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Résumé. Dans cet article, nous construisons une catégorie de modèles fermée monoı̈dale

symétrique de groupoı̈des de Picard commutatifs cohérents. Nous construisons une

autre structure de catégorie de modèles sur la catégorie des (petites) catégories per-

mutatives dont les objets fibrants sont des groupoı̈des de Picard (permutatifs). Le

résultat principal de cet article est que le foncteur nerf de Segal est un foncteur de

Quillen droit d’une équivalence de Quillen entre les deux catégories de modèles sus-

mentionnées. Sur la base de notre résultat principal, nous donnons une nouvelle

preuve du résultat classique selon lequel les groupoı̈des de Picard modélisent des

monotypes d’homotopie stables.

Abstract. In this paper we construct a symmetric monoidal closed model category

of coherently commutative Picard groupoids. We construct another model category

structure on the category of (small) permutative categories whose fibrant objects are

(permutative) Picard groupoids. The main result of this paper is that the Segal’s

nerve functor is a right Quillen functor of a Quillen equivalence between the two

aforementioned model categories. Based on our main result, we give a new proof of

the classical result that Picard groupoids model stable homotopy one-types.
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1. Introduction

Picard groupoids are interesting objects both in topology and algebra. A ma-

jor reason for interest in topology is because they model stable homotopy

1-types which is a classical result appearing in various parts of the litera-

ture [JO12][Pat12][GK11][MOP+20]. The category of Picard groupoids is the

archetype example of a 2-Abelian category, see [Dup08]. A theory of 2-chain com-

plexes of Picard groupoids was developed in [dRMMV05]. A simplicial cohomol-

ogy with coefficients in Picard groupoids was introduced in the paper [CMM04].
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1 INTRODUCTION

This cohomology was used in [SV] to construct a TQFT called the Dijkgraaf-Witten

theory. This (Picard) groupoidification of cohomology played a vital role in explain-

ing a mysterious integration theory introduced in [FQ93], [Shab] which is pivotal

in constructing the aforementioned TQFT functor.

A tensor product of Picard groupoids was defined in [Sch08]. However, a

shortcoming of the category of Picard groupoids remains: unlike the category of

abelian groups, it is not a symmetric monoidal closed category. In this paper we

address this problem by proposing another model for Picard groupoids based on

Γ- categories. A Γ- category is a functor from the (skeletal) category of finite based

sets Γop into the category of all (small) categories Cat. We denote the category

of all Γ- categories and natural transformations between them by ΓCat. Along

the lines of the construction of the stable Q-model category in [Sch99], we con-

struct a symmetric monoidal closed model category ΓPic. The underlying category

of ΓPic is ΓCat and we refer to it as the model category structure of coherently

commutative Picard groupoids. A Γ- category X is called a coherently commuta-

tive Picard groupoid if it satisfies the Segal condition, see [Seg74] and moreover it

has homotopy inverses. These Γ- categories are fibrant objects in our model cate-

gory ΓPic. The main objective of this paper is to compare a (model) category of all

(small) Picard groupoids with the model category of coherently commutative Picard

groupoids ΓPic. We construct another model category structure on Perm whose

fibrant objects are (permutative) Picard groupoids. This model category is denoted

by (Perm,Pic) and called the model category of Picard groupoids. The main re-

sult of this paper, theorem 5.2, states that the following adjoint pair is a Quillen

equivalence:

L : ΓPic ⇄ (Perm,Pic) : K, (1)

where K is the classical Segal’s nerve functor which was originally defined in

[Seg74] and a different description of it has recently appeared in[Shac].

A second aspect of our paper is about establishing a Quillen equivalence be-

tween a second pair of model category structures on the same two underlying cate-

gories, namely Perm and ΓCat. We first construct another cartesian closed (com-

binatorial) model category structure on Cat, denoted by (Cat,Gpd), whose fi-

brant objects are groupoids. We then transfer this model category structure on the

category of all permutative categories Perm. Fibrant objects in this model cate-

gory are permutative groupoids and it is denoted by (Perm,Gpd). We localize

the model category of coherently commutative monoidal categories to get another

symmetric monoidal closed model category ΓGpd⊗. The fibrant objects of this

model category can be described as coherently commutative monoidal groupoids.

These two model categories are instrumental in the construction of the model cate-
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2 THE SETUP

gories featuring in our main result. A second prominent result of this paper is that

the following adjunction is a Quillen equivalence:

L : ΓGpd⊗
⇄ (Perm,Gpd) : K (2)

The Quillen equivalences (1) and (2) are proved in section 5. We first prove (2) and

then use that to prove our main result (1).

In the last section of this paper we use our main result to prove a version of

the stable homotopy hypothesis for Picard groupoids: the homotopy category of

(Perm,Pic) is equivalent to a homotopy category of stable homotopy one-types.

We recall that a stable homotopy one-type is a connective spectrum whose stable

homotopy groups are trivial in all degrees greater than one.

We would like to mention that the Quillen equivalence (2) proved in theorem

5.1 can also be proved by an adaptation of some results of [dBM17] to (a suit-

able model category of) groupoids. This approach goes through the theory of den-

droidal groupoids, more concretely, the approach appeals to the abstract relations

between dendroidal groupoids and algebras over operads in groupoids and den-

droidal groupoids and Γ-groupoids. In this paper we establish this Quillen equiva-

lence without using any theory of dendroidal groupoids. Our approach is direct and

is based on the results of [Shac].

Acknowledgments. The author would like to thank Ieke Moerdijk for helping him un-

derstand the relation of his current and previous work with the theory of dendroidal

categories. The author thanks André Joyal for several enlightening conversations

regarding the paper. The author would also like to thank the anonymous referee for

pointing out several inaccuracies in the paper and for making some helpful sugges-

tions that have contributed to an improvement of the paper.

2. The Setup

In this section we will collect the machinery needed for the development of this

paper. We begin with a review of permutative categories. We will also give a quick

review of Γ- categories and collect some useful results about them. We will also

construct a cartesian closed (simplicial) model category structure on the category of

(small) categories Cat which will be used throughout this paper.

2.1 Review of Permutative categories

In this subsection we will briefly review the theory of permutative categories and

monoidal and oplax functors between them. The definitions reviewed here and the

notation specified here will be used throughout this paper.
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2.2 Review of Γ- categories 2 THE SETUP

Definition 2.1. A symmetric monoidal category C is called a permutative category

or a strict symmetric monoidal category if its monoidal structure is strictly associa-

tive and unital.

Definition 2.2. An oplax symmetric monoidal functor F is a triple (F, λF , ǫF ),
where F : C → D is a functor between symmetric monoidal categories C and D,

λF : F ◦ (−⊗
C
−) ⇒ (−⊗

D
−) ◦ (F × F )

is a natural transformation and ǫF : F (1C) → 1D is a morphism in D, such that the

following three conditions OL.1, OL.2 and OL.3 in [Shac, Defn. 2.4] are satisfied.

Notation 2.3. We will say that a functor F : C → D between two symmetric

monoidal categories is unital or normalized if it preserves the unit of the symmetric

monoidal structure i.e. F (1C) = 1D. In particular, we will say that an oplax

symmetric monoidal functor is a unital (or normalized) oplax symmetric monoidal

functor if the morphism ǫF is the identity.

Definition 2.4. An oplax symmetric monoidal functor F = (F, λF , ǫF ) is called a

strong symmetric monoidal functor (or just a symmetric monoidal functor) if λF is

a natural isomorphism and ǫF is also an isomorphism.

Definition 2.5. An oplax symmetric monoidal functor F = (F, λF , ǫF ) is called

a strict symmetric monoidal functor if it is unital and λF is the identity natural

transformation.

Definition 2.6. The category of elements of a Cat valued functor F : C → Cat,

denoted by
∫ c∈C

F (c) or elF , is a category whose objects are pairs (c, d), where

c ∈ C and d ∈ F (c). A map from (c, d) to (a, b) in
∫ c∈C

F (c) is a pair (f, α),
where f : c → a is an arrow in C and α : F (f)(d) → b is an arrow in F (a).

Notation 2.7. Throughout this paper we will denote by J : Cat → Gpd, a right

adjoint of the inclusion functor i : Gpd → Cat. For a category C, the groupoid

J(C) is obtained by discarding all non-invertible arrows of C.

2.2 Review of Γ- categories

In this subsection we will briefly review the theory of Γ- categories. We begin by

introducing some notations which will be used throughout the paper.

Notation 2.8. We will denote by n the finite set {1, 2, . . . , n} and by n+ the based

set {0, 1, 2, . . . , n} whose basepoint is the element 0.
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2.3 Natural model category structure on Cat 2 THE SETUP

Notation 2.9. We will denote by N the skeletal category of finite unbased sets

whose objects are n for all n ≥ 0 and maps are functions of unbased sets. The

category N is a (strict) symmetric monoidal category whose symmetric monoidal

structure will be denoted by +. For two objects k, l ∈ N their tensor product is

defined as follows:

k + l := k + l.

Notation 2.10. We will denote by Γop the skeletal category of finite based sets

whose objects are n+ for all n ≥ 0 and maps are functions of based sets.

Notation 2.11. Given a morphism f : n+ → m+ in Γop, we denote by Supp(f) the

largest subset of n whose image under f does not contain the basepoint of m+. The

set Supp(f) inherits an order from n and therefore could be regarded as an object

of N . We denote by Supp(f)+ the based set Supp(f) ⊔ {0} regarded as an object

of Γop with order inherited from n.

Definition 2.12. A map f : n+ → m+ in Γop is called inert if its restriction to the

set Supp(f)+ is a bijection.

Definition 2.13. A morphism f in Γop is called active if f−1({0}) = {0} i.e. the

pre-image of {0} is the singleton set {0}.

Notation 2.14. A map f : n → m in the category N uniquely determines an active

map in Γop which we will denote by f+ : n+ → m+. This map agrees with f on

non-zero elements of n+.

Remark 1. Each morphism in Γop can be factored into a composite of an inert map

followed by an active map in Γop. The factorization is unique up to a unique iso-

morphism.

Definition 2.15. Each n+ ∈ Γop determines n projection maps δni : n+ → 1+ for

1 ≤ i ≤ n which are defined by δni (i) = 1 and δni (j) = 0 for j 6= i and j ∈ n+.

Definition 2.16. Each n+ ∈ Γop determines a multiplication map mn : n+ → 1+

which is the unique active map from n+ to 1+.

2.3 The model category structure of groupoids on Cat

In this subsection we will construct another model category structure on the category

of all small categories Cat wherein an object is fibrant if and only if it is a groupoid

and which we will refer to as the model category structure of groupoids. We remark

that the model structure constructed here is different from the two well known model
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2.3 Natural model category structure on Cat 2 THE SETUP

structures on Cat, namely the natural model structure wherein all categories are

fibrant and the Thomason model category structure which is Quillen equivalent to

the Kan model category of simplicial sets (sSets,Kan). We will show that the

weak equivalences in this model structure are those functors which induce a weak

homotopy equivalence on their nerve. The model category structure is obtained by

a left Bousfield localization of the natural model category structure on Cat with

respect to the singleton set {i : 0 → I , where I is the category 0 → 1 and i(0) = 0.

We review the definition and an existence result of left Bousfield localizations of

model categories in appendix A.

Proposition 2.17. A category C is local with respect to the singleton set {i : 0 → I}
if and only if it is a groupoid.

Proof. Let J denote the groupoid 0 ∼= 1. This groupoid is equipped with an in-

clusion functor ι : I →֒ J . A category C is a groupoid if and only if J([ι, C]) :
J([J , C]) → J([I, C]) is an equivalence of categories.

Since each object of the natural model category Cat is both cofibrant and fi-

brant, for any pair of categories C and D, the homotopy function complex is given

as follows:

Maph
Cat(C,D) = N(J([C,D])).

This implies that a category C is {i}-local if and only if the following functor is an

equivalence of groupoids:

J([i, C]) : J([I, C]) → J(C).

Now we consider the following commutative diagram:

J([I, C])
J([i,C])

// J(C)

J([J , C])

J([ι,C])

ff

J([j,C])

OO

where j is the inclusion functor 0 →֒ J . In light of the observation that the functor

J([j, C]) is an equivalence of groupoids, the result now follows from the above

commutative diagram of groupoids.

Theorem 2.18. There is a combinatorial model category structure on the category

of (small) categories Cat in which a functor F : A → B is

1. a cofibration if it is monic on objects.
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2.3 Natural model category structure on Cat 2 THE SETUP

2. a weak equivalence if the following functor

[i, F ] : [B,Z] → [A,Z]

is an equivalence of categories for each groupoid Z.

3. a fibration if it has the right lifting property with respect to functors which

satisfy both (1) and (2).

Proof. We want to carry out a left Bousfield localization of the natural model cate-

gory of (small) categories with respect to the singleton set {i : 0 → I . The existence

of this localization follows from theorem A.2. (1) follows from the aforementioned

theorem. (2) follows from proposition 2.17 and [Shac, Lemma E.4]. (3) follows

from the fact that fibrations in any model category are completely determined by

cofibrations and weak equivalences.

Notation 2.19. We will refer to the above model category structure as the model cat-

egory structure of groupoids on Cat and denote the model category by (Cat,Gpd).
We will refer to a fibration in this model category as a path fibration of categories

and refer to a weak equivalence as a groupoidal equivalence of categories.

Remark 2. Every category is cofibrant in the model category of groupoids. A cate-

gory is fibrant if and only if it is a groupoid.

Remark 3. A groupoidal equivalence between groupoids is an equivalence of cate-

gories.

Proposition 2.20. The nerve of a path fibration of categories between two groupoids

is a Kan fibration of simplicial sets.

Proof. Let p : C → D be a path fibration of categories such that both C and D

are groupoids. Since C and D are fibrant in (Cat,Gpd), which is a left Bous-

field localization of the natural model category structure on Cat, therefore p is an

isofibration from [Sha20, Lem. 4.17].

The nerve functor takes an isofibrations to a pseudo-fibration i.e. a fibration in

the Joyal model category on simplicial sets so N(p) : N(C) → N(D) is a pseudo-

fibration. However both N(C) and N(D) are Kan complexes. Now it follows that

N(p) is a Kan fibration , by the same aforementioned result [Sha20, Lem. 4.17]

because (sSets,Kan) is a left Bousfield localization of the Joyal model category

of quasi-categories (sSets,Q).
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2.3 Natural model category structure on Cat 2 THE SETUP

Next we are interested in providing a characterization of weak equivalences

and fibrations in the model category of groupoids. We first recall the notion of a

homotopy reflection:

Definition 2.21. A Quillen adjunction (F,G) is called a homotopy reflection if the

right derived functor of G is fully-faithful.

Lemma 2.22. The adjunction τ1 : sSets ⇄ Cat : N is a Quillen adjunction

between the model category of groupoids and the Kan model category of simplicial

sets. Further the adjunction is also a homotopy reflection.

Proof. The first statement follows from the observation that the adjunction in con-

text is a composite of the following two Quillen adjunctions:

τ1 : (sSets,Kan) ⇄ Cat : N

and

id : Cat ⇄ (Cat,Gpd) : id

where Cat denotes the natural model category of (small) categories.

The second statement follows from the observation that both of the aforemen-

tioned Quillen adjunctions are homotopy reflections and the fact that a composite of

homotopy reflections is again a homotopy reflection.

The following corollary is an easy consequence of the above lemma:

Corollary 2.23. A functor F : G → H between groupoids is a groupoidal equiva-

lence if and only if it’s nerve, N(F ), is a homotopy equivalence of Kan complexes.

The inclusion functor Gpd → Cat, where Gpd is the full subcategory whose

objects are groupoids, has a left adjoint which we denote by Π1 : Cat → Gpd.

The groupoid Π1(C) is obtained from the category C by formally inverting all ar-

rows in C i.e. Π1(C) = C[Ar(C)−1].

Remark 4. In the paper [JT08] a model category structure was constructed on the

full subcategory of Cat whose objects are groupoids Gpd. We will refer to this

model category as the natural model category of groupoids. The functor Π1 is a left

Quillen functor of a Quillen adjunction

Π1 : Cat ⇋ Gpd : i

where Cat is endowed with the model category structure of groupoids and Gpd

is the natural model category of groupoids. This Quillen adjunction is a Quillen

equivalence.
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2.3 Natural model category structure on Cat 2 THE SETUP

The following proposition will be used repeatedly in this paper:

Proposition 2.24. The free groupoid functor Π1 : Cat → Gpd preserves prod-

ucts.

Proposition 2.25. A functor F : C → D is a groupoidal equivalence if and only if

the induced functor Π1(F ) : Π1(C) → Π1(D) is an equivalence of categories.

Proof. The unit of the adjunction Π1 ⊣ i gives the following commutative diagram:

C //

F

��

Π1(C)

Π1(F )
��

D // Π1(D)

where both vertical functors are inclusions. We will first prove that these two inclu-

sion maps are both weak equivalences. Since Π1 is a left adjoint to the inclusion

functor i therefore the inclusion functor ιC : C → Π1(C) induces the following

bijection for each groupoid G:

Cat(Π1(C), G) ∼= Cat(C,G).

Consider the following chain of bijections:

Cat(I, [Π1(C), G]) ∼= Cat(I ×Π1(C), G) ∼= Cat(Π1(C), [I,G])
∼= Cat(C, [I,G]) ∼= Cat(I × C,G) ∼= Cat(I, [C,G]).

The above two bijections together imply that we have the following equivalence of

functor categories:

[ιC , G] : [Π1(C), G] → [C,G].

Now Theorem 2.18 (2) implies that the two inclusion maps are weak equivalences

in the model category structure of groupoids. Now the theorem follows from the

two out of three property of weak equivalences in a model category.

Finally we would like to show that the groupoidal model category structure on

Cat is cartesian closed.

Proposition 2.26. The groupoidal model category structure on Cat is cartesian

closed.

Proof. The proposition follows from an application of theorem A.3 to the cartesian

closed natural model category Cat with respect to the singleton set of maps {i0}.
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3 TWO MODEL CATEGORY STRUCTURES ON PERM

Proposition 2.27. The model category of groupoids is a simplicial model category.

Proof. The proposition follows by an application of [Bar07, lem. 3.6] to the Quillen

adjunction (τ1, N) from lemma 2.22. The simplicial Hom is defined by the com-

posite bifunctor:

Catop ×Cat
[−,−]
→ Cat

N
→ sSets.

The cotensor is defined by the following bifunctor:

sSetsop ×Cat → Catop
τ1×id
× Cat

[−,−]
→ Cat

The tensor product bifunctor is defined by the following composite:

Cat× sSets
id×τ1→ Cat×Cat

−×−
→ Cat.

3. Two model category structures on Perm

We denote by Perm the category whose objects are permutative categories, namely

symmetric monoidal categories which are strictly unital and strictly associative.

The morphisms of this category are strict symmetric monoidal functors, namely

those symmetric monoidal functors which preserve the symmetric monoidal struc-

ture strictly. A model category structure on Perm was described in [Shac, Thm.

3.1]. This model category structure was obtained by transferring the natural model

category structure on Cat to Perm and therefore it is aptly called the natural

model category structure of permutative categories. In this section we will describe

two new model category structures on Perm which can be described as the model

category of permutative groupoids and the model category of (permutative) Picard

groupoids.

3.1 The model category structure of Permutative groupoids

In this subsection we will construct the desired model category structure of permu-

tative groupoids on Perm namely a model category structure whose fibrant objects

are groupoids equipped with a permutative or strict symmetric monoidal structure.

Before doing so we recall the following adjunction and also a permutative groupoid

structure inherited by the fundamental groupoid of a permutative category:

F : Cat ⇋ Perm : i (3)
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3.1 3 TWO MODEL CATEGORY STRUCTURES ON PERM

where i is the forgetful functor and F is its left adjoint namely the free permuta-

tive category functor. The following lemma recalls the aforementioned permutative

structure:

Lemma 3.1. The fundamental groupoid of a permutative category is a permutative

groupoid.

Proof. Let C be a permutative category and let − ⊗ − : C × C → C be bifunctor

giving the permutative structure. From proposition 2.24, we have the isomorphism

Π1(C × C) ∼= Π1(C)×Π1(C). Since Π1(C) is a groupoid, the universal property

of Π1(C ×C) and the above isomorphism imply that we have a dotted arrow in the

following diagram which makes the diagram commutative:

C × C
−⊗−

//

��

C

��

Π1(C)×Π1(C) // Π1(C)

This bifunctor, represented by the dotted arrow in the above diagram, provides a

permutative structure on the groupoid Π1(C). The symmetry natural transformation

of C is a functor

γC : C × C × J → C

Once again by proposition 2.24 the free groupoid generated by C × C × J is

Π1(C) × Π1(C) × J . Again, the universal property of Π1(C × C × J) and the

above isomorphism imply that we have a dotted arrow in the following diagram:

C × C × J
γC

//

��

C

��

Π1(C)×Π1(C)× JγΠ1(C)

// Π1(C)

which is the symmetry natural isomorphism of Π1(C).

Remark 5. The functor Π1 restricts to a functor on Perm such that the following

diagram commutes:

Cat
Π1

// Gpd

Perm

i

OO

Π1

// PGpd

i

OO
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3.1 3 TWO MODEL CATEGORY STRUCTURES ON PERM

where PGpd denotes the category of permutative groupoids i.e., the full subcat-

egory of Perm having as objects those permutative categories whose underlying

categories are groupoids.

We recall from [Shac] that Γ1 is the representable Γ- category which is also the

unit of the symmetric monoidal structure on the functor category ΓCat which is

tensored over Cat. The inclusion map i0 : 0 →֒ I gives us the following map of

Γ- categories by tensoring with Γ1:

Γ1 ⊗ i0 : Γ
1 → Γ1 ⊗ I (4)

We further recall from [Shac] the Quillen equivalence L : ΓCat ⇄ Perm : K.

The image of the above map under the left Quillen functor L gives us the following

strict symmetric monoidal functor which is the generator of the model structure to

be constructed later in this subsection:

L(Γ1 ⊗ i0) : L(Γ
1) → L(Γ1 ⊗ I) (5)

Remark 6. The above strict symmetric monoidal functor L(Γ1 ⊗ i0) has cofibrant

domain and codomain.

Now we state the main theorem of this subsection:

Theorem 3.2. There is a model category structure on the category of all small per-

mutative categories and strict symmetric monoidal functors Perm in which

1. A cofibration is a strict symmetric monoidal functor which is a cofibration in

the natural model category structure on Perm

2. A weak-equivalence is an {L(Γ1 ⊗ i0)}-local equivalence.

3. A fibration is a strict symmetric monoidal functor having the right lifting

property with respect to all maps which are both cofibrations and weak equiv-

alences.

Further, this model category structure is combinatorial and left-proper.

Proof. The desired model category structure is a left-Bousfield localization of the

left-proper, combinatorial natural model category structure on Perm with respect

to the singleton {L(Γ1 ⊗ i0)}. The existence follows from A.2.

The following proposition characterizes fibrant objects of the above model cat-

egory:
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3.1 3 TWO MODEL CATEGORY STRUCTURES ON PERM

Proposition 3.3. A permutative category is fibrant in the above model category if

and only if it’s underlying category is a groupoid.

Proof. Let C be a permutative category. In light of 2.17, it is sufficient to show that

C is fibrant in the above model category if and only if J([i, C]) : J([I, C]) → J(C)
is an equivalence of groupoids. It follows from the results of [Shac, appendix D]

that the two homotopy function complexes in context can be defined as follows:

Maph(L(Γ1 ⊗ I), C) = N(J([L(Γ1 ⊗ I), C]str
⊗ ))

and

Maph(L(Γ1), C) = N(J([L(Γ1), C]str
⊗ )).

Further, the simplicial map Maph(L(Γ1 ⊗ i0), C) is an equivalence of Kan com-

plexes if and only if J([L(Γ1 ⊗ i0), C]str
⊗ ) is an equivalence of groupoids. Now

the result can be deduced by the following commutative diagram in the category of

groupoids:

J([L(Γ1 ⊗ I), C]str
⊗ )

J([L(Γ1⊗i0),C]str
⊗ )

��

∼=
// J(MapΓCat(Γ

1 ⊗ I,K(C)))

∼=
��

J(MapΓCat(Γ
1,homΓCat(I,K(C))))

J(MapΓCat
(Γ1,homΓCat(i0,K(C))))

��

∼=
// J([I, C])

J([i,C])

��

J([L(Γ1), C]str
⊗ ) ∼=

// J(MapΓCat(Γ
1,K(C))) ∼=

// J(C)

where −⊗−, MapΓCat(−,−) and homΓCat(−,−) are the tensor product, cate-

gorical Hom and cotensor of ΓCat over Cat. See [Shac, Sec. 4] for details.

Notation 3.4. We will refer to the above model category as the model category of

permutative groupoids and will be denoted by (Perm,Gpd).

The following proposition presents a characterization of weak-equivalences in

(Perm,Gpd):

Proposition 3.5. A strict symmetric monoidal functor F : C → D is a weak-

equivalence in (Perm,Gpd) if and only if its image U(F ), under the forgetful

functor U : Perm → Cat, is a groupoidal equivalence of (ordinary) categories.

Proof. The proof has two parts. In the first part we show that (Π1, i) is a fibrant

replacement functor on (Perm,Gpd). To show this it suffices to show that for
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3.1 3 TWO MODEL CATEGORY STRUCTURES ON PERM

each permutative category C, the map i : C → Π1(C) is an acyclic cofibration

in (Perm,Gpd). It is easy to see that i is a cofibration in Perm in light of the

observation that Ob(i) is the identity function and [Shac, Lem. 3.8]. In order to

show that i is also a weak-equivalence we observe the following diagram:

C

i
��

ic
// Cf

if

��

Π1(C)

::

Π1(C)

where i = if ◦ ic is a factorization of i into an acyclic cofibration ic and a fibration

if in (Perm,Gpd). Since if is a fibration in (Perm,Gpd) therefore Cf is a per-

mutative groupoid. Further, a fibration between permutative groupoids is a fibration

in the natural model category Perm which is an isofibration. Thus if is a fibration

in (Cat,Gpd). Since i is an acyclic cofibration in (Cat,Gpd) therefore we have

a (dotted) lifting arrow which makes the whole diagram commutative. Since the two

horizontal arrows in the above diagram are weak-equivalences in (Perm,Gpd),
by the two out of six property of weak-equivalences in model categories we con-

clude that i is also a weak-equivalence in (Perm,Gpd).
In the second part of the proof we establish the desired result. Since (Π1, i) is a

fibrant replacement functor therefore F is a weak-equivalence in (Perm,Gpd) if

and only if Π1(F ) is one. However, Π1(F ) is a weak-equivalence in (Perm,Gpd)
if and only if it is a weak-equivalence in the natural model category Perm. Thus

Π1(F ) is a weak-equivalence in (Perm,Gpd) if and only if U(Π1(F )) is an

equivalence of categories. Now the result follows from proposition 2.25.

The natural model category structure on Perm is a Cat-model category struc-

ture [Shac, Thm. 3.1]. We recall that the cotensor of this enrichment is given by the

bifunctor

[−,−] : Catop ×Perm
id×U
→ Cat×Cat

[−,−]
→ Perm (6)

where [−,−] is the internal Hom of Cat but it takes values in Perm if the codomain

category is permutative. The categorical Hom is the category of strict symmetric

monoidal functors is given by the bifunctor

[−,−]str
⊗ : Permop ×Perm → Cat (7)

The tensor product of this enrichment is does not have a simple description but we

will denote it as follows:

−⊠− : Cat×Perm → Perm (8)
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Proposition 3.6. The model category of permutative groupoids (Perm,Gpd) is a

(Cat,Gpd)-model category.

Proof. Let i : U → V be a functor which is monic on objects and j : W → X be

a cofibration in (Perm,Gpd). We will show that the following map in Perm is a

cofibration in (Perm,Gpd) which is acyclic whenever i or j is acyclic:

i✷j : (V ⊠W ) ⊔
U⊠W

(U ⊠X) → V ⊠X.

Since the cofibrations in the natural model category structure on Perm are the same

as those in (Perm,Gpd) and the natural model category is a Cat-model category,

therefore i✷j is a cofibration in (Perm,Gpd).
Let us further assume that i is an acyclic cofibration in (Cat,Gpd). We will

show that now i✷j is an acyclic cofibration. We recall a well-known fact that a

map is an acyclic cofibration in a model category if and only if it has the left-lifting

property with respect to all fibrations between fibrant objects. Let p : A → B be a

fibration between permutative groupoids. By adjointness, the map i✷j has the left

lifting property with respect to p if and only if there exists a (dotted) lifting arrow in

the following diagram:

U

i

��

// [X,A]str
⊗

(j∗,p∗)

��

V //

L

77

[X,B]str
⊗ ×

[W,B]str
⊗

[W,A]str
⊗

Since the natural model category Perm is a Cat-model category with categorical

Hom given by [−,−]str
⊗ , therefore the assumptions on j and p together imply that the

map (j∗, p∗) is a fibration in the natural model structure on Cat namely an isofibra-

tion. However, it is an isofibration between groupoids, therefore it is a fibration in

(Cat,Gpd). Hence there exists a(dotted) lifting arrow L which makes the whole

diagram commutative. Thus, we have shown that i✷j is an acyclic cofibration when

i is one.

A similar argument applied to j shows that if j is an acyclic cofibration in

(Perm,Gpd), then so is i✷j.

The (Cat,Gpd)-model category structure described in the proposition above

induces a simplicial model category structure on (Perm,Gpd):
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Proposition 3.7. The model category of permutative groupoids (Perm,Gpd) is a

simplicial model category.

Proof. The proof follows from [Bar07, lem. 3.6] and the Cat-model category struc-

ture on the natural model category Perm. However, we will describe the three bi-

functors involved in this enrichment: The simplicial Hom bifunctor is defined to be

the composite:

Permop ×Perm
[−,−]str

⊗
→ Cat

N
→ sSets. (9)

This cotensor is defined as follows:

sSetsop ×Perm
τ
op
1 ×id
→ Catop ×Perm

[−,−]
→ Perm (10)

The tensor product bifunctor is defined by the following composite:

sSets×Perm
τ1×id
→ Cat×Perm

−⊠−
→ Perm. (11)

3.2 The model category of Picard groupoids

In this subsection we will construct yet another model category structure on Perm

in which the fibrant objects are Picard groupoids. We obtain the desired model

category by carrying out a left Bousfield localization of the model category con-

structed in the previous subsection, namely (Perm,Gpd). The model category

we construct inherits an enrichment over (Cat,Gpd) and the Kan model category

of simplicial sets from its parent model category.

Definition 3.8. A Picard groupoid G is a permutative groupoid such that one of the

following two functors is an equivalences of categories:

G×G
(−⊗

G
−,p1)

→ G×G and G×G
(−⊗

G
−,p2)

→ G×G, (12)

where p1 and p2 are the two obvious projection maps.

Remark 7. If one of the two functors in the above definition is an equivalence of

categories, then the permutative structure on the groupoid G in the above definition

implies the other functor is also an equivalence.

Remark 8. A permutative groupoid is a Picard groupoid if and only if for each

object g ∈ Ob(G) there exists another object g−1 ∈ Ob(G) and the following two

isomorphisms in G:

g ⊗
G
g−1 ∼= 1G, g−1 ⊗

G
g ∼= 1G
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We recall the construction of the permutative category L(1) from [Shac]. The

permutative category L(1) is a groupoid whose object set consists of all finite se-

quences (s1, s2, . . . , sr), where either si = 1 or si = 0 for all 1 ≤ i ≤ r. For

an object S = (s1, s2, . . . , sr) in L(1) we denote by S the sum
r
+
i=1

si. A map

S = (s1, s2, . . . , sr) → T = (t1, t2, . . . , tk) in L(1) is a bijection f : S → T . The

symmetric monoidal structure on L(1) is given by concatenation. It follows from

[Shac, Lem. 3.8] that L(1) is cofibrant in the natural model category Perm.

Proposition 3.9. For any permutative groupoid G, the evaluation map

ev(1) : [L(1), G]str
⊗ → G

is an equivalence of categories.

Proof. The free permutative category F(1), see (3), can be described as follow: The

objects are finite sets n for all n ≥ 0. A morphism is a bijection between finite sets.

The permutative category F(1) is cofibrant in the natural model category Perm.

This category has the property that the evaluation functor on the object 1:

ev1 : [F(1), C]str
⊗ → C

is an isomorphism for any permutative category C. This category is equipped with

an inclusion functor

i : F(1) → L(1),

such that i(1) = (1), which is an equivalence of categories. Now the 2 out of 3 and

the following commutative diagram prove the proposition:

[L(1), G]str
⊗

ev(1)
//

[i,G]str
⊗

��

G

[F(1), G]str
⊗

∼=

::

The maps of finite sets m2 : 2+ → 1+, δ21 : 2+ → 1+ and δ22 : 2+ → 1+

together induce the following two maps in Perm

L(1) ∨ L(1)
(L(m2),L(δ21))→ L(2) and L(1) ∨ L(1)

(L(δ21),L(δ
2
2))→ L(2) (13)
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Remark 9. For each n ∈ N, the permutative groupoid L(n) [Shac, Defn. 5.4] is

canonically isomorphic to the permutative groupoid L(Γn), where L : ΓCat →
Perm is the left adjoint of the Segal’s nerve functor, see [Shac, Sec. 5]. This im-

plies that the map (L(m2),L(δ
2
1)) is isomorphic to L(Γ(m2,δ

2
1)) and (L(m2),L(δ

2
2))

is isomorphic to L(Γ(m2,δ
2
2)), where the maps Γ(m2,δ

2
1) and Γ(m2,δ

2
2) are defined in

(17) and (18) respectively.

Remark 10. The above remark and the fact that L is a left Quillen functor together

imply that the permutative groupoid L(n) is cofibrant in the natural model category

Perm. The symmetric monoidal structure on L(n) is concatenation.

By [Shac, Lemma 5.29] the strict symmetric monoidal functor (L(δ21),L(δ
2
2))

is an acyclic cofibration in the natural model category structure on Perm. This

implies that for any permutative category C, we have the following equivalence of

categories:

[(L(δ21),L(δ
2
2)), C]str

⊗ : [L(2), C]str
⊗ → [L(1), C]str

⊗ × [L(1), C]str
⊗ . (14)

Lemma 3.10. A permutative groupoid G is a Picard groupoid if and only if it is a

{(L(m2),L(δ
2
1))}-local object.

Proof. The permutative groupoid G is {(L(m2),L(δ
2
1))}-local if and only if we

have the following weak homotopy equivalence of simplicial sets:

Maph((L(m2),L(δ
2
1)), G) : Maph(L(2), G) → Maph(L(1) ∨ L(1), G)

We recall that the function complex for a pair of permutative categories C and D in

(Perm,Gpd), where C is cofibrant and D is a permutative groupoid is defined as

follows:

Maph
(Perm,Gpd)(C,D) := N([C,D]str

⊗ )

which implies that Maph((L(m2),L(δ
2
1)), G) is a homotopy equivalence if and

only if the functor:

[(L(m2),L(δ
2
1)), G]str

⊗ : [L(2), G]str
⊗ → [L(1)∨L(1), G]str

⊗
∼= [L(1), G]str

⊗×[L(1), G]str
⊗ .

is an equivalence of categories. Thus we get the following (composite) weak equiv-

alence in (Perm,Gpd):

[L(2), G]str
⊗

p
→ [L(1), G]str

⊗ × [L(1), G]str
⊗

(ev(1),ev(1))
→ G×G (15)

where p = [(L(m2),L(δ
2
1)), G]str

⊗ . There is another composite map in Perm which

is the following:

[L(2), G]str
⊗

q
→ [L(1), G]str

⊗ × [L(1), G]str
⊗

(ev(1),ev(1))
→ G×G

r
→ G×G (16)
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where q = [(L(δ21),L(δ
2
2)), G]str

⊗ and the map r = (− ⊗
G

−, p2). We will now

construct a natural isomorphism (in Cat) H : (ev(1), ev(1))◦p ⇒ r◦(ev(1), ev(1))◦q
between the above two functors. For each F ∈ [L(2), G]str

⊗ let us denote F ((2))
by g12. The isomorphism p12 : (2) ∼= ({1}, {2}) in L(2) gives an isomorphism

F (p12) : g12 ∼= g1⊗g2, where g1 = F (({1})) and g2 = F (({2})). We observe that

r ◦ (ev(1), ev(1)) ◦ q(F ) = (g1 ⊗ g2, g1) and (ev(1), ev(1)) ◦ p(F ) = (g12, g1). We

define H(F ) := F (p12). Let σ : F ⇒ G be a (monoidal) natural transformation

and denoting G((2)) by g′12, G((1)) by g′1 and G((2)) by g′2 we get an isomorphism

G(p12) : g
′
12

∼= g′1 ⊗ g′2. The following diagram commutes:

g12
H(F )

//

σ((2))
��

g1 ⊗ g2

σ(({1},{2}))
��

g′12 H(G)
// g′1 ⊗ g′2

because σ is a natural isomorphism. Hence we have constructed the desired natural

isomorphism H . The construction of H implies that the strict symmetric monoidal

functor r◦(ev(1), ev(1))◦q is a groupoidal equivalence if and only if (ev(1), ev(1))◦p
is one. We know that the functors q and (ev(1), ev(1)) are both equivalence of cate-

gories. Let us assume that G is a aforementioned local object then (ev(1), ev(1)) ◦ p
is a groupoidal equivalence and, by the above argument, so is the composite functor

r ◦ (ev(1), ev(1)) ◦ q. By two out of three property of weak equivalences this implies

that r is a weak equivalence which implies that G is a Picard groupoid. Conversely,

let us assume that G is a Picard groupoid in which case r is a groupoidal equiva-

lence which means that both r◦(ev(1), ev(1))◦q and (ev(1), ev(1))◦p are groupoidal

equivalences. Again by the two out of three property, p is a groupoidal equivalence

which implies that G is local.

Theorem 3.11. There is a combinatorial model category structure on the category

of (small) permutative categories Perm in which a functor F : A → B is

1. a cofibration if it is a cofibration in the natural model category structure on

Perm.

2. a weak equivalence if the following functor

Maph
(Perm,Gpd)(F, P ) : Maph

(Perm,Gpd)(B,P ) → Maph
(Perm,Gpd)(A,P )

is a homotopy equivalence of simplicial sets for each Picard groupoid P .
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3. a fibration if it has the right lifting property with respect to the set of maps

which are both cofibrations and weak equivalences.

A permutative category is a fibrant objects of this model category if and only if it ia

a Picard groupoid.

Proof. We will prove this theorem by localizing the model category of permutative

groupoids (Perm,Gpd) with respect to the map

L(1) ∨ L(1)
(L(m2),L(δ21))→ L(2).

The existence of this left Bousfield localization follows from theorem A.2. A left

Bousfield localization preserves cofibrations therefore the cofibrations in the new

model category are the same as those in (Perm,Gpd). Lemma 3.10 above tells us

that a permutative groupoid is a {(L(m2),L(δ
2
1))}-local object if and only if it is a

Picard groupoid.

Notation 3.12. We will refer to the above model category as the model category of

Picard groupoids. We denote this model category by (Perm,Pic).

Adaptations of arguments used in the proof of propositions 3.6 and 3.7, to the

model category (Perm,Pic) prove the following two analogous propositions:

Proposition 3.13. The bifunctors (8), (6) and (7) equip the model category of Picard

groupoids (Perm,Pic) with a (Cat,Gpd)-model category structure.

and

Proposition 3.14. The bifunctors (11), (10) and (9) equip the model category of

Picard groupoids (Perm,Pic) with a simplicial model category structure.

4. The model category structures

A Γ- category is a functor from Γop to Cat. The category of functors from Γop

to Cat and natural transformations between them [Γop,Cat] will be denoted by

ΓCat. The main objective of this section is to construct two new symmetric monoidal

closed model category structures on ΓCat. Some notations used in this section have

been defined in [Shac, Sec. 4]. We recall the following definition:

Definition 4.1. A Q-cofibration is a cofibration in the strict (or projective) model

category structure on ΓCat.
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4.1 Coherently commutative monoidal groupoids

In the paper [Shac, Sec. 4] a symmetric monoidal closed model category struc-

ture was constructed on ΓCat whose fibrant objects are coherently commutative

monoidal categories, see definition [Shac, Defn. 4.15]. These objects should be

understood as categories equipped with a multiplication which is associative, unital

and commutative only up to higher coherence data. In this subsection we want to

construct another symmetric monoidal closed model category structure on ΓCat

whose fibrant objects are groupoids equipped with a multiplication which is asso-

ciative, unital and commutative only up to higher coherence data. In other words,

the underlying category of a fibrant object in the desired model category is a fibrant

object in the groupoidal model category (Cat,Gpd). We will construct the desired

model category as a left Bousfield localization of the model category of coherently

commutative monoidal categories with respect to the map Γ1 ⊗ i0 : Γ1 → Γ1 ⊗ I ,

see (4).

Definition 4.2. We will refer to a {Γ1 ⊗ i0}-local equivalence as an equivalence of

coherently commutative monoidal groupoids.

Definition 4.3. We will refer to a fibrant {Γ1 ⊗ i0}-local object as a coherently

commutative monoidal groupoid.

Proposition 4.4. A Γ- category X is a coherently commutative monoidal groupoid

if and only if the following two conditions are satisfied:

1. For each k+ ∈ Ob(Γop), X(k+) is a groupoid.

2. For each k+, l+ ∈ Ob(Γop)

(X(δk+l
k ), X(δk+l

l )) : X((k + l)+) → X(k+)×X(l+)

is a groupoidal equivalence.

Proof. The model category of coherently commutative monoidal categories is a

Cat-model category and its categorical Hom MapΓCat(−,−) is defined in [Shac,

Sec. 4]. Now it follows from [Shac, Appendix D] that for any cofibrant C and

fibrant X in the model category of coherently commutative monoidal categories

Maph
ΓCat(C,X) = N (J (MapΓCat(C,X))) .

We begin by observing that conditions (1) and (2) are satisfied by X if and only

if X is a coherently commutative monoidal category and X(1+) is a groupoid. Now
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it is sufficient to show that X is a coherently commutative monoidal groupoid if and

only if X(1+) is a groupoid and X is a coherently commutative monoidal category.

The Γ- category X is a coherently commutative monoidal groupoid if and only if it

is a coherently commutative monoidal category and the following simplicial map is

a weak homotopy equivalence:

N
(

J
(

MapΓCat(Γ
1 ⊗ i0, X)

))

: N
(

J
(

MapΓCat(Γ
1 ⊗ I,X)

))

→

N
(

J
(

MapΓCat(Γ
1, X)

))

.

This simplicial map of Kan complexes is a homotopy equivalence if and only if the

following functor between groupoids is a groupoidal equivalence:

(

J
(

MapΓCat(Γ
1 ⊗ i0, X)

))

:
(

J
(

MapΓCat(Γ
1 ⊗ I,X)

))

→
(

J
(

MapΓCat(Γ
1, X)

))

.

By adjointness, the above functor is a groupoidal equivalence if and only if the

following functor is a groupoidal equivalence:

(

J
(

MapΓCat(Γ
1,homΓCat(i0, X))

))

:
(

J
(

MapΓCat(Γ
1,homΓCat(I,X))

))

→
(

J
(

MapΓCat(Γ
1, X)

))

∼= J
(

X(1+)
)

.

Unwinding definition, the functor
(

J
(

MapΓCat(Γ
1,homΓCat(i0, X))

))

is iso-

morphic to the following functor:

J [i0;X(1+)] : J [I;X(1+)] → J(X(1+)).

This implies that X is a coherently commutative monoidal groupoid if and only if

it is a coherently commutative monoidal category and X(1+) is a groupoid i.e. a

i0-local object in Cat.

A left-Bousfield localization with respect to the map {Γ1 ⊗ i0} gives us the

following model category.

Theorem 4.5. There is a left proper, combinatorial model category structure on the

category of Γ- categories, ΓCat, in which

1. The class of cofibrations is the same as the class of Q-cofibrations of Γ- categories.

308



4.1 4 THE MODEL CATEGORY STRUCTURES

2. The weak equivalences are equivalences of coherently commutative monoidal

groupoids.

An object is fibrant in this model category if and only if it is a coherently com-

mutative monoidal groupoid.

Proof. The model category structure follows from an application of A.2 to the

model category of coherently commutative monoidal categories with respect to the

singleton set {Γ1 ⊗ i0}. The characterization of fibrant objects also follows from

the same theorem.

Notation 4.6. We will refer to the above model category as the model category of

coherently commutative monoidal categories and denote it by ΓGpd⊗

The following proposition will be useful in proving the main result of this sub-

section:

Proposition 4.7. The model category ΓGpd⊗ is a (Cat,Gpd)-model category.

The rest of this subsection is devoted to showing that the model category ΓGpd⊗

is a symmetric monoidal closed model category under the Day convolution. In order

to do so we will need the following result:

Lemma 4.8. For each Q-cofibrant Γ- category W , the mapping object Map
ΓCat

(W,A)
is a coherently commutative monoidal groupoid if A is one.

Proof. Since A is also a coherently commutative monoidal category i.e. a fibrant

object in the model category of coherently commutative monoidal categories, the

symmetric monoidal closed structure on the aforementioned model category, [Shac,

Thm. 4.27], implies that Map
ΓCat

(W,A) is a coherently commutative monoidal

category. Now, in light of proposition 4.4, it is sufficient to show that Map
ΓCat

(W,A)(k+)

is a groupoid, for all k+ ∈ Γop. Since W is cofibrant, therefore we have the follow-

ing equality:

Map
ΓCat

(W,A)(k+) = MapΓCat(W ∗ Γk, A).

We recall that Γk is a Q-cofibrant Γ- category. Since W is Q-cofibrant by assump-

tion therefore W ∗Γk is also Q-cofibrant by [Shac, Thm. 4.27]. The result now fol-

lows from the above observation that the domain Γ- category W ∗Γk is Q-cofibrant

and the model category ΓGpd⊗ is a (Cat,Gpd)-model category which together

imply that the category MapΓCat(W ∗ Γk, A) is a groupoid.
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The following theorem is the main result of this section:

Theorem 4.9. The model category of coherently commutative monoidal groupoids

ΓGpd⊗ is a symmetric monoidal closed model category under the Day convolution

product.

Proof. The generating cofibrations in the model category of coherently commuta-

tive monoidal categories are maps between Q-cofibrant objects. For a Q-cofibrant

object W and a coherently commutative monoidal groupoid A, the mapping object

Map
ΓCat

(W,A) is a coherently commutative monoidal groupoid by lemma 4.8.

The model category of coherently commutative monoidal categories is symmetric

monoidal closed under the Day convolution product by [Shac, Thm. 4.27]. Now the

result follows from Theorem A.3.

4.2 Coherently commutative Picard groupoids

In this subsection we will introduce a notion of a coherently commutative Picard

groupoid. We will go on to construct another model category structure on ΓCat

whose fibrant objects are the aforementioned objects. A prominent result of this

section is that this new model category is symmetric monoidal closed under the Day

convolution product thereby giving us a tensor product of Picard groupoids.

The mode of construction of this new model category will be localization. The

following two pairs of maps, see definitions 2.16 and 2.15, of based sets:

m2 : 2
+ → 1+ and δ21 : 2+ → 1+

and

m2 : 2
+ → 1+ and δ22 : 2+ → 1+

induce two maps of Γ- categories

Γ(m2,δ
2
1) : Γ1 ∨ Γ1 → Γ2 (17)

and

Γ(m2,δ
2
2) : Γ1 ∨ Γ1 → Γ2 (18)

Remark 11. We recall that for each k ≥ 0, the representatble Γ- category Γk is

Q-cofibrant. Further the coproduct of two Q-cofibrant Γ- categories is again Q-

cofibrant. This implies that the above two maps are between Q-cofibrant Γ- categories.

Notation 4.10. We denote the set {Γ(m2,δ
2
1)} by P∞.
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Definition 4.11. A coherently commutative Picard groupoid is a coherently com-

mutative monoidal groupoid which is also a P∞-local object.

Unravelling the above definition gives us the following characterization of a

coherently commutative Picard groupoid:

Proposition 4.12. A Γ- category X is a coherently commutative Picard groupoid if

and only if it satisfies the following three conditions:

1. For each k+ ∈ Ob(Γop), X(k+) is a groupoid.

2. For each k+, l+ ∈ Ob(Γop)

(X(δk+l
k ), X(δk+l

l )) : X((k + l)+) → X(k+)×X(l+)

is a groupoidal equivalence.

3. One of the following two maps, and hence both maps, are groupoidal equiva-

lences:

(X(m2), X(δ21)) : X(2+) → X(1+)×X(1+) and (X(m2), X(δ22)) : X(2+) → X(1+)×X(1+)

Definition 4.13. A stable equivalence of Γ- categories is a P∞-local equivalence.

An application of theorem A.2 to the model category ΓGpd⊗ with respect to

the set P∞ gives us the following model category:

Theorem 4.14. There is a left proper, combinatorial model category structure on

the category of Γ- categories, ΓCat, in which

1. The class of cofibrations is the same as the class of Q-cofibrations of Γ- categories.

2. The weak equivalences are stable equivalences of Γ- categories.

An object is fibrant in this model category if and only if it is a coherently com-

mutative Picard groupoid.

Notation 4.15. We denote the above model category by ΓPic.

The following lemma will be useful in the proof of the main result of this sec-

tion:

Lemma 4.16. For each Q-cofibrant Γ- category W , the mapping object Map
ΓCat

(W,A)
is a coherently commutative Picard groupoid if A is one.
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Proof. If A is a coherently commutative Picard groupoid then it is also a fibrant

object in the model category of coherently commutative monoidal groupoids, the

symmetric monoidal closed structure on the aforementioned model category, 4.9,

implies that Map
ΓCat

(W,A) is a coherently commutative monoidal groupoid be-

cause W is Q-cofibrant by assumption. Thus we have verified (1) and (2) in propo-

sition 4.12. In order to verify (3) in the same proposition we need to show that the

following functor is a groupoidal equivalence:

MapΓCat(W ∗ Γ(m2,δ
2
1), A) : MapΓCat(W ∗ Γ2, A) →

MapΓCat(W ∗ Γ1, A)×MapΓCat(W ∗ Γ1, A)

By adjointness, the morphism of Γ- categories MapΓCat(W ∗ Γ(m2,δ
2
1), A) is a

groupoidal equivalence if and only if its adjunct map

MapΓCat(W,Map
ΓCat

(Γ(m2,δ
2
1), A)) : MapΓCat(W,Map

ΓCat
(Γ2, A)) →

MapΓCat(W,Map
ΓCat

(Γ1, A))×MapΓCat(W,Map
ΓCat

(Γ1, A))

is one. Since W is Q-cofibrant, it is sufficient to show that the morphism

Map
ΓCat

(Γ(m2,δ
2
1), A) : Map

ΓCat
(Γ2, A) → Map

ΓCat
(Γ1, A)×Map

ΓCat
(Γ1, A)

is a strict equivalence of Γ- groupoids. Since the Γ- categories Map
ΓCat

(Γ2, A)

and Map
ΓCat

(Γ1, A) are both coherently commutative monoidal groupoids there-

fore the morphism Map
ΓCat

(Γ(m2,δ
2
1), A) will be a strict equivalence of Γ- groupoids

if and only if (Map
ΓCat

(Γ(m2,δ
2
1), A))(1+) is a groupoidal equivalence. The fol-

lowing commutative diagram :

Map
ΓCat

(Γ2, A)(1+)
U
//

∼=
��

Map
ΓCat

(Γ1, A)(1+)×Map
ΓCat

(Γ1, A)(1+)

∼=
��

A(2+)
A((m2,δ

2
1))

// A(1+)×A(1+)

where U = (Map
ΓCat

(Γ(m2,δ
2
1), A))(1+), implies that this map is a groupoidal

equivalence because A is a coherently commutative Picard groupoid by assumption.

Theorem 4.17. The model category of coherently commutative Picard groupoids

ΓPic is a symmetric monoidal closed model category under the Day convolution

product.
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Proof. The generating cofibrations of ΓGpd⊗ are maps between Q-cofibrant ob-

jects. For a Q-cofibrant object W and a coherently commutative Picard groupoid A,

the mapping object Map
ΓCat

(W,A) is a coherently commutative Picard groupoid

by lemma 4.16. Now an application of theorem A.3 to the model category ΓGpd⊗

with the set of morphisms S = P∞, see (4.10), proves the theorem.

5. The Quillen equivalences

In this section we prove that the following two adjoint pairs are Quillen equivalences

:

L : ΓPic ⇄ (Perm,Pic) : K

and

L : ΓGpd⊗
⇄ (Perm,Gpd) : K

where K is the classical Segal’s nerve functor, see [Seg74], [Man10],[EM06] [Shac].

We begin with a proof of the later result:

Theorem 5.1. The Quillen pair (L,K) is a Quillen equivalence between the model

category of coherently commutative permutative groupoids ΓGpd⊗ and the model

category of permutative groupoids (Perm,Gpd).

Proof. We recall that the model category of coherently commutative monoidal groupoids

ΓGpd⊗ is a left Bousfield localization of the model category of coherently commu-

tative monoidal categories [Shac, Thm. 4.20] with respect to a single map Γ1 ⊗ i0,

see (4). By remark 11, this is a map between Q-cofibrant Γ- categories. We fur-

ther recall that the model category of permutative groupoids (Perm,Gpd) is a left

Bousfield localization of the natural model category Perm with respect to the im-

age of Γ1⊗i0 under the left adjoint L. Moreover, the adjoint pair (L,K) is a Quillen

equivalence between the model category of coherently commutative monoidal cat-

egories and the natural model category Perm [Shac, Cor. 6.19]. Now the result

follows from [Hir02, Thm. 3.3.20.].

Now we prove the main result of this paper:

Theorem 5.2. The Quillen pair (L,K) is a Quillen equivalence between the model

category of coherently commutative Picard groupoids ΓPic and the model category

of permutative groupoids (Perm,Pic).

Proof. We recall that the model category of coherently commutative Picard groupoids

ΓPic is a left Bousfield localization of the model category of coherently commuta-

tive monoidal groupoids ΓGpd⊗ with respect to a single map Γ(m2,δ
2
1), see (17).
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We observe that this is a map between Q-cofibrant Γ- categories. We further re-

call that the model category of Picard groupoids (Perm,Pic) is a left Bousfield

localization of the model category (Perm,Gpd) with respect to a single map

(L(m2),L(δ
2
1)) which is isomorphic to the image of Γ(m2,δ

2
1) under the left adjoint

L, see remark (9). Further, the adjoint pair (L,K) is a Quillen equivalence between

the model category of coherently commutative monoidal groupoids ΓGpd⊗ and

the model category (Perm,Gpd) by theorem 5.1. Now the result follows from

[Hir02, Thm. 3.3.20.].

In light of the natural weak-equivalence [Shac, Cor. 6.19] between the Segal’s

nerve functor K and the thickened Segal’s nerve functor K, constructed in [Shac,

Sec. 6], the following two theorems follow from the above two Quillen equiva-

lences:

Theorem 5.3. The Quillen pair (L,K) is a Quillen equivalence between the model

category of coherently commutative permutative groupoids ΓGpd⊗ and the model

category of permutative groupoids (Perm,Gpd).

Theorem 5.4. The Quillen pair (L,K) is a Quillen equivalence between the model

category of coherently commutative Picard groupoids and the model category of

permutative groupoids (Perm,Pic).

6. Stable homotopy hypothesis for Picard groupoids

In this section we give a new proof of the classical result that Picard groupoids

model stable homotopy one-types. This result has been referred to in the literature

as the stable homotopy hypothesis for Picard groupoids. The main objective of this

section is to show that the homotopy category of our model category ΓPic is equiv-

alent to a (suitably defined) homotopy category of stable homotopy one-types. We

use the language of relative categories in this section, see [BK12]. We define two

relative categories for the objects in context: a relative category (Pic, Str) of Pi-

card groupoids whose homotopy category is equivalent to that of (Perm,Pic) and

another relative category of stable homotopy one-types (ΓS f
•[1], Str). We prove a

stronger result, namely we establish a homotopy equivalence of the two aforemen-

tioned relative categories which implies that their homotopy categories are equiv-

alent. Our proof of the homotopy equivalence is based on the main result of this

paper, namely theorem 5.4. A short time before the first version of this paper

was released, a different proof of another version of the aforementioned homotopy

equivalence was given in the paper [MOP+20]. This proof is based the stable ho-

motopy hypothesis proved in the same paper. In this section we will be dealing with
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6 STABLE HOMOTOPY HYPOTHESIS FOR PICARD GROUPOIDS

the model category of pointed spaces (sSets•,Kan) and we recall that a map in

this model category is a weak equivalence if and only if its underlying (unpointed)

simplicial map is a weak homotopy equivalence.

Definition 6.1. A stable homotopy one type is a functor X : Γop → sSets• such

that the following conditions are satisfied:

1. For each n+ ∈ Γop, the (pointed) simplicial set X(n+) is a Kan complex.

2. All homotopy groups of pointed simplicial set X(1+) vanish in degree greater

than one i.e., πn(X(1+)) = ∗ for n ≥ 2.

3. For each pair of objects k+, l+ ∈ Γop, the following simplicial map is a weak

homotopy equivalence:

(X(δk+l
k ), X(δk+l

l )) : X((k + l)+) → X(k+)×X(l+)

4. One of the following two maps, and hence both maps:

(X(m2), X(δ21)) : X(2+) → X(1+)×X(1+) and (X(m2), X(δ22)) : X(2+) → X(1+)×X(1+)

are homotopy equivalences of pointed simplicial sets.

Remark 12. Each stable homotopy one type is a fibrant object in the stable Q-model

category constructed in [Sch99].

Remark 13. Each stable homotopy one-type determines a connective spectrum with

at most two non-trivial homotopy groups in degree zero or one, see [BF78].

Remark 14. The adjoint pair of functors (τ,N) induce an adjunction

[Γop, τ ] : ΓCat ⇋ ΓS : [Γop, N ]

This adjunction is a Quillen pair with respect to the strict (or projective) model cat-

egory structure on the two functor categories, see [Lur09, Remark A.2.8.6]. Since

the counit of (τ,N) is the identity, therefore the counit of the induced adjunction is

also identity.

We recall from [Shaa] the adjoint pair ((−)nor, U) which determines a Quillen

equivalence between the JQ-model category of Γ-spaces [Sha20, Notation 4.11]

and the JQ-model category of normalized Γ-spaces [Sha20, Notation C.19]. We

recall from [Sha20] that a normalized Γ-space is a functor from X : Γop → sSets•
such that X(0+) = ∗. It is easy to see that each coherently commutative monoidal

Picard groupoid X determines a Γ-space upon composition with the nerve functor,

we denote this Γ-space by N(X). Applying the left adjoint gives us a normalized

Γ-space (N(X))nor. This leads us to the following proposition:

315



6 STABLE HOMOTOPY HYPOTHESIS FOR PICARD GROUPOIDS

Proposition 6.2. For each coherently commutative Picard groupoid X , the normal-

ized Γ-space (N(X))nor is a stable homotopy one-type.

Proof. The nerve functor preserves products, maps groupoids to Kan complexes

and also maps groupoidal equivalences between two groupoids to homotopy equiv-

alences of simplicial sets therefore N(X) is a coherently commutative monoidal

quasi-category in which N(X)(k+) is a Kan complex for each k+ ∈ Γop. It follows

that the following simplicial maps:

N(X(m2), X(δ21)) : N(X(2+)) → N(X(1+))×N(X(1+))

and

N(X(m2), X(δ22)) : N(X(2+)) → N(X(1+))×N(X(1+))

are both homotopy equivalences of Kan complexes. It follows from [Shaa, Prop.

6.6] that the unit simplicial map ηN(X) : N(X) → U((N(X))nor) is a strict JQ-

equivalence of Γ-spaces. This implies that the normalized Γ-space (N(X))nor is a

stable homotopy one-type.

We recall that a relative category C = (C,W ) consists of a pair of categories

(C,W ) which have the same set of objects and the set arrows of W is a subset of

arrows of C and the maps of W are called weak-equivalences of C. A morphism of

relative categories F : (C,W ) → (D,X) is a functor F : C → D that preserves

weak-equivalences i.e. F (W ) ⊆ X . A morphism of relative categories is called a

functor of relative categories.

Definition 6.3. A strict homotopy between two functors of relative categories F :
(C,W ) → (D,X) and G : (C,W ) → (D,X) is a natural transformation H :
F ⇒ G such that for each object c ∈ C, the map H(c) lies in X , i.e., it is a

weak-equivalence in D.

More generally, we will say that there exists a homotopy between F and G if

they can be joined by a finite zig-zag of strict homotopies.

Based on the notion of homotopy, we define another notion of homotopy equiv-

alence:

Definition 6.4. A functor of relative categories F : (C,W ) → (D,X) is called

a strict homotopy equivalence if there exists another functor of relative categories

F−1 : (D,X) → (C,W ) and two strict homotopies η : id ⇒ F−1 ◦ F and

ǫ : F ◦ F−1 ⇒ id.

F will be called a homotopy equivalence if η and ǫ are just homotopies, namely,

zig-zags of strict homotopies.
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Remark 15. A homotopy equivalence induces an equivalence on the homotopy cat-

egories of its domain and codomain relative categories.

Next we will construct three relative categories:

Definition 6.5. We denote by (Pic, Str) the relative category in which Pic is the

category whose objects are permutative Picard groupoids and arrows are strict sym-

metric monoidal functors. The morphisms of Str are those strict symmetric monoidal

functors whose underlying functors are equivalences of categories.

Remark 16. The homotopy category of the relative category (Pic, Str) is equivalent

to the homotopy category of the model category (Perm,Pic).

Definition 6.6. We denote by (ΓPicf, Str) the relative category in which ΓPicf

is the full subcategory of ΓCat whose objects are coherently commutative Picard

groupoids. The morphisms of Str are strict equivalences of Γ- categories.

Remark 17. The homotopy category of the relative category (ΓPicf, Str) is equiv-

alent to the homotopy category of the model category of coherently commutative

Picard groupoids ΓPic.

Definition 6.7. We denote by (ΓS f
•[1], Str) the relative category in which ΓSf

• [1]
is the full subcategory of ΓS• (the category of normalized Γ-spaces, see [Shaa])

whose objects are stable homotopy one types, see definition (6.1). The morphisms

of Str are strict JQ-equivalences of normalized Γ-spaces, see [Shaa].

Remark 18. The homotopy category of the relative category (ΓS f
•[1], Str) is equiv-

alent to the full subcategory of the homotopy category of the stable Q-model cate-

gory, constructed in [Sch99], whose objects are normalized Γ-spaces having at most

two non-zero stable homotopy groups only in degree zero or one.

We recall the classical result that the homotopy theory of one-types i.e., Kan

complexes (fibrant simplicial sets) whose homotopy groups are trivial in degrees 2
and above is equivalent to the homotopy theory of groupoids. This result can be

expressed by the following (strict) homotopy equivalence:

τ1 : (sSets
1,WH) ⇋ (Gpd,Eq.) : N (19)

where sSets1 denotes the full subcategory of sSets whose objects are one-types

and the maps in WH are homotopy equivalences of simplicial sets. The functors in

Eq are equivalences of categories.
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Notation 6.8. We denote by Nnor(−) the composite functor

ΓCat
N
→ ΓS

(−)nor

→ ΓS•

where N denotes the functor [Γop, N ] : ΓCat → ΓS .

Proposition 6.2 above implies that the functor Nnor(−) restricts to:

Nnor(−) : ΓPicf → ΓSf
• [1]. (20)

Lemma 6.9. The functor Nnor(−) is a homotopy equivalence of relative categories.

Proof. We begin by observing that the following composite functor:

ΓS•
U
→ ΓS

τ1→ ΓCat,

restricts to a functor

τ un(−) : ΓSf
• [1] → ΓPicf .

This follows by an argument similar to the one in the proof of Proposition 6.2 based

on the fact that U and τ1 preserve strict JQ-equivalences as well as products. We

claim that this functor τ un(−) is a homotopy inverse of Nnor(−). We observe that

the functor Nnor(−) is a functor of relative categories because N = [Γop, N ] is

a right Quillen functor and therefore preserves weak-equivalences (strict equiva-

lences) between fibrant objects. The functor (−)nor preserves strict equivalences

by [Shaa, Prop. 6.2]. Similarly, the functor τ un(−) preserves strict equivalences

because both U and τ1 = [Γop, τ1] do so.

Next , we will construct a (strict) homotopy βc : id ⇒ τ un(−) ◦Nnor(−) with

the identity (relative) functor on (ΓPicf, Str). For each X ∈ Ob(ΓPicf ), the unit of

the Quillen equivalence ((−)nor, U) provides a strict equivalence of Γ-spaces ηX :
N(X) → U(N(X)nor). Applying the left Quillen functor τ1, we get a weak equiv-

alence in (ΓPicf, Str), namely, τ1(ηX) : X = τ1(N(X)) → τ1(U(N(X)nor)). We

define βc
X = τ1(ηX). One can easily check that this defines a natural transformation

βc. Now we define a (strict) homotopy βu : id ⇒ Nnor(−) ◦ τ un(−). Let Y be a

stable homotopy one type. The unit map of the Quillen adjunction (τ1, N) gives a

map ηY : U(Y ) → N(τ1(U(Y ))). Since Y is a stable homotopy one type therefore

this map is a weak homotopy equivalence by (19). Now applying the functor (−)nor,

we get a weak homotopy equivalence

(ηY )
nor : Y = (U(Y ))nor → N(τ(U(Y )))nor.

Now we define βu
Y = (ǫY )

nor. One can easily check that this defines a natural

transformation. Thus we have established a (strict) homotopy equivalence.
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It follows from theorem [Shac, 6.17] that the left adjoint functor L restricts to a

functor of relative categories

L : (ΓPicf, Str) → (Pic, Str).

Further, it follows from [Shac, lem. 6.14] that the right Quillen functor K restricts

to a functor of relative categories:

K : (Pic, Str) → (ΓPicf, Str).

This leads us to the final lemma of this section:

Lemma 6.10. The pair of functors of relative categories (L,K) determines a (strict)

homotopy equivalence between the relative categories (ΓPicf, Str) and (Pic, Str).

The proof follows from the two observations above, namely K and L are func-

tors of relative categories and theorem 5.4. Now the previous two lemms give us the

main result of this section:

Theorem 6.11. The composite functor of relative categories Nnor(−) ◦ K is a ho-

motopy equivalence between the relative categories (Pic, Str) and (ΓS f
•[1], Str).

A. Localization in model categories

In this appendix we review the definition and a fundamental existence theorem of a

left Bousfield localization of a model category. The original result of this section is

theorem A.3 which formulates a condition on a symmetric monoidal closed model

category so that a left Bousfield localization preserves the symmetric monoidal

closed structure. A thorough exposition on homotopy function complexes in model

categories can be found in [Hir02], [DK80].

Definition A.1. Let M be a model category and let S be a class of maps in M.

The left Bousfield localization of M with respect to S is a model category structure

LSM on the underlying category of M such that

1. The class of cofibrations of LSM is the same as the class of cofibrations of

M.

2. A map f : A → B is a weak equivalence in LSM if it is an S-local equiva-

lence, namely, for every fibrant S-local object X , the induced map on homo-

topy function complexes

f∗ : MaphM(B,X) → MaphM(A,X)
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is a weak homotopy equivalence of simplicial sets. Recall that an object X is

called fibrant S-local if X is fibrant in M and for every element g : K → L

of the set S , the induced map on homotopy function complexes

g∗ : MaphM(L,X) → MaphM(K,X)

is a weak homotopy equivalence of simplicial sets.

We recall the following theorem which will be the main tool in the construction

of the desired model category. This theorem first appeared in an unpublished work

[Smi] but a proof was later provided by Barwick in [Bar07].

Theorem A.2. [Bar07, Theorem 2.11] If M is a left proper, combinatorial model

category and S is a small set of homotopy classes of morphisms of M, the left

Bousfield localization LSM of M along any set representing S exists and satisfies

the following conditions.

1. The model category LSM is left proper and combinatorial.

2. As a category, LSM is simply M.

3. The cofibrations of LSM are exactly those of M.

4. The fibrant objects of LSM are the fibrant S-local objects Z of M.

5. The weak equivalences of LSM are the S-local equivalences.

The next theorem provides a condition for a left Bousfield localization to pre-

serves the symmetric monoidal model category structure:

Theorem A.3. Let MO be a combinatorial model category such that the generating

cofibrations in MO are maps between cofibrant objects. Let the underlying category

of MO, denoted by M, have a symmetric monoidal closed structure which endows

on MO a symmetric monoidal closed model category structure. Let us denote by

MS the model category, which is a left Bousfield localization of MO, with respect

to a set of maps S in M. If the internal mapping object MapM(X,Y ) is an S-local

object whenever X is cofibrant in MO and Y is an S-local object, then the model

category MS is also symmetric monoidal closed.

Proof. Let i : U → V be a cofibration in MS and j : Y → Z be another cofibration

in MS . We will prove the theorem by showing that the following pushout product

morphism

i✷j : U ∗ Z
∐

U∗Y

V ∗ Y → V ∗ Z
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is a cofibration in MS which is also an S-local equivalence whenever either i

or j is one. We first deal with the case of i being a generating cofibration in MO.

The assumption of a symmetric monoidal closed model category structure on MO

implies that i✷j is a cofibration in MO and we recall that the cofibrations in MS

are exactly cofibration in MO. Thus i✷j is a cofibration in MS . Let us assume

that j is an acyclic cofibration i.e. j is a cofibration in MS and also an S-local

equivalence. We recall that the fibrant objects of MS are exactly S-local objects

and fibrations in MS between S-local objects are fibrations in MO. According to

[Shac, Proposition 4.22] the cofibration i✷j is an S-local equivalence if and only if

it has the left lifting property with respect to all fibrations in MS between S-local

objects. Let p : W → X be a fibration in MS between two S-local objects. A

(dotted) lifting arrow would exists in the following diagram

U ∗ Z
∐

U∗Y

V ∗ Y //

��

W

p

��

V ∗ Z

99

// Y

if and only if a (dotted) lifting arrow exists in the following adjoint commutative

diagram

X //

j

��

MapM(V,W )

(i∗,p∗)

��

Y

55

// MapM(U,X) ×
MapM(U,Y )

MapM(V, Y )

The map (i∗, p∗) is a fibration in MO by [Hov99, lem. 4.2.2] and the assumption

that MO is a symmetric monoidal closed model category with internal Hom denoted

by MapM(−,−). Further the assumption of cofibrancy on both V and U and the

assumption on internal mapping objects together imply that (j∗, p∗) is a fibration in

MO between S-local objects and therefore a fibration in the model category MS .

Since j is an acyclic cofibration in MS by assumption, therefore the (dotted) lifting

arrow exists in the above diagram. Thus, we have shown that if i is a generating

cofibration in MO and j is a cofibration in MO which is also an S-local equivalence

then i✷j is an acyclic cofibration in the model category MS . Now we deal with the

general case of i being an arbitrary cofibration in MO. Consider the following set:

I = {i : U → V | i✷j is an acyclic cofibration in MS}

We have proved above that the set I contains all generating cofibration in MS .

We observe that the set I is closed under pushouts, transfinite compositions and
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retracts. Thus, I contains all cofibration in MO. Thus, we have proved that i✷j

is a cofibration which is acyclic if j is acyclic. The same argument as above when

applied to the second argument of the Box product (i.e., in the variable j) shows that

i✷j is an acyclic cofibration whenever i is an acyclic cofibration in MS .
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