
STONE DUALITY FOR

TOPOLOGICAL CONVEXITY

SPACES

Toby Kenney

Résumé. Un espace de convexité est un ensemble X équipé d’une famille

choisie de sous-ensembles (appelés les sous-ensembles convexes) fermée par

intersections arbitraires et unions dirigées. On s’intéresse beaucoup aux es-

paces qui ont à la fois la structure d’espace de convexité et la structure d’espace

topologique. Dans cet article, nous étudions la catégorie des espaces de

convexité topologiques et étendons la dualité de Stone entre les coframes

et les espaces topologiques á une adjonction entre la catégorie des espaces

de convexité topologiques et la catégorie des treillis et des homomorphismes

préservant le supremum. Cette adjonction peut etre factorisée à travers la

catégorie des espaces de préconvexité (parfois appelés espaces de fermeture)

Abstract. A convexity space is a set X with a chosen family of subsets

(called convex subsets) that is closed under arbitrary intersections and di-

rected unions. There is a lot of interest in spaces that have both a convexity

space and a topological space structure. In this paper, we study the cate-

gory of topological convexity spaces and extend the Stone duality between

coframes and topological spaces to an adjunction between topological con-

vexity spaces and sup-lattices. We factor this adjunction through the category

of preconvexity spaces (sometimes called closure spaces).
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1. Introduction

Stone duality is a contravariant equivalence of categories between categories

of spaces and categories of lattices. The original Stone duality was between

Stone spaces and Boolean algebras [15]. One of the most widely used exten-

sions of Stone duality is between the categories of sober topological spaces

and spatial coframes (or frames — since this is a 1-categorical duality, they

are the same thing). This duality extends to an idempotent adjunction be-

tween topological spaces and coframes, given by the functors that send a

topological space to its coframe of closed sets, and the functor that sends a

coframe to its space of points.

In this paper, we develop an idempotent adjunction between topologi-

cal convexity spaces and sup-lattices (the category whose objects are com-

plete lattices, and morphisms are functions that preserve arbitrary suprema).

Topological convexity spaces are sets equipped with both a chosen family

of closed sets and a chosen family of convex sets. A canonical example

is a metric space X with the usual metric topology, and convex sets being

sets closed under the betweenness relation given by y is between x and z if

dpx, zq “ dpx, yq ` dpy, zq. Many of the properties of metric spaces extend

to topological convexity spaces. Homomorphisms of topological convexity

spaces are continuous functions for which the inverse image of a convex set

is convex.

Our approach to showing this adjunction goes via two equivalent inter-

mediate categories. The first is the category of preconvexity spaces. A pre-

convexity space is a pair pX,Pq where P is a collection of subsets of X that

is closed under arbitrary intersections and empty unions. We will refer to

sets P P P as preconvex subsets of X . A homomorphism of preconvexity

spaces f : pX,Pq // pX 1,P 1q is a function f : X //X 1 such that for

any P P P 1, we have f´1pP q P P . This category of preconvexity spaces

was also studied by [4], and shown to be closed under arbitrary limits and

colimits.

The second intermediate category that is equivalent to the category of T0-

preconvexity spaces, is a full subcategory of Distributive Partial Sup lattices.

This category was studied in [11]. Objects of this category are complete lat-

tices with a chosen family of suprema which distribute over arbitrary infima.

Morphisms are functions that preserve all infima and the chosen suprema.
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The motivation for partial sup lattices was an adjunction between partial sup

lattices and preconvexity spaces, which is shown in [11].

Before we begin presenting the extension of Stone duality to topologi-

cal convexity spaces, Section 2 provides a review of the main ingredients

needed. While these reviews do not contain substantial new results, they

are presented with a different focus from much of the literature, so we hope

that the reviews offer a new perspective on these well-studied subjects. We

first recap the basics of topological convexity spaces. We then review Stone

duality for topological spaces. We then review the category of distributive

partial sup-lattices. This category was defined in [11], with the motivation

of modelling various types of preconvexity spaces. However, the definition

presented in this review is changed from the original definition in that paper

to make it cleaner in a categorical sense.

2. Preliminaries

2.1 Topological Convexity Spaces

Definition 2.1. A topological convexity space is a triple pX,F , Cq, where

X is a set; F is a collection of subsets of X that is closed under finite

unions and arbitrary intersections, i.e. the collection of closed sets for some

topology on X; and C is a collection of subsets of X that is closed under

directed unions and arbitrary intersections. Note that these include empty

unions and intersections, so X and H are in both F and C. Sets in F will be

called closed subsets of X and sets in C will be called convex subsets of X .

The motivation here is that pX,Fq is a topological space, while pX, Cq is

an abstract convexity space. Abstract convexity spaces are a generalisation

of convex subsets of standard Euclidean spaces. Abstract convexity spaces

were defined in [10], though in that paper, the definition did not require C to

be closed under nonempty directed unions. Closure under directed unions

was an additional property, called “domain finiteness”. Later authors incor-

porated closure under directed unions into the definition of an abstract con-

vexity space, and used the term preconvexity space for a set with a chosen

collection of subsets that is closed under arbitrary intersections and contains

the empty set [4].
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While the definition of an abstract convexity space captures many of the

important properties of convex sets in geometry, it also allows a large number

of interesting examples far beyond the original examples from classical ge-

ometry, including many examples from combinatorics and algebra. The re-

sulting category of convexity spaces has many natural closure properties [4].

The definition above does not include any interaction between the topo-

logical and convexity structures on X . While it will be convenient to deal

with such general spaces, it is also useful to include compatibility axioms be-

tween the convexity and topological structures. The following axioms from

[16] are often used to ensure suitable compatibility between topology and

convexity structure.

(i) All convex sets are connected.

(ii) All polytopes (convex closures of finite sets) are compact.

(iii) The hull operation is uniformly continuous relative to a metric which

generates the topology.

We will modify the third condition to not require the topology to come

from a metric space, giving the weaker condition that the convex closure

operation preserves compact sets.

Definition 2.2. We will call a topological convexity space compatible if it

satisfies the two conditions

(i) All convex sets are connected.

(ii) The convex closure of a (topologically) closed compact set is (topolog-

ically) closed and compact.

We will call a topological convexity space precompatible if it satisfies the

two conditions

(i) All convex sets are connected.

(ii’) The convex closure of a finite set is (topologically) compact.
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At this point, we will introduce some notation for describing topological

convexity spaces. For any subset A Ď X , we will write rAs for the intersec-

tion of all convex sets containing A. To simplify notation, when A is finite,

we will write ra1, . . . , ans instead of rta1, . . . , anus.

Examples 2.3.

1. If pX, dq is a metric space, then setting F to be the closed sets for the

metric topology, i.e.

F “

#
A Ď X

ˇ̌
ˇ̌
ˇp@x P Xq

˜ľ

yPA

dpx, yq “ 0 ñ x P A

¸+

and

C “ tA Ď X|p@x, y, z P Xq ppx, z P A ^ dpx, zq “ dpx, yq ` dpy, zqq ñ y P Aqu

we have that pX,F , Cq is a topological convexity space. To ensure

that convex sets are connected, we will often assume that geodesics

exist — that is, for any r ă dpx, yq, there is some z P rx, ys such

that dpx, zq “ r and dpy, zq “ dpx, yq ´ r, to ensure that convex

sets are connected. We will usually also require that open balls are

convex, and that the set tz P X|dpx, yq “ dpx, zq ` dpz, xqu is convex

(and therefore the interval rx, ys). For common examples where these

conditions hold, the convex closure of a compact set is compact, so that

the space is compatible. However, it is not easy to prove compatibility

of these spaces under simple conditions, or to find examples of metric

spaces where this structure is not compatible.

2. Let L be a complete lattice. We define a topological convexity space

structure by

F “

#č

iPI

Fi

ˇ̌
ˇ̌
ˇp@i P IqpDx1, . . . , xni

P XqpFi “ Ótx1, . . . , xni
uq

+
YtHu

and

C “ tI Ď X|p@x1, x2 P Iq pp@y ď x1qpy P Iq ^ px1 _ x2 P Iqqu
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That is, F is the set of arbitrary intersections of finitely generated

downsets, plus the emptyset (which are the closed sets for the weak

topology [9]) and C is the set of (possibly empty) ideals of L. This

topological convexity space is precompatible. To prove connected-

ness of convex sets, we want to show that an ideal cannot be covered

by two disjoint weak-closed sets. Suppose U and V are disjoint weak-

closed sets that cover I . Let a P I XU and b P I X V . Then a_ b P I ,

and if a _ b P U , then b P U contradicting disjointness of U and V .

Similarly if a _ b P V then a P V . This contradicts disjointness of U

and V . The ideal generated by a finite set of elements in L is clearly

principal, and therefore closed and compact. L is not in general com-

patible, since, for example, if L is the powerset of N, then singletons in

L are weak-closed, since for any set X 1 Ď X containing two elements

a and b, the downset Óttauc, tbucu is finitely generated, and contains

all singletons, but does not contain X 1.

3. Let n P Z
` be a positive integer. Let Sn be the group of permutations

on n elements. Let F consist of all subsets of Sn, and for any partial

order ĺ on n, let

Pĺ “ tσ P Sn|p@i, j P t1, . . . , nuqpi ĺ j ñ σpiq ď σpjqqu

where ď is the usual total order on Z
`. That is Pĺ is the set of permu-

tations σ such that ĺ is contained in σ´1pďq. let

C “ tPĺ| ĺ is a partial order on t1, . . . , nuu Y tHu

Since Sn is finite, to prove that pSn,F , Cq is a convexity space, we just

need to show that C is closed under intersection. This is straightfor-

ward. Since partial orders are closed under intersection, the poset of

partial orders on t1, . . . , nu, with a top element adjoined, is a lattice.

Thus the intersection Pĺ XPĎ “ Pĺ_Ď, so C is closed under intersec-

tion. This is a metric topology, with the metric given by dpσ, τq is the

Cayley distance from σ to τ , under the Coxeter generators. That is,

dpσ, τq is the length of the shortest word equal to τσ´1 in the genera-

tors tτi|i “ 1, . . . , n ´ 1u, where

τipjq “

$
&
%

i ` 1 if j “ i

i if j “ i ` 1

j otherwise
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is the transposition of i and i ` 1.

4. If G is a topological group, or more generally a universal algebra

equipped with a suitable topology, then we can define a topological

convexity space by making subgroups (or more generally subalgebras)

and the empty set convex, and keeping the closed sets from the topol-

ogy.

Having defined the objects in the category of topological convexity spaces,

we need to define the morphisms.

Definition 2.4. A homomorphism f : pX,F , Cq // pX 1,F 1, C 1q between

topological convexity spaces is a function f : X //X 1 such that for every

F P F 1, f´1pF q P F and for every C P C 1, f´1pCq P C.

The condition that f´1pF q P F is the condition that f is continuous

as a function between topological spaces. The condition that f´1pCq P C
is called monotone by [4], by analogy with the example of endofunctions

of the real numbers. This was in the context of convexity spaces without

topological structure. Dawson [4] uses the term Align for the category of

convexity spaces and monotone homomorphisms, and Convex for the cate-

gory of convexity spaces and functions whose forward image preserves con-

vex sets. However, this terminology has not been widely used, and later

authors have all considered the monotone homomorphisms as the natural

homomorphisms of abstract convexity spaces. In the case of topological

convexity spaces, the monotone condition is an even more natural choice

because it aligns well with the continuity condition and leads to the Stone

duality extension that we show in this paper.

Examples 2.5.

1. For the topological convexity space coming from a metric space, such

that intervals are of the form rx, ys “ tz P X|dpx, zq ` dpy, zq “
dpx, yqu, a homomorphism is a function f : X //Y such that when-

ever dpx, zq “ dpx, yq`dpy, zq, we have dpfpxq, fpzqq “ dpfpxq, fpyqq`
dpfpyq, fpzqq. That is, f embeds geodesics from X into the geodesics

in Y . To see that homomorphisms have this property, we have that

f´1prfpxq, fpzqsq is convex, and contains x and z, so if dpx, zq “
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dpx, yq ` dpy, zq, then f´1prfpxq, fpzqsq must contain y. This means

fpyq P rfpxq, fpzqs “ tv|dpfpxq, fpzqq “ dpfpxq, vq ` dpv, fpzqqu.

Conversely, if f has the given property, then for any convex A Ď Y , if

x, z P f´1pAq, then for any y such that dpx, zq “ dpx, yq `dpy, zq, we

have dpfpxq, fpzqq “ dpfpxq, fpyqq ` dpfpyq, fpzqq, so by convexity,

fpyq P A, making y P f´1pAq, so f´1pAq is convex.

2. If L and M are complete lattices with the weak topology and con-

vex sets are ideals, then topological convexity space homomorphisms

from L to M are exactly sup-homomorphisms. To see this, let f :

L //M be a sup-homomorphism. Let I Ď M be an ideal. Since f

is order-preserving, f´1pIq is clearly a downset, and for a, b P f´1pIq,

fpa_bq “ fpaq_fpbq P I . Since inverse image preserves intersection,

it is sufficient to show that the inverse image of a finitely-generated

downset F Ď M is weak-closed. Let F “ Ótm1, . . . ,mnu. For

i “ 1, . . . , n, let li “ f˚pmiq, where f˚ is the order-theoretic right ad-

joint of f (which exists because f is a sup-homomorphism). We have

fpxq ď mi, if and only if x ď li. Thus, f´1pF q “ Ótl1, . . . , lnu. Con-

versely suppose f : L //M is a topological convexity space homo-

morphism. Weak-closed ideals are easily seen to be principal ideals,

since if I is an ideal, and I Ď Ótx1, . . . , xnu, then if there are elements

yi P I with yi ę xi, then y1_¨ ¨ ¨_yn cannot be in Ótx1, . . . , xnu, which

is a contradiction, so we must have I Ď Ó xi for some i P t1, . . . , nu.

Thus the inverse image of a principal ideal is another principal ideal.

In particular, f´1pÓ
Ž

tfpaq|a P Au is a principal ideal containing A,

so it contains
Ž

A, and thus fp
Ž

Aq ď
Ž

tfpaq|a P Au as required.

For the partial order convexity on Sn from Example 2.3.3, describing the

topological convexity space morphisms is more challenging. We start by

looking at half-spaces (convex sets with convex complements). Half-spaces

of Sn are of the form Cij “ Pĺ, where ĺ is the partial order where the only

non-trivial comparison is i ĺ j. That is, Cij “ tσ P Sn|σpiq ď σpjqu. We

first consider automorphisms:

Lemma 2.6. If i, j, k and l are distinct, then the only half-spaces that contain

Cij X Ckl are Cij and Ckl.

Proof. For any half-space Cst R tCij, Cklu, we need to find some σ P Cij X
Ckl with σ R Cst. Suppose s “ j and t ‰ i, then we can find a permutation
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σ such that σpiq ă σpjq ă σptq ă σpkq ă σplq. This σ is in Cij X Ckl, but

not in Cst as required. Similar permutations work for all combinations.

Lemma 2.7. An automorphism f : pSn, P pSnq, Cq // pSn, P pSnq, Cq is of

the form fpσq “ θστ for some τ P Sn and some θ P te, ρu where e is the

identity permutation and ρ is the permutation which reverses the order of all

elements.

Proof. It is easy to see that for τ P Sn, fτ given by fτ pσq “ στ is an au-

tomorphism of pSn, P pSnq, Cq. Now we consider the stabiliser of the iden-

tity element. Since tCipi`1q|i “ 1, . . . , pn ´ 1qu is the only set of n ´ 1

half-spaces whose intersection contains only the identity permutation, any

automorphism which fixes the identity permutation must fix this set. Fur-

thermore, since Cpi´1qi X Cipi`1q Ď Cpi´1qpi`1q, it follows that

f´1pCpi´1qiq X f´1pCipi`1qq Ď f´1pCpi´1qpi`1qq

Since f is an automorphism, f´1pCpi´1qpi`1qq cannot be either f´1pCpi´1qiq
or f´1pCipi`1qq. By Lemma 2.6, it follows that f´1pCpi´1qiq and f´1pCipi`1qq
are adjacent half-spaces. Since the set of half-spaces

tCipi`1q|i “ 1, . . . , pn ´ 1qu

is permuted by f´1, the only possible permutations are the identity and the

reversal Cipi`1q ÞÑ Cpn´iqpn`1´iq. This reversal sends a permutation σ to ρσρ.

We want to show that these are the only elements in the stabiliser of the

identity. By applying ρσρ if necessary, we can change an element in the

stabiliser of e to one such that f´1 fixes every Cipi`1q. Now Cipi`2q is the

unique half-space that contains Cipi`1q XCpi`1qpi`2q that is not equal to either

Cipi`1q or Cpi`1qpi`2q, so it is also fixed by f´1. By induction, we can show

that every Cij is fixed by f´1, and thus f is the identity.

Proposition 2.8. f : Sn //Sm is a surjective topological convexity space

homomorphism, if and only if there is an injective function g : m //n,

such that f is either given by

1. fpτqpiq “ |tj P t1, . . . ,mu|τpgpjqq ď τpgpiqqu|. That is, fpτq is the

automorphism part of the automorphism—order-preserving-inclusion

factorisation of τg.
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n
τ // n

m
OO

g

OO

fpτq
// m
OO
i

OO

or

2. fpτqpiq “ |tj P t1, . . . ,mu|τpgpjqq ě τpgpiqqu|. That is, fpτq is the

automorphism part of the automorphism-order-preserving-inclusion

factorisation of ρτg, where ρ is the order-reversing permutation on

n.

n
τ // n

ρ
// n

m
OO

g

OO

fpτq
//m
OO
i

OO

Proof. Firstly, we show that for an injective function g : m //n, both the

functions

αgpσqpiq “ |tj P t1, . . . ,mu|σpgpjqq ď σpgpiqqu|

and

δgpσqpiq “ |tj P t1, . . . ,mu|σpgpjqq ě σpgpiqqu|

are surjective homomorphisms. We see that for any i ‰ j P t1, . . . ,mu,

αg
´1pCijq “ tσ P Sn|αgpσqpiq ă αgpσqpjqu “ tσ P Sn|σpgpiqq ă σpgpjqqu “ Cgpiqgpjq

and

δg
´1pCijq “ tσ P Sn|δgpσqpiq ă δgpσqpjqu “ tσ P Sn|σpgpiqq ą σpgpjqqu “ Cgpjqgpiq

so αg and δg are homomorphisms. For surjectivity, let φ P Sm. We need to

show that φ “ αgpτq for some τ P Sn. Given the injections m //
g

//n and

m
φ

//m
i //n for any injective order-preserving m // i //n, n moo

g
oo //

iφ
//n

is a partial permutation of n, so it extends to a full permutation τ with

αgpτq “ φ. Similarly, we have δgpρτq “ αgpτq “ φ, so αg and δg are

both surjective.
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Conversely, let f : Sn //Sm be a surjective homomorphism. Since

teu is convex, where e is the identity homomorphism, f´1pteuq is convex.

Furthermore, f´1pteuq “
Ş

iăj f
´1pCijq. Since f´1 preserves convex sets,

for every i ‰ j P t1, . . . ,mu f´1pCijq “ Cst for some s, t P t1, . . . , nu.

Furthermore, f´1pCij X Cjkq “ Cst X Ctu. Thus, we have f´1pteuq “
Ci1i2...im “ Ci1i2 X Ci2i3 ¨ ¨ ¨ X Cim´1im . If f´1pC12q “ Ci1i2 , then we can

define gpjq “ ij , and we have that f “ αg. If on the other hand f´1pC12q “
Cim´1im , then we let gpjq “ im`1´j and we have f “ δg.

Describing general homomorphisms between these topological convex-

ity spaces is more difficult, and outside the scope of this paper.

3. Preconvexity Spaces and the Adjunction with Topologi-

cal Convexity Spaces

Definition 3.1. A preconvexity space (sometimes called a closure space) is

a pair pX,Pq, where X is a set and P is a collection of subsets of X that is

closed under arbitrary intersections and contains the empty set (since X is

an empty intersection, we also have X P P).

This was [10]’s original definition of a convexity space. However, later

authors decided that closure under directed unions should be a required prop-

erty for a convexity space, and [4] introduced the term preconvexity space

for these spaces that do not require closure under directed unions.

Definition 3.2. A homomorphism pX,Pq
f

// pX 1,P 1q of preconvexity spaces

is a function X
f

//X 1 such that for any preconvex set P P P 1, the inverse

image f´1pP q P P .

Examples 3.3.

If pX,F , Cq is a topological convexity space, then pX,F X Cq is a precon-

vexity space. The underlying function of any topological convexity space

homomorphism pX,F , Cq
f

// pX 1,F 1, C 1q is a preconvexity homomorph-

ism. Conversely, if C 1 consists of directed unions from F 1 X C 1, and F 1
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consists of intersections of finite unions from F 1 X C 1, then any preconvex-

ity homomorphism pX,F XCq
g

// pX 1,F 1 XC 1q is a topological convexity

homomorphism.

Example 3.3 gives a functor ConvexTop CC //Preconvex that sends ev-

ery topological convexity space to the preconvexity space of closed convex

sets. The action on morphisms simply reinterprets the topological convexity

homomorphism as a preconvexity homomorphism.

This closed-convex functor has a right adjoint, IS, which sends the pre-

convexity space pX,Pq to pX,P , rPq where rP is the closure of P under

directed unions, and P is the closure of P under finite unions and arbitrary

intersections. We will show that this defines a topological convexity space

and is a right adjoint.

Lemma 3.4. For any preconvexity space pX,Pq, the set rP is the collection

t
Ť

D|D Ď P directedu.

Proof. Let Q “ t
Ť

D|D Ď P directedu. We need to show that Q is closed

under directed unions. Let D Ď Q be directed. For each D P D, there

is a directed DD Ď P such that D “
Ť

DD. Let rD be the closure ofŤ
tDD|D P Du under finite joins in P (which exist because P is closed

under arbitrary intersections). By definition, rD is directed. We will show

that
Ť

D “
Ť rD. Suppose x P

Ť
D. Then there is some D P D with x P D,

and since D “
Ť

DD, there is some P P DD Ď rD with x P P , so x P
Ť rD.

Conversely, if x P
Ť rD, then there is some P1, . . . , Pn P

Ť
tDD|D P Du

such that x P P1 _ ¨ ¨ ¨ _ Pn. Now let each Pi P DDi
for some Di P D.

This means that Pi Ď Di. Since D is directed, there is an element of D that

contains D1, . . . , Dn, and which must therefore contain P1 _ ¨ ¨ ¨ _ Pn.

Lemma 3.5. For any preconvexity space pX,Pq, the set rP is closed under

directed unions and arbitrary intersections.

Proof. By definition, rP is closed under directed unions, so we just need to

show that it is closed under intersections. Let tPi|i P Iu be a family of

elements of rP . By definition, for every i P I , there is a directed Di Ď P
with Pi “

Ť
Di. W.l.o.g. assume every Di is down-closed in P . We will
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show that č

iPI

Pi “
ď

f :I
//
P

p@iPIqfpiqPDi

č

iPI

fpiq (1)

That is, the intersection of the family tPi|i P Iu is the union over all choice

functions f , of the intersection of tfpiq|i P Iu. Every fpiq P P , so this

intersection
Ş

iPI fpiq is also in P , and the set of choice functions is di-

rected, since every Di is directed and down-closed, so for choice functions

f, g : I //P the join pf _ gqpiq “ fpiq _ gpiq is also a choice function.

Equation (1) therefore shows that
Ş

iPI Pi P rP .

To prove Equation (1), first let x P
Ş

iPI Pi. Since p@iqpx P Piq, and

Pi “
Ť

Di, there is some Di,x P Di with x P Di,x. Thus, we can take the

choice function fxpiq “ Di,x, and deduce x P
Ş

iPI fxpiq. Conversely, let

x P
ď

f :I
//
P

p@iPIqfpiqPDi

č

iPI

fpiq

There must be some choice function f with x P
Ş

iPI fpiq. Since fpiq P Di,

it follows that fpiq Ď Pi, so x P Pi for every i P I . Thus x P
Ş

iPI Pi.

Remark 3.6. The proof of Lemma 3.5 does not actually require the axiom of

choice, because there are canonical choices for all choice functions needed

— for each Pi, we need to choose a directed family Di with Pi “
Ť

Di. We

can let Di “ tP P P |P Ď Piu, and since every Di is a downset, we can set

Di,x “ txu for every i P I , where txu is the convex-closed closure of txu.

Lemma 3.7. Every F P P is of the form
Ş

F , where

F Ď tP1 Y ¨ ¨ ¨ Y Pn|P1, . . . , Pn P Pu

Proof. Let pP “ tP1 Y ¨ ¨ ¨ Y Pn|P1, . . . , Pn P Pu be the set of finite unions

from P . We need to show that the set
!Ş

F |F Ď pP
)

is closed under finite

unions. (By definition, it is closed under arbitrary intersections.) Let F1 “Ş
F1 and F2 “

Ş
F2 for F1,F2 Ď pP . Let

F12 “ tP1 Y P2|P1 P F1, P2 P F2u
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We will show that F1YF2 “
Ş

F12. Clearly, for every P1 P F1, and P2 P F2,

we have F1 Ď P1 and F2 Ď P2, so F1 Y F2 Ď P1 Y P2. Conversely, suppose

x R F1 YF2. Then there is some P1 P F1 and some P2 P F2 with x R P1 and

x R P2. It follows that x R P1 Y P2 P F12, so x R
Ş

F12.

Lemma 3.8.

1. For a set X , the identity function on X is a preconvexity homomorph-

ism pX,Pq // pX,P 1q if and only if P 1 Ď P .

2. For a set X , the identity function on X is a topological convexity

homomorphism pX,F , Cq // pX,F 1, C 1q if and only if F 1 Ď F and

C 1 Ď C.

Proof. This is immediate from the definition.

Proposition 3.9. The assignment IS that sends the preconvexity space pX,Pq

to the topological convexity space pX,P , rPq and the preconvexity homo-

morphism pX,Pq
f

// pX 1,P 1q to f considered as a topological convex-

ity homomorphism, is a functor, and is right adjoint to the functor CC :

ConvexTop //Preconvex.

Proof. Because the forgetful functor to Set sends IS to the identity functor,

the functoriality of IS is automatic provided it is well-defined. That is, if any

preconvexity homomorphism pX,Pq
f

// pX 1,P 1q is a topological convex-

ity homomorphism from pX,P , rPq to pX 1,P 1,ĂP 1q. For the adjunction, we

need to demonstrate that for any topological convexity space pX,F , Cq and

any preconvexity space pX 1,P 1q, a function f : X //X 1 is a topological

convexity space homomorphism pX,F , Cq
f

// pX 1,P 1,ĂP 1q if and only if it

is a preconvexity homomorphism pX,F X Cq
f

// pX 1,P 1q. The “only if”

part is obvious.

Suppose pX,FXCq
f

// pX 1,P 1q is a preconvexity homomorphism. Let

F P P 1. We want to show that f´1pF q P F . Now F P P 1 means F “
Ş

U

where U Ď xP 1. Now if P1 Y ¨ ¨ ¨ Y Pn P xP 1, then f´1pP1 Y ¨ ¨ ¨ Y Pnq “
f´1pP1q Y ¨ ¨ ¨ Y f´1pPnq is a finite union of sets from F X C, so since F is

closed under finite unions, f´1pP1 Y ¨ ¨ ¨ Y Pnq P F . Therefore f´1pF q “
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Ş
tf´1U |U P Uu and tf´1U |U P Uu Ď F , so as F is closed under arbitrary

intersections, f´1pF q P F . Similarly, let C “
Ť

D, where D Ď P 1 is a

directed downset. For every D P D, we have f´1pDq P C, and for any

D1, D2 P D, there is some D12 P D with D1 Ď D12 and D2 Ď D12. It

follows that f´1pD1q Ď f´1pD12q and f´1pD2q Ď f´1pD12q. Therefore,

tf´1pDq|D P Du is directed. Now

f´1pCq “ f´1p
ď

Dq “
ď

tf´1pDq|D P Du

Since tf´1pDq|D P Du Ď C, and C is closed under directed unions, it fol-

lows that f´1pCq P C. Thus f is a homomorphism of topological convexity

spaces.

Well-definedness of the functor IS also follows from the adjunction, be-

cause P Ď P X rP , so the identity function on X is always a preconvexity

homomorphism pX,P X rPq i // pX,Pq. Thus the composite

pX,P X rPq i // pX,Pq
f

// pX 1,P 1q

is a preconvexity homomorphism, so by the adjunction, it is a topological

convexity space homomorphism pX,P , rPq
f

// pX 1,P 1,ĂP 1q

Corollary 3.10. The adjunction CC % IS is idempotent.

Proof. The counit and unit of the adjunction are both the identity function

viewed as a homomorphism in the relevant category. The triangle identities

for the adjunction therefore give an isomorphism of spaces, showing that the

adjunction is idempotent.

For an idempotent adjunction, a natural question is what are the fixed

points?

Proposition 3.11. A topological convexity space X “ pX,F , Cq satisfies

IS ˝ CCpXq “ X if and only if X satisfies the conditions:

1. Every convex set is a directed union of closed convex sets.

2. For every V P F and any x P XzV , there are sets C1, . . . , Cn P F XC
such that V Ď C1 Y . . . Y Cn and x R C1 Y . . . Y Cn.
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Proof. The counit of the adjunction is the identity function on the underlying

sets. Thus pF X Cq Ď F and ČpF X Cq Ď C. Let A P C be convex in X . By

Condition 1, A is a directed union of sets in F X C. By definition, this is in
ČpF X Cq.

Now let V P F . For any W “ C1 Y ¨ ¨ ¨ Y Cn with Ci P F X C,

W P pF X Cq by definition. Thus, by Condition 2, for every x P XzV , there

is some W P pF X Cq with V Ď W and x R W . Now, clearly V is the

intersection of all these W for all x R V . Since pF X Cq is closed under

arbitrary intersections, this implies V P pF X Cq.

Conversely, if X is a fixed point of the adjunction, i.e. IS˝CCpXq “ X ,

then C “ ČpF X Cq, which is exactly Condition 1. Also F “ pF X Cq,

meaning that for every V P F , we have V “
Ş

U where U is a family of

finite unions of sets from F X C. Since V “
Ş

U , for any x R V , there

is some U P U with x R U . By definition, U “ C1 Y ¨ ¨ ¨ Y Cn for some

C1, . . . , Cn P F X C, which is Condition 2.

We will call a topological convexity space teetotal if the conditions of

Proposition 3.11 hold. The teetotal conditions are closely related to the com-

patible conditions from Definition 2.2. However, there are compatible spaces

which are not teetotal.

Example 3.12. l2 is the vector-space of square-summable sequences of real

numbers, with the l2 norm. Since l2 is a metric space, it is easy to check that

it is a compatible topological convexity space.

Let F be the unit sphere, which is a closed set, and let x “ 0. In order

for l2 to be teetotal, we need to find a finite family of closed convex subsets

C1, . . . , Cn such that F Ď C1 Y ¨ ¨ ¨ Y Cn and x R C1 Y ¨ ¨ ¨ Y Cn. For closed

convex Ci and x R Ci, since Ci is closed, there is an open ball containing x

disjoint from Ci. Let d “ suptr P R|Bpx, rq X Ci “ Hu be the distance

from x to Ci. Since Bpx, dq is the directed union of tBpx, rq|r ă du, it

follows that Bpx, dq X Ci “ H.

We first show that if C is a closed convex set that does not contain 0,

then there is a unique y P C that minimises ‖y‖. If there is no y P C that

minimises ‖y‖, then there must be a sequence a1, a2, . . . P C such that ‖ai‖
is strictly decreasing and

lim
nÑ8

‖an‖ “ inf
yPC

‖y‖
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Since ra1, . . . , ans is compact for every n, there is a point bn P ra1, . . . , ans
that minimises ‖b‖. In particular, this means that for any i ă n and any

0 ă ǫ ă 1, ‖bn ` ǫpbi ´ bnq‖ ě ‖bn‖. Squaring both sides gives

2ǫxbi, bny ´ 2ǫxbn, bny ` ǫ2xbi ´ bn, bi ´ bny ą 0

Taking the limit as ǫ Ñ 0 gives xbi, bny ą xbn, bny. Thus

‖bi ´ bn‖
2 “ ‖bi‖

2 ` ‖bn‖
2 ´ 2xbi, bny

ď ‖bi‖
2 ´ ‖bn‖

2

Since ‖bn‖
2 is a decreasing sequence, bounded below by 0, it converges to

some limit r. Thus ‖bi´bn‖
2 ď ‖bi‖

2´r for any i ă n. Thus bn is a Cauchy

sequence, so it converges to some limit b8. Now since C is closed, b8 P C,

and

‖b8‖ “ lim
nÑ8

‖bn‖ “ inf
yPC

‖y‖

Thus b8 is a nearest point in C to 0. If y is another point with minimal

norm, then y`b8

2
must have smaller norm. Thus b8 is the unique point with

smallest norm.

Now for any y P C, since C is convex, we have that ‖b8 ` ǫpy ´ b8q‖ ą
‖b8‖, and by the above argument, xy, b8y ě xb8, b8y. Thus C Ď tx P
l2|xx, b8y ą 1

2
‖b8‖

2u. That is, every closed convex set is contained in an

open half-space that does not contain x “ 0.

We can therefore find half-spaces H1, . . . , Hn with x R Hi and Ci Ď Hi.

Thus, we may assume that F Ď H1 Y ¨ ¨ ¨ Y Hn. Half-spaces that do not

contain the origin are sets of the form Hw,a “ tv P l2|xv, wy ą au for some

w P l2 and a P R
`. Given a finite family H1, . . . , Hn “ Hw1,a1 , . . . , Hwn,an ,

we can find a unit vector w that is orthogonal to all of w1, . . . , wn. This

means that w R Hi for all i, and w P F , contradicting the assumption that

F Ď H1 Y ¨ ¨ ¨ Y Hn. Therefore, l2 does not satisfy the teetotal axioms.

The teetotal interior IS ˝ CCpl2q has the same convex sets, but closed

sets are intersections of finite unions of closed half-spaces. We can check

that this is the product topology on l2 as a real vector space.

Example 3.13. Let pX, dq be a metric space, where X “
Ť

nPNrnsn is the

set of finite lists with entries bounded by list length. The distance is given

by dpu, vq “ lpuq ` lpvq ´ lpu X vq, where lpuq is the length of the list u
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and u X v is the longest list which is an initial sublist of both u and v. The

induced topology is clearly discrete. The complement of the empty list is not

contained in a finite union of convex subsets that does not contain the empty

list. In particular, a convex subset of X that does not contain H must consist

of lists that all start with the same first element. Since there are infinitely

many possible first elements, a finite collection of convex sets that do not

contain the empty list cannot cover XzH.

The space pX, dq is a metric space and every closed ball is compact.

However, it is not a fixed point of the adjunction between ConvexTop and

Preconvex.

For a (pre)compatible topological space to be teetotal, an additional prop-

erty is needed.

Proposition 3.14. If pX,F , Cq is a precompatible topological convexity space

with the following properties:

• There is a basis of open sets that are convex, whose closure is convex

and compact.

• pX,Fq is Hausdorff.

• If A is closed convex and x R A, then there is a closed convex set H

such that Hc is convex, with A Ď H and x R H . (This property, with-

out the topological constraints, is often used in the literature, where it

is called the Kakutani condition.)

then pX,F , Cq is fixed by the adjunction.

Proof. We need to show that for any closed V P F , and any x R V , there is

a finite set of closed convex sets whose union covers V but does not contain

x. Let U be an open subset of V c, containing x such that U is convex and

U is convex and compact. Let A “ UzU . For any a P A, by the Hausdorff

property, we can find an open Ua that contains a, whose closure does not

contain x. Since convex open sets with convex closure form a basis of open

sets, we can find a convex open U 1
a with convex closure that does not contain

x. Since A is compact, it is covered by a finite subset U 1
a1

Y ¨ ¨ ¨ Y U 1
an

. Now

each U 1
ai

is contained in a closed convex Hai which does not contain x, such

that Hc
ai

is also convex.
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For any y P V , since rx, ys is connected (by compatibility), it cannot be

the union prx, ysXUqY
`
rx, ys X U

c˘
, so rx, ysXA ‰ H. Let z P rx, ysXA.

Since Hai cover A, we have z P Hai for some i. Now if y P Hai
c, then

since Hai
c is convex and contains x, it follows that z P Hai

c contradicting

z P Hai . Thus, we must have y P Hai . Since y P V is arbitrary, we have that

V Ď Ha1 Y ¨ ¨ ¨ Y Han as required.

We also need to show that every convex set is a directed union of closed

convex sets. Let C P C be a convex set. Let D “ trF s|F Ď C, F finiteu be

the collection of finitely generated convex subsets of C. Since finite sets are

closed under binary unions, D is directed. Since the convex closure of any

finite set is closed, it follows that C is a directed union of closed convex sets

as required.

For a metric space, these conditions can be simplified to give more natu-

ral conditions.

Lemma 3.15. If X is a topological convexity space where intervals are

closed, satisfying the Kakutani property that every pair of disjoint closed

convex sets are separated by a closed half-space, then for any x, s, t, p, q, r P
X with s P rx, ps, t P rx, qs and r P rp, qs, we have rx, rs X rs, ts ‰ H.

Proof. If rx, rs X rs, ts “ H, then rx, rs and rs, ts are disjoint closed convex

sets, so by the Kakutani propery, there is a closed half-space H such that

rx, rs Ď H and rs, ts Ď Hc. Now if p P H , then since x P H and H is

convex, we get s P H , contradicting rs, ts Ď Hc. This is a contradiction, so

we must have p P Hc. A similar argument shows that q P Hc. However,

since Hc is convex, it follows that r P Hc, contradicting rx, rs Ď H . This

contradiction disproves rx, rs X rs, ts “ H, so rx, rs X rs, ts ‰ H

Lemma 3.16. If pX, dq is a metric space, such that every open ball is convex,

every pair of disjoint closed convex sets are separated by a closed half-space

(a closed convex set with convex complement), and every interval ra, bs is

isomorphic (as a topological convexity space) to the real interval r0, 1s then

for any convex compact A Ď X and any x P X , we have

rx,As “
ď

trx, ys|y P Au

Proof. We need to show that
Ť

trx, ys|y P Au is closed under the between-

ness relation. Let s, t P
Ť

trx, ys|y P Au, and let z P rs, ts. Let s P rx, ps
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and t P rx, qs for p, q P A. We will show that z P rx, rs for some r P rp, qs.
Since rs, ts – r0, 1s, we have that rs, ts “ rs, zs Y rz, ts. For r P rp, qs, if

rx, rs X rs, zs ‰ H and rx, rs X rz, ts ‰ H, then clearly z P rx, rs. Thus if

p@r P rp, qsqpz R rx, rsq, then

p@r P rp, qsqpprx, rs X rs, zs “ Hq _ prx, rs X rz, ts “ Hqq

so

rp, qs “ tr P rp, qs|rx, rs X rs, zs “ Hu Y tr P rp, qs|rx, rs X rz, ts “ Hu

and this union is disjoint by Lemma 3.15. By connectedness of rp, qs, we just

need to show that tr P X|rx, rsXrs, zs “ Hu and tr P X|rx, rsXrz, ts “ Hu
are open to reach a contradiction, which would prove z P rx, rs for some

r P rp, qs. Let U “ tr P X|rx, rs X rs, zs “ Hu, and let v P U . We want to

show that there is some ǫ such that Bpv, ǫq Ď U . Now rs, zs X rx, vs “ H,

which means p@w P rs, zsqpdpx, wq ` dpw, vq ‰ dpx, vqq. Since rs, zs is

compact, the function fpwq “ dpx, wq ` dpw, vq ´ dpx, vq is bounded away

from zero on rs, zs. Let δ be a lower bound. Now if v1 P B
`
v, δ

2

˘
, then for

any w P rs, zs, we have

dpx, wq ` dpw, v1q ě dpx, wq ` dpw, vq ´ dpv, v1q

ą dpx, vq ` δ ´
δ

2

ě dpx, v1q ´ dpv1, vq `
δ

2

ą dpx, v1q

Because the inequality is strict, we have w R rx, v1s for any w P rs, zs, i.e.

v1 P U . Thus B
`
v, δ

2

˘
Ď U , meaning U is open as required.

Corollary 3.17. If pX, dq is a metric space, such that every closed ball is

compact, every open ball is convex, every pair of disjoint closed convex sets

are separated by a closed half-space, and every interval ra, bs is isomorphic

to the real interval r0, 1s then the induced topological convexity space is fixed

by the adjunction.

Proof. We will show that the conditions of Proposition 3.14 hold in this case.

The Hausdorff condition is always true for metric spaces.
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The open balls form a basis for the topology, and are convex. By con-

nectedness, if dpx, yq “ r, then since rx, ys is connected, there is a se-

quence y1, . . . , yn Ñ y in rx, ys, so y1, . . . , yn P Bpx, rq. Thus, we have

Bpx, rq “ Bpx, rq “ ty P X|dpx, yq ď ru. Thus, the closure of an open

ball is compact. Also, Bpx, rq “
Ş

Rąr Bpx,Rq is an intersection of convex

sets, so closed balls are convex. Thus open balls are a basis of the topology

with the required property.

Next, we need to show that the convex closure of a finite set is compact.

We will do this inductively. By Lemma 3.16, we have that rx1, . . . , xns “Ť
trx1, ys|y P rx2, . . . , xnsu. By the induction hypothesis rx2, . . . , xns is

compact. This means that rx2, . . . , xns Ď Bpx1, rq for some r P R
`. It

follows that rx1, . . . , xns Ď Bpx1, rq, since Bpx1, rq is convex. Therefore, it

is sufficient to prove that rx1, . . . , xns is closed.

Let z R rx1, . . . , xns. We want to prove that there is some open ball

about z that is disjoint from rx1, . . . , xns. For any y P rx2, . . . , xns, we know

z R rx1, ys, so dpx1, zq ` dpz, yq ´ dpx1, yq ą 0. For y P rx2, . . . , xns,
let fpyq “ dpx1, zq ` dpz, yq ´ dpx1, yq. Then fpyq is a continuous func-

tion rx2, . . . , xns Ñ R
`. Since rx2, . . . , xns is compact, f attains its lower

bound, so in particular, there is some ǫ ą 0 such that fpyq ą ǫ for all

y P rx2, . . . , xns. Now if dpz, z1q ă ǫ
2
, then for any y P rx2, . . . , xns,

dpx1, z
1q ` dpz1, yq ą dpx1, zq ´

ǫ

2
` dpz, yq ´

ǫ

2
ą dpx1, yq

so z1 R rx1, ys because the inequality is strict and open balls are convex. It

follows that z1 R rx1, . . . , xns, so rx1, . . . , xns is closed, as required.

In the other direction, it is natural to ask which preconvexity spaces are

fixed by the monad CC ˝ IS. The functor CC ˝ IS sends a preconvexity

space, pX,Pq to the space pX,P X rPq. We will call a preconvexity space

pX,Pq geometric if P X rP “ P .

Proposition 3.18. If X is finite, then any preconvexity space pX,Pq is geo-

metric.

Proof. If X is finite, then rP “ P , so rP X P “ P as required.

A natural question is whether this extends to topologically discrete spaces.

In fact, there are preconvexity spaces where all sets are in both P and rP , but

not in P .
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Example 3.19. Let X “ N. Let P consist of all subsets of N whose comple-

ment is infinite or empty. Clearly every subset of N is a finite union from P ,

and also a directed union from P (as P contains all finite sets). Thus pX,Pq
is a non-geometric example where all sets are closed and all sets are convex.

Proposition 3.20. Every T0 preconvexity space (meaning for any x ‰ y,

there is a preconvex set containing exactly one of x and y) embeds in a

geometric preconvexity space.

Proof. For a T0 preconvexity space pX,Pq, let pY,Qq be given by Y “ P

and Q “
 

tS P P |S Ď Ru|R P P
(

. Now the inclusion X
i //Y given by

ipxq “
Ş

tP P P |x P P u, is an embedding of preconvexity spaces, meaning

that for A Ď X , we have A P P if and only if A “ i´1pBq for some B P Q.

Clearly if A P P , then tS P P |S Ď Au P Q. Now it is easy to see that

a P i´1
`
tS P P |S Ď Au

˘
if and only if ipaq Ď A, if and only if a P A.

Thus A “ i´1
`
tS P P |S Ď Au

˘
. Conversely, let R P Q. By definition,

there is some P P P such that R “ tS P P |S Ď P u. It is easy to see that

i´1pRq “ P .

We need to show that pY,Qq is geometric. Y is a complete lattice, or-

dered by set-inclusion, and Q is the set of principal downsets of Y . This

means that rQ is the set of ideals in Y , and Q is the set of closed sets of the

weak topology. From Examples 2.5.2, we know that the intersection of these

is Q.

This leads to the natural question is what subspaces of a geometric pre-

convexity space are geometric.

Proposition 3.21. If pX,Pq is a geometric preconvexity space and A P P ,

then the restriction pA,P |Aq is a geometric preconvexity space.

Proof. Since P is closed under intersection, P |A Ď P . Now let C Ď A be

both a directed union of sets from P |A and an intersection of finite unions of

sets from P |A. Since P |A Ď P , C is both a directed union of sets from P and

an intersection of finite unions of sets from P . Since pX,Pq is geometric, it

follows that C P P , and since C Ď A, we have C P P |A as required.

On the other hand, closed or convex subspaces of geometric preconvexity

spaces are not necessarily geometric.
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Example 3.22. Let X “ R
2ztp0, 0qu, and let

Y “ tpx, yq P r0, 1s2|p|2x ´ 1| ´ 1qp|2y ´ 1| ´ 1q “ 0u

be the unit square with one corner at the origin. It is straightforward to check

that X and Y , with the preconvexities coming from closed convex subsets

of R2, are geometric. However, X X Y is a closed subspace of X , and a

convex subspace of Y , but the subset tpx, yq P X X Y |x ą 0 or y “ 1u is

both closed and convex, but is not closed convex, so X XY is not geometric.

4. Stone Duality

4.1 Stone Duality for Topological Spaces

In this section, we review Stone duality for topological spaces. While a lot

of what we review is well-known, some parts are written from an unusual

perspective, and are not as well-known as they might be.

Given a topological space, the collection of closed sets form a coframe.

(Many authors refer to the frame of open sets, but for our purposes the closed

sets are more natural, and since we are not considering 2-categorical aspects,

it does not matter since Coframe “ Frameco.) Furthermore, the inverse im-

age of a continuous function between topological spaces is by definition a

coframe homomorphism between the coframes of closed spaces. This in-

duces a functor C : Top // Coframeop. Not every coframe arises as closed

sets of a topological space. Coframes that do arise in this way are called

spatial and are said to “have enough points”.

In some cases, there can be many topological spaces that have the same

coframe of closed sets. If multiple points have the same closure, then there is

no way to separate them by looking at the coframe of closed sets. Therefore,

we restrict our attention to T0 spaces, where the function from X to CpXq

sending a point to its closure is injective. The functor T0-Top
C // Coframeop

is faithful.

We can recover a T0 topological space from its lattice of closed sets and

from the subset S Ă CpXq consisting of the closures of singletons. For a

coframe L, the elements which could arise as closures of singletons for a

topological space corresponding to L are non-zero elements that cannot be
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written as a join of two strictly smaller elements (called join-irreducible ele-

ments). These are called the “points” of L since they correspond to coframe

homomorphisms f : L // 2, where the 2-element coframe, 2, is the ter-

minal object in Coframeop. If we let PL Ď L be the set of points, a topo-

logical space X corresponds to a coframe L “ CpXq with a chosen subset

S Ď PL such that for every x P L, we have x “
Ž

pS X Ó xq (that is, S

is join-dense in L). Continuous functions X
g

//Y correspond to coframe

homomorphisms CpY q
Cpgq

//CpXq whose left adjoint CpXq
Cpgq˚

//CpY q (in

the category of order-preserving maps) sends SX to SY . We can express this

left adjoint condition topologically as: for every s P SX , Cpgq´1pÓ sq is a

principal downset in CpY q, and the top element is in SY , where SX Ď PCpXq

and SY Ď PCpY q are the chosen sets of points that correspond to elements of

X and Y respectively.

More formally, let SpatialCoframe˚ be the category of pointed spatial

coframes. Objects are pairs pL, Sq where L is a coframe and S Ď PL is

a join dense set of points of L (meaning p@a P Lqpa “
Ž

pS X Ó aqq).

These pairs are introduced in [6, 7], where they are called prime-based com-

plete lattices. Morphisms pM,T q
g

// pL, Sq are coframe homomorphisms

M
g

//L whose left adjoint L
g˚

//M as order-preserving homomorphisms

restricts to a function S
g˚

S //T .

Proposition 4.1 ([6]). The category of T0 topological spaces and continuous

functions is equivalent to the category SpatialCoframe
op
˚ .

Proof. The functor C : T0-Top //SpatialCoframe
op
˚ sends a topological

space X to the pair
´
CpXq,

!
txu

ˇ̌
ˇx P X

)¯
, where CpXq is the coframe

of closed subsets of X . It sends a continuous function f : X //Y to

f´1 : CpY q //CpXq. We need to show that this is a homomorphism in

SpatialCoframe˚. It is clearly a coframe homomorphism, so we need to

show that for any x P X ,
ľ!

t P
!

tyu
ˇ̌
ˇy P Y

)ˇ̌
ˇtxu ď f´1ptq

)
P ttyu|y P Y u

We will show that
Ź!

t P
!

tyu
ˇ̌
ˇy P Y

)ˇ̌
ˇtxu ď f´1ptq

)
“ tfpxqu. We need

to show that txu Ď f´1

´
tfpxqu

¯
, and if txu Ď f´1 pAq for any closed
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A Ď Y , then tfpxqu Ď A. Clearly, x P f´1

´
tfpxqu

¯
, so f´1

´
tfpxqu

¯

is a closed set containing x, so txu ď f´1

´
tfpxqu

¯
. On the other hand,

suppose txu ď f´1 pAq. Then x P f´1 pAq, so fpxq P A, so tfpxqu ď A.

Thus f´1 is a morphism in SpatialCoframe
op
˚ .

In the opposite direction, the functor P : SpatialCoframe
op
˚

//T0-Top
sends the pair pL, Sq to the topological space with elements S and closed sets

tS X Ó a|a P Lu. For the morphism pL, Sq
f

// pM,T q, we define T
f˚

//S

as the restriction of the left adjoint of f to T . By definition of SpatialCoframe˚,

this is a well-defined function. For any F P L, we have f˚ptq P ÓF if and

only if t ď fpF q by definition, so pf˚q´1pÓF XSq “ T X Ó fpF q is a closed

subset of P pM,T q. Thus f˚ is continuous.

Finally, we need to show that the two functors defined above form an

equivalence. For a topological space X , we see that PCX has the same

elements as X and closed sets of PCX are of the form ÓF X
!

txu
ˇ̌
ˇx P X

)

for F P CpXq. It is clear that txu ď F if and only if x P F , so closed sets

of PCX are exactly closed sets of X , so PCX – X .

For a coframe L with a chosen subset S Ď L, we want to show that

CP pL, Sq – pL, Sq. By definition, elements of CP pL, Sq are tÓa X S|a P Lu.

Since p@a P Lqpa “
Ž

pÓa X Sqq, it follows that the coframe of CP pL, Sq

is isomorphic to L. The chosen elements are
!

tsu
ˇ̌
ˇs P S

)
, where tsu is the

closure of tsu in P pL, Sq. Closed sets of P pL, Sq are of the form ÓaXS for

a P L, so in particular tsu “ Ós X S. This clearly induces an isomorphism

pL, Sq – CP pL, Sq.

An alternative approach due to [17] is take the embedding of the coframe

of closed sets into the completely distributive lattice of arbitrary unions

of closed sets. That is, for pL, Sq a pointed spatial coframe, we have the

coframe inclusion L // //DS, where DS is the completely distributive lat-

tice of down-closed subsets of S (where S is viewed as a sub-poset of L). In

topological terms, S is the collection of points of the space, with the special-

isation order. Downsets of S correspond to arbitrary unions of closed sets,

and the inclusion of L into DS is the obvious inclusion. In lattice theoretic

terms, the inclusion L // //DS sends x P L to ts P S|s ď xu. For a homo-

morphism f : pM,T q // pL, Sq, the condition that f˚ restricts to a func-
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tion S
f˚

//T means that the inverse image function Df˚ : DT //DS is

a complete lattice homomorphism. Furthermore, the diagram

M
f

//
��

��

L
��

��

DT
Df˚

// DS

commutes, since Df˚ sends T X Óx to

ts P S|f˚psq P TXÓxu “ ts P S|f˚psq ď xu “ ts P S|s ď fpxqu “ SXÓfpxq

The condition that S Ď L means that all totally compact elements of DS

(elements x P DS such that for any A Ď DS, if
Ž

A ě x, then there is

some a P A such that a ě x) are in L, so every element of DS is a join

of elements in L. We will refer to such lattice inclusions as dense. Thus

the category of T0 topological spaces is equivalent to the category of dense

inclusions of spatial coframes into totally compactly generated completely

distributive lattices.

The collections Lop of open subsets of the topological space, and DS of

arbitrary unions of closed sets, generate the open sets of a larger topology,

called the Skula topology [14]. Putting these three lattices together gives a

structure called the Skula biframe. A biframe [2], consists of a frame L0

with two chosen subframes L1 and L2, such that L1 Y L2 generates L0. The

biframe pL0, L1, L2q is strictly zero-dimensional if every element of L1 is

complemented in L0, and the complement is in L2. Every zero-dimensional

biframe is determined by the complement inclusion pL1qop // //L2, so the

functor that sends a topological space to the Skula biframe is one half of an

equivalence between the category of T0 topological spaces and the category

of strictly zero-dimensional biframes [13].

For all of these representations of T0 topological spaces, the fibres of the

forgetful functor

T0-Top
C //SpatialCoframeop

correspond to additional structure on the coframe, and are partially ordered

by inclusion of this additional structure. Every fibre has a top element, which

gives an adjoint to the forgetful functor C, sending a spatial coframe to the

top element of the fibre over it. (In fact, this adjoint extends to all coframes,
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because spatial coframes are reflective in all coframes). These top elements

of the fibres are exactly the sober spaces.

Not all fibres have bottom elements. However, a large number of the fi-

bres of the forgetful functor T0-Top
C //SpatialCoframeop do have bottom

elements and are actually complete Boolean algebras. This is probably easi-

est to see from the representation as coframes with a chosen set of elements

which are closures of points of the topological space. If S0 is the smallest

such set of closed sets that can arise as closures of points, and S1 is the largest

set, then any set between S0 and S1 is a valid set of points, making the poset

of possible sets of points isomorphic to the Boolean algebra P pS1zS0q. The

topological spaces that can occur as the bottom elements of fibres are spaces

where the closure of every point cannot be expressed as a union of closed

sets not containing that point. That is, for every x P X , txuztxu is closed.

Spaces with this property are called TD spaces [1].

Clearly, all T1 spaces are TD because in a T1 space txuztxu “ H is

closed. However, even if we restrict to T1 spaces and atomic spatial coframes,

the assignment of an atomic spatial coframe to the bottom element in the cor-

responding fibre is not functorial, since the adjoint to a coframe homomorph-

ism between TD spaces does not necessarily preserve join-indecomposable

elements, or even atoms. This is why the focus of attention in most of the

literature has been on sober spaces, rather than TD spaces. In order to model

the morphisms between TD spaces, we need to restrict to coframe homo-

morphisms whose adjoint preserves join-indecomposable elements. While

most of the topological spaces of interest are TD, many of the fibres of the

forgetful functor T0-Top
C //SpatialCoframeop contain only a singleton T0

topological space, which is therefore both sober and TD. (Several equivalent

characterisations of when this occurs are given in [8].) Thus many important

topological spaces are sober.

4.2 Stone Duality for Preconvexity Spaces

There is in many ways, a very similar picture for the category of preconvex-

ity spaces. Instead of the coframe of closed sets, the structure that defines the

preconvexity spaces is the complete lattice of preconvex sets P . Because the

inverse image function for a preconvexity space homomorphism preserves

preconvex sets, it induces an inf-homomorphism between the lattices of pre-
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convex sets. Thus, we have a functor Preconvex
P // Inf op, where Inf is

the category of complete lattices with infimum-preserving homomorphisms

between them, sending every preconvexity space to its lattice of preconvex

sets, and every homomorphism to the inverse image function. This has many

of the nice properties of the Stone duality functor Top
F // Coframeop.

As in the topology case, there is an equivalent category of sup-lattices

with a set of chosen elements. Let T CGPartialSup be the category whose

objects are pairs pL, Sq, where L is a complete lattice and S Ď LztKu is

sup-dense, i.e. p@x P Lqpx “
Ž

pS X Óxqq. Morphisms pL, Sq
f

// pM,T q

in T CGPartialSup are sup-homomorphisms L
f

//M with the property

that p@x P Sqpfpxq P T q. These pairs are called based complete lattices

in [6].

Proposition 4.2 ([6]). The categories T CGPartialSup and T0-Preconvex

are equivalent.

Proof. There is a functor T0-Preconvex
F // T CGPartialSup given by

F pX,Pq “
´
P ,

!
txu

ˇ̌
ˇx P X

)¯
on objects and F pfq % f´1 on morphisms,

where the adjoint is as a partial order homomorphism and exists because

f´1 is an inf-homomorphism. To show this is well-defined, since F pfq is

a left adjoint, it is a sup-homomorphism, and can be given explicitly by

F pfqpAq “
Ş

tB P P 1|A Ď f´1pBqu. In particular, if A “ txu, then

F pfqpAq “
č

tB P P 1|x P f´1pBqu “
č

tB P P 1|fpxq P Bu “ tfpxqu

To complete the proof that F is well-defined, we need to show that
!

txu
ˇ̌
ˇx P X

)

is sup-dense in P . For any P P P , and any x P P , we have txu Ď P . Thus

P “
Ť!

txu
ˇ̌
ˇx P P

)
as required. Thus F is well-defined, and functoriality

is obvious.

In the other direction, we define G : T CGPartialSup //Preconvex
by GpL, Sq “ pS, tS X Ó x|x P Luq on objects and Gpfqpsq “ fpsq on

morphisms. To show well-definedness, for pL, Sq
f

// pM,T q a morphism

of T CGPartialSup, we need to show that Gpfq is a preconvexity homo-

morphism. That is, for any s P S, we have fpsq P T , and for any m P M ,
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Gpfq´1pT X Ómq “ S X Ó x for some x P L. The first condition is by def-

inition of a homomorphism. Since f is a sup-homomorphism, it has a right

adjoint f˚ given by f˚pmq “
Ź

tx P L|fpxq ě mu. Now

Gpfq´1pTXÓmq “ ts P S|fpsq ď mu “ ts P S|s ď f˚pmqu “ SXÓ f˚pmq

which gives the required homomorphism property. Finally, we want to show

that F and G form an equivalence of categories. For a preconvexity space

pX,Pq, we have that

GF pX,Pq “ G
´
P ,

!
txu|x P X

)¯
“
´!

txu|x P X
)
,
!!

txu|x P X
)

X ÓP
ˇ̌
ˇP P P

)¯

It is obvious that the function sending x to txu is a natural isomorphism of

preconvexity spaces. In the other direction, for pL, Sq P obpT CGPartialSupq,

we have

FGpL, Sq “ F pS, tS X Ó x|x P Luq “
´

tS X Ó x|x P Lu,
!

tsu
ˇ̌
ˇs P S

)¯

For s P S, tsu “ S X Ó s, so the function L
i // tS X Ó x|x P Lu given by

ipxq “ S X Ó x is easily seen to be an isomorphism in T CGPartialSup.

Thus we have shown the equivalence of categories.

Under this equivalence (and the adjoint isomorphism Sup – Inf op),

the functor T0-Preconvex
P // Inf op corresponds to the forgetful functor

T CGPartialSup U //Sup sending pL, Sq to L. As in the topological case,

it is easy to see that the fibres of the functor U are partial orders. Each fibre

clearly has a top element setting S “ L. This induces a right adjoint to U .

Furthermore, we can show that this right adjoint extends to all preconvexity

spaces.

Proposition 4.3. The preconvex set lattice functor Preconvex
U //Sup has

a right adjoint Sup P //Preconvex.

Proof. The right adjoint P is defined by P pLq “ pL, tHu Y tÓx|x P Luq.

That is, it sends the complete lattice L to L with the preconvexity where

only principal downsets are preconvex. From the equivalence, between T0-

Preconvex and T CGPartialSup, this P sends L to the pair pL,Lq, which
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is clearly the top element of the fibre of the forgetful functor, U , when re-

stricted to T0 preconvexity spaces. To show that P is right adjoint to U , we

need to show the hom-sets SuppUX,Lq and PreconvexpX,PLq are nat-

urally isomorphic. For f P SuppUX,Lq, the corresponding element of

PreconvexpX,PLq is f̂ given by f̂pxq “ fptxuq. It is easy to see that f̂

is a preconvexity homormophism, since preconvex sets in PL are principal

downsets of L, and

pf̂q´1pÓpyqq “ tx P X|fpxq ď yu “ tx P X|txu Ď f˚pyqu “ f˚pyq

is preconvex. For f P PreconvexpX,PLq, the corresponding element of

SuppUX,Lq is f̃ given by f̃pAq “
Ž

xPA fpxq. Since f is a preconvexity

homomorphism, we have that f´1pÓpyqq is preconvex for any y P L. For

A Ď UX , we want to show that f̃p
Ž

Aq ď
Ž

APA f̃pAq. If y is an upper

bound for tf̃pAq|A P Au, then since f is a preconvexity homomorphism,

f´1pÓ yq is preconvex, and for any A P A, we have f̃pAq ď y, so A Ď
f´1pÓ yq. Thus f´1pÓ yq is an upper bound for A, in the lattice of preconvex

subsets of X , so it contains
Ž

A, as required.

Bottom elements of the fibres are of the form pL, Sq where S is the small-

est subset of L satisfying p@x P Lqpx “
Ž

S X Ó xq. For any x P L, if we

can find a downset D Ď L with
Ž

D “ x and x R D, then clearly if pL, Sq P
ob T CGPartialSup, then pL, pSztxuq Y Dq P ob T CGPartialSup, so if

there is a minimum set S, then we cannot have x P S. Conversely, if the

only downset whose supremum is x is the principal downset Ó x, then for

any pL, Sq in T CGPartialSup, we must have x P S. Thus, if there is a

smallest element of the fibre above L, it must be given by pL, Sq, where

S “
!
x P L

ˇ̌
ˇp@D Ď Lq

´´ł
D “ x

¯
ñ x P Dq

¯)

This is similar to the total compactness condition on elements of a sup-

lattice, but an element x is called totally compact if it satisfies

p@D Ď Lq
´´ł

D ě x
¯

ñ pDy P Dqpx ď yq
¯

which is a stronger condition. This condition is that x is totally compact in

the sub-lattice Ó x.

272



T. KENNEY DUALITY FOR TOPOLOGICAL CONVEXITY SPACES

As in the topological case, when bottom elements of the fibre exist, they

are usually the spaces of greatest interest. For example, spaces where every

singleton set is preconvex are always the bottom elements of the correspond-

ing fibre. However, the fibres of the forgetful functor are very rarely single-

tons, so the top elements of the fibres are not of as much interest as in the

topological case.

It is also worth noting that we have the chain of adjunctions

ConvexTop
CC //
K Preconvex
IS

oo

U //
K Sup
P

oo

which gives an adjunction between the category of topological convexity

spaces and the category of sup-lattices. This adjunction sends a topological

convexity space pX,F , Cq to the lattice of sets FXC ordered by set inclusion,

and a topological convexity space homomorphism to the left adjoint of its

inverse image. The right adjoint sends a sup-lattice L to the topological

convexity space pL,S, Iq, where S is the set of weak-closed subsets of L,

namely intersections of finitely-generated downsets in L, and I is the set of

ideals in L.

Theorem 4.4. There is an adjunction between the category of topological

convexity spaces and the category of sup-lattices. The left adjoint sends a

topological convexity space pX,F , Cq to the lattice F X C of closed convex

sets, ordered by inclusion, and a topological convexity space homomorph-

ism X
f

//Y to the adjoint of its inverse image function. The right adjoint

sends a sup-lattice L to the topological convexity space pL,S, Iq from Exam-

ple 2.3(2), and a sup-homomorphism L
f

//K to f viewed as a topological

convexity space homomorphism.

Proof. It is straightforward to check that these functors are the composites

of the adjunctions

ConvexTop
CC //
K Preconvex
IS

oo

U //
K Sup
P

oo

shown in Proposition 3.9 and Proposition 4.3.
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Remark 4.5. In the abstract, we described the relation between topological

convexity spaces and inf-lattices as an extension to the Stone duality between

topological spaces and coframes. Any topological space is a topological con-

vexity space with the discrete convexity, where all sets are convex. Similarly,

the category of coframes is a subcategory of the category of inf-lattices. The

following diagram commutes:

Top

C
��

// D // ConvexTop

UCC
��

Coframeop // // Inf op

However, the adjoint ISP to UCC does not restrict to an adjoint to the

closed set coframe functor, C, because ISP pLq is not in general a topolog-

ical space, even if L is a coframe. For ISP pLq to be a topological space,

all subsets of L would need to be ideals, which is impossible for non-trivial

lattices. Thus only the forgetful functor is truly an extension, and the duality

is not an extension.

4.3 Distributive Partial-Sup Lattices

The equivalence T0-Preconvex – T CGPartialSup is based on previous

work [11]. We present this work in a more abstract framework here. The idea

is that for a preconvexity space pX,Pq, the sets in P are partially ordered by

inclusion. This partial order has an infimum operation given by intersection,

but union of sets only gives a partial supremum operation because a union of

preconvex sets is not necessarily preconvex. (Because of the existence of ar-

bitrary intersections, there is a supremum operation given by union followed

by the induced closure operation, but this supremum is not related to the

structure of the preconvexity space. Unions of preconvex sets better reflect

the structure of the preconvexity space. We therefore add a partial operation

to the structure to describe these unions where possible.) For a preconvexity

space, the operations are union and intersection, so we have a distributivity

law between the partial join operation and the infimum operation. This can

be neatly expressed by saying that the partial join structure is actually a par-

tial join structure in the category Inf . We define a partial join structure as

a partial algebra for the downset monad. The downset monad exists in the

category of partial orders, and also in the category of inf-lattices.
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We begin by recalling the following definitions:

Definition 4.6 ([12]). A KZ-doctrine on a 2-category C is a monad pT, η, µq

on C with a modification Tη
λ

+3ηT such that λη, µλ and µTµλT are all

identity 2-cells.

Definition 4.7 ([3]). A 2-functor C
F //D is sinister if for every morphism

f in C, Ff has a right adjoint in D.

In particular, if F is sinister, then it gives rise to a functor from the cate-

gory of partial maps in C, to D, sending the partial map X Aoo
aoo

f
//Y to

the map FX
pFaq˚

//FA
Ff

//FY .

Definition 4.8. A lax partial algebra for a sinister KZ-doctrine in an order-

enriched category is a partial map TX
θ /X such that

X
η

//

1X !!

TX

θ
�

X
commutes and there is a 2-cell

TTX
Tθ //

µX

��

ð

TX

θ
�

TX
θ

/ X

A homomorphism of lax partial algebras from pX, θq to pY, τq is a morph-

ism X
f

//Y , together with a 2-cell

TX

θ
�

Tf
//

ñ

TY

τ
�

X
f

// Y

Remark 4.9. It is possible to define lax partial algebras for KZ monads in

general 2-categories. However, this requires more careful consideration of

coherence conditions, so to focus on the particular case of distributive partial

sup-lattices, we have restricted attention to Ord-enriched categories, where

Ord is the category of partially-ordered sets and order-preserving functions

between them.
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Definition 4.10. A partial sup-lattice is a lax partial algebra for the sinister

KZ doctrine pD, Ó,
Ť

q in Ord, where D is the downset functor, ÓX is the

function sending an element x P X to the principal downset it generates,

and
Ť

X : DDX //DX sends a collection of downsets to its union.

A distributive partial sup-lattice is a lax partial algebra for the sinister

KZ doctrine pD, Ó,
Ť

q in Inf , where D is the downset functor, ÓX is the

function sending an element x P X to the principal downset it generates,

and
Ť

X : DDX //DX sends a collection of downsets to its union.

The definition given in [11] is

Definition 4.11 ([11]). A partial sup lattice is a pair pL, Jq where L is a com-

plete lattice, J is a collection of downsets of L with the following properties:

• J contains all principal downsets.

• J is closed under arbitrary intersections.

• If A P J has supremum x, then any downset B with A Ď B Ď Ó x has

B P J .

• If A Ď J is down-closed, Y P J has
Ž

Y “ x and for any a P Y ,

there is some A P A with
Ž

A ě a, then there is some B Ď
Ť

A with

B P J and
Ž

B ě x.

A partial sup-lattice, pL, Jq, is distributive if for any D Ď J , we haveŹ
t
Ž

D|D P Du “
ŽŞ

D.

An inf-homomorphism L
f

//M is a partial sup-lattice homomorphism

pL, Jq
f

// pM,Kq if for any A P J , we have Ótfpaq|a P Au P K, andŽ
Ótfpaq|a P Au “ f p

Ž
Aq.

Proposition 4.12. Definitions 4.10 and 4.11 give equivalent definitions of

distributive partial sup lattices.

Proof. We need to show that if DL
θ /L is a lax partial algebra for the

downset monad in Inf , then there is some J Ď DL satisfying the conditions

of Definition 4.11. We will show that setting J as the domain of the partial

algebra morphism DL
θ /L works. We will let j denote the inclusion
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J // //DL, and write j´1 for the inverse image map DDL
j´1

//DJ that is

right adjoint to Dj.

From the unit condition

L
Ó
//

1L
((

DL Joo
j

oo

θ
��

L
we have that all principal downsets must be contained in J . This allows us

to show that θ is the join whenever it is defined. For A P J , if x “
Ž

A,

then A ď Ó x in J , and for any a P A, we have Ó a ď A in J . Since θ is

order-preserving, this gives a “ θ pÓ aq ď θpAq ď θ pÓ xq “ x, so θpAq is

an upper bound of A, and is below x “
Ž

A. Thus θpAq “
Ž

A. Since

the inclusion J //
j

//DL is an inf-homomorphism, we get that J is closed

under arbitrary intersections. Suppose A P J has supremum x, and B P DL

satisfies A Ď B Ď Ó x. We want to show that B P J .

The lax partial algebra condition gives

DDL
j´1

//

Ť

��

DJ
Dθ // DL

ě J
OO
j

OO

θ
��

DL Joo
j

oo θ // L
In particular, since A P J X ÓB, we have DθpJ X ÓBq “ Ó x, and since

θpÓ xq “ x is defined, we have that the upper composite partial morphism is

defined on J X ÓB. For the lower composite, we have
Ť

pJ X ÓBq “ B, so

for the lower composite to be defined, we must have B P J .

Finally if A P DJ , Y P J has
Ž

Y “ x and for any a P Y , there is some

Aa P A with
Ž

Aa ě a, then clearly Aa X Ó a P J , and since J
θ //L is

an inf-homomorphism,
Ž

pAa X Ó aq “ θpAa X Ó aq “ a. Thus, setting B “
Ó tAa X Ó a|a P Y u gives Dθ pBq “ Y , so the upper composite is defined for

B, and is equal to x. Thus, the lower composite gives B “
Ť

B P J with

θpBq “ x, which proves the last condition.

Conversely, suppose that pL, Jq is a distributive partial sup lattice as in

Definition 4.11. We want to show that DL Joo
j

oo

Ž
//L is a lax partial
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algebra for the downset KZ monad. That is, we want to show that

X
Ó
//

1X ""

DX

θ
�

X
commutes, and

DDX
Dθ //

Ť
��

ě

DX

θ
�

DX
θ

/ X

We expand the partial morphisms to get the following diagrams

L // J
��

j
�� Ž

��

L
Ó
//

1L
((

DL

L

DDL

µL

��

j´1

// DJ
D

Ž
// DL

ě J
OO
j

OO

Ž
��

DL Joo
j

oo Ž // L

The first diagram commutes because J contains all principal downsets. For

the second diagram, if the upper-right composite of the diagram is defined

for A, we have j´1pAq “ A X J , and Y “ Ó t
Ž

A|A P A X Ju P J . By

definition, for every a P Y , there is some Aa P A X J such that
Ž

Aa ě a.

Now, by the fourth condition in Definition 4.11, there is some B Ď
Ť

A,

with B P J and
Ž

B ě
Ž

Y . For x P
Ť

A, we have Ópxq P A X J ,

so x P Y , and therefore
Ž

Y “
Ž

p
Ť

Aq, so
Ž

B “
Ž

Y “
Ž

p
Ť

Aq.

Now by the third condition of Definition 4.11, it follows that
Ť

A P J , so

the lower-left composite is defined for A, giving the required inequality of

partial maps.

Proposition 4.13. The definition of distributive partial sup-lattice homo-

morphisms given in Definition 4.11 is equivalent to a lax partial algebra

homomorphism between lax partial algebras.

Proof. Because θ is the restriction of the supremum operation, the lax par-

tial algebra homomorphism condition is exactly that J factors through the

pullback
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K˚ //
��

��

K
��

��

DL
Df

// DM

and for any A P J , f p
Ž

Aq ď
Ž

Ótfpaq|a P Au.

The pullback is given by K˚ “ tA P DL|DfpAq P Ku. Thus the

inclusion is equivalent to the condition for any A P J , Ótfpaq|a P Au P K.

Since f is order-preserving, for a P A, we have that fpaq ď f p
Ž

Aq, so

f p
Ž

Aq is an upper bound for Ótfpaq|a P Au, and thus
Ž

Ótfpaq|a P Au ď
f p

Ž
Aq. Thus the second condition that

Ž
Ótfpaq|a P Au ě f p

Ž
Aq is

equivalent to
Ž

Ótfpaq|a P Au “ f p
Ž

Aq as required.

Definition 4.14. An element a of a partial sup-lattice pL, Jq is totally com-

pact if for any downset D P J ,
Ž

D ě a ñ a P D. (Note that H P J , so

K is not totally compact.) A partial sup-lattice pL, Jq is totally compactly

generated if for any x P L, there is some C Ď L such that every c P C is

totally compact, and such that ÓC P J and
Ž

C “ x.

Proposition 4.15. The full subcategory of totally compactly generated dis-

tributive partial sup-lattices and partial sup-lattice homomorphisms is equiv-

alent to the category T CGPartialSupop defined at the start of Section 4.2.

Proof. Given a totally compactly generated distributive partial sup-lattice

pL, Jq, let K Ď L be the set of totally compact elements of pL, Jq. Then

pL,Kq is an element of T CGPartialSup. Conversely, for the object pL, Sq P
ob T CGPartialSup, let J “ tD P DL|S X Ó p

Ž
Dq Ď Du be the set of

downsets of L that contain all totally compact elements below their supre-

mum. It is clear that performing these two constructions gives an isomor-

phic structure. To show an equivalence of categories, we need to show

that L
f

//M is a distributive partial sup-lattice homomorphism if and only

if it is a morphism in T CGPartialSupop. Since distributive partial sup-

lattice homomorphisms preserve infima, they have left adjoints. If f is a

partial sup-lattice homomorphism, and f˚ is its left adjoint, then f˚ is a

sup-homomorphism, and for any totally compact a P M , if B P J hasŽ
B ě f˚paq, then the adjunction gives f p

Ž
Bq ě a. Since f is a partial

sup-homomorphism, we have f p
Ž

Bq “
Ž

tfpbq|b P Bu ě a. As a is
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totally compact, we must have a ď fpbq for some b P B. By the adjunction,

this gives f˚paq ď b. Thus we have shown that if B P J has
Ž

B ě f˚paq,

then f˚paq P B. That is, f˚paq is totally compact.

Conversely, if g is a sup-homomorphism between totally compactly gen-

erated distributive partial sup-lattices, that preserves totally compact ele-

ments, then its right adjoint is a partial sup-homomorphism, since if B P J

has
Ž

B “ x, then if a ď g˚pxq is totally compact, then gpaq ď x is

also totally compact, so gpaq P B. It follows that a P Ótg˚pbq|b P Bu, soŽ
Ótg˚pbq|b P Bu “ g˚pxq as required.

5. Final Remarks and Future Work

We have extended the left adjoint functor from Stone duality, sending a topo-

logical space to its coframe of closed sets to a functor sending a topological

convexity spaces to its sup-lattice of closed convex sets. As in the topologi-

cal Stone duality, this functor has a right adjoint. This right adjoint is not an

extension of the topological case.

In many ways, the theory is nicer in this situation than in the topologi-

cal case. For example, there are no non-spatial sup-lattices: every sup-lattice

arises as the closed convex sets of a topological convexity space. However, in

some ways this nicer theory makes the results less useful, because in topol-

ogy, the non-spatial locales fill some problematic gaps in the category of

topological spaces. With every sup-lattice arising as the closed convex sets

of a topological convexity space, there are no new spaces to be added, so we

are not filling the gaps.

Another significant difference between this and Stone duality for topo-

logical spaces is that for the topological Stone duality, many interesting topo-

logical spaces are in the singleton fibres of the functor, meaning that the

closed set functor is full and faithful for these spaces, so we can study the

categorical structure of large classes of interesting topological spaces using

the category of coframes. For topological convexity spaces, there are no

singleton fibres, and the top elements of fibres (on which the functor is full

and faithful) are not very interesting topological convexity spaces. The most

interesting topological convexity spaces are the bottom elements of their fi-

bres, and when we restrict the functor to these spaces, it is faithful, but not

full, meaning that from a categorical perspective, ConvexTop and Sup are
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not so closely related.

The adjunction between topological convexity spaces and sup-lattices

factors through the category of preconvexity spaces, or the equivalent cat-

egory of totally compactly-generated distributive partial sup-lattices. The

adjunction between topological convexity spaces and preconvexity spaces

is potentially more interesting, with most interesting topological convexity

spaces being fixed-points of the induced comonad on ConvexTop. We have

characterised which topological convexity spaces are fixed by this comonad

in Proposition 3.11, and given some important examples in Proposition 3.14.

In the opposite direction, for the question of which preconvexity spaces are

fixed by the induced monad on Preconvex, we have only been able to show

this for a few special cases.

5.1 Future Work

The study of topological convexity spaces is an extremely promising area

of research, including some classical geometric examples and also some

very interesting combinatorial examples. The adjunctions from this paper

are likely to prove extremely valuable in the study of topological convexity

spaces. In this section, we discuss a number of important problems about

topological convexity spaces that may be addressed using these adjunctions.

5.1.1 Restricting this to a Duality

In topology, it is often convenient to restrict Stone duality to an isomor-

phism of categories between sober topological spaces and spatial locales.

Sober topological spaces can be described in a number of topologically nat-

ural ways. Similarly, spatial locales can be easily described. It is easy to

describe the topological convexity spaces from this adjunction, as they come

directly from lattices. However, for the intermediate adjunction between

topological convexity spaces and preconvexity spaces, the conditions for

fixed points are less clear. The characterising conditions in Proposition 3.11

are not particularly natural, while the natural and commonly used conditions

in Proposition 3.14 exclude a number of interesting combinatorial examples.

A result between these two that includes the interesting combinatorial ex-

amples but also consists of natural, easy-to-understand conditions would be
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extremely valuable. In the other direction, describing the geometric precon-

vexity spaces is more challenging, and could lead to a lot of fruitful research.

5.1.2 Euclidean Spaces

The motivating examples for topological convexity spaces are real vector

spaces, particularly finite-dimensional ones. The author has nearly com-

pleted a characterisation of these spaces within the category of topological

convexity spaces, which will be presented in another paper.

5.1.3 Convexity Manifolds

In differential geometry, a manifold is a space which has a local differential

structure. That is, the space is covered by a family of open sets, each of

which has a local differential structure. There are examples of spaces with

a cover by open subsets with a local convexity structure. The motivating

example here is real projective space. We cannot assign a global convexity

structure to projective space, but if we remove a line from the projective

plane, then the remaining space is isomorphic to the Euclidean plane, and so

has a canonical convexity space. Furthermore, these convexity spaces have a

certain compatibility condition — given a subset C of the intersection which

is convex in both convexity spaces, the convex subsets of C are the same in

both spaces. This gives us the outline for a definition of convexity manifolds.

Further work is needed to identify the Euclidean projective spaces within the

category of convexity manifolds, and to determine what geometric structure

is retained at this level of generality.

5.1.4 Metrics and Measures

There are connections between metrics and measures. For example, on the

real line, any metric that induces the usual convexity space structure corre-

sponds to a monotone function R
d //R with 0 as a fixed point. Such a

function naturally induces a measure on the Lebesgue sets of R. Conversely,

for every measure on the Lebesgue sets of R, we obtain a monotone endo-

function of R by integrating. Thus, for the real numbers, there is a bijective

correspondence between metrics that induce the usual topological convexity
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structure and measures on R. This property is specific to R, and does not

generalise to other spaces like R
2.

There is a more general connection between topological convexity spaces,

sigma algebras, measures and metrics.

Example 5.1. Let pX,Bq be a Σ-algebra. There is a topological convexity

space pB,F , Iq where I is the set of intervals in the lattice B and F is the

set of collections of measurable sets closed under limits of characteristic

functions. That is, for B1, B2, . . . P B, say B is the limit of B1, B2, . . . if for

any x P B, there is some k P Z
` such that x R Bi ñ i ă k, and for any

x R B, there is some k P Z
` such that x P Bi ñ i ă k. F is the collection

of subsets F Ď B such that for any B1, B2, . . . P F , if B is the limit of

B1, B2, . . ., then B P F .

Proposition 5.2. If µ is a finite measure on pX,Bq such that no non-empty

set has measure zero, then d : BˆB //R given by dpA,Bq “ µpA△Bq, is

a metric and induces the topological convexity space structure pB,F , Iq or a

finer structure. Furthermore, all metrics inducing this topological convexity

space structure on B are of this form.

Proof. We have dpA,Aq “ µpHq “ 0 and dpA,Bq “ dpB,Aq, so we need

to prove the triangle inequality. That is, for A,B,C P B, we have dpA,Cq ď
dpA,Bq ` dpB,Cq. This is clear because A△C Ď A△B Y B△C. Thus d

is a metric. To prove that it induces this topological convexity structure, we

note that dpA,Cq “ dpA,Bq`dpB,Cq if and only if A△C “ A△B>B△C.

This only happens if A X C Ď B Ď A Y C, which means that convex sets

must be intervals. Finally, we need to show the topology from the metric is

finer than F . That is, if B is the limit of B1, B2, . . ., then dpBi, Bq Ñ 0. By

definition,
Ş8

i“1
Bi△B “ H. Thus, we need to show that for a sequence

Ai “ Bi△B of measurable sets with empty intersection, µpAiq Ñ 0. Let

Ci “
Ť

jěi Aj . Since Ai Ñ H, we get
Ş8

i“1
Ci “ H. Since the Ci are

nested, we have limiÑ8 µpCiq “ µ
`Ş8

i“1
Ci

˘
“ 0.

To show that every metric is of that form, let d : B ˆ B //R be a

metric on B whose induced topology and convexity are finer than F and I
respectively. We want to show that there is a finite measure µ on pX,Bq
such that dpA,Bq “ µpA△Bq. By the convexity, whenever A “ B > C is a

disjoint union, we have dpA,Bq`dpB,Hq “ dpH, Aq “ dpH, Cq`dpC,Aq
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and dpB,Hq ` dpH, Cq “ dpB,Cq “ dpB,Aq ` dpA,Cq. It follows that

2dpA,Bq ` dpB,Hq ` dpA,Cq “ dpA,Cq ` dpB,Hq ` 2dpH, Cq

so dpA,Bq “ dpC,Hq. For general B, we have A X B is between A and B,

so

dpA,Bq “ dpA,AXBq`dpAXB,Bq “ dpH, AzBq`dpH, BzAq “ dpH, A△Bq

Thus, if we define µpBq “ dpH, Bq, then d is defined by dpA,Bq “ µpA△Bq.

We need to show that µ is a measure on pX,Bq. That is, that if A and B

are disjoint, we have µpA Y Bq “ µpAq ` µpBq and if B1 Ď B2 Ď ¨ ¨ ¨ ,

then µp
Ť8

i“1
Biq “ lim8

i“1 µpBiq. We have already shown that the first

of these comes from the convexity. The second comes from the topology.

Consider the sequence Ai “
´Ť8

j“1
Bj

¯
zBi. By the convexity, we have

µpAiq “ µ
´Ť8

j“1
Bj

¯
´ µpBiq, so it is sufficient to show that µpAiq Ñ 0,

when pAiq
8
i“1 is a decreasing sequence with empty intersection. If pAiq

8
i“1

is a decreasing sequence with empty intersection, then for any x P X , we

have pDk P Z
`qpx R Akq. Thus H is a limit of pAiq

8
i“1. Thus we have

µpAiq Ñ µpHq “ 0 as required.

5.1.5 Sheaves

A lot of information about topological spaces can be obtained by studying

their categories of sheaves. A natural question is whether a similar category

of sheaves can be constructed for a topological convexity space. Part of the

difficulty here is that the usual construction of the sheaf category is described

in terms of open sets. However, for topological convexity spaces, closed

sets are more fundamental, so it is necessary to redefine sheaves in terms of

closed sets. This is conceptually strange. One interpretation of sheaves is as

sets with truth values given by open sets. In this interpretation, closed sets

correspond to the truth values of negated statements, such as inequality. [5]

argues that inequality is a more fundamental concept for studying lattices

of equivalence relations as a form of logical statement, so a definition of

sheaves in terms of closed sets could be linked to this work.
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