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Résumé. Dans cet article, nous étudions l’opérade globulaire utilisée par

Batanin pour définir l’ω-groupoı̈de fondamental d’un espace. Nous iden-

tifions une propriété universelle de cette opérade et nous construisons un

cadre catégoriel général des opérades universelles agissant sur une structure

donnée. Un exemple motivant est l’opérade universelle agissant sur les es-

paces de lacets. D’autres exemples comprennent des versions n-dimensionelles

de l’ω-groupoı̈de fondamental—la version à homotopie près, la version en-

richie dans les espaces topologiques, ou tout simplement la version tronquée.

Identifier la propriété universelle de l’opérade de Batanin nous aide à trouver

d’autres opérades convenables à reconnaı̂tre les ω-groupoı̈des fondamentaux.

Nous espérons que ces opérades non-universelles et plus petites nous permet-

tent de démontrer que les ω-groupoı̈des définis par les opérades globulaires

modélisent les types d’homotopie.

Abstract. In this paper we analyse the globular operad used by Batanin to de-

fine the fundamental ω-groupoid of a space. We identify a universal property

of this globular operad and give a general categorical framework for universal

operads acting on structures. A motivating example is the universal operad

acting on loop spaces. Other examples include n-dimensional versions of

the fundamental ω-groupoid—up-to-homotopy, enriched in spaces, or sim-

ply truncated. Identifying the universal property of Batanin’s operad helps

us to find other suitable operads for recognising fundamental ω-groupoids.

The hope is that these smaller, non-universal operads will enable a proof that
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globular operadic ω-groupoids model homotopy types.

Keywords. Operad, globular operad, fundamental ω-groupoid, loop spaces,

enriched categories, homotopy types.

Mathematics Subject Classification (2010). 18D50, 18A05, 55P15.

Contents

1 The main theorem 8

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2 Operad actions . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3 The universal property . . . . . . . . . . . . . . . . . . . . 20

1.4 Topological version . . . . . . . . . . . . . . . . . . . . . . 22

2 Internal hom constructions 25

2.1 Preliminaries on enriched category theory . . . . . . . . . . 26

2.2 Internal homs between right adjoints . . . . . . . . . . . . . 28

2.3 Application to the endomorphism operad . . . . . . . . . . . 32

3 Loop spaces 38

4 Fundamental ω-groupoids 43

4.1 Globular theory . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2 The universal operad acting on ω-path spaces . . . . . . . . 47

4.3 Finite-dimensional versions . . . . . . . . . . . . . . . . . . 51

4.4 Non-universal examples . . . . . . . . . . . . . . . . . . . . 59

Introduction

One of the earliest motivations for studying higher-dimensional algebra was

Grothendieck’s suggestion of modelling homotopy types by “ω-groupoids”

[8]. There have been many different approaches to this, as there are many

different approaches to defining ω-groupoids. One approach is first to define

ω-categories and then to pick out the ω-groupoids among them as those in

which every element is “weakly invertible”. This is in contrast to the “direct”

approach in which non-invertible elements are never considered, for example
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with the notion of Kan complexes. This and other simplicial approaches (for

example [17, 16, 15]) are “non-algebraic” in that they do not specify all the

operations of the algebraic structure. Some other ways of thinking about this

are:

• they demand that composites exist rather than specifying them, thus

• they cannot be defined as algebras for a monad or models for an alge-

braic theory, and

• they can be thought of as nerves of algebraic structures, rather than

algebraic structures themselves.

A different family of approaches seeks to specify the operations of an ω-

groupoid explicitly, using operads. Operads achieved great success in the

study of iterated loop spaces, as a tool for parametrising multiplication of

loops [13]. This multiplication is associative and unital only up to homotopy;

a similar phenomenon occurs for ω-groupoids but is generalised to all types

of composition at every dimension.

One reason that operads are so efficacious for the study of loop spaces is

that we can pick combinatorially convenient operads for different situations;

the theory tells us how the resulting structures on loop spaces are equivalent.

The operads that are useful in practice (for example the little disks operad)

often do not have good universal properties, as the universal ones are much

too large for practical use.

By contrast, Category Theory tends to seek objects with nice universal

properties. One of the aims of this paper is to show that the operads used by

Trimble [18] and Batanin [1] in their definitions of n-category have a nice

universal property. We take the view that the main purpose of identifying

this universal property is to help us find smaller, non-universal operads for

practical use. One such “practical use” is the modelling of homotopy types.

There are (at least) two ways of using operads in higher-dimensional

algebra. Trimble proceeds inductively, using a classical operad at each di-

mension. Batanin on the other hand parametrises all dimensions at once,

using a more general form of operad called “globular operad”, in which the

arities of operations are no longer just natural numbers but “globular pasting
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diagrams” such as

Note that although Trimble’s definition, being inductive, can a priori only

achieve finite n dimensions, a coinductive argument may be used to provide

the ω-dimensional version [7].

In both cases, general ω-categories are defined, with the ω-groupoids

being identified among them afterwards. This is analogous to the fact that

while certain operads may be used to recognise loop spaces, it is not the case

that all the algebras for such operads are loop spaces—only those among

them that are group-like.

Batanin’s definition, or at least, the variant we shall use, says an ω-

category is a globular set equipped with the structure of an algebra for any

contractible globular operad. Then an ω-groupoid is an ω-category in which

every cell is weakly invertible (we will recall the precise definitions in Sec-

tion 4.1). Thus to give the fundamental ω-groupoid of a space X we must

1. identify its underlying globular set UX ,

2. find a contractible globular operad that acts on UX , and

3. show that every cell is weakly invertible.

Step (1) is straightforward—the n-cells of UX are found essentially by map-

ping the topological n-ball Bn into X (with a little care over sources and

targets).

Batanin achieves (2) by identifying a particular globular operad K that

acts naturally on the underlying globular set of any space. Note that “acting

naturally” here means two things—the action is canonical, but also, more

technically, the action is natural in X .

Essentially, given an n-pasting diagram α, the operations of K of arity α
are the boundary-preserving maps from Bn to the geometric realisation of α,

where “boundary-preserving” must be carefully interpreted to take into ac-

count all dimensions of boundary. The following facts are then immediately

true.

1. For any space X , UX is a K-algebra.
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2. Any K-algebra is an ω-category but not necessarily an ω-groupoid.

3. There might be ω-categories that are not K-algebras.

Batanin further shows that for any space X , UX is a K-algebra in which

every cell is weakly invertible (in a sense to be made precise). That is, it is

an ω-groupoid.

Crucially, there are other globular operads that act naturally on all glob-

ular sets UX (that is, naturally in X), and we will prove the following result

as an instance of the main theorem.

Theorem 1. A natural action of a globular operad P on underlying globular

sets UX is precisely given by a map P K of globular operads.

This result exhibits the action of K as universal (in fact terminal) among

such operad actions. Another way of saying this is: “Any such natural action

factors uniquely through the canonical action of K.”

Note that U extends to a functor Top GSet (where we write GSet

for the category of globular sets and their morphisms), and the naturality of

the actions in question means that in effect we should think of our operads as

acting on the functor U . In fact we prove the universality result in general for

suitable functors U : S G. Other examples are as follows; here n-GSet

denotes the category of n-dimensional globular sets.

1. Loop spaces, using the functor

Ω : Top∗ Top

X Top∗(S
1, X)

2. Fundamental n-groupoids, given by the functor

Πn : Top n-GSet

which agrees with U at all dimensions less than n, and takes homotopy

classes at dimension n (see Section 4.3 for a precise definition).

3. The “incoherent” version of Πn, a functor

Un : Top n-GSet

which simply truncates UX to n dimensions.
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4. The “path space” version of Πn, a functor

Pn : Top Top-n-Gph.

Here Top-n-Gph denotes the category of “n-graphs enriched in Top”;

we will treat these as n-graphs in Top where for all k < n the space of

k-cells is set-like. Then Pn agrees with U (and Πn at all dimensions

less than n); for k = n we have a space of k-cells of arity α, given

by the space of boundary-preserving maps from Bk to the geometric

realisation of α, where at lower dimensions we took the set of such

maps.

In each case we have a cartesian monad T on G giving us a pertinent

notion of T -operad, and the main theorem gives us a universal T -operad EU

acting on the functor in question. In (1), T is the free topological monoid

monad (giving rise to classical operads in Top); for (2) and (3) we use

the free strict n-category monad, and for (4) we use the free topologically-

enriched n-category monad.

Note that symmetric operads do not fit into this framework as the free

commutative monoid monad is not cartesian; it is however weakly cartesian,

so symmetric operads do fit into the more general framework of Weber [19].

A direct examination of symmetric operads acting on loop spaces yields a

universal symmetric operad analogous to the non-symmetric one, suggest-

ing that the main theorem could be extended to Weber’s weakly cartesian

framework. However this is beyond the scope of this work.

Once we have identified this simple universal property, we have an obvi-

ous method of finding smaller non-universal operads for the given purpose.

That is, having constructed the universal operad EU we just have to look for

any T -operad P equipped with an operad map P EU .

In the case of globular operads we can make use of the work of [4] in

which we prove that every Trimble n-category is a Batanin n-category. Part

of the proof produces a functor
{

Classical operads

acting on path spaces

} {

Globular operads

acting on ω-path spaces

}

Even the universal operad on the left yields a non-universal operad on the

right, and applying the functor to non-universal operads on the left gives fur-

ther non-universal examples on the right. We will discuss this in Section 4.4.
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The structure of this paper is as follows. In Section 1 we prove the main

universality theorem in sufficient generality to cover the several key exam-

ples to which the remainder of the paper is devoted. In Section 2 we prove

some technical results needed to address sizes issues when constructing in-

ternal homs; we are mostly working in categories of functors between large

categories, the construction of internal homs takes some care. In Section 3

we discuss operads acting on loop spaces. Among other things this serves

to emphasise the unwieldy nature of the universal operad in question, and

the importance of finding non-universal ones for calculations, as is done in

the theory of loop spaces. In Section 4 we discuss the motivating exam-

ple, globular operads for defining the fundamental ω-groupoids of spaces,

together with the various n-dimensional versions described above. We end

with a brief discussion of future work.

Note for experts

Experts who wish to read the paper quickly might wish to proceed directly

as follows.

1. The definition of EU , the universal operad acting on a functor U is

given in Definition 1.17.

2. The main theorem, giving the universal property ofEU , is Theorem 1.21.

3. The technical theorem addressing size issues is Theorem 2.4.

4. The loop space example is given in Theorem 3.3.

5. The fundamental ω-groupoid example is given in Theorem 4.8.

Terminology and notation

1. Top will denote a category of topological spaces that is complete, co-

complete and cartesian closed, for example the category of compactly

generated weakly Hausdorff spaces.

2. N will denote the natural numbers including 0.

3. By “classical operad” we will always mean non-symmetric operad.
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4. We will use the equivalent categories n-GSet and n-Gph more-or-

less interchangeably, although technically the former is defined as a

presheaf category and the latter by iterated enrichment.

5. We will write T -operads as their underlying collection (P T1)
or as their associated monad P . In other work we refer to these as

“(E, T )-operads”.

6. We will write n-Pd for the set of n-dimensional globular pasting dia-

grams (that is, the n-cells of the free strict ω-category on the terminal

globular set), and Pd for the set of all globular pasting diagrams.
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1. The main theorem

In this section we will prove the main theorem, exhibiting a universal T -

operad acting on a given functor U . There is a slight subtlety involved to

ensure that our framework can support all the examples we have in mind, as

listed in the introduction. We will need to fix some suitable categories and

functors:

• a category S with initial object; in our examples this will be Top or

Top∗;

• G a cartesian category, for example GSet, n-GSet or Top;

• a functor U : S G, for example the loop space functor or ω-path

space functor;

• a cartesian monad T on G, typically the free ω-category monad or n-

dimensional version.
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Finally we require that in the slice category [S,G]/∆T1 a particular inter-

nal hom defining the endomorphism operad on U exists, where ∆T1 denotes

the constant functor at T1. Some of the results are stated by Leinster for

G a presheaf category, or slightly weaker, for [S,G] locally cartesian closed.

(Recall that a category C is called cartesian if it has all pullbacks, and locally

cartesian closed if for all X ∈ C the slice category C/X is cartesian closed.)

In fact, either of these requirements is excessive for us, both in the sense of

being, abstractly, not necessary and in the sense of excluding the examples

we have in mind. We do not need every slice to be cartesian closed, only the

one above; in fact we don’t even need this slice to be cartesian closed as we

are only interested in one particular internal hom, the one defining the endo-

morphism operad on U . In our examples some care is needed about internal

homs because of size issues; this technical issue is resolved in Section 2, and

requires the following further conditions:

• The monad T : G G is not only cartesian but familially representable

(as happens when T is polynomial).

• The functor U : S G is a right adjoint from a cocomplete category

S to a presheaf category G, i.e., to a free cocompletion of a small cate-

gory.

When appropriate, these assumptions are adjusted to fit within an en-

riched category context; in fact our examples will only be enriched in Set or

Top, which helps the technical details go through without many changes.

Our range of examples is summed up in Table 1; for the full defini-

tions see Sections 3, 4.2 and 4.3 for loop spaces, ω-path spaces, and finite-

dimensional cases respectively.
1.1 Background

We begin with some background theory which is found in [12], but is simpli-

fied here by the fact that we are only considering operads, whereas Leinster

provides the more general theory for multicategories.

The content of the following definitions is that, given a cartesian monad

S on a cartesian category E, there is a monoidal structure on the category

E/S1 of “S-collections”, and an S-operad is a monoid in this monoidal cat-

egory. Moreover, under, suitable conditions E is enriched in E/S1 and ten-

sored over it, enabling us to define endomorphism operads and use them to

express algebra actions.
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Table 1: Examples

U S G T

loop spaces Ω Top∗ Top free Top-monoid

ω-path spaces U Top GSet free ω-category

n-truncated path spaces Un Top n-Gph free n-category

n-homotopy path spaces Πn Top n-Gph free n-category

n-topological path spaces Pn Top Top-n-Gph free Top-n-category

In all that follows, E is a cartesian category and S is a cartesian monad

on it, that is, the functor part preserves pullbacks and the naturality squares

for the unit and multiplication are pullbacks. In our examples E will either

be G or [S,G], and S will be the monad T on G or the induced monad T∗ on

[S,G] respectively.

Definition 1.1. The category of S-collections is the slice category E/S1.

There is a monoidal structure on E/S1 given as follows.
A

S1

p ⊗
B

S1

q is the

left-hand edge of the diagram:
.

SA B

S1S21

S1

S! Sq
Sp

µ1

Note that we will sometimes write a collection (P S1) simply as P to

simplify the notation. We will sometimes write the tensor product as (A ⊗
B S1) if there is no danger of ambiguity.

Definition 1.2. An S-operad is a monoid in the monoidal category E/S1.

A morphism of S-operads is a monoid map. S-operads and their morphisms

form a category S-Opd.
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The following hom and tensor structures are given by the special case

E = 1 of [12, Prop. 6.4.1].

Definition 1.3. Let S be a cartesian monad on a cartesian category E, where

E/S1 is cartesian closed.

1. Given
P

S1

∈ E/S1 and A ∈ E we define
P

S1

⊙ A ∈ E as the vertex of

the following pullback:
.

P SA

S1
S!

This assignation on objects extends to a functor E/T1× E E.

2. Given A,B ∈ E we define

Hom(A,B) =







SA

S1

S! ,
S1×B

S1

π1






∈ E/S1

where the square brackets denote the exponential in E/S1 where it

exists, and π1 denotes projection onto the first component. This assig-

nation on objects extends to a functor Eop × E E/T1.

Proposition 1.4. (Leinster) There is an isomorphism

E





P

S1

⊙ A , B




∼= E/S1





P

S1

, Hom(A,B)





natural in
P

S1

, A and B.

Remark 1.5. Leinster demands that E be locally cartesian closed but we see

that this is excessive for our construction—it does not hold in our examples,

but we only need one particular hom in one particular slice to exist.
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Leinster uses this result to define the notion of endomorphism S-operad;

again he does this for S-multicategories, but we only need the operad case.

Proposition 1.6. [12, Proposition 6.4.2] Let S be a cartesian monad on a

cartesian category E. Then given any object A ∈ E, if the S-collection

End (A) = Hom(A,A)

exists then it naturally has the structure of an S-operad.

Definition 1.7. We call End (A) the endomorphism operad of A.

Definition 1.8. An algebra for an S-operad P is given by an object A ∈ E

together with a map

P

S1

⊙ A A

compatible with the operad structure of P ; equivalently it is an algebra for

the associated monad.

We can equivalently express this using the endomorphism operad.

Proposition 1.9 (Leinster). let P be an S-operad. If the endomorphism

operad on an object A ∈ E exists then a P -algebra structure on A is an

operad map

P

S1

End (A).

This duality will play a key part in our proof of the main theorem.

1.2 Operad actions

We now seek to abstract the notion of an operad acting on loop spaces, path

spaces, or ω-path spaces.

Definition 1.10. Let T be a cartesian monad on a cartesian category G, let P
be a T -operad, and let U : S G be a functor. An action of P on U-objects

is given by, for all X ∈ S a morphism

αX :
P

T1

⊙ UX UX
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in G such that

1. operad compatibility: for all X ∈ S, αX exhibits UX as a P -algebra,

and

2. naturality: the αX are the components of a natural transformation

P

T1

⊙ U(−) U(−).

The aim of this work is to show that under the right hypotheses there is

a universal T -operad EU with such an action, characterised by the following

universal property: an action of a T -operad P on U-objects is uniquely and

completely determined by a T -operad map P EU .

The operad EU will be defined as ev∅(End (U)) and the universality re-

sult holds whenever this definition makes sense. The next few results will

build up towards making sense of this formula. Here ∅ is the initial object

of S if it has one. Now we put E = [S,G] which is cartesian if G is carte-

sian, with pullbacks computed pointwise. We use the following monad on

E, induced by composition with T .

Lemma 1.11. Given a cartesian monad T on a cartesian category G we have

a cartesian monad T∗ = T ◦ − on [S,G]. Explicitly, given A : S G we

have
T∗A : S G

X (TA)X

Proof. The multiplication and unit for T∗ are constructed from those of T
and the naturality squares are pullbacks since pullbacks in the functor cate-

gory are computed pointwise; the pointwise squares are all naturality squares

for the multplication and unit of T hence are themselves pullbacks.

Preservation of pullbacks also comes from the fact that pullbacks in the

functor category are computed pointwise; the pointwise squares we need

to check are all pullbacks in G with T applied, so are pullbacks since T
preserves pullbacks.
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In our proof of the main theorem we are going to move back and forth

between T -operads and T∗-operads using “constant” and “evaluation” func-

tors. Before we define these, it is useful to make a few observations about

the structure of the slice category [S,G]/T∗1.

Remarks 1.12.

1. Given
A

T∗1

p ,
B

T∗1

q ∈ [S,G]/T∗1 their tensor product is given by a certain

pullback in [S,G]. This is computed pointwise, and its component at

X ∈ S is the left-hand edge of
.

TAX BX

T1T 21

T1

T ! qX
TpX

µ1

which we see is the collection
AX

T1

pX ⊗
BX

T1

qX.

2. The tensor product
A

T∗1

p ⊙ B is also given by a pullback; this time the

component at X ∈ S is the vertex of the pullback

.

AX TBX

T1
pX T !

which we see is the tensor product
AX

T1

pX ⊙ BX .

We now define the “constant” and “evaluation” functors.
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Lemma 1.13. Let T be a cartesian monad on a cartesian category G. We

have a “constant” functor acting as follows:

T -Opd T∗-Opd

P

T1

∆P

T∗1

where ∆P : S G is the constant functor evaluating everywhere at P .

Proof. Given a T -operad P we also write its associated monad (on G) as P .

Suppose the operad P is given by the cartesian natural transformation

α : P T.

Then we also have a cartesian natural transformation

α∗ : P∗ T∗

i.e. a T∗-operad. The components of α∗ are given by, for each A ∈ [S,G] the

natural transformation

αA : PA TA.

It is easy to check that the naturality squares are pullbacks by examining

them pointwise.

Remark 1.14. It is useful to note that the operad P∗ has underlying T∗-

collection (P∗1 T∗1). Here 1 is the terminal object in [S,G], so it is the

constant functor that sends every object to 1 (the terminal object in G) and

every morphism to the identity. Thus, evaluated at X the above collection is

just (P1 T1), that is, the underlying collection of the operad P .

Thus the operad P∗ can be thought of as ∆P , the “constant operad” in

[S,G] that evaluates everywhere as P . We will sometimes write it in this

way, and will often think of it in this way. Similarly it is useful to note that

the functor T∗1 is the constant functor ∆T1.

The following corollary is barely more than a matter of notation, but is useful

for the proof of the main theorem.
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Corollary 1.15. A natural transformation

P

T1

⊙ U(−) U(−)

is precisely a natural transformation

P∗

T∗1

⊙ U U.

We now define the “evaluation” functor; this is a straightforward generalisa-

tion of the evaluation functor used by Leinster [12, Section 9.2].

Definition 1.16. For any X ∈ S we have a functor

evX : T∗-Opd T -Opd

which we define in steps as follows.

1. We have a functor
evX : [S,G] G

F FX

2. We know evX(T∗1) = T1 for all X , so the above functor evX extends

to a functor
evX : [S,G]/T∗1 G/T1

A

T∗1

AX

T1

3. It is straightforward to check that this functor is monoidal (this is es-

sentially the content of the first of Remarks 1.12) hence it maps oper-

ads to operads. That is, we get a functor

evX : T∗-Opd T -Opd.
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We now define our putative universal operad, which is again a generali-

sation of the one used by Leinster in [12, Section 9.2]; however note that it

will take a considerable amount of technical work to show that it exists in

the cases of interest.

Definition 1.17. Let T be a cartesian monad on a cartesian category G, S a

category with an initial object ∅, and U a functor S G. If the internal hom

Hom(U, U) =







T∗U

T∗1

,
T∗1× U

T∗1







exists in [S,G]/T∗1 then this gives the endomorphism T∗-operad End (U).
We define the universal T -operad acting on U-objects to be the T -operad

EU = ev∅(End (U)).

Note that evaluating the collection Hom(U, U) at ∅ gives us the underlying

collection of EU , and the operad structure is inherited.

The internal hom certainly exists if [S,G] is locally cartesian closed, or,

more specifically, if the slice [S,G]/T∗1 is cartesian closed. However, in

some of our key examples this demand is too stringent, mostly for size rea-

sons; we will address this in Section 2.

The rest of the section will be devoted to identifying the universal prop-

erty of this operad; the universal property is not studied by Leinster. The

next three lemmas show how we can use the initial object of S to simplify

all our calculations. For the rest of this section, T is a cartesian monad on

a cartesian category G, P is a T -operad, and S is a category with an initial

object ∅.

Lemma 1.18. Let S have an initial object ∅ and let ∆V : S G denote the

constant functor evaluating at V ∈ G. Then a natural transformation

α : ∆V F

is completely determined by its component at ∅, which has the form

α∅ : V F∅.
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Proof. Simple diagram chase: the component αX is determined by the nat-

urality square
V F∅

V FX.

α∅

αX

F !

Lemma 1.19. With notation as above, a map of T∗-collections

∆V F

T∗1

α

is completely determined by a map of T -collections

V F∅

T1.

α∅

Proof. A priori a map α of T∗-collections as shown is a natural transforma-

tion α : ∆V F making the triangle commute. By Lemma 1.18 the natural

transformation α is completely determined by its component at ∅; it remains

to check that the commutativity of the triangle at ∅ ensures the commutativity

of every triangle
V FX

T1

αX

which is accomplished by a simple diagram chase.

Lemma 1.20. Let E be a T∗-operad. A map

P∗ E

T∗1

β

is a map of T∗-operads if and only if applying ev∅ gives a map of T -operads

P ev∅(E)

T1.

β∅
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Proof. We have to check that β respects the monoid structure if β∅ does. For

multiplication, we check that the following diagram commutes.





P∗

T∗1
⊗
P∗

T∗1









E

T∗1
⊗
E

T∗1









P∗

T∗1









E

T∗1





β ⊗ β

β

µ µ

In principle we have to check that this commutes at every X ∈ S, which

amounts to checking that the following diagram commutes (where by a slight

abuse of notation we only write the “variable” part of each collection):

P ⊗ P EX ⊗ EX

P EX.

βX ⊗ βX

βX

µP µE
X

However, we see that commutativity of this diagram at any X follows from

commutativity at ∅ using the following diagram:

P ⊗ P EX ⊗ EX

P EX
E∅ ⊗ E∅

E∅

βX ⊗ βX

βX

µP µE
X

µE
∅

β∅ ⊗ β∅

β∅

E!⊗E!

E!

The top and bottom triangles are naturality “squares” for β (which are tri-

angles as the source functor of β is constant) and the right hand square is a

naturality square for µ. The diagrams for the unit work similarly.
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1.3 The universal property

We are finally ready to prove the main theorem.

Theorem 1.21 (Main theorem). Let T be a cartesian monad on a cartesian

category G, S a category with an initial object ∅, and U a functor S G.

Suppose further that End (U) exists, so we can define

EU = ev∅(End (U)).

Let P be a T -operad. Then an action of P on U-objects is precisely a map

of T -operads P EU .

Proof. We write E = [S,G]. An action of P on U-objects is by definition a

natural transformation

α :
P∗

T∗1

⊙ U U

such that for all X , the component

αX :
P

T1

⊙ UX UX

exhibits UX as a P -algebra.

By the tensor structure (Proposition 1.4), specifying such an α amounts

to specifying a morphism

α :
P∗

T∗1

Hom(U, U)

in E/T∗1 or, writing it out more fully,

P∗ Hom(U, U)

T∗1.

ᾱ
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Now P∗ = ∆P is a constant functor, so by Lemma 1.19 the natural transfor-

mation α is completely determined by the component at the initial object ∅,

that is, a map of T -collections

P ev∅(Hom(U, U))

T1

ᾱ∅

thus our natural transformation α is completely determined by a map of un-

derlying T -collections

α∅ :
P

T1

ev∅(End (U)) = EU .

It remains to show that this is a map of operads if and only if for all

X ∈ S, αX exhibits UX as a P -algebra. We proceed in steps, by proving

that the following are equivalent.

1. For all X ∈ S, αX :
P

T1

⊙ UX UX exhibits UX as a P -algebra.

2. α :
P∗

T∗1

⊙ U U exhibits U as a P∗-algebra.

3. α :
P∗

T∗1

End (U) is an operad map.

4. α∅ :
P

T1

ev∅(End (U)) = EU is an operad map.

• 1 ⇐⇒ 2 is Corollary 1.15.

• 2 ⇐⇒ 3 is Proposition 1.9.

• 3 ⇐⇒ 4 is Lemma 1.20.
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Remark 1.22. In this proof it is tempting to use the fact that (1) is equivalent

to the assertion that for all X ∈ S,

αX :
P

T1

End (UX)

is an operad map; this is true but not helpful at this point, as

evX(End (U)) 6= End (UX).

1.4 Topological version

The main theorem also holds in a topologically enriched version which we

will use for several of our examples. The theorem is essentially the same,

provided that the categories and functors involved are interpreted in an en-

riched sense.

As usual Top will denote a category of topological spaces that is com-

plete, cocomplete and cartesian closed, for example the category of com-

pactly generated weakly Hausdorff spaces. We will be consideringV-enriched

categories where V = Top.

The starting point is that we now want the categories S and G to be V-

categories rather than just plain categories. In our examples, S will be Top

or Top∗ and G will be Top or [Gop,Top]. We also want the monad T on

G to be enriched: as a functor, T is V-enriched, and the multiplication and

unit structures on T should be V-natural transformations. And likewise, the

requirement of familial representability of T now means that the functor T
is to be an enriched coproduct of (enriched) representable functors.

In the case V = Top, such adjustments tend to be mild. For example,

because the forgetful functor hom(1,−) : Top Set is faithful, V-natural

transformations are, in this case, the same as ordinary natural transforma-

tions. And in this case, enrichment of functors is a property-like structure:

an ordinary functor between the underlying categories of Top-categories, ei-

ther is or isn’t Top-enriched. That is, for a functor F : C D the functions

C(X, Y ) D(FX, FY ) giving the action on morphisms either are or are

not continuous, and that is the criterion for F to be enriched.
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There is an a priori distinction between enriched (co)limits and ordinary

(co)limits, but under mild assumptions on S and G (e.g., they are V-tensored

and cotensored; see below), the distinction is one we can ignore entirely. To

set the context, we introduce some notation:

• If C is a V-enriched category, write C0 for the underlying (plain) cate-

gory of C, obtained by applying V(1,−) : V Set to the homs of C

as objects in V, with 1 the monoidal unit of V.

• If D is an ordinary category, we write D for the free V-enriched cat-

egory generated by D. The objects of D are those of D, and the en-

riched homs of D as objects in V are defined by the formula

D(d, d′) =
∐

f : d d′

1.

In the case V = Top, it simply means we interpret the hom-sets of D
as discrete topological spaces, and eventually by abuse of notation we

will write the resulting V-category just as D.

• If A and B are V-categories, we write [A,B] for the (plain) category

of V-functors and V-transformations. We write Cat(D,E) for the cat-

egory of functors and transformations between plain categories D, E.

The freeness property of D then asserts

[D,C] ∼= Cat(D,C0)

for any V-category C.

• If in addition A is small, there is a canonical way of endowing [A,B]
with enriched structure, and we write BA for this V-category.

Under this notation, for any diagram category D we intend to take (co)limits

over, and for any enriched category C, we have a V-enriched V-functor cate-

gory

[D,C]

and we have a V-functor D 1, which induces a “ diagonal” V-functor
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∆D =
(

C ∼= [1,C] [D,C]
)

.

If ∆D has an enriched right adjoint V-limD (a right adjoint in the 2-category

V-Cat), then we say that C has enriched D-limits. Or, if ∆D has an enriched

left adjoint, then we say that C has enriched D-colimits.

Enriched D-limits in C, assuming they exist, are ordinary D-limits when

viewed in C0. That is to say, if there is an enriched right adjoint

V- lim
D

: [D,C] C

then applying the forgetful 2-functor V-Cat Cat (which preserves ad-

junctions as all 2-functors do) we get an ordinary right adjoint in Cat,

[D,C]0 C0
∼= Cat(D,C0) C0

that is right adjoint to an ordinary diagonal functor.

The distinction between enriched D-limits in C and ordinary D-limits in

C0 is that the former might not exist even if the latter do. The distinction

disappears if we know in advance that C is V-complete, and indeed in our

examples S and G will be V-complete and V-cocomplete, for straightforward

reasons.

Alternatively, if C is V-tensored, then C will have enriched D-limits if

it has ordinary D-limits [10, p.50]. And if C is V-cotensored, then C will

have enriched D-colimits if it has ordinary D-colimits. Again, existence of

tensors and cotensors is straightforwardly observed in our examples of S and

G.

Under some such niceness assumptions on S and G that allow us to forget

about distinguishing between enriched and ordinary (co)limits, we may say:

1. Pullbacks in G are simply pullbacks in G0.

2. Pullbacks in [S,G] are computed pointwise, as in Cat(S0,G0).

3. We can consider T as a cartesian monad on G0 and consider a T -operad

P ; then the underlying cartesian functor P : G0 G0 turns out to be

a V-functor G G. This follows from the above, as the action of P
can be defined entirely from P1 using pullbacks.
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This last point means that in effect we do not have to change our defini-

tion of T -operads and their maps, but that their underlying functors will all

turn out to be V-enriched “for free”. This in turn means that the evaluation

functor

evX : T∗-Opd T -Opd

still makes sense even though at the level of functors the evaluation functor

evX : [S,G] G0

necessarily now has only the underlying category G0 as its codomain.

We can now re-state the main theorem as follows.

Theorem 1.23 (Main theorem, topological version). Let S and G be Top-

categories, where S has an initial object ∅. Let T be a monad on G that is

cartesian in the Top-enriched sense, and let U be a Top-functor S G.

Suppose further that End (U) exists, so we can define

EU = ev∅(End (U)).

Let P be a T -operad. Then an action of P on U-objects is precisely a map

of T -operads P EU .

Our main theorem gives a universal operad acting onU-objects whenever

End (U) exists; in the next section we will show that it does exist in the cases

we’re interested in. This existence typically involves some fairly technical

considerations.

2. Internal hom constructions

In this section we will address some size issues that arise when we construct

the endomorphism operad End (U) in practice. These issues arise on ac-

count of us seeking an internal hom in the category [S,G]/T∗1 where the

category S is not small. However, in our examples we are helped by some

specific properties of the categories and functors in question, and we will

now provide the technical results that make this work.

It may be worth elucidating this issue in the case of one of our motivating

examples, G = [Gop,Set]. In that case we could invoke equivalences
[

S, [Gop,Set]
]

/T∗1 ≃ [S×G
op, Set ]/T∗1 ≃

[

(S×G
op)/T∗1, Set

]
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and then if S were small we could use the usual construction of an exponen-

tial in a presheaf category [Cop,Set]:

(Y X)(c) = [Cop,Set]
(

C(−, c)×X , Y
)

.

However, this functor evaluates each object c at a collection of natural trans-

formations, and when the category we’re taking presheaves over isn’t small,

this collection is not guaranteed to be a set. That is, if S is not small, this

construction is not guaranted to produce an object in the required functor

category.

In this section we are going to show that this does work in particular

circumstances which cover all the examples we have in mind. The main

technical result we will use is that we can define internal homs between

right adjoints in an enriched functor category of the form

[

S,VC
op]

where C is small. We then “translate” from our slice category into one of

this form via an equivalence

[

S , VB
op]

/T∗1 ≃
[

S , V(B/T1)op ]

and the fact that the functors whose internal hom we are now taking are right

adjoints will follow from U being a right adjoint and T being familially

representable.

All of the material in this section is developed in the generality of en-

riched category theory, relying heavily on [10]. Throughout this section V

will be a locally small, complete, cocomplete, cartesian closed category, or a

“cartesian cosmos”. In fact for our examples we only use the cases Set and

Top, a convenient category of small topological spaces.

2.1 Preliminaries on enriched category theory

First we fix our terminology and notation for the enriched setting. Let C be

a small V-category. We write VC
op

for the V-category of V-presheaves on C,

with hom-objects given by the usual end formula:

VC
op

(F,G) =

∫

c:C

GxFc.
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Note that we use the notation c : C rather than the more common c ∈ C
in all our (co)end formulae. The exponential here denotes the internal hom

in the cartesian closed category V ; we might also write internal hom in the

form V(Fc,Gc) when the exponential notation becomes arduous, as there is

no ambiguity.

We may refer to the hom-object VC
op

(F,G) as the enriched hom, to dis-

tinguish it from the internal hom: VC
op

is cartesian closed, with internal hom

given by the usual formula

GF (c) = VC
op(

C(−, c)× F, G
)

=

∫

d:C

V
(

C(d, c)× Fd, Gd
)

Now, ultimately we are interested in internal homs in a (plain) category

[S,VC
op

] of V-functors and V-transformations. GivenV-functors F,G : S VC
op

,

we write their internal hom in [S,VC
op

] as [F,G]. The following thought ex-

periment may elucidate the situation. We could use the equivalence

[S,VC
op

] ≃ [S× C,V]

and attempt to define the internal hom [F,G] : S × C V by the end

formula:

[F,G](s, c) =

∫

t:S,d:C

V
(

S(s, t)× C(d, c)× F (t, d), G(t, d)
)

(2.1)

In general this end might not exist as S is not small, but when it does

exist it will be an internal hom as we will carefully verify later in the course

of proving Theorem 2.4. This main technical result is to show that this end

does exist under some mild conditions on the categories, when F and G are

right adjoints. We proceed in two steps.

1. Give circumstances in which the enriched hom between right adjoints

in [S,VC
op

] exists.

2. Show that if F and G are right adjoints in [S,VC
op

] then the above end

is an instance of an enriched hom between (some other) right adjoints,

and so the above end exists and gives the internal hom [F,G].

We will then apply this result to the examples we’re interested in.
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2.2 Internal homs between right adjoints

Our main strategy is to express the end (2.1) as an enriched hom between

right adjoints. The following lemma ensures that such an enriched hom will

exist. In all that follows when we speak of a right adjoint S VC
op

we

mean a right adjoint in the 2-category of V-categories, V-functors, and V-

transformations.

Lemma 2.1. Suppose C is small, S is V-cocomplete, and the functors

S VC
opG

G′

have respective left adjoints F, F ′. Write F̄ = FyC , the restriction of F
along the Yoneda embedding yC : C VC

op

and similarly F̄ ′ = F ′yC . Then

the enriched hom [S,VC
op

](G,G′), as an end
∫

x:S
VC

op

(Gx,G′x), exists and is

given by

[S,VC
op

](G,G′) ∼= SC(F̄ ′, F̄ ).

Proof. By [10, Theorem 4.51], G and G′ are given by

Gx ∼= S(F̄−, x)

G′x ∼= S(F̄ ′−, x)

We have

SC(F̄ ′, F̄ ) ∼=

∫

c:C

S(F̄ ′c, F̄ c) as C is small

∼=

∫

c:C

∫

x:S

S(F̄ ′c, x)S(F̄ c,x) by enriched Yoneda, [10, 2.31]

∼=

∫

x:S

∫

c:C

S(F̄ ′c, x)S(F̄ c,x) by the Fubini theorem, [10, 2.8]

∼=

∫

x:S

V C
op
(

S(F̄−, x), S(F̄ ′−, x)
)

as required.
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We now aim to define an internal hom [F,G] : S VC
op

between right

adjoints. It is essentially given by the same formula (2.1) as would be ex-

pected if S were small, except we express it in such a way that the enriched

hom we need to invoke is between right adjoints so that Lemma 2.1 en-

sures it exists. This may give the following constructions an air of over-

complication, but the aim is to express something familiar as a composite of

right adjoints, which takes a little manœuvring. In the following construc-

tions we use the same hypotheses as in Lemma 2.1.

The following will be the first right adjoint in our enriched hom, derived

from F . Given an object s ∈ S we write S(s,−) · F for the following

composite; here δ denotes the diagonal, ∆ produces the constant functor,

and Π denotes the functor taking products.

S δ S×S
S(s,−)×F

V×VC
op ∆×1

VC
op

×VC
op Π VC

op

x (x, x)
(

S(s, x), F (x)
) (

∆S(s,x), F (x)
)

S(s, x)×F (x)

Here S(s, x)× F (x) denotes the functor

C op V

c S(s, x)× F (x)(c)

Proposition 2.2. If F is a right adjoint in V-Cat then so is the above com-

posite.

Proof. Let I denote the unit V-category. There is an evident V-category

I + I , and there is a unique V-functor ! : I + I I . The diagonal functor

δ : S S × S may be identified with the functor given by pre-composition

with !, which we write as S!; this has an enriched left adjoint (which, at the

underlying category level, is just the coproduct):

SI SI+I
S!

+ = Lan!

⊣

Similarly, we have a unique V-functor !C : C
op I , and ∆ above may be

identified with V!C . This too has an enriched left adjoint:

VI VC
op

V!C

colimC = Lan!C

⊣
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The second map has left adjoint (− ⊗ s) × F ′ where (− ⊗ s) : V S is

tensoring with an object s (which is left adjoint to the representable S(s,−) :
S V ), and F ′ is the left adjoint of F .

Finally, the enriched left adjoint of Π is the diagonal:

VC
op

× VC
op

VC
op

Π

δ

⊣

The following will be the second right adjoint in our enriched hom, de-

rived from G. For every object c ∈ C we write GC(−,c) for the following

composite:

S G VC
op (−)C(−,c)

VC
op

x Gx GxC(−,c)

Here GxC(−,c) denotes the exponential (in the cartesian closed category VC
op

)

of the functors G(x) and the representable C(−, c).

Proposition 2.3. If G is a right adjoint in V-Cat then so is the above com-

posite.

Proof. Recall that VC
op

is cartesian closed in the enriched sense, so that we

have a V-natural isomorphism

VC
op

(X × Y , Z) ∼= VC
op

(X , ZY )

between enriched functors valued in V. In particular, the enriched functor

(−)Y is an enriched right adjoint; we are using the case Y = C(−, c).

We are now ready to prove the main technical theorem we need, con-

structing internal homs between right adjoints via the above composites.

Theorem 2.4. Let V be a locally small, complete, cocomplete cartesian

closed category, let S be a V-cocomplete V-category, and let C be a small

V-category. Let F,G : S VC
op

be two right adjoints. Then, in the category

of V-functors [S,VC
op

] there is an internal hom [F,G] constructed according

to the formula

[F,G](s)(c) =
[

S,VC
op](

S(s,−) · F , GC(−,c)
)

.
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Proof. First note that this enriched hom may be legitimately formed as an

object of V by Lemma 2.1, since S(s,−) · F and GC(−,c) are right adjoints.

Thus,

[F,G](s)(c) =

∫

t:S

VC
op
(

S(s, t)× F (t) , G(t)C(−,c)
)

∼=

∫

t:S

VC
op
(

S(s, t)× F (t)× C(−, c) , G(t)
)

∼=

∫

t:S

∫

d:C

V
(

S(s, t)× F (t)(d)× C(d, c) , G(t)(d)
)

This is the formula expected as in (2.1).

For completeness we now show that [F,G] satisfies the requisite univer-

sal property. Thus, suppose we are given a V-functor X : S VC
op

. We es-

tablish a natural bijection between the family of maps of the formψ : X [F,G]
and those of the form φ : X × F G.

Let us equivalently regard F,G,X as V -functors S× C
op

V, to avail

ourselves of more pleasant notation such as X(s, c). Using the definitions

of end and coend, and instances of ×–hom adjunctions, we have a natural

bijection between natural transformationsψ : X [F,G] and the following

extranatural families of maps:
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ψ(s, c) : X(s, c) [F,G](s, c) =

∫

t:S

∫

d:C

G(t, d)S(s,t)×F (t,d)×C(d,c) (1)

X(s, c) G(t, d)S(s,t)×F (t,d)×C(d,c) (2)

S(s, t)×X(s, c)× C(d, c) G(t, d)F (t,d) (3)

∫ (s,c) :S×C
op

S(s, t)×X(s, c)× C(d, c) G(t, d)F (t,d) (4)

X(t, d) G(t, d)F (t,d) (5)

X(t, d)× F (t, d) G(t, d) (6)

(X × F )(t, d) G(t, d) (7)

φ : X × F G (8)

where line (2) is achieved by definition of extranaturality and coends, line (3)

via a ×–hom adjunction, (4) by definition of extranaturality and ends, (5) by

Yoneda, (6) via a ×–hom adjunction, and (7) and (8) by definition.

Remark 2.5. Note that in practice we will express the formula for the inter-

nal hom in the usual format in a functor category, once we know that the end

in question exists, that is:

[F,G](s, c) =

∫

t:S

∫

d:C

G(t, d)S(s,t)×F (t,d)×C(d,c)

= [S× C
op,V](H(s,c) × F, G)

where H(s,c) denotes the appropriate representable S(s,−)× C(−, c).

2.3 Application to the endomorphism operad

We now show how to apply Theorem 2.4 to show that EndU may be formed

in our cases of interest. Recall that in our examples:

• V is Set or Top.
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• S is Top or Top∗.

• B is a small (plain) category which we may then regard as a Top-

category in which all hom objects are discrete spaces. In our examples

B is the globular category G or the finite version Gn (or indeed the

terminal category dir0o.

• T is a familially representable V-monad on VB
op

(so in particular is

cartesian); we will come back to this definition shortly.

• T∗ is the induced cartesian monad

[

S, VB
op] T◦− [

S, VB
op]

• U is a V-functor S VB
op

; all our examples of U are constructed via

a functor B D S with

U(X) = S(D−, X) ∈ VB
op

thus U is a right adjoint; its left adjoint is the left Kan extension of D
along the Yoneda embedding

B VB
op

S

yB

D

U

⊣

We seek to construct the endomorphism operad EndU as the following in-

ternal hom in the (plain) slice category [S,VB
op

]/T∗1:

Hom(U, U) =







T∗U

T∗1

,
T∗1× U

T∗1







We are going to use Theorem 2.4. Our first step here is to re-express the

slice category as an equivalent category of the form [S,VC
op

], and our next

step will be to show that under that equivalence, the objects whose internal

hom we’re taking become right adjoints.

The first step is straightforward for V = Set so we cover that case first;

it requires a little more effort for V = Top.
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Lemma 2.6. Let S be locally small and cocomplete, and B small, and T a

monad on [Bop,Set]. There are equivalences of categories:

[

S, [Bop,Set]
]

/T∗1 ≃
[

S, [Bop,Set]/T1
]

≃
[

S,
[

(B/T1)op,Set
]

]

where B/T1 denotes the category of elements.

Proof. First note that the functor T∗1 is the composite

S 1 [Bop,Set] T [Bop,Set]

c 1 T1

so it is the constant functor ∆T1. Thus an object (F α T∗1) in the first cate-

gory amounts to a cocone (F T1). This gives the first equivalence. The

second follows from the fact that slices of presheaf toposes are equivalent to

presheaf toposes as follows:

[Bop, Set ]/T1 ≃
[

(B/T1)op, Set
]

For the case V = Top we deal with the two equivalences separately;

the first follows easily, with the only subtlety being that VB
op

/T1 is now an

enriched slice category. However as we are only considering enrichment in

Top this amounts to the same as the ordinary slice but with a topology on the

homs, and that topology is inherited. We will express this lemma in simpler

terms to emphasise the fact that nothing very special is going on, but what

we have in mind here is G = VB
op

and X = T1.

Lemma 2.7. Let V = Top, let S and G be V-categories. Consider X ∈ G

and write ∆X : S G for the constant functor. Then there is an equivalence

of categories
[

S, G
]

/∆X ≃
[

S, G/X
]

Proof. As in the previous proof, an object (F α ∆X) in the first category

amounts to a cocone (F X), that is, an object in the second category.

The only extra subtlety here is that the enriched structure of G/X is inherited

from G, so F being a V-functor on the left ensures that the stated corrspon-

dence does produce a V-functor on the right.
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We now deal with the second equivalence. In what follows we will some-

times realise plain categories as Top-categories in which all the hom-spaces

are discrete; by abuse of notation we will not change the notation for this.

Lemma 2.8. Let V = Top. Let A be a small (plain) category. Let F : A Set

be any functor and i : Set Top be the functor each set to the discrete

space on it. Then there is a V-equivalence of V-categories:

VA/iF ≃ VA/F

where A/F denotes the category of elements of F .

Proof. We borrow the standard proof that

[A,Set]/F ≃ [A/F,Set]

—we just have to check continuity in a few key places. We know that we

have a functor

[A,Set]/F α [A/F,Set]

that is full, faithful and essentially surjective on objects. Recall that A/F is

the category of elements of F given as follows.

• Objects are pairs (a ∈ A, x ∈ Fa).

• A morphism (a, x) (a′, x′) is a morphism f : a a′ ∈ A such

that Ff(x) = x′.

First we recall the action of α. Given an element (S, θ) =
S

F

θ ∈ [A,Set]/F

with components
Sa

Fa

θa , we will write α(S, θ) = S̄ ∈ [A/F,Set], and its

action is as follows:

• On objects: (a, x) ∈ A/F is sent to the set θa
−1(x) ⊆ Sa.
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• On morphisms: the morphism

(a, x)
f

(a′, x′)

is sent to

θ−1
a (x) θ−1

a′ (x
′)

the restriction of Sf to the fibre θ−1
a (x); this works because of natu-

rality of θ.

The functor α is full, faithful and essentially surjective; it has (pseudo)-

inverse β given as follows. Given R ∈ [A/F,Set], the element

β(R) =
R̂

F

θR ∈ [A,Set]/F

is given by

R̂a =
∐

x∈Fa

R(a, x). (2.2)

The map θRa : R(a, x) Fa sends everything to x ∈ Fa. The rest of the

data is induced by the universal property of the coproduct (2.2).

In order to modify this proof for the topological case, we need to check

that

1. If S is a Top-functorA Top then S̄ becomes a Top-functor A/F Top,

2. IfR is a Top-functor A/F Top R̂ becomes a Top-functor A Top,

3. the components of θR are continuous, and

4. α and β are themselves Top-functors.

These all follow by making the preimage, coproduct and restriction maps in

Top instead of in Set.

Corollary 2.9. Under the usual hypotheses we have the following equiva-

lences of categories:

[

S,VB
op]

/T∗1 ≃
[

S,VB
op

/T1
]

≃
[

S,V(B/T1)op]
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Our next task is to take the objects whose internal hom we want to calcu-

late in the slice category
[

S,VB
op
]

/T∗1, and “translate” them into the functor

category
[

S,V(B/T1)op
]

and show that they are right adjoints so that we may

take their internal hom.

We first briefly recall some helpful results and definitions; we will not

state these in very great generality.

Lemma 2.10. Let V be Set or Top and keep the usual hypotheses. Consider

the canonical morphism T1 ! 1 in VB
op

. Then there is a V-adjunction which

we will write as

VB
op

/T1 VB
op

/1 ≃ VB
op

⊥

ΣT1

(T1)∗

where (T1)∗ is given by pullback along ! (so in this case, effectively it is just

a product) and ΣT1 is ! ◦ − (sometimes called the dependent sum).

Lemma 2.11. The V-functor T : VB
op

VB
op

can be canonically factorised

as:
VB

op

≃ VB
op

/1 T̂ VB
op

/T1 ΣT1 VB
op

/1 ≃ VB
op

X
X

1

!

TX

T1

T !

TX

1

! TX

Definition 2.12. The functor T is called a parametric right adjoint (p.r.a.) if

T̂ is a right adjoint. A monad is called parametric right adjoint if its functor

part is p.r.a. and its unit and multiplication are cartesian. Any familially

representable monad is p.r.a.

We are finally ready to tackle the internal hom in question.

Theorem 2.13. Under the usual hypotheses, including that T is a parametric

right adjoint and that U is a right adjoint, the following internal hom in

[S,VB
op

]/T∗1 exists:






T∗U

T∗1

T∗1 ,
T∗1× U

T∗1

p







where p denotes projection onto the first component.
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Proof. We “translate” each of these objects from the slice category above

into the functor category
[

S, V(B/T1)op
]

as in Lemma 2.7 and then express them as right adjoints. We then apply

Theorem 2.4 with C = B/T1.

First note that according to the first equivalence of Corollary 2.9, the

object (T∗U
T∗! T∗1) becomes the cocone (TU T ! T1). So we take T̂ ◦U ,

the following composite of right adjoints, giving the cocone required:

S U VB
op T̂ VB

op

/T1 ≃ V(B/T1)op

x Ux
TUx

T1

T !

For the second object of our internal hom, note that according to the

first equivalence of Corollary 2.9 the object (T∗1× U
p
T∗1) becomes the

cocone (T1×U
p
T1). We consider (T1)∗ ◦U , the following composite

of right adjoints, giving the cocone required:

S U VB
op (T1)∗

VB
op

/T1 ≃ V(B/T1)op

x Ux
T1× Ux

T1

p

Here (T1)∗ is a right adjoint with left adjoint given by ΣT1. Theorem 2.4

now applies, and we can compute the internal hom of right adjoints:

[

T̂ ◦ U, (T1)∗ ◦ U.
]

3. Loop spaces

In this section we discuss the first of our motivating examples—operads act-

ing on loop spaces. Most of the work here is just in unravelling the defini-

tions to show that the universal operad acting on loop spaces is the one we

are expecting from [14].
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In this example we take

S = Top∗

G = Top

U = Ω = Top∗(S,−) where here Top∗(X, Y ) denotes the unbased space of

based maps X Y , and S is the unit circle

T = free topological monoid monad on Top, thus TX =
∐

k∈N

Xk (see [9])

Note that the initial object in Top∗ is the one-point space; we will still write

it as ∅ although it is not empty.

Thus T1 is the space N with the discrete topology, a T -operad is just a

classical (non-Σ) operad, and operads acting on U-objects are just operads

acting on loop spaces. We seek to understand the universal operad

EΩ = ev∅(End (U)).

We will show that

EΩ(k) = Top∗(S, S
∨k),

the operad which has been called the “universal operad acting on loop spaces”

by Salvatore and others [14, 12, 2].

First we use the results of Section 2 to show that End (Ω) exists.

Proposition 3.1. With the definitions as above, we can form End (Ω) as an

internal hom in the slice category [S,G]/T∗1.

Proof. The monad T is familially representable and U is a right adjoint:

we identify Top with Topdir0oop

, and note that U can be regarded as being

constructed via the functor dir0o S Top∗ picking out the circle S. Then

U = Top∗(S,−) ∈ Top

is a right adjoint; its left adjoint is the left Kan extension of S along the

Yoneda embedding

dir0o Topdir0oop

≃ Top

Top∗

ydir0o

S

U

⊣
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We can thus apply Theorem 2.4 to form the required internal hom as

[T̂ ◦ U, (T1)∗ ◦ U ].

We now set about unravelling what EΩ = ev∅(End (U)) is. The first

step is to understand the slice category in question, re-expressed as a functor

category.

Now note that T1 in this case is N, the discrete category made into a

Top-category, and Top/N ≡ TopN
. So the first equivalence of Corollary 2.9

in this case becomes:

[Top∗,Top]/T∗1 ≃ [Top∗,Top/T1]

≃ [Top∗,TopN]

≃ [Top∗ × N,Top]

Example 3.2. An element
S

T∗1

in [Top∗,Top]/T∗1 consists of, for all X ∈

Top∗ a continuous map
SX

N

such that for all f : X X ′ the following

diagram commutes

SX SX ′

N.

Sf

Since N is discrete, we know SX =
∐

n

SnX , say, where each Sn is a functor

Top∗ Top. Thus we have a functor

Top∗ × N Top

(X, n) Sn(X).

Conversely, given a functor S : Top∗×N Top we have for all n a functor

Sn = S(n,−) : Top∗ Top.
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This corresponds to
S̄

N

by S̄X =
∐

n

Sn(X).

Theorem 3.3. For all k ≥ 0 we have EΩ(k) = Top∗(S, S
∨k).

Proof. We write S = Top∗. We must calculate ev∅(Hom(Ω,Ω)). Recall

that Hom(Ω,Ω) ∈ [S,Top]/T∗1 is given by






T∗Ω

T∗1

T∗! ,
T∗1× Ω

T∗1

π1






=







A

∆N

,
B

∆N






,

say, where the square brackets denote the exponential in the slice category

[S,Top]/T∗1. To calculate this hom we express it in the equivalent category

[S× N,Top]; then to evaluate it at ∅ we evaluate it at (∅, k) for each k ∈ N.

Now

AX = TΩX =
∐

k

(ΩX)k =
∐

k

S(S∨k, X)

BX = N× ΩX =
∐

k

ΩX =
∐

k

S(S,X)

so
Ā(X, k) = S(S∨k, X)

B̄(X, k) = S(S,X).

We now use the formula for the internal hom in [S×N,Top] as in Remark 2.5:

Hom(Ā, B̄)(∅, k) =
[

S× N,Top
](

H(∅,k) × Ā, B̄
)

(3.1)

where

H(∅,k)
(

Y,m
)

=
(

S× N
)(

(∅, k), (Y,m)
)

=

{

1 k = m

∅ otherwise

where here 1 and ∅ are terminal and initial respectively in Set.

Now S× N is a coproduct
∐

m∈N

S, so in general

[S× N,Top](F,G) ∼=
∏

m∈N

[

S,Top
](

F (−, m), G(−, m)
)

.
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So, using (3.1) above, we have:

Hom(Ā, B̄)(∅, k) =
∏

m∈N

[

S,Top
]

(

H(∅,k)(−, m)× S(S∨m,−), S(S,−)
)

=
[

S,Top
](

S(S∨k,−), S(S,−)
)

= S(S, S∨k) by the enriched Yoneda Lemma.

Remark 3.4. This operad is often thought of as the “coendomorphism op-

erad” on S in Top∗; we now see that it is derived from the endomorphism

operad in the functor category [Top∗,Top], on the representable functor at S.

Example 3.5. Let D be the non-Σ version of the little intervals operad, so

D(k) is the space of configurations of k disjoint intervals inside the unit

interval. It is well-known that D acts naturally on loop spaces; in fact the

action is explicitly defined via the action of the universal operad E. Given

an element of D(k) we derive an element of E(k), that is a based continu-

ous map S S∨k, as follows. We identify the endpoints of the (big) unit

interval to make the circle S of the domain; we then map any point outside

the little intervals to the basepoint of S∨k, and map the ith little interval to

the ith circle in the wedge S∨k. The element of D(k) is then considered to

act on loop spaces via the action of this derived element of E(k).
Note that there are many operations of E that do not arise in this way.

Broadly these fall into three types:

• maps S S∨k that are not surjective, so “omit” some loops,

• maps that involve going “backwards” around a loop, or

• maps that involve going more than once around loops.

In this sense the universal operad is “too big”, and the operads that have

proved efficacious in loop space theory are much smaller.

Examples 3.6. Let D(k) be the space of continuous, endpoint-preserving

maps [0, 1] [0, k]. These act on loop spaces naturally as they act on path

spaces naturally. Other examples arise as suboperads of this one, for ex-

ample by using only increasing maps, or piecewise linear increasing maps.
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One might wish to restrict further to smooth maps (for example in order to

reparametrise cobordisms). This is more complicated as one would have

to ensure that composites remained smooth; this is related to some issues

tackled using collars in [3].

4. Fundamental ω-groupoids

In this section we discuss our motivating example, the functor

U : Top GSet

giving the “fundamental globular set” or “ω-path space” of a space. In

a sense there is no further calculation to be done as Leinster has already

worked out what the globular operad ev∅(End (U)) is; see [12, Example

9.2.7], in which Leinster writes the operad in question as P ′ = (ev∅)∗(End (Πω)).
Thus, the history of this operad may be summarised as follows.

1. Batanin defines the operad directly [1].

2. Leinster expresses the operad as ev∅(End (U)) [12].

3. The present work establishes that End (U) does exist, so that this ex-

pression for P ′ makes sense, and exhibits the universal property of

P ′.

In fact as usual the story is slightly more complicated as we use the

“non-algebraic Leinster variant” of contractible globular operads (as used

by Cisinski [5]). In this section we will give some of the details of Le-

inster’s calculation and then show how to modify the proof to achieve the

n-dimensional versions in Section 4.3.

4.1 Globular theory

We first recall some theory from [1]; for an alternative treatment see [12] or

[6].

Definition 4.1. Let T be the free strict ω-category monad on GSet = [Gop,Set];
T is familially representable and in particular cartesian.
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• A T -operad (in the sense of Definition 1.2) is called a globular operad.

• A globular operad is called contractible if its underlying T -collection

is contractible.

• A T -collection
A

T1

p is called contractible if

1. given any 0-cells a, b ∈ A and a 1-cell y : pa pb ∈ T1, there

exists a 1-cell x : a b ∈ A such that px = y, and

2. for all m ≥ 1, given any m-cells a, b ∈ A that are “parallel” i.e.

sa = sb and ta = tb, and an (m + 1)-cell y : pa pb ∈ T1,

there exists an (m+ 1)-cell x : a b ∈ A such that px = y.

Note that for the finite n-dimensional version, we use the free strict

n-category monad which we denote Tn, and need an extra condition at

the nth dimension as follows: given any parallel n-cells a, b ∈ A with

pa = pb ∈ T1, we have a = b.

• A weak ω-category is any algebra for any contractible globular operad.

• A weak ω-groupoid is a weak ω-category in which every cell is weakly

invertible. Batanin defines this via the n-coskeleta of the ω-category—

the idea is that to be weakly invertible a k-cell in an ω-category should

be weakly invertible in the n-coskeleton (the weak n-category formed

by quotienting out by (n+1)-cells) for each n ≥ k; weak invertibility

in an n-category for finite n can be defined by induction. Since we

will not need to use this definition we refer the reader to [1] for the

full details.

The analogy with loop spaces should be clear; where for loop spaces we

used operads with an operation of arity k for each k ∈ N, we now have an

operation of arity α for every pasting diagram α.

We wish to exhibit every globular set UX as an ω-groupoid, so first we

must find a contractible globular operad that acts on each UX . Batanin pro-

poses the following operad. Essentially the operations of arity α ∈ n-Pd are

the continuous, boundary-preserving maps from the topological n-ball to the
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geometric realisation of α. However we must be careful about exactly what

boundary must be preserved. The idea is that the spaces in question should

have globular “sources” and “targets” of each lower dimension, and these

are the boundaries that should be preserved. This is expressed in Batanin’s

definition of “coglobular span in Top”.

Definition 4.2. A coglobular n-span in a category C is a commuting diagram

of the following shape in C.

an−1

an−2

an−3

a1

a0

bn−1

bn−2

bn−3

b1

b0

x

an−1 bn−1
...

...

Example 4.3. The topological n-ball Bn has maps

Bn−1 Bn
s

t

given by the inclusions of the north and south hemispheres. This makes Bn

into a coglobular n-span in Top as

Bn−1

Bn−2

B1

B0

Bn−1

Bn−2

B1

B0

Bn

Bn−1 Bn−1...
...

s

s

s t

s t

s t

s s t

t

t

t
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Example 4.4. Let α be an n-dimensional pasting diagram with source and

target ∂α. Then there are inclusions of the geometric realisations

|∂α| |α|
s

t

into the “source” and “target”. This makes |α| into a coglobular n-span in

Top as

|∂α|

|∂2α|

|∂n−1α|

|∂nα|

|∂α|

|∂2α|

|∂n−1α|

|∂nα|

|α|

Bn−1 Bn−1...
...

s

s

s t

s t

s t

s s t

t

t

t

Definition 4.5. A map of coglobular n-spans in C

an−1

an−2

a1

a0

bn−1

bn−2

b1

b0

x

Bn−1 Bn−1...
...

s

s

s t

s t

s t

s s t

t

t

t

a′n−1

a′n−2

a′1

a′0

b′n−1

b′n−2

b′1

b′0

x′

Bn−1 Bn−1...
...

s

s

s t

s t

s t

s s t

t

t

t

is given by a map v : x x′ and for all 0 ≤ i ≤ n− 1 maps

fi : ai a′i
gi : bi b′i

making everything commute.
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Example 4.6. (Informal.) Consider the following coglobular 2-spans in Top:

the ball B2

b b

and the geometric realisation |α|

b b

A map of coglobular spansB2 |α| is a map of the underlying spaces such

that

• the top and bottom boundaries ofB2 are mapped to the top and bottom

boundaries respectively of |α|, and

• the endpoints of the top and bottom boundaries of B2 are mapped to

the endpoints of the top and bottom boundaries of |α|.

4.2 The universal operad acting on ω-path spaces

We now invoke the results of Section 2 to show that End (U) in this case

exists. As we are enriching in Set here we will revert to the more usual

notation [Gop,Set] instead of SetG
op

.

Theorem 4.7. Let T be the free ω-category monad on [Gop,Set], andU : Top [Gop,Set]
the ω-path space functor. Then the internal hom

End (U) =







T∗U

T∗1

,
T∗1× U

T∗1







exists in
[

Top, [Gop,Set]
]

/T ∗1.

Proof. We know that T is familially representable and U is a right adjoint:

U is constructed via a functor G D Top where D(n) = Bn the topological

n-ball. Then

U(X) = S(D−, X) ∈ [Gop,Set]
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thus U is a right adjoint; its left adjoint is the left Kan extension of D along

the Yoneda embedding

G [Gop,Set]

Top

yG

D

U

⊣

We can thus apply Theorem 2.4 to form the required internal hom as

[T̂ ◦ U, (T1)∗ ◦ U ].

We now sketch the calculation of the universal globular operad acting

on ω-path spaces. This can be found in [12, Example 9.2.7] but we give

some of the details here as we will be modifying the calculation to give the

finite-dimensional cases in the next section.

In order to calculate the operad in this case, we need to use the expo-

nential in the slice category
[

Top, [Gop,Set]
]

/T∗1, which we will do via Re-

mark 2.5 and the equivalences of Lemma 2.6:

[

Top, [Gop,Set]
]

/T∗1 ≃
[

Top,
[

(G/T1)op,Set
]

]

≃
[

Top × (G/T1)op, Set
]

The rest of the calculation is given by Leinster; we will sketch the main

details here.

Theorem 4.8 (Leinster, [12, Example 9.2.7]). Let U : Top GSet be

the ω-path space functor. Then the operad EU = ev∅(End (U)) has as

operations of arity α the maps of coglobular spans Bn |α|. Here α is a

pasting diagram of dimension n and |α| is its geometric realisation.

Proof. (Sketch) Write S = Top. Now

End (U) =







T∗U

T∗1

,
T∗1× U

T∗1






=







A

T∗1

,
B

T∗1






,
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say, where the square brackets denote the exponential in
[

S, [Gop,Set]
]

/T∗1,

which we know to exist by Theorem 2.4. Here

T∗1(X) = T1 : Gop
Set

for all X ∈ S, and

T∗1(X, n) = T1(n) ∈ Set.

Note that Gop/T1 has as objects pairs (n ∈ N, α ∈ T1(n) = n-Pd). Now

given

S

T∗1

p ∈
[

S, [Gop,Set]
]

/T∗1,

with components

SX

T1

pX,

we get

S̄ ∈
[

S× (Gop/T1),Set
]

given by

S̄(X, n, α) = pX
−1(α) ⊆ SX(n).

Conversely given S ∈
[

S×(Gop/T1),Set
]

we have
Ŝ

T∗1

p ∈
[

S, [Gop,Set]
]

/T∗1

given by

ŜX(n) =
∐

α∈T1(n)

S(X, n, α)

thus the fibre of ŜX over α is S(X, n, α).
So we have

Ā(X, n, α) = { pasting diagrams of shape α in UX }

= S(|α|, X)

B̄(X, n, α) = {n-cells in UX }

= S(Bn, X)
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We can now use the usual internal hom formula in the functor category
[

S× (Gop/T1),Set
]

to get

End (U) =
[

S× (Gop/T1),Set
](

H• × Ā, B̄
)

.

To find ev∅(End (U)) we can calculate fibre by fibre—the fibre over an n-

pasting diagram α is

End (U)(∅, n, α) =
[

S× (Gop/T1),Set
](

H(∅,n,α) × Ā, B̄
)

as a set of natural transformations.

Note that

H(∅,n,α)(X,m, β) =







1 α = β

{s, t} β = ∂α

∅ otherwise

Thus a natural transformation as above must have component at (X,m, β)
of the form:

• if α = β, S(|α|, X) S(Bn, X)

• if β = ∂α
{s, t} × S(|β|, X) S(Bm, X)

hence a pair of maps S(|β|, X) S(Bm, X),

• otherwise: ∅ S(Bm, X) i.e. the trivial map.

We now examine naturality; as our domain is a product category we can

examine naturality in X and (m, β) separately.

• Naturality in X tells us we must have a natural transformation

S(|α|,−) S(Bn,−)

and for each 0 ≤ m < n two natural transformations

S(|∂n−mα|,−) S(Bm,−).

By Yoneda this is just an element of S(Bn, |α|) and two elements of

S(Bm, |∂n−mα|) for each 0 ≤ m < n, that is, the underlying data for

a morphism of coglobular spans.
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• Naturality in (m, β) tells us that we have the necessary commuting

conditions to be a morphism of coglobular spans as required.

4.3 Finite-dimensional versions

There are three finite n-dimensional versions of this that follow immediately,

one by taking truncations, one by taking homotopy classes at the top dimen-

sion, and one by taking path spaces at the top. The analogous result for

the truncated version follows immediately, while the other versions follow

with a little effort. First we recall the functors in question, described in the

introduction. Note that they all agree on the first (n− 1) dimensions.

Definition 4.9. We will define the following functors for each n ≥ 0.

• “n-truncation” Un : Top n-GSet ≃ [Gop

n ,Set]

• “fundamental n-groupoid” Πn : Top n-GSet

• “n-path space” Pn : Top Top-n-Gph ⊂ [Gop

n ,Top]

UnX is the n-dimensional truncation of UX . ΠnX agrees with UX for all

dimensions up to n−1 but (ΠnX)(n) is given by homotopy classes of n-cells

in UX in the following sense: we identify any parallel n-cells x, y ∈ UX(n)
if there is an (n + 1)-cell f : x y in UX(n + 1). That is, we apply the

functor qn : GSet n-GSet which is left adjoint to the functor

n-GSet Dn GSet

that adds in putative identities at every dimension above n. (Note that in

general the description of qn would require us to generate an equivalence

relation from the above relation; however in the case of globular sets of the

form UX the above description suffices since we always have reverse and

composite homotopies.)

For Pn we are thinking of a “Top-enriched n-graph” as an n-graph whose

n-cells form a space but every lower dimension is just a set. However in or-

der to apply Theorem 2.4 we are going to express these as n-globular spaces,

that is, objects X of the enriched presheaf category TopG
op
n such that for all
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k < n, X(k) is indiscrete. As with globular sets, given k-cells x, y we also

write X(x, y) for the subset (or subspace) of X(k + 1) of cells with domain

x and codomain y.

Then P0(X) = X and for n > 0 we have

• Pn(X) agrees with Pn−1(X) at all dimensions up to n− 2.

• Pn(X)(n− 1) is the set of points of the space Pn−1(X)(n− 1) (more

precisely, the indiscrete space on the underlying set of points).

• Given x, y ∈ Pn(X)(n − 1), we have Pn(X)(x, y) = Pn−1(X)(x, y)
(the path space).

Remarks 4.10.

1. The functor Πn will be used to find fundamental n-groupoids of spaces,

while Un is used in [7] when constructing ω-categories from “inco-

herent” n-categories. Pn can be thought of as an “(∞, n)” version,

where algebraic information is extracted up to dimension n, with non-

algebraic information remaining in higher dimensions.

2. We could give ω-dimensional versions of these functors, but in fact

these would all be the same as U .

Corollary 4.11. Let Tn be the free strict n-category monad on n-GSet. Then

there is a universal n-globular operad (i.e. Tn-operad) acting on Un given

by the n-truncation of EU .

Proof. This is immediate, with proof as in the proof of Theorems 4.7 and

4.8.

Theorem 4.12. There is a universal n-globular operad acting on Πn given

by qnEU .

Proof. We prove this by adapting the proof of Theorem 4.8. For m < n
the mth dimension behaves exactly as for U ; for the n-cells we must calcu-

late ΠnX and TnΠnX so we must quotient S(Bn, X) and S(|α|, X) by the

equivalence relation demanded by our definition of Πn.
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It is useful to make this equivalence relation precise. Πn = qnU so all

parallel n-cells x, y of UX are to be identified if there is an (n + 1)-cell

f : x y. In UX this means

Bn X
x

y

are identified if they can be expressed as composites

Bn Bn+1 X
s

t

f

(4.1)

for some map f .

For TnqnU we ask when we identify

|α| X.
x

y

Write Σα for the (n+ 1)-pasting diagram given by taking the tree for α and

extending each leaf by one level. For example

b b b

b

b b b

b b b

b

or in pictures

Then we identify the n-cells x and y if they can be expressed as

|α| |Σα| X
|s|

|t|

f

(4.2)

for some f . Note that the operation Σ is a form of suspension, and given a

coglobular map

|α| |β|

there is a coglobular map

|Σα| |Σβ|
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making the following diagram commute

|α| |Σα|
|s|

|t|

|β| |Σβ|
|s|

|t|

p

This is because the geometric realisation of an n-pasting diagram is homo-

topy equivalent to the n-ball, and the parallel pair of maps |s|, |t| in each case

gives, up to homotopy, the inclusion of the n-sphere (expressed as a pair of

n-balls glued along their boundary) into the boundary of the (n+ 1)-ball.

Then we must ask the following questions.

1. Which natural transformations S(|α|,−) S(Bn,−) respect this equiv-

alence relation?

2. Which natural transformations S(|α|,−) S(Bn,−) become the same

on equivalence classes?

It is useful to note that the globular operadEU is contractible (in the sense

of 4.1). Now, we know that a natural transformation S(|α|,−) S(Bn,−)
is given by precomposition with a map Bn p |α|, and the naturality condi-

tion in G
op

n/Tn1 ensures that this will have to be a map of coglobular spans as

before. We must check when equivalent elements of S(|α|, X) are mapped

to equivalent elements of S(Bn, X). In fact this is the case for all Bn p |α|
as follows. Writing our equivalent elements of S(|α|, X) as

|α| |Σα| X
|s|

|t|

f

we map them to S(Bn, X) by precomposition with p to give the two maps

Bn |α| |Σα| X
p |s|

|t|

f

which are equivalent via

|α| |Σα| X.
|s|

|t|

f

Bn = = Bn+1|bn| |Σbn|
|s|

|t|

p
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Here we are writing bn for the n-pasting diagram consisting of a single n-

cell, thus |bn| = Bn and |Σbn| = Bn+1 so we have the maps

Bn Bn+1 X
s

t

f

as in diagram (4.1) as required.

Next we show that all parallel maps Bn p |α| induce the same map on

equivalence classes. That is, given

Bn |α|
p

p′

agreeing on all boundaries, we show that for any |α|
f
X the induced maps

Bn |α| X
p

p′

f

are equivalent elements of S(Bn, X) by expressing them as

|α| |Σα| X
|s|

|t|

f

as in diagram (4.2).

In fact since |α| is contractible we have

Bn+1

Bn |α|

f

p

p′

s

t

X
f

commuting serially giving an expression of the form of (4.2) as required.

We now turn our attention to the more topological case. We use the

monad Sn for “free n-categories internal to Top”; this monad is constructed

in the same way as the free strict n-category monad (for n-categories in-

ternal to Set), except that we take pullbacks in Top instead of in Set. It

follows immediately that Sn is p.r.a. We will also call this monad the “free

topological n-category monad”.

Now note that we can construct Pn via the usual Kan extension con-

struction as below: we start with a functor Gn
D Top where D(n) = Bn
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the topological n-ball, and form the usual induced functor which we will

temporarily call V
V (X) = S(D−, X) ∈ TopG

op
n

and we then post compose with a functor

TopG
op
n TopG

op
n

which leaves the top dimension the same but at every lower dimension takes

the indiscrete space on the underlying set of points. Note that this con-

struction uses the functors O producing the underlying set of points and I
producing the indiscrete space:

Top Set⊥

O

I

Given an n-globular space

Xn Xn−1 Xn Xn X0· · ·
s

t

s

t

s

t

we produce the n-globular space

Xn OIXn−1 Xn Xn OIX0· · ·
s

t

s

t

s

t

and with the source and target maps on n-cells proceeding via the counit of

the adjunction O ⊣ I . We will call this functor OI<n.

Thus we have the following situation giving the functor Pn:

Gn TopG
op
n TopG

op
n

Top

yG

D V

OI<n

Pn

Lemma 4.13. The functor Pn is a right adjoint.

Proof. As Top is complete, well-powered, and has a cogenerator, it suffices

to check that Pn preserves limits. As limits in TopG
op
n are computed pointwise

it suffices to check that for each object k ∈ G
op

n the composite

Top Pn TopG
op
n evalk Top
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preserves limits. When k = n this is just V , which we know is a right adjoint

so preserves limits. When k < n this is OI , and this is a composite of right

adjoints so preserves limits.

Theorem 4.14. Write Sn for the free topologicaln-category monad on TopG
op
n .

Then there is a universal Sn-operad acting on Pn whose m-cells are those

of EU for m < n, and whose space of n-cells of arity α is the space of

coglobular maps Bn |α|.

Note that Sn1 is discrete at every dimension—it is in fact the same as

Tn1, just with each set of k-cells realised as a discrete space.

Proof. As Sn is p.r.a. and Pn is a right adjoint we may use Theorem 2.4 and

compute the internal hom in the slice category

[Top,TopG
op
n ]/Sn∗1.

Note that, under the equivalences of Corollary 2.9 and by Remark 2.5 we

can use equivalences

[Top,TopG
op
n ]/Sn∗1 ≃ [Top,Top(Gop

n/Sn1)]

≃ [Top ×G
op

n/Sn1, Top]

Now Pn agrees with EU everywhere except dimension n so this is the

only dimension we need to consider here. In fact Pn agrees at dimension n
as well if we simply “reinterpret” the notation

Pn(X)(n) = Top(Bn, X)

where this must now mean the space of maps Bn X .

Now, following the proof of Theorem 4.8, to find the spaces of n-cells of

arity α of ev∅(End (U)) we must calculate

[

Top × (Gop

n/Sn1),Top
](

H(∅,n,α) × Ā, B̄
)

where
Ā(X,m, β) = Top(|β|, X)

B̄(X,m, β) = Top(Bm, X)
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interpreted as spaces of maps. We now have to calculate this as a space of

enriched natural transformations using the end formula
∫

(X,m,β)

Top
(

H(∅,n,α)(X,m, β)× Top(|β|, X) , Top(Bm, X)
)

.

As before we have

H(∅,n,α)(X,m, β) =







1 n = m,α = β

{s, t} n > m, β = ∂α

∅ otherwise

Fixing α = β we get
∫

X∈Top

Top
(

Top(|α|, X) , Top(Bn, X)
)

= Top(Bn, α)

by enriched Yoneda. The rest of the end formula gives the same commuting

conditions as before.

Note that evaluating the endomorphism operad End (Πn) at (X,m, β)
where m < n gives the same answer as for End (U), expressed as a discrete

space, so this internal hom is indeed in our full subcategory as required.

Example 4.15. Operads acting on path spaces.

Note that the case n = 1 gives us operads acting on path spaces, but not

in the most obvious sense as the operads in question will not be classical

operads but S1-operads.

The monad S1 is the free topological category monad on what we might

call Gph(Top), the category of graphs in spaces; S11 has a single object, and

its single hom-space is the discrete space N. Thus an S1-operad P has as its

underlying data

• a set P0 of objects, and

• for every pair a, b of objects and every arity k ∈ N a space of opera-

tions.

In particular any classical operad can be expressed as an S1-operad with a

single object; this is the “suspension” operation used in [4].

The functor P1 : Top TopG
op

1 takes a space X and produces the glob-

ular space with
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• objects the indiscrete space on the points of X , and

• the hom-space is the space of paths in X , Top(I,X).

Note that this is not quite the same as a Top-enriched graph, which, essen-

tially, would treat the hom-space as a disjoint union of individual hom-spaces

X(x, y).
The theorem then gives us the universal S1-operad acting on this sense

of path space, and examining the construction in that case shows that it is

the suspension of the operad used by Trimble, which has E(k) ∈ Top is

the space of continuous, endpoint-preserving maps [0, 1] [0, k]. Thus

we can say that Trimble’s operad has the following universal property: its

suspension is the universal S1-operad acting on path spaces.

Note the notion of “operad acting on path spaces” can be defined directly

without going via S1-operads (see for example [11]), but making an abstract

version of that approach is tricky. Trimble [18] uses the category Bip of

bipointed spaces; however this is not a straightforward generalisation of the

use of Top∗ for loop spaces. For loop spaces we have

ΩX = Top∗(S,X)

(ΩX)k = Top∗(S
∨k, X);

for path spaces we can try to replace the circle S with the interval I regarded

as a bipointed space via its endpoints, giving

X(x, y) = Bip
(

{I, 0, 1}, {X, x, y}
)

.

However raising this to the power of k does not give us a string of k com-

posable paths as we require. Trimble instead expresses the action on path

spaces using “operads in topological profunctors”.

4.4 Non-universal examples

In this final section we discuss non-universal versions of the operads studied

in the previous sections. One class of non-universal examples comes from

applying the work of [4]. Recall that in this work we showed that every

Trimble n-category is a Batanin n-category. One part of this takes a classical

operad acting on path spaces and iteratively produces from it an n-globular

operad acting on n-path spaces for any n.
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Applying the construction to the universal operadE (regarded as a classi-

cal operad) gives a suboperad Ē of G. Thus, by the main theorem, Ē acts on

n-path spaces. Given any non-universal exampleP we have a canonical mor-

phismP E giving rise to a morphism P̄ Ē and hence P̄ Ē G.

So P̄ also acts on n-path spaces.

Thus for example we can apply this to the little intervals operad or other

non-universal classical operads and get a smaller operad acting on n-path

spaces. However this general method only allows us to control the operations

at the lowest dimension. The 1-cells of P̄ are formed from the points of

P (k), but the 2-cells also involve the paths of P (k) and the 3-cells involve

the homotopies between paths, and so on. This approach suffices for some

purposes and in future work we will use it to show that doubly degenerate

Trimble 3-categories, parametrised by the little intervals operad, give braided

monoidal categories in a suitable sense.

However for more general results more control over the higher dimen-

sions of the globular operad may be desirable. This cannot be done automat-

ically using the machinery of [4], but the present work gives us a first step in

the direction of being able to construct more tractable non-universal operads

suitable for proving results about weak n-categories.
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