where (fρ, bρ, xρ) is a representative path of ρ.

Lemma 3.2. The homomorphism ρ∗ : π2(G, a0) → π2(G, a1) does not de-

pend of the choice of representative path of ρ.

Proof. If (fρ, bρ, xρ) ≃ (gρ, cρ, yρ), there is a box in G as below.

bρ
α

c
f−1
ρ gρ
♦♦

bρ bρ

yρx
−1
ρ

❖❖

Then, by Lemma 3.1, f−1ρ∗ gρ∗yρ∗x
−1
ρ∗ = idπ2(G,bρ) or, equivalently, gρ∗yρ∗ =

fρ∗xρ∗.

Theorem 3.3. The assignments a 7→ π2(G, a), ρ 7→ ρ∗, define a functor

π2G : ΠG → Ab.

Proof. That (ida)∗ = id, for any object a of G, is clear. Let a2
ψ
← a1

ρ
← a0

be two composable morphisms in ΠG. For any box θ as in (4), we have

ψρ = [fψf, b, xxρ] Then, by Lemmas 3.2 and 3.1, (ψρ)∗ = fψ∗f∗x∗xρ∗ =
fψ∗fψ∗xψ∗xρ∗ = ψ∗φ∗.
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3.1 The action of π2G on boxes of G

For any box in G

d
θ

b
f
♦♦

c

y
❖❖

a

x
❖❖

g
♦♦

and any σ ∈ π2(G, d), we define the box σ+ θ (with the same edges as θ) by

d
σ+θ

b
f
♦♦

:=
c

y
❖❖

a

x
❖❖

g
♦♦

d
σ

d b
f
♦♦

=d
Ihy

d θ

c

y
❖❖

c

❖❖

ag
♦♦

x

❖❖ d
σ

d
Ivf

b
f
♦♦

=d
Ihy

d
θ

b♦♦

c

y
❖❖

c

❖❖

ag
♦♦

x
❖❖

d
σ

d
Ivf

b
f
♦♦

d d
θ

b♦♦

c

y
❖❖

ag
♦♦

x
❖❖

Clearly 0 + θ = θ and, for any τ, σ ∈ π2(G, d),

d
τ

d
σ

τ + (σ + θ) =

d
Ivf

b
f
♦♦

=d
Ihy

d
Ihy

d
θ

b♦♦

c

y
❖❖

c

❖❖

c

❖❖

ag
♦♦

x
❖❖

d
τ+σ

d
Ivf

b
f
♦♦

= (τ + σ) + θ.d
Ihy

d
θ

b♦♦

c

y
❖❖

c

❖❖

ag
♦♦

x
❖❖

(5)

Lemma 3.4. For any σ ∈ π2(G, d), any box θ as above, and any boxes

c
δ

a
g
♦♦

·

❖❖

·♦♦

❖❖ b
γ

·♦♦

a

x
❖❖

·♦♦

❖❖ ·
α

d
h
♦♦

·

❖❖

c♦♦

y
❖❖ ·

β

d♦♦

d

z

❖❖

b
f
♦♦

❖❖

the following equalities hold,

(σ + θ) ◦v δ = σ + (θ ◦v δ), (6)

(σ + θ) ◦h γ = σ + (θ ◦h γ), (7)

α ◦h (σ + θ) = h∗σ + (α ◦h θ), (8)

β ◦v (σ + θ) = z∗σ + (β ◦v θ). (9)

Moreover,

(σ + θ)−h = −f−1∗ σ + θ−h, (10)

(σ + θ)−v = −y−1∗ σ + θ−v. (11)
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Proof. (6) (the proof of (7) is dual):

d
σ

d

Ivf

(σ + θ) ◦v δ =

b
f
♦♦

= σ + (θ ◦v δ).
d

θ

d b♦♦

c
y

❖❖

δ

a
x

❖❖

g
♦♦

·

❖❖

·

❖❖

♦♦

(8) (the proof of (9) is dual):

·

α

d
h
♦♦

σ

α + (σ + θ) =

d
Ivf

b
f
♦♦

=d d
θ

b♦♦

·

❖❖

c♦♦

y
❖❖

ag
♦♦

x
❖❖

·
Ivh

d
h
♦♦

σ

d

Ivh−1

·
h−1

♦♦

Iv(hf)

d
hf
♦♦

·
α

d♦♦ d

θ

·♦♦ d♦♦

·

❖❖

c

y

❖❖

♦♦ ag
♦♦

x

❖❖

= h∗(σ) + α ◦h θ.

(10) (the proof of (11) is dual):

(σ + θ) ◦h (−f∗σ + θ−h)
(7)
= σ +

(

θ ◦h (−f∗σ + θ−h)
)

(9)
= σ +

(

− f∗f
−1
∗ σ + θ ◦h θ

−h
)

(5)
= (σ − σ) + Ihy = 0 + Ihy = Ihy.

Lemma 3.5. For any two boxes with the same edges

d
θ

b
f
♦♦

c

y
❖❖

a

x
❖❖

g
♦♦

d
θ′

b
f
♦♦

c

y
❖❖

a

x
❖❖

g
♦♦

there is a unique σ ∈ π2(G, d) such that σ + θ = θ′.
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Proof. Uniqueness. For any σ ∈ π2(G, d) and θ as above,

(σ + θ) ◦h θ
−h (8)

= σ + (θ ◦h θ
−h) = σ + Ihy = σ ◦v I

hy.

Hence, σ + θ determines σ as σ =
(

(σ + θ) ◦h θ
−h
)

◦v I
hy−1.

Existence. Taking

d

σ =
θ′

b
θ−h

f
♦♦ d

f−1

♦♦

c

y
❖❖

a

Ihy−1

g
♦♦

x
❖❖

c

y
❖❖

♦♦

g−1

d
y−1

❖❖

d
y−1

❖❖

we have σ+ θ =
(

(θ′ ◦h θ
−h) ◦v I

hy−1 ◦v I
hy
)

◦h θ = θ′ ◦h θ
−h ◦h θ = θ′

4. The Postnikov invariant [ΠG, π2G,kG]

Let P be a groupoid. The category Ab
P of functors A : P → Ab is abelian

and it has enough injectives and projective objects [19]. We can, thus, form

the right derived functors of the functor lim←− : AbP → Ab, which is given by

lim←−(A) =
{

(xa) ∈
∏

a∈ObP

A(a) | ρ∗xa = xb for every ρ : a→ b in P
}

,

where we write ρ∗x forA(ρ)(x). The cohomology groups of the groupoid P

with coefficients in a functor A : P → Ab [26], denoted by Hn(P,A), are

defined by

Hn(P,A) = (Rnlim←−)(A), n = 0, 1, · · · .

To exhibit an explicit cochain complex that computes these cohomology

groups, let NP be the nerve of P . That is, the simplicial set whose m-

simplices are the composable sequences β = (βm
βm
← · · ·

β1
← β0) of m

arrows in P (objects of P ifm = 0). The face diβ, for 0 < i < m, is obtained

from β by replacing the morphisms βi+1 and βi by their composition βi+1βi,

while d0β and dmβ are obtained by leaving out β0 and βm, respectively.

The degeneracies siβ are obtained by inserting in β the identity morphism

idβi. This simplicial set NP is a Kan complex whose fundamental groupoid

is P (and whose homotopy groups vanish in degree 2 and higher). Thus,
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every functor A : P → Ab defines a local coefficient system on NP and

the cohomology groups Hn(NP,A) are defined [17, 18, 21]. By Illusie [21,

Chap.VI, (3.4.2)] and Gabriel and Zisman [17, Appendix II, Prop. 3.3], there

are natural isomorphisms

Hn(P,A) ∼= Hn(NP,A) ∼= HnC•(P,A), n = 0, 1, · · · .

where

C•(P,A) : 0→ C0(P,A)→ · · · → Cm−1(P,A)
∂
→ Cm(P,A)→ · · · ,

denotes the complex of normalized cochains of P with coefficients in A.

Here, a normalized m-cochain c ∈ Cm(P,A) is a function

c : NPm →
⊔

a∈ObP

A(a)

such that c(β) ∈ A(βm) and c(β) = 0 whenever some βi is an identity. Each

Cm(P,A) is an abelian group with pointwise addition, and the coboundary

∂ : Cm−1(P,A)→ Cm(P,A) is given by

∂c(β) =
m−1
∑

i=0

c(diβ) + (−1)mβm∗c(dmβ).

As usually, we write Zn(P,A) for the groups of n-cocycles of the com-

plex C•(P,A).
In this paper, we will only use the cohomology groups H3(P,A). For

future reference let us specify that a normalized 3-cocycle k ∈ Z3(P,A) is

a function assigning to each three composable morphisms in the groupoid

a3
φ
← a2

ψ
← a1

ρ
← a0 an element k(φ, ψ, ρ) ∈ A(a3) such that, for any four

composable morphisms a4
δ
← a3

φ
← a2

ψ
← a1

ρ
← a0, the 3-cocycle condition

k(δ, φ, ψ)− k(δ, φ, ψρ) + k(δ, φψ, ρ)− k(δφ, ψ, ρ) + δ∗k(φ, ψ, ρ) = 0.

holds, and k(φ, ψ, ρ) = 0 if one of the morphisms φ, ψ or ρ is an identity.

A normalized 2-cochain c ∈ C2(P,A) is a function assigning to each

pair of composable morphisms a2
φ
← a1

ψ
← a0 an element c(φ, ψ) ∈ A(a2),
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such that c(φ, ψ) = 0 whenever φ = ida1 or ψ = ida0 . The coboundary of

such a 2-cochain is the 3-cocycle ∂c given by

∂c(φ, ψ, ρ) = c(φ, ψ)− c(φ, ψρ) + c(φψ, ρ)− φ∗c(ψ, ρ).

Two normalized 3-cocycles k, k′ ∈ Z3(P,A) are cohomologous if and only

if there is a normalized 2-cochain c ∈ C2(P,A) such that k′ = k + ∂c.

Definition 4.1. A (2-dimensional) Postnikov system (P,A,k) consists of a

groupoid P , an abelian group valued functor A : P → Ab, and a coho-

mology class k ∈ H3(P,A). Two such Postnikov systems (P,A,k) and

(P ′,A′,k′) are equivalent if there exists an equivalence f : P ∼→ P ′ and a

natural isomorphism F : A ∼= f∗A′ such that f∗(k′) = F∗(k), where

f∗ : H3(P ′,A′) ∼= H3(P, f∗A′), F∗ : H
3(P,A) ∼= H3(P, f∗A′)

are the corresponding induced isomorphisms in cohomology.

Let [P,A,k] denote the equivalence class of a Postnikov system (P,A,k).

Let G be a double groupoid. We associate to G a Postnikov system

(ΠG, π2G,kG) as follows. For each morphism in the fundamental groupoid

ρ ∈ ΠG(a0, a1), let us choose a representative path (fρ, bρ, xρ) of ρ, as in (3).

In particular, if ρ = ida for some object a of G, we take (Iha, a, Iva) as its

representative path.

If a2
ψ
← a1

ρ
← a0 are any two composable morphisms in ΠG, by Lemma

2.4, we have [fψ][xψ][fρ][xρ] = ψρ = [fψρ][xψρ], whence

[xψ][fρ] = [f−1ψ ][fψρ][xψρ][x
−1
ρ ] = [f−1ψ fψρ][xψρx

−1
ρ ]

= [f−1ψ fψρ, bψρ, xψρx
−1
ρ ],

and therefore we can select a box θψ,ρ in G as below.

bψ
θψ,ρ

bψρ
f−1

ψ
fψρ

♦♦

a1

xψ

❖❖

bρ

xψρx
−1
ρ

❖❖

fρ

♦♦

(12)

In particular, we choose

θida1,ρ = Ivfρ, θψ,ida0 = Ihxψ. (13)
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If a3
φ
← a2

ψ
← a1

ρ
← a0 are any three composable morphisms in ΠG, pasting

in the diagrams

bφψ
θ−h

φ,ψ

bφ
f−1

φψ
fφ

♦♦

θφ,ψρ

bφψρ
f−1

φ
fφψρ

♦♦

bφ

xφψx
−1

ψ

❖❖

a2
f−1

ψ

♦♦

❖❖

bψρ
fψρ

♦♦

xφψρx
−1

ψρ

❖❖
bφψ

θφψ,ρ

bφψρ
f−1

φψ
fφψρ

♦♦

a1

xφψ
❖❖

θ−v

ψ,ρ

bρ

xφψρx
−1
ρ

❖❖

♦♦

bψ

x−1

ψ

❖❖

bφψ

xρx
−1

ψρ

❖❖

f−1

ψ
fψρ

♦♦

yields two boxes with the same edges, and therefore, by Lemma 3.5 and

the isomorphism fφψ∗ : π2(G, bφψ) ∼= π2(G, a3), there is a unique element

kG(φ, ψ, ρ) ∈ π2(G, a3) such that

f−1φψ∗k
G(φ, ψ, ρ) + (θ−hφ,ψ ◦h θφ,ψρ) = θφψ,ρ ◦v θ

−v
ψ,ρ. (14)

Note that composing horizontally with θφ,ψ on the left in (14), by (8), gives

f−1φ∗ k
G(φ, ψ, ρ) + θφ,ψρ = θφ,ψ ◦h (θφψ,ρ ◦v θ

−v
ψ,ρ). (15)

More explicitly,

a3

IvfφkG(φ, ψ, ρ) =

bφ
fφ

♦♦

θφ,ψ

bφψ
f−1

φ
fφψ

♦♦

θφψ,ρ

bφψρ
f−1

φψ
fφψρ

♦♦ a3
f−1

φψρ
♦♦

Ivf−1

φψρ
a1

xφψ
❖❖

θ−v

ψ,ρ

bρ♦♦
fρ

xφψρx
−1
ρ

❖❖

a2

xφ

❖❖

bψ
fψ

♦♦

x−1

ψ

❖❖

θ−v

φ,ψρ

bψρ
f−1

ψ
fψρ

♦♦

xρx
−1

ψρ

❖❖

a3 bφ
fφ

♦♦

x−1

φ

❖❖

bφψρ
f−1

φ
fφψρ

♦♦

xψρx
−1

φψρ

❖❖

a3
f−1

φψρ

♦♦

(16)

In fact, composing vertically with θ−vφ,ψρ on the right in (15) yields

f−1φ∗ k
G(φ, ψ, ρ) + Iv(f−1φ fφψρ) =

(

θφ,ψ ◦h (θφψ,ρ ◦v θ
−v
ψ,ρ)

)

◦v θ
−v
φ,ψρ,
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whence

Ivfφ ◦h

(

(

θφ,ψ ◦h (θφψ,ρ ◦v θ
−v
ψ,ρ)

)

◦v θ
−v
φ,ψρ

)

◦h I
vf−1φψρ

= Ivfφ ◦h
(

f−1φ∗ k(φ, ψ, ρ) + Iv(f−1φ fφψρ)
)

◦h I
vf−1φψρ

(8)
= kG(φ, ψ, ρ) + Iv(fφf

−1
φ fφψρf

−1
φψρ)

= kG(φ, ψ, ρ) + 0 = kG(φ, ψ, ρ).

Lemma 4.2. So defined, kG ∈ Z3(ΠG, π2G), that is, kG is normalized 3-

cocycle of ΠG with coefficients in π2G.

Proof. That kG is a normalized cochain, that is, kG(φ, ψ, ρ) = 0 whenever

one of the morphisms φ, ψ or ρ is an identity, follows from the selection in

(13). For instance, if φ = ida2 , then kG(ida2 , ψ, ρ) = 0 since

θ−hida2,ψ
◦h θida2,ψρ = Ivf−1ψ ◦h ◦hI

vfψρ = Iv(f−1ψ fψρ) = θψ,ρ ◦v θ
−v
ψ,ρ

= θida2ψ,ρ ◦v θ
−v
ψ,ρ.

To prove that kG is a 3-cocycle, suppose a4
δ
← a3

φ
← a2

ψ
← a1

ρ
← a0

are morphisms in ΠG. By using first horizontal composition in the diagram

below, we see, from (16), that the pasted boxes of the inner regions labeled

with (A), (B) and (C) are

(A) = Ivf−1δ ◦h k
G(δ, φ, ψ) ◦h I

vfδφψρ,

(B) = Ivf−1δ ◦h k
G(δ, φψ, ρ) ◦h I

vfδφψρ,

(C) = Ivf−1δ ◦h δ∗k
G(φ, ψ, ρ) ◦h I

vfδφψρ.
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bδ

(A)

θδ,φ

bδφ
f−1

δ
fδφ

♦♦

θδφ,ψ

bδφψ
f−1

δφ
fδφψ

♦♦ bδφψρ
f−1

δφψ
fδφψρ

♦♦

Ibδφψρ

bδφψρ

a2

θ−v

φ,ψ

xδφ

❖❖

bψ♦♦
fψ

xδφψx
−1

ψ

❖❖

Iv(f−1

δφψ
fδφψρ)

a3

xδ

❖❖

θ−v

δ,φψ

bφ♦♦
fφ

x−1

φ

❖❖

bφψ♦♦

f−1

φ
fφψ

xψx
−1

φψ

❖❖

bδ

(B)

x−1

δ

❖❖

θδ,φψ

bδφψ

θδφψ,ρ

xφψx
−1

δφψ

❖❖

♦♦

f−1

δ
fδφψ

bδφψρ♦♦

f−1

δφψ
fδφψρ

Ih(xδφψρx
−1

φψρ
)

bδφψρ

a1

θ−v

φψ,ρ

xδφψ

❖❖

bρ♦♦
fρ

xδφψρx
−1
ρ

❖❖

a3

xδ

❖❖

Ihx−1

δ

bφ
fφ

♦♦ bφψ♦♦

f−1

φ
fφψ

x−1

φψ

❖❖

bφψρ♦♦

f−1

φψ
fφψρ

xρx
−1

φψρ

❖❖

a3♦♦

f−1

φψρ

θ−v

δ,φψρ

bφψρ
fφψρ

♦♦

xδφψρx
−1

φψρ

❖❖

bδ

(C)

x−1

δ

❖❖

Ihxδ

bδ

x−1

δ

❖❖

Iv(f−1

δ
fδφψρ)

bδφψρ
f−1

δ
fδφψρ

♦♦

xφψρx
−1

δφψρ

❖❖

a3

xδ

❖❖

Ivfφ

bφ
fφ

♦♦

θφ,ψ

bφψ

θφψ,ρ

f−1

φ
fφψ

♦♦ bφψρ

Ivf−1

φψρ

f−1

φψ
fφψρ

♦♦ a3
f−1

φψρ
♦♦

xδ

❖❖

a1

xφψ

❖❖

θ−v

ψ,ρ

bρ♦♦
fρ

xφψρx
−1
ρ

❖❖

a2

xφ

❖❖

θ−v

φ,ψρ

bψ♦♦
fψ

x−1

ψ

❖❖

bψρ

xρx
−1

ψρ

❖❖

♦♦

f−1

ψ
fψρ

a3

Ihx−1

δ

bφ
fφ

♦♦

x−1

φ

❖❖

bφψρ♦♦

f−1

φ
fφψρ

xψρx
−1

φψρ

❖❖

a3♦♦

f−1

φψρ

bδ

x−1

δ

❖❖

bδ

x−1

δ

❖❖

bδφψρ
f−1

δ
fδφψρ

♦♦
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Hence, using now vertical composition of inner boxes in it, we see that

Ivf−1δ ◦h
(

kG(δ, φ, ψ) + kG(δ, φψ, ρ) + δ∗k
G(φ, ψ, ρ)

)

◦h I
vfδφψρ =

bδ

θδ,φ

bδφ
f−1

δ
fδφ

♦♦ bδφψ
f−1

δφ
fδφψ

♦♦ bδφψρ
f−1

δφψ
fδφψρ

♦♦

Ih(xδφψρx
−1

φψρ
)

bδφψρ

θδφ,ψ

θ−v

φ,ψ

◦v

θδφψ,ρ
◦v

θ−v

φψ,ρ

a3

xδ

❖❖

Ihx−1

δ

bφ♦♦
fφ

❖❖

bφψ♦♦

f−1

φ
fφψ

❖❖

bφψρ♦♦

f−1

φψ
fφψρ

❖❖

a3♦♦

f−1

φψρ

θ−v

δ,φψρ

bφψρ
fφψρ

♦♦

xδφψρx
−1

φψρ

❖❖

bδ

x−1

δ

❖❖

Ihxδ

bδ

x−1

δ

❖❖

Iv(f−1

δ
fδφψρ)

bδφψρ
f−1

δ
fδφψρ

♦♦

xφψρx
−1

δφψρ

❖❖

a3

xδ

❖❖

Ivfφ

bφ
fφ

♦♦

θφ,ψ

bφψ

θφψ,ρ

♦♦
f−1

φ
fφψ

bφψρ

Ivf−1

φψρ

♦♦
f−1

φψ
fφψρ

a3♦♦
f−1

φψρ

xδ

❖❖

a1

xφψ

❖❖

θ−v

ψ,ρ

bρ
fρ

♦♦

xφψρx
−1
ρ

❖❖

a2

xφ

❖❖

θ−v

φ,ψρ

bψ
fψ

♦♦

x−1

ψ

❖❖

bψρ

xρx
−1

ψρ

❖❖

♦♦

f−1

ψ
fψρ

a3

Ihx−1

δ

bφ
fφ

♦♦

x−1

φ

❖❖

bφψρ♦♦

f−1

φ
fφψρ

xψρx
−1

φψρ

❖❖

a3♦♦

f−1

φψρ

bδ

x−1

δ

❖❖

bδ

x−1

δ

❖❖

bδφψρ
f−1

δ
fδφψρ

♦♦
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bδ

=

θδ,φ

bδφ
f−1

δ
fδφ

♦♦ bδφψ
f−1

δφ
fδφψ

♦♦ bδφψρ
f−1

δφψ
fδφψρ

♦♦

Ih(xδφψρx
−1

φψρ
)

bδφψρ

θδφ,ψ

θ−v

φ,ψ

◦v

θδφψ,ρ
◦v

θ−v

φψ,ρ

a3

xδ

❖❖

Ivfφ

bφ♦♦

❖❖

θφ,ψ

bφψ♦♦

θφψ,ρ

❖❖

bφψρ♦♦

❖❖

a3
f−1

φψρ
♦♦

Ivfφψρ

bφψρ
fφψρ

♦♦

xδφψρx
−1

φψρ

❖❖

a1

❖❖

θ−v

ψ,ρ

bρ♦♦

xφψρx
−1
ρ

❖❖

Ivf−1

φψρ

a2

xφ

❖❖

θ−v

φ,ψρ

bψ♦♦

❖❖

bψρ♦♦

xρx
−1

ψρ

❖❖

a3

Ihx−1

δ

bφ
fφ

♦♦

x−1

φ

❖❖

bφψρ♦♦

f−1

φ
fφψρ

xψρx
−1

φψρ

❖❖

a3♦♦

f−1

φψρ

θ−v

δ,φψρ

bφψρ
fφψρ

♦♦

bδ

x−1

δ

❖❖

bδ

x−1

δ

❖❖

bδφψρ
f−1

δ
fδφψρ

♦♦

xφψρx
−1

δφψρ

❖❖

bδ

= θδ,φ

bδφ
f−1

δ
fδφ

♦♦

θδφ,ψ

bδφψ
f−1

δφ
fδφψ

♦♦

θδφψ,ρ

bδφψρ
f−1

δφψ
fδφψρ

♦♦

a1

xδφ

❖❖

θ−v

ψ,ρ

bρ♦♦
fρ

xδφψρx
−1
ρ

❖❖

a2

xδφ

❖❖

θ−v

φ,ψρ

bψ
fψ

♦♦

x−1

ψ

❖❖

bψρ♦♦

f−1

ψ
fφρ

xρx
−1

ψρ

❖❖

a3

xδ

❖❖

θ−v

δ,φψρ

bφ
fφ

♦♦

x−1

φ

❖❖

bφψρ♦♦

f−1

φ
fφψφ

xψρx
−1

φψρ

❖❖

bδ

x−1

δ

❖❖

bδφψρ
f−1

δ
fδφψρ

♦♦

xφψρx
−1

δφψρ

❖❖

(17)

Now, we realize that the diagram (17) above is also obtained by using
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vertical composition of inner boxes in the following diagram

bδ

(D) Iv(f−1

δ
fδφ)

bδφ
f−1

δ
fδφ

♦♦

θδφ,ψ

bδφψ
f−1

δφ
fδφψ

♦♦

θδφψ,ρ

bδφψρ
f−1

δφψ
fδφψρ

♦♦

a1

xδφψ
❖❖

θ−v

ψ,ρ

bρ♦♦
fρ

xδφψρx
−1
ρ

❖❖

a2

xδφ

❖❖

θ−v

δφ,ψρ

bψ
fψ

♦♦

x−1

ψ

❖❖

bψρ♦♦

f−1

φ
fψρ

xρx
−1

ψρ

❖❖

bδ

(E)

θδ,φ

bδφ♦♦
f−1

δ
fδφ

x−1

δφ

❖❖

θδφ,ψρ

bδφψρ♦♦
f−1

δφ
fδφψρ

xψρx
−1

δφψρ

❖❖

a2

xδφ
❖❖

θ−v

φ,ψρ

bψρ♦♦
fφψ

xδφψρx
−1

ψρ

❖❖

a3

xδ

❖❖

θ−v

δ,φψρ

bφ♦♦
fφ

x−1

φ

❖❖

bφψρ♦♦

f−1

φ
fφψρ

xψρx
−1

φψρ

❖❖

bδ

x−1

δ

❖❖

bδφψρ
f−1

δ
fδφψρ

♦♦

xφψρx
−1

δφψρ

❖❖

where the pasted boxes of the inner regions labeled with (D) and (E) are

easily recognized, by (16), to be

(D) = Ivf−1δ ◦h k
G(δφ, ψ, ρ) ◦h I

vfδφψρ,

(E) = Ivf−1δ ◦h k
G(δ, φ, ψρ) ◦h I

vfδφψρ.

So, the resulting pasted box of the diagram (17) is also

Ivf−1δ ◦h (k
G(δφ, ψ, ρ) + kG(δ, φ, ψρ)) ◦h I

vfδφψρ.

This proves the 3-cocycle condition, that is,

kG(δφ, ψ, ρ)+kG(δ, φ, ψρ) = kG(δ, φ, ψ)+kG(δ, φψ, ρ)+δ∗k
G(φ, ψ, ρ).

Next, we observe the effect of different choices of (fρ, bρ, xρ) and θψ,ρ in

the construction of the 3-cocycle kG .

Lemma 4.3. (i) If the choice of the boxes θψ,ρ in (12) is changed, then kG

is changed to a cohomologous cocycle. By suitably changing the boxes θψ,ρ,

kG may by changed to any cohomologous cocycle.
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(ii) If the choice of the representative paths (fρ, bρ, xρ) in (3) is changed,

then a suitable new selection of the boxes θψ,ρ leaves the cocycle kG unal-

tered.

Proof. (i) Let, for each two composable morphisms a2
ψ
← a1

ρ
← a0 in ΠG,

bψ
θ′ψ,ρ

bψρ
f−1

ψ
fψρ

♦♦

a1

xψ

❖❖

bρ

xψρx
−1
ρ

❖❖

fρ

♦♦

be any other selection of boxes in (3), and let k′
G ∈ Z3(ΠG, π2) be the

corresponding 3-cocycle.

By Lemma 3.5 and the isomorphism fψ∗ : π2(G, bψ) ∼= π2(G, a2), we

can write θ′ψ,ρ = f−1ψ∗ c(ψ, ρ)+ θψ,ρ for a unique element c(ψ, ρ) ∈ π2(G, a2),
and a normalized 2-cochain c ∈ C2(ΠG, π2G) becomes so defined. Then,

for every composable morphisms a3
φ
← a2

ψ
← a1

ρ
← a0, we have

f−1φ∗ k
′G(φ, ψ, ρ) + f−1φ∗ c(φ, ψρ) + θφ,ψρ

(15)
= (f−1φ∗ c(φ, ψ) + θφ,ψ)◦h

(

(f−1φψ∗c(φψ, ρ) + θφψ,ρ)◦v(f
−1
ψ∗ c(ψ, ρ) + θψ,ρ)

−v
)

(11)
= (f−1φ∗ c(φ, ψ)+θφ,ψ)◦h

(

(f−1φψ∗c(φψ, ρ)+θφψ,ρ)◦v(−x
−1
ψ∗f

−1
ψ∗ c(ψ, ρ)+θ

−v
ψ,ρ)

)

(9)
=(f−1φ∗ c(φ, ψ)+θφ,ψ)◦h(f

−1
φψ∗c(φψ, ρ)−xφψ∗x

−1
ψ∗f

−1
φ∗ c(ψ, ρ)+θφψ,ρ◦vθ

−v
ψ,ρ)

(8)
= f−1φ∗ c(φ, ψ) + f−1φ∗ c(φψ, ρ)− f

−1
φ∗ fφψ∗xφψ∗x

−1
ψ∗f

−1
ψ∗ c(ψ, ρ)

+ θφ,ψ◦h(θφψ,ρ◦vθ
−v
ψ,ρ)

(15)
= f−1φ∗ c(φ, ψ) + f−1φ∗ c(φψ, ρ)− f

−1
φ∗ fφψ∗xφψ∗x

−1
ψ∗f

−1
ψ∗ c(ψ, ρ)

+ f−1φ∗ k
G(φ, ψ, ρ) + θφ,ψρ

whence, by Lemma 3.5,

k′
G
(φ, ψ, ρ) + c(φ, ψρ)

= c(φ, ψ) + c(φψ, ρ)− fφψ∗xφψ∗x
−1
ψ∗f

−1
ψ∗ c(ψ, ρ) + kG(φ, ψ, ρ).

As, by Theorem 3.3 and Lemma 2.4,

fφψ∗xφψ∗x
−1
ψ∗ = (φψ)∗x

−1
ψ∗ = φ∗ψ∗x

−1
ψ∗ = φ∗fψ∗xψ∗x

−1
ψ∗ = φ∗fψ∗,
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we finally conclude that

k′
G
(φ, ψ, ρ) = c(φ, ψ)− c(φ, ψρ) + c(φψ, ρ)− φ∗c(ψ, ρ) + kG(φ, ψ, ρ)

= ∂c(φ, ψ, ρ) + kG(φ, ψ, ρ).

Thus, k′
G = ∂c+ kG and therefore kG and k′

G
are cohomologous.

Conversely, suppose c ∈ C2(ΠG, π2G) is any normalized 2-cochain and

k = ∂c + kG . Then f−1ψ∗ c(ψ, ρ) + θψ,ρ is an allowable choice of θ′ψ,ρ, for

each pair of composable morphisms (ψ, ρ) in ΠG, for which, by the already

shown above, the corresponding 3-cocycle just becomes k′
G = ∂c+kG = k.

(ii) Suppose we have choosen another representative path (gρ, cρ, yρ) of

each morphism ρ in ΠG. Then, we can select homotopies αρ : (fρ, bρ, xρ) ≃

(gρ, cρ, yρ) and construct, for each two morphisms a2
ψ
← a1

ρ
← a0, the box

=

cψ

α−h

ψ

bψ
g−1

ψ
fψ

♦♦ bψρ
f−1

ψ
fψρ

♦♦

αψρ

cψρ
f−1

ψρ
gψρ

♦♦

cψ

θ′ψ,ρ

cψρ
g−1

ψ
gψρ

♦♦ bψ

yψx
−1

ψ

❖❖

Ihxψ

bψ
θψ,ρ

bψρ

Ih(xψρx
−1
ρ )

bψρ

yψρx
−1

ψρ

❖❖

a1

yψ

❖❖

cρgρ
♦♦

yψρy
−1
ρ

❖❖

a1

xψ

❖❖

bρ

α−v
ρ

❖❖

bρ

xψρx
−1
ρ

❖❖

a1

xψ

❖❖

a1 bρ
fρ

♦♦ cρ
f−1
ρ gρ

♦♦

xρy
−1
ρ

❖❖

which, by the already proven part (i), we can use to define the corresponding

3-cocycle k′
G ∈ Z3(ΠG, π2G) from the new selected representative paths.

Then, for any three composable morphisms a3
φ
← a2

ψ
← a1

ρ
← a0,

Ivg−1φ ◦h k
′G(φ, ψ, ρ) ◦h I

vgφψρ =
(

θ′φ,ψ ◦h (θ
′
φψ,ρ ◦v θ

′−v
ψ,ρ)

)

◦v θ
′−v
φ,ψρ =
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cφ

α−h

φ

bφ
g−1

φ
fφ

♦♦ bφψ
f−1

φ
fφψ

♦♦

αφψ

cφψ
f−1

φψ
gφψ

♦♦

α−h

φψ

bφψ
g−1

φψ
fφψ

♦♦ bφψρ
f−1

φψ
fφψρ

♦♦

αφψρ

cφψρ
f−1

φψρ
gφψρ

♦♦

bφ

yφx
−1

φ

❖❖

Ih

bφ

θφ,ψ

bφψ bφψ

❖❖

Ih

bφψ

θφψ,ρ

bφψρ

Ih

bφψρ

yφψρx
−1

φψρ

❖❖

a1

xφψ

❖❖

bρ

❖❖

α−v
ρ

bρ

xφψρx
−1
ρ

❖❖

a1

xφψ

❖❖

Ih

a1

θ−v

φ,ψ

bρ
fρ

♦♦

αρ

cρ

xρy
−1
ρ

❖❖

♦♦

a1 bρ

Ih

bρ

yρx
−1
ρ

❖❖

a2

xφ

❖❖

bψ

❖❖

α−v

ψ

bψ

x−1

ψ

❖❖

α−vh

ψ

bψ

x−1

ψ

❖❖
Ih

bψρ

❖❖

α−v

ψρ

bψρ

xρx
−1

ψρ

❖❖

a2

xφ

❖❖

Ih

a2

θ−v

φ,ψρ

bψ
fψ

♦♦ cψ
f−1

ψ
gψ

♦♦

❖❖

bψ
g−1

ψ
fψ

♦♦ bψρ
f−1

ψ
fψρ

♦♦

αψρ

cψρ

xψρy
−1

ψρ

❖❖

♦♦

a2 bψρ

Ih

bψρ

yψρx
−1

ψρ

❖❖

bφ

x−1

φ

❖❖

α−hv

φ

bφ

x−1

φ

❖❖

bφψρ

❖❖

α−v

φψρ

bφψρ

xψρx
−1

φψρ

❖❖

cφ

xφy
−1

φ

❖❖

bφ
g−1

φ
fφ

♦♦ bφψρ
f−1

φ
fφψρ

♦♦ cφψρ
f−1

φψρ
gφψρ

♦♦

xφψρy
−1

φψρ

❖❖

151



A. M. CEGARRA CLASSIFYING DOUBLE GROUPOIDS

cφ

= Iv(g−1

φ
fφ)

bφ
g−1

φ
fφ

♦♦

θφ,ψ

bφψ
f−1

φ
fφψ

♦♦

θφψ,ρ

bφψρ
f−1

φψ
fφψρ

♦♦ cφψρ
f−1

φψρ
gφψρ

♦♦

a1

xφψ

❖❖

θ−v

ψ,ρ

bρ♦♦
fρ

xφψρx
−1
ρ

❖❖

Iv(f−1

φψρ
gφψρ)

a2

xφ

❖❖

bψ♦♦
fψ

x−1

ψ

❖❖

θ−v

φ,ψρ

bψρ♦♦

f−1

ψ
fψρ

xρx
−1

ψρ

❖❖

cφ bφ
g−1

φ
fφ

♦♦

x−1

φ

❖❖

bφψρ
f−1

φ
fφψρ

♦♦

xψρx
−1

φψρ

❖❖

cφψρ
f−1

φψρ
gφψρ

♦♦

= Ivg−1φ ◦h k
′G(φ, ψ, ρ) ◦h I

vgφψρ.

Hence k′
G(φ, ψ, ρ) = kG(φ, ψ, ρ), and the 3-cocycle kG is unchanged.

Lemmas 4.2 and 4.3 prove that each double groupoid G has a three-

dimensional cohomology class kG = [kG] ∈ H3(ΠG, π2G) associated with

it. We refer to

[ΠG, π2G,kG]

as the Postnikov invariant of G.

A double functor F : G → G ′ between double groupoids takes objects,

horizontal and vertical morphisms, and boxes in G to objects, horizontal and

vertical morphisms, and squares in G ′, respectively, in such a way that all the

structure categories are preserved. Clearly, such a double functor induces a

functor ΠF : ΠG → ΠG ′,





a1 b
f
♦♦

a0

x
❖❖



 7→







Fa1 b
Ff
♦♦

Fa0

Fx

❖❖






,

and a natural transformation π2F : π2G → (ΠF )∗π2G
′, which consists of the

homomorphisms π2(F, a) : π2(G, a)→ π2(G
′, Fa) given by

a
σ

a
7→

a a

Fa
Fσ

Fa

Fa Fa.
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We say that the double functor F is a weak equivalence, and write

F : G ∼→ G ′,

whenever ΠF is an equivalence of groupoids and π2F is an isomorphism.

If, for any double groupoid G we define

π0G = π0(ΠG),

the set of iso-classes of objects of its fundamental groupoid, and, for each

object a of G,

π1(G, a) = ΠG(a, a),

the group of automorphisms of a in its fundamental groupoid, this notion

of weak equivalence is similar to the usual topological notion. Indeed, one

readily verifies that a double functor F : G → G ′ is a weak equivalence if

and only if F induces an isomorphism of sets π0G ∼= π0G
′ and for every

object a of G isomorphisms of groups πi(G, a) ∼= πi(G
′, Fa) for i = 1, 2 (cf.

[11, 3.4]).

We define two double groupoid G and G ′ to be weak equivalent if there

exists a zig-zag chain of weak equivalences

G = G0
∼→ G1

∼← G2
∼→ · · · ∼← Gk = G

′.

connecting G and G ′ (see Corollary 5.4).

Let [G] denote the weak equivalence class of a double groupoid G.

Theorem 4.4. The Postnikov invariant [ΠG, π2G,kG] of a double groupoid

G only depends on its weak equivalence class [G].

Proof. Let F : G ∼→ G ′ be a weak equivalence between double groupoids.

Suppose that the construction of kG ∈ Z3(ΠG, π2G) has been made by means

of representative paths (fρ, bρ, xρ) of the morphisms ρ in ΠG, as in (3), and

boxes θψ,ρ for each pair of composable morphisms (ψ, ρ), as in (12). Then,

for the construction of kG
′

∈ Z3(ΠG ′, π2G
′), we can choose (Ffρ, F bρ, Fxρ)

as representative paths of the morphisms ΠFρ in ΠG ′ as well as the boxes

θΠFψ,ΠFρ = Fθψ,ρ. If we do this, it follows from (16) that, for any triplet

(φ, ψ, ρ) of composable morphisms in ΠG,

kG
′

(ΠFφ,ΠFψ,ΠFρ) = FkG(φ, ψ, ρ).

This means that (ΠF )∗(kG
′

) = (π2F )∗(k
G), whence (ΠF )∗(kG) = (π2F )∗(kG).

Thus, [ΠG, π2G,kG] = [ΠG ′, π2G
′,kG ′].
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5. The Classification Theorem

Theorem 5.1. The mapping [G] 7→ [ΠG, π2G,kG] establishes a bijective

correspondence between weak equivalence classes of double groupoids and

equivalence classes of Postnikov systems.

Proof. This follows from the following construction of a double groupoid Gk

associated to each normalized 3-cocycle k ∈ Z3(P,A), of any groupoid P

with coefficients in a functor A : P → Ab, and Proposition 5.3 bellow.

Let P be a groupoid, A : P → Ab a functor and k ∈ Z3(P,A) a

normalized 3-cocycle of P with coefficients in A. We construct a double

groupoid, denoted by Gk, as follows.

• The objects of Gk are the arrows of P .

• For any two arrows of P , there is a unique horizontal (resp. vertical)

morphism in Gk between them whenever they have the same target (resp.

source), whereas if they have different target (resp. source) then there are

no horizontal (resp. vertical) morphisms between them. Compositions and

identities are defined in the obvious manner. Thus, a path in Gk

ξ1 η♦♦

ξ0

❖❖

consists of three morphisms of P such that ξ0 and η have the same source

and η and ξ1 have the same target. Notice that such a path writes uniquely as

ξ1 η♦♦

=

ξ0

❖❖
φψ φψρ♦♦

ψρ

❖❖

with ρ = ξ−11 η, φ = ηξ−10 and ψ = ξ0η
−1ξ1 are three composable arrows

a3
φ
← a2

ψ
← a1

ρ
← a0 in the groupoid P .

• A box (φ, ψ, ρ; u) in Gk, with boundary as below

φψ
(φ,ψ,ρ;u)

φψρ♦♦

ψ

❖❖

ψρ,

❖❖

♦♦

(18)
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consists of three composable arrows in P , a3
φ
← a2

ψ
← a1

ρ
← a0, together

with an element u ∈ A(a3).

• For any four composable arrows in P , a4
δ
← a3

φ
← a2

ψ
← a1

ρ
← a0,

u ∈ A(a3) and v ∈ A(a4), the vertical composition of the boxes

δφψ
(δ,φψ,ρ;v)

δφψρ♦♦

φψ

❖❖

(φ,ψ,ρ;u)

φψρ,

❖❖

♦♦

ψ

❖❖

ψρ♦♦

❖❖

(19)

is given by

(δ, φψ, ρ; v)◦v(φ, ψ, ρ; u) (20)

=
(

δφ, ψ, ρ; v + δ∗u+ k(δ, φ, ψ)− k(δ, φ, ψρ)
)

.

• For any four composable arrows in P , a4
φ
← a3

ψ
← a2

ρ
← a1

λ
← a0, and

u, v ∈ A(a4), the horizontal composition of the boxes

φψ
(φ,ψ,ρ;u)

φψρ
(φ,ψρ,λ;v)

♦♦ φψρλ♦♦

ψ

❖❖

ψρ

❖❖

♦♦ ψρλ,

❖❖

♦♦

(21)

is given by

(φ, ψ, ρ; u) ◦h (φ, ψρ, λ; v) =
(

φ, ψ, ρλ; u+ v
)

. (22)

• The vertical and horizontal identity boxes are respectively defined by

φ
(ida2 ,φ,ψ;0)Iv(φ←φψ)=

φψ♦♦

φ φψ♦♦

φψ

(φ,ψ,ida0 ;0)Ih
(

↑

)

=
ψ

φψ
φψ

ψ

❖❖

ψ

❖❖
(23)

for any two composable arrows a2
φ
← a1

ψ
← a0 in P .

Lemma 5.2. With these definitions, Gk is a double groupoid (satisfying the

filling condition).
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Proof. We first observe that the vertical composition of boxes in Gk is asso-

ciative thanks to the 3-cocycle condition of k. In fact, let

γδφψ
(γ,γδφψ,ρ;w)

γδφψρ♦♦

δφψ
(δ,φψ,ρ;v)

❖❖

δφψρ♦♦

❖❖

φψ

❖❖

(φ,ψ,ρ;u)

φψρ,

❖❖

♦♦

ψ

❖❖

ψρ♦♦

❖❖

be three vertically composable boxes, defined by five arrows

a5
γ
← a4

δ
← a3

φ
← a2

ψ
← a1

ρ
← a0

of P and elements u ∈ A(a3), v ∈ A(a4) and w ∈ A(a5). Then,

(

(γ, γδφψ, ρ;w) ◦v (δ, φψ, ρ; v)
)

◦v (φ, ψ, ρ; u)

=
(

γδ, φψ, ρ;w + γ∗v + k(γ, δ;φψ)− k(γ, δ, φψρ)
)

◦v (φ, ψ, ρ; u)

=
(

γδφ, ψ, ρ;w + γ∗v+k(γ, δ, φψ)− k(γ, δ;φψρ) + γ∗δ∗u

+ k(γδ, φ, ψ)− k(γδ, φ, ψρ)
)

,

and, on the other hand,

(γ, γδφψ, ρ;w) ◦v
(

(δ, φψ, ρ; v) ◦v (φ, ψ, ρ; u)
)

= (γ, γδφψ, ρ;w) ◦v
(

δφ, ψ, ρ; v + δ∗(u) + k(δ, φ, ψ)− k(δ, φ, ψρ)
)

=
(

γδφ, ψ, ρ;w+γ∗v + γ∗δ∗u+ γ∗k(δ, φ, ψ)− γ∗k(δ, φ, ψρ)

+ k(γ, δφ, ψ)− k(γ, δφ, ψρ)
)

.

Hence the result follows by comparison, using that the cocycle condition of

k applied to the lists of arrows a5
γ
← a4

δ
← a3

φ
← a2

ψρ
← a0 and a5

γ
← a4

δ
←

a3
φ
← a2

ψ
← a1 gives the equalities

γ∗k(δ, φ, ψρ) + k(γ, δφ, ψρ) = k(γδ, φ, ψρ) + k(γ, δ, φψρ)− k(γ, δ, φ),

γ∗k(δ, φ, ψ) + k(γ, δφ, ψ) = k(γδ, φ, ψ) + k(γ, δ, φψ)− k(γ, δ, φ).
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The associativity of the horizontal composition of boxes is easier. Let

φψ
(φ,ψ,ρ;u)

φψρ
(φ,ψρ,λ;v)

♦♦ φψρλ♦♦

(φ,ψρλ,µ;w)

φψρλµ♦♦

ψ

❖❖

ψρ

❖❖

♦♦ ψρλ

❖❖

♦♦ ψρλµ

❖❖

♦♦

be boxes, defined by arrows a5
φ
← a4

ψ
← a3

ρ
← a2

λ
← a1

µ
← a0 of P and

elements u, v, w ∈ A(a5). Then,
(

(φ, ψ, ρ; u) ◦h (φ, ψρ, λ; v)
)

◦h (φ, ψρλ, µ;w)

= (φ, ψ, ρλ; u+ v) ◦h (φ, ψρλ, µ;w)

= (φ, ψ, ρλµ; u+ v + w) = (φ, ψ, ρ; u) ◦h (φ, ψρ, λµ; v + w)

= (φ, ψ, ρ; u) ◦h
(

(φ, ψρ, λ; v)
)

◦h (φ, ψρλ, µ;w)
)

.

For any box (φ, ψ, ρ; u) as in (18), its respective vertical and horizontal

inverses

ψ

(φ,ψ,ρ;u)−v

ψρ♦♦

φψ

❖❖

φψρ♦♦

❖❖
φψρ

(φ,ψ,ρ;u)−h

φψ♦♦

ψρ

❖❖

ψ,

❖❖

♦♦

are given by
{

(φ, ψ, ρ; u)−v=(φ−1, φψ, ρ; k(φ−1, φ, ψρ)−k(φ−1, φ, ψ)−φ−1∗ u),

(φ, ψ, ρ; u)−h=(φ, ψ, ρ−1;−u).
(24)

The only non-straightforward verification here is that

(φ, ψ, ρ; u) ◦v (φ, ψ, ρ; u)
−v = Iv(φψ ← φψρ).

which is as follows

(φ, ψ, ρ; u) ◦v (φ
−1, φψ, ρ; k(φ−1, φ, ψρ)− k(φ−1, φ, ψ)− φ−1∗ u)

=
(

idd, ψψ, ρ; u+ φ∗k(φ
−1, φ, ψρ)− φ∗k(φ

−1, φ, ψ)− u

+ k(φ−1, φ, φψ)− k(φ−1, φ, φψρ)
)

=
(

ida3 , ψψ, ρ;φ∗k(φ
−1, φ, ψρ)− φ∗k(φ

−1, φ, ψ) + k(φ−1, φ, φψ)

− k(φ−1, φ, φψρ)
)

(25)
=

(

ida3 , φψ, ρ; k(φ, φ
−1, φ)− k(φ, φ−1, φ)

)

= (ida3 , φψ, ρ; 0)

= Iv(φψ ← φψρ),

157



A. M. CEGARRA CLASSIFYING DOUBLE GROUPOIDS

where we have used the equality

φ∗k(φ
−1, φ, ψ)− k(φ, φ−1, φψ) = k(φ, φ−1, φ) (25)

which follows from the 3-cocycle and normalization conditions of k for the

sequence of arrows a3
φ
← a2

φ−1

← a3
φ
← a2

ψ
← a1 in P .

All other requirements are easily verified, except perhaps the interchange

law which is proved as follows. Suppose given boxes

δφψ
(δ,φψ,ρ;v)

δφψρ♦♦

(δ,φψρ,λ;v′)

δφψρλ♦♦

φψ

❖❖

(φ,ψ,ρ;u)

φψρ,

❖❖

♦♦

(φ,ψρ,λ;u′)

φψρλ♦♦

❖❖

ψ

❖❖

ψρ♦♦

❖❖

ψρλ♦♦

❖❖

defined by arrows of P , a5
δ
← a4

φ
← a3

ψ
← a2

ρ
← a1

λ
← a0, and elements

v, v′ ∈ A(a5) and u, u′ ∈ A(a4). Then,

(

(δ, φψ, ρ; v) ◦v (φ, ψ, ρ; u)
)

◦h
(

(δ, φψρ, λ; v′) ◦v (φ, ψρ, λ; u
′)
)

=
(

δφ, ψ, ρ; v + δ∗u+ k(δ, φ, ψ)− k(δ, φ, ψρ)
)

◦h
(

δφ, ψρ, λ; v′

+ δ∗u
′ + k(δ, φ, ψρ)− k(δ, φ, ψρλ)

)

=
(

δφ, ψ, ρλ; v + δ∗u+ v′ + δ∗u
′ + k(δ, φ, ψ)− k(δ, φ, ψρλ)

)

= (δ, φψ, ρλ; v + v′) ◦v (φ, ψ, ρλ; u+ u′)

=
(

(δ, φψ, ρ; v) ◦h (δ, φψρ, λ; v
′)
)

◦v
(

(φ, ψ, ρ; u) ◦h (φ, ψρ, λ; u
′)
)

.

Proposition 5.3. (i) Let (P,A,k) be a Postnikov system. For any represen-

tative 3-cocycle k ∈ Z3(P,A) of k, the Postnikov invariant of the double

groupoid Gk is equivalent to (P,A,k), that is,

[ΠGk, π2G
k,kGk] = [P,A,k].

(ii) Suppose (P,A,k) and (P ′,A′,k′) are equivalent Postnikov systems.

Then, for any representative 3-cocycles k ∈ Z3(P,A) and k′ ∈ Z3(P ′,A′)
of k and k

′ respectively, there is a weak equivalence Gk ∼→ Gk
′

.
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(iii) Let G be a double groupoid. For any 3-cocycle k ∈ Z3(ΠG, π2G)
representative of the cohomology class kG, there is a weak equivalence

Gk ∼→ G.

Proof. Firstly notice that the homotopy relation between paths in Gk is triv-

ial. In fact, suppose

ξ1 η♦♦

≃
ξ0

❖❖
ξ1 µ♦♦

ξ0

❖❖

are two homotopic paths in Gk. This means that there is a box in Gk of the

form

η
(φ,ψ,ρ;u)

µ♦♦

η η

❖❖

for some composable arrows a3
φ
← a2

ψ
← a1

ρ
← a0 in P and some u ∈

A(a3). But then, we have the equalities ψ = η = ψρ = φψ and φψρ = µ

which imply η = µ.

(i) There is a functor fk : P → ΠGk which carries each object a of

P to the identity morphism ida, regarded as an object of Gk, and carries a

morphism ρ : a0 → a1 of P to the path

ida1
fkρ =

ρ♦♦

ida0 .

❖❖

If ψ : a1 → a2 is another morphism in P , the equality fk(ψρ) = fkψ fkρ

follows from the diagram in G

ida2 ψ♦♦

(ψ,ida1 ,ρ;0)

ψρ♦♦

ida1

❖❖

ρ♦♦

❖❖

ida0

❖❖

and, for any object a of P ,

ida
fkida =

ida
= idfka.

ida
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So, fk is actually a functor which is clearly fully faithful. Indeed, it is an

equivalence of groupoids since any object ρ : a0 → a1 is isomorphic in ΠGk

to the object fka0 = ida0 because of the path

ida0 ida0

ρ.

❖❖

Now, for any object a of P , the abelian group π2(G
k, fa) just consists of

all the boxes in Gk of the form

ida
(ida,ida,ida;u)

ida

ida ida

with u ∈ A(a). The mapping Fk : A(a)→ π2(G
k, fka),

u 7→ (ida, ida, ida; u),

is clearly an isomorphism of groups, for any object a of P , and thus we see

that we are in presence of a natural isomorphism Fk : A ∼= f∗π2G
k.

To complete the proof, it is enough to prove that fk∗(kGk) = Fk∗(k).
Indeed, we are going to prove that fk∗(kG

k

) = Fk∗(k) once we select, for each

pair of composable arrows a2
ψ
← a1

ρ
← a0 in P , the box

ψ
(ψ,ida1 ,ρ;0)θfkψ,fkρ =

ψρ♦♦

ida1

❖❖

ρ

❖❖

♦♦

in the construction of the 3-cocycle kG
k

. In fact, for any given composable

arrows a3
φ
← a2

ψ
← a1

ρ
← a0 in P , by (16), the element

fk∗(kG
k

)(φ, ψ, ρ) = kG
k

(fkφ, fkψ, fkρ) ∈ π2(G
k, fka3)
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is the pasted box of the diagram

ida3

Iv(ida3←φ)

φ♦♦

(φ,ida2 ,ψ;0)

φψ♦♦

(φψ,ida2 ,ρ;0)

φψρ♦♦ ida3
♦♦

Iv(φψρ←ida3 )

ida1

❖❖

(ψ,ida1 ,ρ;0)
−v

ρ♦♦

❖❖

ida2

❖❖

ψ♦♦

❖❖

(φ,ida2 ,ψρ;0)
−v

ψρ♦♦

❖❖

ida3 φ♦♦

❖❖

φψρ♦♦

❖❖

ida2
♦♦

Since, by (23) and (24),






















Iv(ida3 ← φ) = (ida3 , ida3 , φ; 0),

Iv(φψρ← ida3) = (ida3 , φψρ, (φψρ)
−1; 0),

(ψ, ida1 , ρ; 0)
−v = (ψ−1, ψ, ρ;−k(ψ−1, ψ, ρ)),

(φ, ida2 , ψρ; 0)
−v = (φ−1, φ, ψρ;−k(φ−1, φ, ψρ)),

a direct computation, using (22) and (22), gives

kG
k

(fφ, fψ, fρ)

=
(

ida3 , ida3 , ida3 ;−φ∗ψ∗k(ψ
−1, ψ, ρ) + k(φψ, ψ−1, ψρ)− k(φψ, ψ−1, ψ)

− φ∗k(φ
−1, φ, ψρ) + k(φ, φ−1, φψρ)− k(φ, φ−1, φ)

)

(25)
=

(

ida3 , ida3 , ida3 ;−φ∗ψ∗k(ψ
−1, ψ, ρ)+k(φψ, ψ−1, ψρ)−k(φψ, ψ−1, ψ)

)

.

Moreover, since the cocycle condition of k on the sequence

a3
φψ
← a1

ψ−1

← a2
ψ
← a1

ρ
← a0

yields

φ∗ψ∗k(ψ
−1, ψ, ρ)− k(φ, ψ, ρ)− k(φψ, ψ−1, ψρ) + k(φψ, ψ−1, ψ) = 0

we conclude that

kG
k

(fkφ, fkψ, fkρ) =
(

ida3 , ida3 , ida3 ; k(φ, ψ, ρ)
)

= Fkk(φ, ψ, ρ)

= Fk∗(k)(φ, ψ, ρ).
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(ii) By hypothesis, there is an equivalence f : P ∼→ P ′, a natural isomor-

phism F : A ∼= f∗A′, and a normalized 2-cochain c ∈ C2(P, f∗A′) such that

f∗(k′) = F∗(k) + ∂c. A weak equivalence F : Gk ∼→ Gk
′

is then defined by

the following assignments on objets, horizontal and vertical morphisms, and

boxes

ρ 7→ fρ,
(

ψ ← ψρ
)

7→
(

fψ ← fψ fρ
)

,





φψ

ψ

❖❖



 7→
fφ fψ

fψ

❖❖

φψ

(φ,ψ,ρ;u)

φψρ♦♦

7→

ψ

❖❖

ψρ,

❖❖

♦♦

fφ fψ
(

fφ,fψ,fρ;Fu+c(φ,ψ)−c(φ,ψρ)
)

fφ fψ fρ♦♦

fψ

❖❖

fψ fρ.

❖❖

♦♦

So defined, one verifies easily that F : Gk → Gk
′

is actually a double

functor. That F is a weak equivalence follows from the commutativity of

the diagrams

P
fk
✴✴

f

✎✎

ΠGk

ΠF
✎✎

P ′
fk

′

✴✴ ΠGk
′

A(a)
Fk
✴✴

F

✎✎

π2(G
k, fka)

π2F
✎✎

A′(fa)
Fk

′

✴✴ π2(G
k′ , fk

′

a)

where f, fk and fk
′

are equivalences of groupoids and, for any object a of P ,

F, Fk and Fk
′

are isomorphisms of groups.

(iii) By Lemma 4.3 (i), we can assume that k = kG for a certain selection

of representative paths (fρ, bρ, xρ) of the morphisms ρ in ΠG and the boxes

θψ,ρ, as in (3) and (12). Then, a double functor F : Gk ∼→ G is defined by

the following assignments on objets, horizontal and vertical morphisms, and

boxes

F (ρ) = bρ, F (ψ ← ψρ) = (bψ bψρ)
f−1

ψ
fψρ

♦♦ ,

bψρ
F





ψρ

↑
ρ



 =
bρ

xψρx
−1
ρ

❖❖

,
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F







φψ

(φ,ψ,ρ;u)

φψρ♦♦

ψ

❖❖

ψρ

❖❖

♦♦






=

bφψ
f−1

φψ∗
(σ)+θ−h

φ,ψ
◦hθφ,ψρ

bφψρ
f−1

φψ
fφψρ

♦♦

bψ

❖❖

xφψx
−1

ψ

bψρ
f−1

ψ
fψρ

♦♦

xφψρx
−1

ψρ

❖❖

.

Many of the details to confirm that F , so defined, is a double functor are

routine and easily verifiable, so are left to the reader. For instance, if φ, ψ, ρ

are any three composable morphisms in G,

F (φ← φψ)F (φψ ← φψρ) = f−1φ f−1φψ fφψf
−1
φψρ = f−1φ f−1φψρ = F (φ← φψρ)

and thus we see that F preserves horizontal composition of morphisms. The

proof that F preserves composition of boxes is as follows. Suppose two

vertically composable boxes in Gk, as in (19). Then,

F (δ, φψ, ρ; τ) ◦v F (φ, ψ, ρ; τ)

= (f−1δφψ∗τ + θ−hδ,φψ ◦h θδ,φψρ) ◦v (f
−1
φψ∗σ + θ−hφ,ψ ◦h θφ,ψρ)

(14)
=

(

f−1δφψ∗(τ − k(δ, φψ, ρ)) + θδφψ,ρ ◦v θ
−v
φψ,ρ

)

◦v
(

f−1φψ∗(σ − k(φ, ψ, ρ))

+ θφψ,ρ ◦v θ
−v
ψ,ρ

)

(9)
= f−1δφψ∗(τ − k(δ, φψ, ρ)) + xδφψ∗x

−1
φψ∗f

−1
φψ∗(σ − k(φ, ψ, ρ))

+ θδφψ,ρ ◦v θ
−v
φψ,ρ ◦v θφψ,ρ ◦v θ

−v
ψ,ρ

2.4
= f−1δφψ∗(τ − k(δ, φψ, ρ)) + f−1δφψ∗fδ∗xδ∗(σ − k(φ, ψ, ρ)) + θδφψ,ρ ◦v θ

−v
ψ,ρ

2.4
= f−1δφψ∗(τ − k(δ, φψ, ρ)) + f−1δφψ∗δ∗(σ − k(φ, ψ, ρ)) + θδφψ,ρ ◦v θ

−v
ψ,ρ

= f−1δφψ∗(τ + δ∗σ) + f−1δφψ∗(−k(δ, φψ, ρ)− δ∗k(φ, ψ, ρ)) + θδφψ,ρ ◦v θ
−v
ψ,ρ,

F
(

(δ, φψ, ρ; τ) ◦v (φ, ψ, ρ; τ)
)

(20)
= F (δφ, ψ, ρ; τ + δ∗σ + kG(δ, φ, ψ)− kG(δ, φ, ψρ))

= f−1δφψ∗(τ + δ∗σ + kG(δ, φ, ψ)− kG(δ, φ, ψρ)) + θ−hδφ,ψ ◦h θδφ,ψρ
(14)
= f−1δφψ∗(τ + δ∗σ) + f−1δφψ∗

(

kG(δ, φ, ψ)− kG(δ, φ, ψρ))− kG(δφ, ψ, ρ)
)

+ θδφψ,ρ ◦v θ
−v
ψ,ρ,
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and the result follows from Lemma 3.5, thanks to the 3-cocycle condition

of k. To prove that Γ preserves horizontal composition of boxes is easier.

Suppose two horizontally composable boxes in Gk, as in (21). Then,

F (φ, ψ, ρ; σ) ◦h F (φ, ψρ, λ; τ)

= (f−1φψ∗σ + θ−hφ,ψ ◦h θφ,ψρ) ◦h (f
−1
φψρ∗τ + θ−hφ,ψρ ◦h θφ,ψρλ)

(8)
= f−1φψ∗σ + f−1φψ∗τ + θ−hφ,ψ ◦h θφ,ψρ ◦h θ

−h
φ,ψρ ◦h θφ,ψρλ

= f−1φψ∗(σ + τ) + θ−hφ,ψ ◦h θφ,ψρλ

= F (φ, ψ, ρλ; σ + τ) = F
(

(φ, ψ, ρ; σ) ◦h (φ, ψρ, λ; τ)
)

.

That F preserves identity boxes is also easily checked. For instance,

F Iv(φ← φψ) = F (id, φ, ψ; 0) = θ−hid,φ ◦h θid,φψ = Ivf−1φ Ivfφψ

= Iv(f−1φ fφψ) = IvF (φ← φψ).

This double functor F is a weak equivalence. In fact, the induced functor

on fundamental groupoids ΠF : ΠGk → ΠG is an equivalence since its

composition with the equivalence fk : ΠG ≃ ΠGk is the identity functor on

ΠG: for any morphism ρ ∈ ΠG(a, b),

ΠF (fkρ) = ΠF





idb ρ♦♦

ida

❖❖



 =







b bρ
fρ
♦♦

a

xρ
❖❖






= [fρ, bρ, xρ] = ρ.

Furthermore, for any object a of G, the induced map

π2F : π2(G
k, ida)→ π2(G, a)

is the obvious isomorphism

ida
(ida,ida,ida;σ)

ida

ida ida

7→

a

σ

a

a a

.

Corollary 5.4. Two double groupoids G and G ′ are weak equivalent if and

only if there is a double groupoid G ′′ with weak equivalences G ∼← G ′′ ∼→ G ′.
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Proof. Suppose G and G ′ are weak equivalent. By Theorem 4.4, they have

the same Postnikov invariant, that is, the Postnikov systems (ΠG, π2G,kG)
and (ΠG ′, π2G

′,kG ′) are equivalent. Then, by Proposition 5.3 (ii) and (iii),
for any representative 3-cocycles of kG and kG ′, say k and k′ respectively,

there is a sequence of weak equivalences

G ∼← Gk ∼→ Gk
′

∼→ G ′.

6. Geometric realization

Theorem 6.1. The Postnikov invariant of a double groupoid G agrees with

the Postnikov invariant of its geometric realization |G|.

Proof. This follows from Proposition 6.2 below.

For a groupoid P , let us recall from the beginning of Section 4 that NP
denotes its nerve, that is, the simplicial set with m-simplices the composable

sequences β = (βm
βm
← · · ·

β1
← β0) of m arrows in P . If (P,A,k) is any

Postnikov system and we select any normalized 3-cocycle k ∈ Z3(P,A)
representative of the cohomology class k ∈ H3(P,A), then the equivalence

class [P,A,k] is justly realized as the unique Postnikov invariant of (the

geometric realization of) the simplicial set homotopy colimit of the functor

K(A, 2) : P → Sset, a 7→ K(A(a), 2),

twisted by the 3-cocycle k (see, for instance, Goerss and Jardine [18, Chapter

VI, Lemma 5.8]). This simplicial set, which we denote by

hocolim
P

K(A, 2; k), (26)

has the same simplices as the ordinary homotopy colimit hocolim
P

K(A, 2),

that is, its set of m-simplices is

⊔

β∈NPm

K(A(βm), 2)m.
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Its face and degeneracy maps are also the same as those of non-twisted ho-

motopy colimit, except the last face maps which are here canonically af-

fected by the cocycle k. This twisted homotopy colimit (26) becomes a

Kan complex that is coskeletal in dimensions higher than three and whose

3-truncation can be described explicitly as below

⊔

β∈NP3

A(β3)3
✴✴
✴✴

d0
✴✴
✴✴

d3

⊔

β∈NP2

A(β2) ✴✴

d0
✴✴

d2

✴✴

s2①①⑤⑤ ①①

s0

⑧⑧

NP1

d0
✴✴

d1

✴✴

s1⑤⑤

s0

��

NP0

s0
✇✇

where, for any β ∈ NP2 and σ ∈ A(β2)

di(β, σ) = diβ, 0 ≤ i ≤ 2,

for any β ∈ NP3 and (σ0, σ1, σ2) ∈ A(β3)
3,

di(β, σ0, σ1σ2) =

{

(diβ, σi) if 0 ≤ i ≤ 2,
(

d3β, β
−1
3∗ (k(β) + σ2 − σ1 + σ0)

)

if i = 3,

for any β ∈ NP1,

si(β) = (siβ, 0), i = 0, 1,

and, for any β ∈ NP2 and σ ∈ A(β2),

si(β, σ) =











(s0β, σ, σ, 0) if i = 0,

(s1β, 0, σ, σ) if i = 1,

(s2β, 0, 0, σ) if i = 2.

Now, for a double groupoid G, let NNG denote its double nerve, that is,

the bisimplicial set where a (p, q)-simplex is a subdivision of a box of G as
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a matrix of p× q horizontally and vertically composable boxes of the form

apq
θp,q

ap−1q
fpq

♦♦ · · · a1q
θ1,q

a0q
f1q
♦♦

apq−1
↑

xpq
❖❖

ap−1q−1
↑

xp−1q

❖❖

fpq−1

♦♦ · · · a1q
↑

x1q
❖❖

a0q−1
↑

f1q−1

♦♦

x0q
❖❖

...
...

...
...

↑
ap1

θp,1

↑
ap−11

fp1
♦♦ · · ·

↑
a11

θ1,1

↑
a01

f11
♦♦

ap0

xp1
❖❖

ap−10
fp0

♦♦

p−11
❖❖

· · · a10

x11

❖❖

a00

x01

❖❖

f10

♦♦

The bisimplicial face maps are the natural ones, induced by horizontal and

vertical composition of boxes in G, and the degeneracy ones by appropriate

identity boxes. We picture NNG so that the set of (p, q)-simplices is the

set in the p-th row and q-th column. Thus, its p-th column, NNGp•, is the

nerve of the “vertical” groupoid whose objects are strings ·
fp
← · · ·

f1
← · of p

composable horizontal arrows in G and whose arrows are length p sequences

of horizontally composable boxes

·
θp

·
gp
♦♦

···

·
θ2

·
θ1

♦♦ ·
g1
♦♦

·

❖❖

·

❖❖

fp

♦♦ ·

❖❖

·

❖❖

♦♦ ·
f1

♦♦

❖❖

Similarly, the q-th column, NNG•q, is the nerve of the “horizontal” groupoid

whose objects are length q sequences of composable vertical morphisms in

G and whose arrows are sequences of q vertically composable boxes. In

particular, NNG0• and NNG•0 are, respectively, the nerves of the groupoids

of vertical and horizontal morphisms of G.

The geometric realization |G| of the double groupoid G is, by definition,

the geometric realization of the simplicial set diagonal of its double nerve,

that is, |G| = |△ NNG|. By Cegarra-Remedios [12, Therem 1.1] or Zisman

[27], |G| can be also realized, up to homotopy equivalence, as the geomet-

ric realization of the Artin-Mazur total simplicial set [2, Section III] (aka
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codiagonal or W ) of the double nerve, ∇NNG. A direct analysis of this

simplicial set tell us that it is a Kan complex in which any simplex of dimen-

sion higher than two is determined by any three of its faces. In particular, it

is coskeletal in dimensions higher than 3, so that it is completely determined

by its 3-truncation, which is explicitly described as follows. Its vertices are

the objects a of G. The 1-simplices ξ1 are the paths of G

a11
ξ1 :

a01
f11
♦♦

a00

x01
❖❖

whose faces are d0ξ1 = a11 and d1ξ1 = a00. The 2-simplices ξ2 are the

diagrams in G

a22

ξ2 :

a12
f22
♦♦

θ12

a02
f12
♦♦

a11

x12
❖❖

a01

x02
❖❖

f11

♦♦

a00

x01
❖❖

with faces

a22
d0ξ2 =

a12
f22
♦♦

a11,

x12

❖❖
a22

d1ξ2 =
a02

f22f12
♦♦

a00,

x02x01

❖❖
a11

d2ξ2 =
a01

f11
♦♦

a00,

x01

❖❖

and its 3-simplices ξ3 are the diagrams in G

a33

ξ3 :

a23
f33
♦♦

θ23

a13
θ13

f23
♦♦ a03

f13
♦♦

a22

x23

❖❖

a12

❖❖

x13

f22

♦♦

θ12

a02

x03

❖❖

♦♦
f12

a11

x12

❖❖

a01

x02
❖❖

f11

♦♦

a00

x01

❖❖
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with faces

a33

d0ξ3 =

a23
f33
♦♦

θ23

a13
f23
♦♦

a22

x23

❖❖

a12

x13
❖❖

f22

♦♦

a11,

x12

❖❖

a33

d1ξ3 =

a23
f33
♦♦

θ23◦hθ13

a03
f23f13
♦♦

a22

x23

❖❖

a02

x03
❖❖

f22f12

♦♦

a00,

x02x01

❖❖

a33

d2ξ3 =

a13
f33f23
♦♦

θ13◦vθ12

a03
f13
♦♦

a11

x13x12

❖❖

a01

x03x02
❖❖

f11

♦♦

a00,

x01

❖❖

a22

d3ξ3 =

a12
f22
♦♦

θ12

a02
f12
♦♦

a11

x12

❖❖

a01

x02
❖❖

f11

♦♦

a00.

x01

❖❖

Degeneracies are defined by

a
s0a =

a

a

a11
s0ξ1 =

a01
f11
♦♦

Ihx01

a01

a11

❖❖

a01

x01
❖❖

a00

a11
s1ξ1 =

a11
Ivf11

a01
f11
♦♦

a11 a01♦♦

a00

x01
❖❖

a22

s0ξ2 =

a12
f22
♦♦

θ12

a02
Ihx02

f12
♦♦ a02

a11

x12
❖❖

a01

❖❖

f11

♦♦

Ihx01

a01

x02
❖❖

a00

❖❖

a00

x01
❖❖

a00

a22

s1ξ2 =

a12
f22
♦♦

Ihx12

a12
θ12

a02
f12
♦♦

a11

x12
❖❖

a11

❖❖

Ivf11

a01

x02
❖❖

♦♦

a11 a01
f11

♦♦

a00

x01
❖❖

a22

s2ξ2 =

a22
Ivf22

a12
Ivf12

f22
♦♦ a02

f12
♦♦

a22 a12♦♦

θ12

a02♦♦

a11

x12

❖❖

a01

x02
❖❖

f11

♦♦

a00

x01
❖❖
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Proposition 6.2. Let G be a double groupoid. For any normalized 3-cocycle

k ∈ Z3(ΠG, π2G) representing the cohomology class kG, there is a weak

equivalence of simplicial sets

Γ : hocolim
ΠG

K(π2G, 2; k)
∼−→ ∇NNG.

Proof. By Lemma 4.3 (i), we can assume that k = kG for a certain selection

of representative paths (fρ, bρ, xρ) of the morphisms ρ in ΠG and the boxes

θψ,ρ, as in (3) and (12). The claimed simplicial map Γ, which is completely

defined by its 3-truncation

⊔

β∈NΠG3

π2(G, β3)
3

✴✴
✴✴

d0
✴✴
✴✴

d3

Γ3

✎✎

⊔

β∈NΠG2

π2(G, β2) ✴✴

d0
✴✴

d2

✴✴

s2✇✇③③ ✇✇

s0

⑥⑥

Γ2

✎✎

NΠG1
d0

✴✴

d1

✴✴

s1②②

s0

⑥⑥

Γ1

✎✎

NΠG0

s0
✉✉

Γ0

∇NNG3
✴✴
✴✴

d0
✴✴
✴✴

d3

∇NNG2 ✴✴

d0
✴✴

d2

✴✴

s2①①④④ ①①

s0

⑥⑥

∇NNG1
d0
✴✴

d1

✴✴

s1
③③

s0

⑥⑥

∇NNG0,

s0
✉✉

is given as follows: Γ0 is the identity map on the objects of the double

groupoid G. For any morphism ρ ∈ ΠG(a0, a1),

a1
Γ1(ρ) =

bρ
fρ
♦♦

a0,

xρ
❖❖

If a2
ψ
← a1

ρ
← a0 are any two morphisms in ΠG and σ ∈ π2(G, a2),

a2

Γ2(ψ, ρ; σ) =

bψ
fψ

♦♦

f−1

ψ∗
(σ)+θψ,ρ

bψρ
f−1

ψ
fψρ

♦♦

a1

xψ

❖❖

bρ

xψρx
−1
ρ

❖❖

fρ

♦♦

a0,

xρ
❖❖
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and, for any a3
φ
← a2

ψ
← a1

ρ
← a0 in ΠG and (σ0, σ1, σ2) ∈ π2(G, a3)

3,

a3

Γ3(φ, ψ, ρ; σ0, σ1, σ2) =

bφ
fφ

♦♦

f−1

φ∗
(σ0)+θφ,ψ

bφψ

f−1

φψ∗
(σ1−σ0)

+

θ−h

φ,ψ
◦hθφ,ψρ

f−1

φ
fφψ

♦♦ bφψρ
f−1

φψ
fφψρ

♦♦

a2

xφ

❖❖

bψ

❖❖

fψ

♦♦

f−1

ψ∗
φ−1
∗ (σ0−σ1+σ2)

+
f−1

ψ∗
φ−1
∗ k(φ,ψ,ρ)
+
θψ,ρ

bψρ

xφψρx
−1

ψρ

❖❖

♦♦

a1

xψ

❖❖

bρ

xψρx
−1
ρ

❖❖

fρ

♦♦

a0.

xρ

❖❖

So defined, all the simplicial identities to verify that Γ is actually a sim-

plicial map are easily checked, except perhaps that diΓ3 = Γ2di for i = 1, 2.

For i = 1, the required equality d1Γ3(φ, ψ, ρ, σ0, σ1, σ2) = Γ2(φ, ψρ, σ1)
follows from the equalities

(

f−1φ∗ (σ0)+θφ,ψ
)

◦h
(

f−1φψ∗(σ1 − σ0) + θ−hφ,ψ ◦h θφ,ψρ
)

(7)(8)
= f−1φ∗ (σ0) + f−1φ∗ (σ1 − σ0) + θφ,ψ ◦h θ

−h
φ,ψ ◦h θφ,ψρ

= f−1φ∗ (σ1) + θφ,ψρ.

The case i = 2 is somewhat more complicated. In this case, the required

equality

d2Γ3(φ, ψ, ρ, σ0, σ1, σ2) = Γ2(φψ, ρ, σ2)
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follows from the equalities

(

f−1φψ∗(σ1−σ0)+θ
−h
φ,ψ◦hθφ,ψρ

)

◦v
(

f−1ψ∗ φ
−1
∗ (σ0−σ1+σ2+k(φ, ψ, ρ)+θψ,ρ

)

(9)
= f−1φψ∗(σ1−σ0) + xφψ∗x

−1
ψ∗f

−1
ψ∗

φ−1∗ (σ0−σ1+σ2+k(φ, ψ, ρ))

+ (θ−hφ,ψ ◦h θφ,ψρ) ◦v θψ,ρ
2.4(ii)
= f−1φψ∗(σ1−σ0)+xφψ∗ψ

−1
∗ φ−1∗ (σ0 − σ1 + σ2 + k(φ, ψ, ρ))

+ (θ−hφ,ψ ◦h θφ,ψρ) ◦v θψ,ρ
3.3
= f−1φψ∗(σ1 − σ0) + xφψ∗(φψ)

−1
∗ (σ0 − σ1 + σ2 + k(φ, ψ, ρ))

+ (θ−hφ,ψ ◦h θφ,ψρ) ◦v θψ,ρ
2.4(ii)
= f−1φψ∗(σ1−σ0)+xφψ∗x

−1
φψ∗f

−1
φψ∗(σ0−σ1+σ2+k(φ, ψ, ρ))

+ (θ−hφ,ψ ◦h θφ,ψρ) ◦v θψ,ρ

= f−1φψ∗σ2 + f−1φψ∗k(φ, ψ, ρ) + (θ−hφ,ψ ◦h θφ,ψρ) ◦v θψ,ρ
(14)
= f−1φψ∗σ2 + θφψ,ρ.

That Γ induces an isomorphism on the fundamental groupoids follows

from the observation that homotopies (f, b, x) ≃ (g, c, y) in G between two

paths from an object a0 to an object a1, as in (2), are in bijection with homo-

topies (f, b, x) ≃ (g, c, y) in the simplicial set∇NNG, by the mapping

b
α

c
f−1g
♦♦

7→
b b

yx−1

❖❖

a1 a1
Ivf◦hα

c
g
♦♦

a1 b
f
♦♦

yx−1

❖❖

a0

x

❖❖

Furthermore, for any object a of G, the induced homomorphism by Γ on the

second homotopy groups with base a,

π2
(

hocolim
ΠG

K(π2G, 2; k), a
)

→ π2(∇NNG, a),
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is explicitly given by

a a
σ

a

(ida, ida; σ)
✤ Γ2

✴✴ a a

a

and clearly is an isomorphism.

Since the homotopy groups of hocolim
ΠG

K(π2G, 2; k) and of∇NNG van-

ish in degree 3 and higher, Γ is actually a weak homotopy equivalence.

As a consequence of Theorems 5.1 and 6.1, we get a new proof of the

following fact (cf. [12, Theorem 13] for a more general result).

Corollary 6.3. The mapping G 7→ |G| induces a bijective correspondence

between weak equivalence classes of double groupoids and weak homotopy

classes of 2-types.
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Math. 283, Springer, Berlin, 1972.

[22] J.-L. Loday, Spaces with finitely many nontrivial homotopy groups, J.

Pure Appl. Algebra 24 (1982), 179-202.

[23] K. Mackenzie, Double Lie algebroids and Second-order Geometry, II,

Adv. Math. 154 (2000), 46-75.

[24] I. Moerdijk and J.-A. Svensson, Algebraic classification of equivariant

homotopy 2-types. I. J. Pure Appl. Algebra 89 (1993), 187-216.

[25] T. Porter, n-types of simplicial groups and crossed n-cubes. Topology

32 (1993), 5-24.
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