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1. Introduction and Preliminaries

A well-known result in locale theory, known as the Joyal-Tierney Theorem,

states that a localic map f : M → L is open iff its left adjoint f ∗ : L → M is

a complete Heyting homomorphism (see, e.g., [8, Prop. III.7.2]). In addition,

if L is subfit, then f is open iff f ∗ is a complete lattice homomorphism (see,

e.g., [8, Prop. V.1.8]). Our aim is to give another proof of this result utilizing

the language of Priestley spaces.

Priestley duality [9, 10] establishes a dual equivalence between the cate-

gories of bounded distributive lattices and Priestley spaces. We recall that a

Priestley space is a Stone space X equipped with a partial order ≤ such that

x 6≤ y implies the existence of a clopen upset U such that x ∈ U and y /∈ U .

A Priestley morphism is a continuous order-preserving map.

Pultr and Sichler [12] showed how to restrict Priestley duality to the cat-

egory of frames. We recall (see, e.g., [8, p. 10]) that a frame is a complete
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lattice L satisfying the infinite distributive law a ∧
∨

S =
∨

{a ∧ s : s ∈ S}
for each a ∈ L and S ⊆ L. A map h : L → M between frames is a frame

homomorphism if h preserves finite meets and arbitrary joins. Let Frm be

the category of frames and frame homomorphisms.

Definition 1.1.

1. A Priestley space X is a localic space, or simply an L-space, provided

the closure of an open upset is a clopen upset.

2. A Priestley morphism f : X → Y between L-spaces is an L-morphism

provided clf−1U = f−1clU for each open upset U of Y .

3. Let LPries be the category of L-spaces and L-morphisms.

Proposition 1.2. [12, p. 198] Frm is dually equivalent to LPries.

Remark 1.3. Since frames are exactly complete Heyting algebras (see, e.g.,

[6, Prop. 1.5.4]), every L-space is an Esakia space, where we recall that a

Priestley space X is an Esakia space provided ↓U is clopen for each clopen

U ⊆ X (equivalently, the closure of an open upset is an upset).

Remark 1.4. The contravariant functors establishing Pultr-Sichler duality

are the restrictions of the contravariant functors establishing Priestley dual-

ity. They are described as follows.

For an L-space X , let ClopUp(X) be the frame of clopen upsets of X .

The functor ClopUp : LPries → Frm sends X ∈ LPries to the frame

ClopUp(X) and an LPries-morphism f : X → Y to the Frm-morphism

f−1 : ClopUp(Y ) → ClopUp(X).
For L ∈ Frm let XL be the set of prime filters of L ordered by inclusion

and equipped with the topology whose basis is {φ(a) \ φ(b) : a, b ∈ L},

where φ : L → ℘(XL) is the Stone map φ(a) = {x ∈ XL : a ∈ x}. Then

XL is an L-space and the functor pf : Frm → LPries sends L ∈ Frm to XL

and a Frm-morphism h : L → M to the LPries-morphism h−1 : XM → XL.

Let L,M be frames. Every frame homomorphism h : L → M has a right

adjoint r = h∗ : M → L, called a localic map. It is given by

r(b) =
∨

{a ∈ L : h(a) ≤ b}.

The following provides a characterization of localic maps:
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Proposition 1.5. [8, Prop. II.2.3] A map r : M → L between frames is a

localic map iff

(1) r preserves all meets (so has a left adjoint h = r∗);

(2) r(a) = 1 implies a = 1;

(3) r(h(a) → b) = a → r(b).

Let Loc be the category of frames and localic maps. The following is

obvious from Propositions 1.2 and 1.5:

Proposition 1.6. Loc is dually isomorphic to Frm, and hence equivalent to

LPries.

To define open localic maps, we recall the notion of a sublocale which

generalizes that of a subspace. Let L be a frame. A subset S of L is a

sublocale of L if S is closed under arbitrary meets and x → s ∈ S for each

x ∈ L and s ∈ S. Sublocales correspond to nuclei, where we recall (see,

e.g., [8, Sec. III.5.3]) that a nucleus on L is a map ν : L → L satisfying

1. a ≤ νa;

2. ννa ≤ νa;

3. ν(a ∧ b) = νa ∧ νb.

We can go back and forth between nuclei and sublocales as follows. If ν
is a nucleus on L, then Sν := ν[L] is a sublocale of L. Conversely, if S is

a sublocale of L, then νS : L → L is a nucleus on L, where νS is given by

νS(a) =
∧

{s ∈ S : a ≤ s}. This correspondence is one-to-one (see, e.g.,

[8, Prop. III.5.3.2]).

If a ∈ L, then o(a) := {a → x : x ∈ L} is a sublocale of L, called an

open sublocale of L, whose corresponding nucleus νa is given by νa(x) =
a → x (see, e.g., [8, pp. 33, 35]).

Definition 1.7. [8, p. 37] A localic map r : M → L is open if for each open

sublocale S of M , the image r[S] is an open sublocale of L.
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2. The Joyal-Tierney Theorem

The Joyal-Tierney Theorem provides a characterization of open localic maps

(see, e.g., [7, Prop. 7.3] or [8, pp. 37–38]):

Theorem 2.1 (Joyal-Tierney). Let r : M → L be a localic map between

frames with left adjoint h. The following are equivalent:

(1) r is open.

(2) h is a complete Heyting homomorphism.

(3) h has a left adjoint ℓ = h∗ satisfying the Frobenius condition

ℓ(a ∧ h(b)) = ℓ(a) ∧ b

for each a ∈ M and b ∈ L.

Our aim is to give an alternative proof of this result using Priestley duality

for frames. For this we need to translate the algebraic conditions of Theo-

rem 2.1 into geometric conditions about Priestley spaces. We will freely use

the following well-known lemma. For parts (1) and (2) see [4, Lems. 11.21,

11.22]; for part (3) see [11, Prop. 2.6]; and part (4) is a consequence of

Esakia’s lemma (see [6, Lem. 3.3.12]).

Lemma 2.2.

(1) For a Priestley space X , the set {U \ V : U, V ∈ ClopUp(X)} is a

basis of open sets of X .

(2) Let X be a Priestley space. If F,G are disjoint closed subsets of X ,

with F an upset and G a downset, then there is a clopen upset U of X
such that F ⊆ U and G ∩ U = ∅. In particular, every open upset is a

union and every closed upset is an intersection of clopen upsets.

(3) If F is a closed subset of a Priestley space, then ↑F and ↓F are closed.

(4) Let f : X → Y be a continuous map between Priestley spaces. For

each x ∈ X we have

f
[

⋂

{U ∈ ClopUp(X) : x ∈ U}
]

=
⋂

{f [U ] : x ∈ U ∈ ClopUp(X)}.
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We recall (see, e.g., [4, p. 265]) that if h : L → M is a frame homomor-

phism and f : XM → XL is its Priestley dual, then

f−1φ(a) = φh(a). (a)

We also recall that if r : M → L is a localic map and S is a sublocale of M ,

then r[S] is a sublocale of L (see, e.g., [8, Prop. III.4.1]).

Lemma 2.3. Let r : M → L be a localic map with left adjoint h. If S is a

sublocale of M , then νr[S] = rνSh.

Proof. Let a ∈ L. We have

νr[S](a) =
∧

{r(s) : s ∈ S, a ≤ r(s)}

=
∧

{r(s) : s ∈ S, h(a) ≤ s}

= r
(

∧

{s ∈ S : h(a) ≤ s}
)

= rνSh(a).

Therefore, νr[S] = rνSh.

We thus see that a localic map r : M → L, with left adjoint h, is open iff

for each a ∈ M there is b ∈ L with rνah = νb. We use this observation in

the proof of the following lemma.

Lemma 2.4. Let r : M → L be a localic map, h the left adjoint of r, and

f : XM → XL the Priestley dual of h. The following are equivalent:

(1) r is open.

(2) If U is a clopen upset of XM , then f [U ] is a clopen upset of XL.

Proof. We start by showing that if a ∈ M and b, c ∈ L, then

b ≤ (rνah)(c) ⇐⇒ φ(b) ∩ f [φ(a)] ⊆ φ(c). (b)

To see this,

b ≤ (rνah)(c) ⇐⇒ b ≤ r(a → h(c)) ⇐⇒ h(b) ≤ a → h(c)

⇐⇒ h(b) ∧ a ≤ h(c).
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Therefore, since f [f−1(B) ∩ A] = B ∩ f [A] for each A,B, by (a) we have

b ≤ (rνah)(c) ⇐⇒ φh(b) ∩ φ(a) ⊆ φh(c)

⇐⇒ f−1φ(b) ∩ φ(a) ⊆ f−1φ(c)

⇐⇒ f [f−1φ(b) ∩ φ(a)] ⊆ φ(c)

⇐⇒ φ(b) ∩ f [φ(a)] ⊆ φ(c).

(1)⇒(2). Let U ∈ ClopUp(XM). Then U = φ(a) for some a ∈ M . By

(1) and Lemma 2.3, there is b ∈ L with rνah = νb. Since 1 = νb(b), we have

1 ≤ (rνah)(b), so φ(1) ∩ f [U ] ⊆ φ(b) by (b). Therefore, f [U ] ⊆ φ(b). For

the reverse inclusion, let y ∈ φ(b). If y /∈ f [U ], then since f [U ] is closed in

XL, there is a clopen set containing y and missing f [U ]. By Lemma 2.2(1),

there are c, d ∈ L with y ∈ φ(c) \ φ(d) and f [U ] ∩ (φ(c) \ φ(d)) = ∅.

Thus, f [U ] ∩ φ(c) ⊆ φ(d), so c ≤ (rνah)(d) = νb(d) = b → d by (b).

This gives b ∧ c ≤ d, and hence φ(b) ∩ φ(c) ⊆ φ(d), a contradiction since

y ∈ φ(b) ∩ φ(c) but y /∈ φ(d). Therefore, y ∈ f [U ], and so φ(b) ⊆ f [U ].
Consequently, f [U ] = φ(b), and so f [U ] ∈ ClopUp(XL).

(2)⇒(1). Let a ∈ M and set U = φ(a). Then U ∈ ClopUp(XM), so

f [U ] ∈ ClopUp(XL) by (2). Therefore, there is b ∈ L with φ(b) = f [U ]. If

c, d ∈ L, then by (b),

c ≤ (rνah)(d) ⇐⇒ φ(c) ∩ f [U ] ⊆ φ(d)

⇐⇒ φ(c) ∩ φ(b) ⊆ φ(d)

⇐⇒ c ∧ b ≤ d

⇐⇒ c ≤ b → d

⇐⇒ c ≤ νb(d).

Thus, rνah = νb, and hence r is open.

We next give a dual characterization of when a frame homomorphism

has a left adjoint. Let X be a Priestley space. Then we have two addi-

tional topologies on X , the topology of open upsets and the topology of

open downsets. If cli and inti are the corresponding closure and interior op-

erators (i = 1, 2), then it is well known (see, e.g., [3, Lem. 6.5]) that for

A ⊆ X we have:

cl1A = ↓clA and int1(A) = X \ ↓(X \ intA);

cl2A = ↑clA and int2(A) = X \ ↑(X \ intA).
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Let L be a frame and let a =
∧

S for a ∈ L and S ⊆ L. Then

φ(a) = int1
⋂

{φ(s) : s ∈ S} (c)

(see, e.g., [2, Lem. 2.3]). This will be used in the following lemma.

Lemma 2.5. Let h : L → M be a frame homomorphism and f : XM → XL

its Priestley dual. The following are equivalent:

(1) h has a left adjoint.

(2) h preserves all meets.

(3) f−1int1F = int1f
−1F for each closed upset F ⊆ XL.

(4) ↑f [U ] is clopen for each clopen upset U ⊆ XM .

Proof. (1)⇔(2). This is well known (see, e.g., [4, Prop. 7.34]).

(2)⇒(3). Let F be a closed upset of XL. By Lemma 2.2(2), we may

write F =
⋂

{φ(s) : s ∈ S} for some S ⊆ L. By (a),

f−1(F ) = f−1
(

⋂

{φ(s) : s ∈ S}
)

=
⋂

{f−1φ(s) : s ∈ S}

=
⋂

{φh(s) : s ∈ S},

so

int1f
−1(F ) = int1

⋂

{φh(s) : s ∈ S} = φ
(

∧

h[S]
)

.

On the other hand, by (c) we have

int1F = int1
⋂

{φ(s) : s ∈ S} = φ
(

∧

S
)

.

Therefore, using (a) again yields

f−1(int1F ) = f−1φ
(

∧

S
)

= φh
(

∧

S
)

.

Thus, by (2) we have

int1f
−1(F ) = φ

(

∧

h[S]
)

= φh
(

∧

S
)

= f−1(int1F ).
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(3)⇒(4). Let U ∈ ClopUp(XM) and set F = ↑f [U ]. By Lemma 2.2(3),

F is a closed upset of Y . By (3),

U ⊆ int1f
−1(f [U ]) ⊆ int1f

−1F = f−1int1F,

so f [U ] ⊆ int1F , and hence ↑f [U ] ⊆ int1F = int1↑f [U ]. Thus, ↑f [U ] is

clopen.

(4)⇒(1). Let a ∈ M . By (4), ↑f [φ(a)] ∈ ClopUp(XL). Therefore, there

is a unique b ∈ L such that φ(b) = ↑f [φ(a)]. Letting ℓ(a) = b defines a

function ℓ : M → L such that

φℓ(a) = ↑f [φ(a)]. (d)

To see that ℓ is left adjoint to h, let c ∈ L. Since φ(c) is an upset, by (a) we

have

ℓ(a) ≤ c ⇐⇒ φℓ(a) ⊆ φ(c) ⇐⇒ ↑f [φ(a)] ⊆ φ(c) ⇐⇒ f [φ(a)] ⊆ φ(c)

⇐⇒ φ(a) ⊆ f−1φ(c) ⇐⇒ φ(a) ⊆ φh(c) ⇐⇒ a ≤ h(c).

We recall (see, e.g., [6, p. 9]) that a map f : X → Y between posets

is a bounded morphism or a p-morphism if ↓f−1(y) = f−1(↓y) for each

y ∈ Y . Let h : L → M be a frame homomorphism between frames and

f : XM → XL its Priestley dual. Then f is an L-morphism. It follows

from Esakia duality for Heyting algebras [5, 6] that h preserves → iff f is a

p-morphism. This together with Lemma 2.5 yields:

Lemma 2.6. Let h : L → M be a frame homomorphism and f : XM → XL

its dual L-morphism. Then h is a complete Heyting homomorphism iff f is a

p-morphism and ↑f [U ] is clopen for each clopen upset U of XM .

We next provide a dual characterization of the Frobenius condition

ℓ(a ∧ h(b)) = ℓ(a) ∧ b

for each a ∈ M and b ∈ L.

Lemma 2.7. Let h : L → M be a frame homomorphism with Priestley dual

f : XM → XL. The following are equivalent:
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(1) h has a left adjoint ℓ and ℓ(a ∧ h(b)) = ℓ(a) ∧ b for all a ∈ M and

b ∈ L.

(2) ↑f [U ] is clopen and ↑(f [U ]∩V ) = ↑f [U ]∩V for all U ∈ ClopUp(XM)
and V ∈ ClopUp(XL).

Proof. By Lemma 2.5, h has a left adjoint ℓ iff ↑f [U ] is clopen for each U ∈
ClopUp(XM). It is left to show that ℓ(a ∧ h(b)) = ℓ(a) ∧ b for each a ∈ M
and b ∈ L iff ↑(f [U ] ∩ V ) = ↑f [U ] ∩ V for each U ∈ ClopUp(XM) and

V ∈ ClopUp(XL). Letting U = φ(a) and V = φ(b), since ↑f [U ] = φℓ(a)
by (d), we have

φ(ℓ(a) ∧ b) = φℓ(a) ∩ φ(b) = ↑f [U ] ∩ V.

On the other hand, since f [U ∩ f−1(V )] = f [U ] ∩ V , by (a) we have

φℓ(a ∧ h(b)) = ↑f [φ(a ∧ h(b))] = ↑f [φ(a) ∩ φh(b)]

= ↑f [φ(a) ∩ f−1φ(b)] = ↑f [U ∩ f−1(V )]

= ↑(f [U ] ∩ V ).

Thus,

ℓ(a ∧ h(b)) = ℓ(a) ∧ b ⇐⇒ φℓ(a ∧ h(b)) = φ(ℓ(a) ∧ b)

⇐⇒ ↑(f [U ] ∩ V ) = ↑f [U ] ∩ V.

We thus have translated the three conditions of Theorem 2.1 into the

dual conditions in the language of Priestley spaces. We next prove that the

translated conditions are equivalent.

Theorem 2.8. Let f : X → Y be a Priestley morphism between L-spaces.

The following are equivalent:

(1) If U ∈ ClopUp(X), then f [U ] ∈ ClopUp(Y ).

(2) f is a p-morphism and ↑f [U ] is clopen for all U ∈ ClopUp(X).

(3) ↑f [U ] is clopen and ↑(f [U ]∩V ) = ↑f [U ]∩V for all U ∈ ClopUp(X)
and V ∈ ClopUp(Y ).
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Proof. (1)⇒(2). Let U ∈ ClopUp(X). By (1), f [U ] is an upset of Y , so

↑f [U ] = f [U ]. Therefore, ↑f [U ] is clopen in Y by (1). It is left to prove

that f is a p-morphism. For this it suffices to show that f(↑x) is an upset for

each x ∈ X (see, e.g, [6, Prop 1.4.12]). By Lemma 2.2(2),

↑x =
⋂

{U ∈ ClopUp(X) : x ∈ U},

so by Lemma 2.2(4),

f [↑x] = f
[

⋂

{U ∈ ClopUp(X) : x ∈ U}
]

=
⋂

{f [U ] : x ∈ U ∈ ClopUp(X)}.

Thus, f [↑x] is an upset by (1).

(2)⇒(3). It is sufficient to show that ↑(f [U ] ∩ V ) = ↑f [U ] ∩ V for

each U ∈ ClopUp(X) and V ∈ ClopUp(Y ). But since f is a p-morphism,

↑f [U ] = f [U ], so ↑f [U ] ∩ V = f [U ] ∩ V = ↑(f [U ] ∩ V ) because f [U ] ∩ V
is an upset.

(3)⇒(1). It suffices to show that f [U ] is an upset. If not, then there exist

x ∈ U and y ∈ Y with f(x) ≤ y but y /∈ f [U ]. This yields y /∈ ↓(↓y∩f [U ]),
so there is a clopen upset V of Y such that y ∈ V and V ∩ ↓y ∩ f [U ] = ∅

(see Lemma 2.2(2)). Therefore, y /∈ ↑(f [U ] ∩ V ) but y ∈ ↑f [U ] ∩ V , a

contradiction to (3). Thus, f [U ] is an upset.

By Lemmas 2.4, 2.6 and 2.7, the three conditions of Theorem 2.8 are

equivalent to the corresponding three conditions of Theorem 2.1. Hence, the

Joyal-Tierney Theorem is a consequence of Theorem 2.8. We conclude this

section with the following observation.

Remark 2.9. Condition (1) of Theorem 2.8 is equivalent to:

(1′) If U is an open upset of X , then f [U ] is an open upset of Y .

Clearly (1′) implies (1) since if U is clopen, then f [U ] is closed, hence a

clopen upset of Y by (1′). Conversely, if U is an open upset, then U =
⋃

{V ∈ ClopUp(X) : V ⊆ U} by Lemma 2.2(2). Therefore, f [U ] =
⋃

{f [V ] : V ∈ ClopUp(X), V ⊆ U} is a union of clopen upsets of Y by

(1). Thus, f [U ] is an open upset of Y . Consequently, (1) is equivalent to f
being an open map with respect to the open upset topologies.
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On the other hand, this does not imply that f is an open map with respect

to the Stone topologies. To see this, we use the space defined in [1, p. 32].

Let X be the 2-point compactification of the discrete space {xn, zn : n ≥ 1}
with ω the limit point of {xn : n ≥ 1} and ω′ the limit point of {zn : n ≥ 1}.

Let Y be the 1-point compactification of the discrete space {yn : n ≥ 1}.

We order X and Y and define the map f : X → Y as shown in the diagram

below.

X

ω′

ω

z2x4

x3

x2

x1

z1

Y

∞

y4

y3

y2

y1

f

It is straightforward to see that X and Y are L-spaces and f is an L-mor-

phism such that f [U ] is a clopen upset of Y for each clopen upset U of X .

However, f is not an open map since U := {zn : n ≥ 1} ∪ {ω′} is an open

subset of X whose image {y2n : n ≥ 1} ∪ {∞} is not an open subset of Y .

3. The subfit case

As was shown in [8, Prop. V.1.8], if in the Joyal-Tierney Theorem we assume

that L is subfit, then the localic map r : M → L is open iff its left adjoint

h : L → M is a complete lattice homomorphism (so h being a Heyting

homomorphism becomes redundant). We will give an alternative proof of

this result in the language of Priestley spaces.

We recall that a frame L is subfit if for all a, b ∈ L we have

a 6≤ b =⇒ (∃c ∈ L)(a ∨ c = 1 and b ∨ c 6= 1).

We next give a dual characterization of when L is subfit. As usual, for a

poset X we write minX for the set of minimal points of X .
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Lemma 3.1. Let L be a frame and XL its Priestley space. Then L is subfit

iff minXL is dense in XL.

Proof. First suppose that minXL is dense in XL. To see that L is subfit,

let a, b ∈ L with a 6≤ b. Then φ(a) 6⊆ φ(b), so φ(a) \ φ(b) is a nonempty

clopen subset of X . Therefore, there is x ∈ (φ(a) \ φ(b)) ∩ minXL. Let

U = XL \ {x}. Then U is an open upset of XL. Since φ(a) ∪ U = XL

and U is a union of clopen upsets (see Lemma 2.2(2)), compactness of XL

implies that there is a clopen upset U ′ ⊆ U with φ(a) ∪ U ′ = XL. Because

U ′ = φ(c) for some c ∈ L, we have a ∨ c = 1. On the other hand, since

x /∈ φ(b) ∪ U ′ = φ(b ∨ c), it follows that b ∨ c 6= 1. Thus, L is subfit.

Conversely, suppose that minXL is not dense in XL. Then there is a

nonempty clopen subset A of XL such that A ∩ minXL = ∅. We may

assume that A = U \ V , where U 6⊆ V are clopen upsets of XL (see

Lemma 2.2(1)). From A ∩ minXL = ∅ it follows that U ∩ minXL ⊆ V .

Let a, b ∈ L be such that U = φ(a) and V = φ(b). Since U 6⊆ V , we

have a 6≤ b. Suppose c ∈ L is such that a ∨ c = 1. Let W = φ(c). Then

U ∪W = XL, so minXL ⊆ U ∪W . Because U ∩minXL ⊆ V , this yields

minXL ⊆ V ∪ W , which forces V ∪ W = XL because ↑minXL = XL

(see, e.g., [6, Thm. 3.2.1]). Thus, b ∨ c = 1, and hence L is not subfit.

Lemma 3.2. Let f : X → Y be a Priestley morphism between L-spaces. If

minY is dense in Y and ↑f [U ] is clopen for each U ∈ ClopUp(X), then f
is a p-morphism.

Proof. It is sufficient to show that Condition (1) of Theorem 2.8 holds, which

amounts to showing that f [U ] is an upset for each U ∈ ClopUp(X). If not,

then ↑f [U ] \ f [U ] 6= ∅ for some U ∈ ClopUp(X). Let V = ↑f [U ] \ f [U ].
Since ↑f [U ] is open and f [U ] is closed, V is a nonempty open subset of Y .

Thus, V ∩minY 6= ∅ because minY is dense in Y . On the other hand,

V ∩minY ⊆ ↑f [U ] ∩minY = f [U ] ∩minY.

This is a contradiction since V ∩ f [U ] = ∅. Consequently, f [U ] is an

upset.

As an immediate consequence of Lemma 3.2, we obtain:
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Theorem 3.3. Let f : X → Y be a Priestley morphism between L-spaces.

If minY is dense in Y , then Condition (2) in Theorem 2.8 is equivalent to

(2′) ↑f [U ] is clopen for each U ∈ ClopUp(X).

Theorems 2.8 and 3.3 together with Lemmas 2.4 and 2.5 yield the fol-

lowing version of the Joyal-Tierney Theorem:

Corollary 3.4. [8, Prop. V.1.8] Let r : M → L be a localic map with left

adjoint h. If L is subfit, then r is open iff h is a complete lattice homomor-

phism.
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