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1. Introduction and Preliminaries

A well-known result in locale theory, known as the Joyal-Tierney Theorem,
states that a localic map f: M — L is open iff its left adjoint f*: L — M is
a complete Heyting homomorphism (see, e.g., [8, Prop. I11.7.2]). In addition,
if L is subfit, then f is open iff f* is a complete lattice homomorphism (see,
e.g., [8, Prop. V.1.8]). Our aim is to give another proof of this result utilizing
the language of Priestley spaces.

Priestley duality [9, [10] establishes a dual equivalence between the cate-
gories of bounded distributive lattices and Priestley spaces. We recall that a
Priestley space is a Stone space X equipped with a partial order < such that
x £ y implies the existence of a clopen upset U such that x € U and y ¢ U.
A Priestley morphism is a continuous order-preserving map.

Pultr and Sichler [[12] showed how to restrict Priestley duality to the cat-
egory of frames. We recall (see, e.g., [8, p. 10]) that a frame is a complete
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lattice L satisfying the infinite distributive law a A \/ S = \/{a A s : s € S}
foreacha € Land S C L. A map h: L — M between frames is a frame
homomorphism if h preserves finite meets and arbitrary joins. Let Frm be
the category of frames and frame homomorphisms.

Definition 1.1.

1. A Priestley space X is a localic space, or simply an L-space, provided
the closure of an open upset is a clopen upset.

2. A Priestley morphism f: X — Y between L-spaces is an L-morphism
provided clf ~'U = f~'clU for each open upset U of Y.

3. Let LPries be the category of L-spaces and L-morphisms.
Proposition 1.2. [12, p. 198] Frm is dually equivalent to LPries.

Remark 1.3. Since frames are exactly complete Heyting algebras (see, e.g.,
[6, Prop. 1.5.4]), every L-space is an Esakia space, where we recall that a
Priestley space X is an Esakia space provided U is clopen for each clopen
U C X (equivalently, the closure of an open upset is an upset).

Remark 1.4. The contravariant functors establishing Pultr-Sichler duality
are the restrictions of the contravariant functors establishing Priestley dual-
ity. They are described as follows.

For an L-space X, let ClopUp(X) be the frame of clopen upsets of X.
The functor ClopUp: LPries — Frm sends X € LPries to the frame
ClopUp(X) and an LPries-morphism f: X — Y to the Frm-morphism
1 ClopUp(Y") — ClopUp(X).

For L € Frm let X, be the set of prime filters of L ordered by inclusion
and equipped with the topology whose basis is {¢(a) \ ¢(b) : a,b € L},
where ¢: L — o(X) is the Stone map ¢(a) = {z € X : a € z}. Then
X is an L-space and the functor pf: Frm — LPries sends L € Frm to X
and a Frm-morphism h: L — M to the LPries-morphism h~1: X, — X.

Let L, M be frames. Every frame homomorphism h: L — M has aright
adjoint r = h,: M — L, called a localic map. 1t is given by

r(b) = \/{a € L : h(a) < b}.

The following provides a characterization of localic maps:
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Proposition 1.5. [8, Prop. I1.2.3] A map r: M — L between frames is a
localic map iff

(1) r preserves all meets (so has a left adjoint h = r*);
(2) r(a) = 1implies a = 1;
(3) r(h(a) = b) = a — r(b).

Let Loc be the category of frames and localic maps. The following is
obvious from Propositions[T.2] and

Proposition 1.6. Loc is dually isomorphic to Frm, and hence equivalent to
LPries.

To define open localic maps, we recall the notion of a sublocale which
generalizes that of a subspace. Let L be a frame. A subset S of L is a
sublocale of L if S'is closed under arbitrary meets and x — s € .S for each
x € L and s € S. Sublocales correspond to nuclei, where we recall (see,
e.g., [8, Sec. I11.5.3]) that a nucleus on L is amap v: L — L satisfying

1. a <va;
2. vva < va;
3. v(a AN b) =va A vb.

We can go back and forth between nuclei and sublocales as follows. If v
is a nucleus on L, then S, := v[L] is a sublocale of L. Conversely, if S is
a sublocale of L, then vg: L — L is a nucleus on L, where vg is given by
vs(a) = A{s € S : a < s}. This correspondence is one-to-one (see, €.g.,
(8, Prop. I11.5.3.2]).

If a € L, then o(a) := {a — = : x € L} is a sublocale of L, called an
open sublocale of L, whose corresponding nucleus v, is given by v,(x) =
a — x (see, e.g., [8, pp. 33, 35)).

Definition 1.7. [8| p. 37] A localic map r: M — L is open if for each open
sublocale S of M, the image r[S] is an open sublocale of L.
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2. The Joyal-Tierney Theorem
The Joyal-Tierney Theorem provides a characterization of open localic maps
(see, e.g., [7, Prop. 7.3] or [8, pp. 37-38]):

Theorem 2.1 (Joyal-Tierney). Let r: M — L be a localic map between
frames with left adjoint h. The following are equivalent:

(1) r is open.
(2) his a complete Heyting homomorphism.
(3) h has a left adjoint { = h* satisfying the Frobenius condition
laNh(b)="La)AD
foreacha € M and b € L.

Our aim is to give an alternative proof of this result using Priestley duality
for frames. For this we need to translate the algebraic conditions of Theo-
rem [2.T]into geometric conditions about Priestley spaces. We will freely use
the following well-known lemma. For parts (1) and (2) see [4, Lems. 11.21,
11.22]; for part (3) see [11, Prop. 2.6]; and part (4) is a consequence of
Esakia’s lemma (see [6, Lem. 3.3.12]).

Lemma 2.2.

(1) For a Priestley space X, the set {U \'V : U,V & ClopUp(X)} is a
basis of open sets of X.

(2) Let X be a Priestley space. If F, G are disjoint closed subsets of X,
with F' an upset and G a downset, then there is a clopen upset U of X
such that ' C U and G N U = @. In particular, every open upset is a
union and every closed upset is an intersection of clopen upsets.

(3) If F is a closed subset of a Priestley space, then TF and | F are closed.

(4) Let f: X — Y be a continuous map between Priestley spaces. For
each v € X we have

f [ﬂ{U € ClopUp(X) : = € U}]
=({f[U] : 2 € U € ClopUp(X)}.
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We recall (see, e.g., [4, p. 265]) that if h: L — M is a frame homomor-
phism and f: X, — X is its Priestley dual, then

f~'é(a) = oh(a). (@)

We also recall that if r: M — L is a localic map and S is a sublocale of M,
then r[S] is a sublocale of L (see, e.g., [8, Prop. IIL.4.1]).

Lemma 2.3. Let r: M — L be a localic map with left adjoint h. If S is a
sublocale of M, then v,[s) = rvgh.

Proof. Leta € L. We have

visi(a) = N\{r(s) -5 € S, a < r(s))
= N\{r(s) : s €5, h(a) < s}
= (A\ls €81 ha) < s})
= rugh(a).
Therefore, v, = rvsh. O

We thus see that a localic map r: M — L, with left adjoint £, is open iff
for each a € M there is b € L with rv,h = v,. We use this observation in
the proof of the following lemma.

Lemma 2.4. Let r: M — L be a localic map, h the left adjoint of r, and
f: Xy — X the Priestley dual of h. The following are equivalent:

(1) ris open.
(2) If U is a clopen upset of Xy, then f[U] is a clopen upset of X|.
Proof. We start by showing that if a € M and b, ¢ € L, then
b < (rvah)(c) <= ¢(b) N flo(a)] € ¢(c). (b)
To see this,

b < (rvgh)(c) <= b<r(a— h(c)) <= h(b) <a— h(c)
< h(b) Na < hc).
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Therefore, since f[f~!(B) N A] = BN f[A] for each A, B, by (d) we have
b < (rvah)(c) <= ¢h(b) N ¢(a) S dh(c)
<= [Tlo(b) Né(a) € [ e(c)
<= fIf7'¢(b) N d(a)] € ¢(c)
<= ¢(b) N flg(a)] € ¢(c).

(1)=(2). Let U € ClopUp(Xy;). Then U = ¢(a) for some a € M. By
(1) and Lemma there is b € L with rv,h = . Since 1 = v,(b), we have
1 < (rvgh)(b), so ¢(1) N f[U] € ¢(b) by (b). Therefore, f[U] C ¢(b). For
the reverse inclusion, let y € ¢(b). If y ¢ f[U], then since f[U] is closed in
X, there is a clopen set containing y and missing f[U]. By Lemma[2.2(1)]
there are c,d € L withy € ¢(c) \ ¢(d) and f]U] N (¢(c) \ ¢(d)) = @.
Thus, f[U] N ¢(c) € ¢(d), so ¢ < (rvzh)(d) = v(d) = b — d by (b).
This gives b A ¢ < d, and hence ¢(b) N ¢(c) C ¢(d), a contradiction since
y € ¢(b) N p(c) buty ¢ ¢(d). Therefore, y € f[U], and so ¢(b) C f[U].
Consequently, f[U] = ¢(b), and so f[U] € ClopUp(X7).

(2)=(1). Leta € M and set U = ¢(a). Then U € ClopUp(Xyy), so
flU] € ClopUp(X}) by (2). Therefore, there is b € L with ¢(b) = f[U]. If
¢,d € L, then by (b)),

¢ < (rvah)(d) <= o(c) N fU]
> ¢(c) N o(b)

Thus, rv,h = 14, and hence r is open. O

We next give a dual characterization of when a frame homomorphism
has a left adjoint. Let X be a Priestley space. Then we have two addi-
tional topologies on X, the topology of open upsets and the topology of
open downsets. If cl; and int; are the corresponding closure and interior op-
erators (i = 1,2), then it is well known (see, e.g., [3, Lem. 6.5]) that for
A C X we have:

chA=]clA and intj(A) =X\ (X \intA);
clbA=1clA and inty(A) =X \ (X \intA).
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Let L be a frame and let a = A\ S fora € L and S C L. Then

= int; m{qb(s) :s €S} ()
(see, e.g., [2, Lem. 2.3]). This will be used in the following lemma.

Lemma 2.5. Let h: L — M be a frame homomorphism and f: Xy — X,
its Priestley dual. The following are equivalent:

(1) h has a left adjoint.

(2) h preserves all meets.

(3) flintyF = inty fF for each closed upset F C X.
(4) 1f|U] is clopen for each clopen upset U C X ;.

Proof. (1)&(2). This is well known (see, e.g., [4, Prop. 7.34]).
(2)=(3). Let F be a closed upset of X;. By Lemma [2.2(2)) we may
write F' = ({¢(s) : s € S} for some S C L. By (@),

FAF) = £ ((Hels) s € SY) = ({Fols) s € )
=[{oh(s) : s € 5},

SO
it/ (F) = int, ({¢h(s) : s € S} = ¢ (/\ h[S]) .
On the other hand, by @ we have

int, F = int, ({6(s) : s € S} = ¢ (/\ s) .

Therefore, using (d) again yields

it F) = 176 (A\S) = o (AS).

Thus, by (2) we have

int; ! </\h > ¢h</\5> “int, F).
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(3)=(4). Let U € ClopUp(X},) and set F' = 1 f[U]. By Lemma[2.2(3),
F'is a closed upset of Y. By (3),

U Cinty f~Y(f[U]) Cinty f'F = flint, F

so f[U] C int;F, and hence 1f[U] C int; F' = inty7f[U]. Thus, 1Tf[U] is
clopen.

(4)=(1). Leta € M. By (4), Tf[¢(a)] € ClopUp(XL). Therefore, there
is a unique b € L such that ¢(b) = 1f[¢(a)]. Letting ¢(a) = b defines a
function £: M — L such that

¢l(a) = 1f[o(a)]. (d)

To see that / is left adjoint to h, let ¢ € L. Since ¢(c) is an upset, by (a) we
have

l(a) < c < ol(a) C ¢(c) <= 1f[p(a)] C ¢(c) < flo(a)] € d(c)
<= ¢(a) C [ o(c) <= ¢(a) C dh(c) <= a < h(c).
O

We recall (see, e.g., [6, p. 9]) that a map f: X — Y between posets
is a bounded morphism or a p-morphism if |f~*(y) = f~'(ly) for each
y € Y. Let h: L — M be a frame homomorphism between frames and
f: Xy — Xy its Priestley dual. Then f is an L-morphism. It follows
from Esakia duality for Heyting algebras [5, 6] that h preserves — iff f is a
p-morphism. This together with Lemma[2.5]yields:

Lemma 2.6. Let h: L — M be a frame homomorphism and f: X — X,
its dual L-morphism. Then h is a complete Heyting homomorphism iff f is a
p-morphism and 1 f|U] is clopen for each clopen upset U of X .

We next provide a dual characterization of the Frobenius condition
l(a N h(b)) =L(a)ND
foreacha € M and b € L.

Lemma 2.7. Let h: L — M be a frame homomorphism with Priestley dual
f: Xy — Xp. The following are equivalent:
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(1) h has a left adjoint { and ((a N h(b)) = £(a) A bforall a € M and
be L.

(2) 1f[U])is clopen and 1 (f[UINV) =1 f[UINV forall U € ClopUp(Xy)
and 'V € ClopUp(X7p).

Proof. By Lemmal[2.5] h has a left adjoint ¢ iff 1 f[U] is clopen for each U €
ClopUp(Xyy). It is left to show that £(a A k(b)) = ¢(a) A bforeacha € M
and b € Liff 1(f[UINV) = 1f[U] NV for each U € ClopUp(X,,) and
V € ClopUp(Xy). Letting U = ¢(a) and V' = ¢(b), since 1f[U] = ¢l(a)
by (d)), we have

¢(L(a) Ab) = pl(a) N o(b) = TfIUINV.
On the other hand, since f[U N f~4(V)] = f[U] NV, by (&) we have
¢lla Ah(b)) = 1f[¢(a A h(b))] = 1f[¢(a) N Gh(D)]

(
=1flé(a) N [Tl o0)] = 1f[UN fH(V)]
=1(fU]NnV).

Thus,

Ua A (b)) = £(a) Ab <= ¢l(a A h(b)) = p(£(a) AD)
= M(flUINV)=1fUINV.
O

We thus have translated the three conditions of Theorem into the
dual conditions in the language of Priestley spaces. We next prove that the
translated conditions are equivalent.

Theorem 2.8. Let f: X — Y be a Priestley morphism between L-spaces.
The following are equivalent:

(1) IfU € ClopUp(X), then f[U] € ClopUp(Y').
(2) fis ap-morphism and 1 f[U] is clopen for all U € ClopUp(X).

(3) 1f[U]is clopen and T(f[UINV) =1 fIU]NV forall U € ClopUp(X)
andV € ClopUp(Y).
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Proof. (1)=(2). Let U € ClopUp(X). By (1), f[U] is an upset of Y, so
1f[U] = f[U]. Therefore, 1f[U] is clopen in Y by (1). It is left to prove
that f is a p-morphism. For this it suffices to show that f(1x) is an upset for
each z € X (see, e.g, [0, Prop 1.4.12]). By Lemma[2.2(2)]

tz = {U € ClopUp(X) : x € U},
so by Lemma [2.2(4)]
fita] = f [ﬂ{U € ClopUp(X) : z € U}}
=({fIU]: z € U € ClopUp(X)}.

Thus, f[tx] is an upset by (1).

(2)=(3). It is sufficient to show that T(f[U] N'V) = 1f[U] NV for
each U € ClopUp(X) and V' € ClopUp(Y). But since f is a p-morphism,
U] = fUL sotfIUINV = fIUINV =1(f[U]NV) because fU] NV
is an upset.

(3)=(1). It suffices to show that f[U] is an upset. If not, then there exist
r € Uandy € Y with f(x) <ybuty ¢ f[U]. Thisyieldsy ¢ [(JyN fU]),
so there is a clopen upset V of Y such thaty € V and VN yN flU] = @

(see Lemma [2.2(2)). Therefore, y ¢ 1(f[U]NV)buty € 1f[U]NV, a
contradiction to (3). Thus, f[U] is an upset. O

By Lemmas [2.4] 2.6 and the three conditions of Theorem [2.§] are
equivalent to the corresponding three conditions of Theorem 2.1} Hence, the
Joyal-Tierney Theorem is a consequence of Theorem We conclude this
section with the following observation.

Remark 2.9. Condition (1) of Theorem 2.8]is equivalent to:
(1") If U is an open upset of X, then f[U] is an open upset of Y.

Clearly (1") implies (1) since if U is clopen, then f[U] is closed, hence a
clopen upset of Y by (1). Conversely, if U is an open upset, then U =
U{V € ClopUp(X) : V C U} by Lemma Therefore, f[U] =
U{f[V] : V € ClopUp(X), V C U} is a union of clopen upsets of ¥ by
(1). Thus, f[U] is an open upset of Y. Consequently, (1) is equivalent to f
being an open map with respect to the open upset topologies.
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On the other hand, this does not imply that f is an open map with respect
to the Stone topologies. To see this, we use the space defined in [1, p. 32].
Let X be the 2-point compactification of the discrete space {z,,, z, : n > 1}
with w the limit point of {z,, : n > 1} and w’ the limit point of {z,, : n > 1}.
Let Y be the 1-point compactification of the discrete space {y, : n > 1}.
We order X and Y and define the map f: X — Y as shown in the diagram
below.

X1  — n
T2 2 Y2
xs3 Y3
Ty Z2 — Ya
w X :
W — . 0O
X Y

It is straightforward to see that X and Y are L-spaces and f is an L-mor-
phism such that f[U] is a clopen upset of Y for each clopen upset U of X.
However, f is not an open map since U := {2, : n > 1} U {w'} is an open
subset of X whose image {y2, : n > 1} U {oco} is not an open subset of Y.

3. The subfit case

As was shown in [8, Prop. V.1.8], if in the Joyal-Tierney Theorem we assume
that L is subfit, then the localic map »: M — L is open iff its left adjoint
h: L — M is a complete lattice homomorphism (so h being a Heyting
homomorphism becomes redundant). We will give an alternative proof of
this result in the language of Priestley spaces.

We recall that a frame L is subfit if for all a,b € L we have

a€b= (dc€ L)(aVc=1landbVc#1).

We next give a dual characterization of when L is subfit. As usual, for a
poset X we write min X for the set of minimal points of X.
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Lemma 3.1. Let L be a frame and X, its Priestley space. Then L is subfit
iff min X, is dense in X,

Proof. First suppose that min X, is dense in X;. To see that L is subfit,
let a,b € L with a £ b. Then ¢(a) € ¢(b), so ¢(a) \ ¢(b) is a nonempty
clopen subset of X. Therefore, there is z € (¢(a) \ ¢(b)) N min X. Let
U = X, \ {z}. Then U is an open upset of X . Since ¢(a) UU = X,
and U is a union of clopen upsets (see Lemma [2.2(2)), compactness of X7,
implies that there is a clopen upset U’ C U with ¢(a) U U’ = X. Because
U" = ¢(c) for some ¢ € L, we have a V ¢ = 1. On the other hand, since
z ¢ p(b)ulU = ¢(bV c), it follows that b V ¢ # 1. Thus, L is subfit.
Conversely, suppose that min X is not dense in X;. Then there is a
nonempty clopen subset A of X such that A N min X; = &. We may
assume that A = U \ V, where U ¢ V are clopen upsets of X (see
Lemma 2.2(1)). From A N'min X; = & it follows that U N min X, C V.
Let a,b € L be such that U = ¢(a) and V = ¢(b). Since U € V, we
have a £ b. Suppose ¢ € Lissuch thata Ve = 1. Let W = ¢(c). Then
UUW = X,somin X; C U UW. Because U Nmin X C V/, this yields
min X; C V U W, which forces V U W = X because T min X; = X,
(see, e.g., [6, Thm. 3.2.1]). Thus, b V ¢ = 1, and hence L is not subfit. O

Lemma 3.2. Ler f: X — Y be a Priestley morphism between L-spaces. If
minY is dense in Y and 1 f[U] is clopen for each U € ClopUp(X), then f
is a p-morphism.

Proof. 1Ttis sufficient to show that Condition (1) of Theorem[2.8 holds, which
amounts to showing that f[U] is an upset for each U € ClopUp(X). If not,
then 1f[U] \ f]U] # @ for some U € ClopUp(X). Let V = 1f[U] \ f[U].
Since 1 f[U] is open and f[U] is closed, V' is a nonempty open subset of Y.

Thus, V NminY # @ because min Y is dense in Y. On the other hand,
VNminY CHf[U]NminY = f[U] NminY.

This is a contradiction since V' N f[U] = &. Consequently, f[U] is an
upset. [

As an immediate consequence of Lemma [3.2] we obtain:
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Theorem 3.3. Let f: X — Y be a Priestley morphism between L-spaces.
IfminY is dense in'Y', then Condition (2) in Theorem[2.8|is equivalent to

(2") 1 f[U] is clopen for each U € ClopUp(X).

Theorems [2.8] and [3.3] together with Lemmas [2.4] and [2.5] yield the fol-
lowing version of the Joyal-Tierney Theorem:

Corollary 3.4. [8, Prop. V.1.8] Let r: M — L be a localic map with left
adjoint h. If L is subfit, then r is open iff h is a complete lattice homomor-
phism.
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