
Abstract. Symmetric weak cubical categories were introduced in [G3, G5],
as a basis for the study of cubical cospans and higher cobordism. Such
cubical structures are equipped with an action of the symmetric groups,
which simplifies the coherence conditions. We give now a deeper study of
the role of symmetries. While ordinary cubical sets have a tensor product
which is non symmetric and biclosed, the symmetric ones have a symmetric
monoidal closed structure (and one internal hom). Similar facts hold for
cubical categories and the symmetric ones, and should play a relevant role
in the sequel, the study of cubical limits and adjunctions. Weak double
categories are a cubical truncation of the present structures.

Résumé. Les catégories cubiques symétriques faibles ont été introduites en
[G3, G5], pour l'étude des cospans cubiques et du cobordism de dimension
supérieure. Ces structures sont équipées d'une action des groupes symétri-
ques qui simplifie les conditions de cohérence. On donne ici une étude
plus approfondie du rôle des symétries. Les ensembles cubiques ordinaires
ont un produit tensoriel qui est non symétrique et fermé, à gauche et à
droite; mais les ensembles cubiques symétriques  ont une structure
monoïdale fermée symétrique  (et un seul hom interne). Des faits
semblables se vérifient pour les catégories cubiques ordinaires et
symétriques; ils devraient jouer un rôle important dans la suite, c'est-à-dire
l'étude des limites et des adjonctions cubiques. Les catégories doubles
faibles sont un tronquement cubique des structures considérées ici.

Mathematics Subject Classifications (2000): 18D05, 55U10, 20B30
Key words: weak cubical category, weak double category, cubical set,
symmetries.

Introduction

A weak cubical category [G3-G5] has a cubical structure, with faces and
degeneracies; moreover, there are weak compositions in countably many directions,
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which we call cubical (or geometric), and one strict composition, in the transversal
(or structural) direction.

As a basic example, one can think of the weak cubical category  !Cosp(X)  of
cubical cospans in a category with pushouts  X.  An n-dimensional object is a
functor  x: """"n  X,  where  """"  is the 'formal cospan' category

 (-1,-1)   (0,-1)   (1,-1)

(1) –1    0    1 """"  (-1, 0)   (0, 0)   (1, 0)

 (-1, 1)   (0, 1)   (1, 1) """"2.

An n-dimensional transversal map, or structural map, is a natural
transformation  f: x  y: """"n  X  of such functors. Their composition is also
called transversal, or structural.

The ordinary categories  Cospn(X) = Cat(""""n, X)  form a cubical object in  Cat,
with obvious faces and degeneracies. Moreover, n-dimensional objects (and maps)
have cubical, or geometric, composition laws  x +i y  in each direction  i = 1,..., n,
which are constructed with pushouts; these compositions are consistent with faces
and degeneracies, but only behave well up to suitable transversal maps, which yield
invertible comparisons for their associativity, unitarity and interchange.

Actually, as already stressed in [G3],  !Cosp(X)  is a symmetric weak cubical
category, when equipped with the obvious action of the symmetric group  Sn  on
Cat(""""n, X);  namely, the action of permuting the factors of  """"n,  i.e. the directions of
n-cubical cospans in  X.  These symmetries allow one to only consider the faces,
degeneracies and cubical compositions in a single direction (see 2.2), which greatly
simplifies the coherence conditions. Notice also that cubical 1-truncation, keeping
one weak direction and the strict transversal one, yields the weak double category
C osp(X)  of ordinary cospans and their transversal maps, studied in [GP1]; here,
symmetries 'disappear', since the groups  S0  and  S1  are trivial.

We begin here a study of the theory of symmetric weak cubical categories, or
weak sc-categories, with the aim of extending the study of weak double categories
developed in [GP1-GP4].

The present paper analyses the role of symmetries, beyond the simplification of
coherence properties. Symmetric cubical sets - where the n-dimensional symmetric
group  Sn  operates on the n-dimensional component, form a symmetric monoidal
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closed category  sCub,  while the ordinary ones have a non-symmetric monoidal
biclosed structure. Even more relevant to the sequel should be the (related) fact that
ordinary cubical sets have a left and a right path functor (1.6), whose liftings to
symmetric cubical sets are isomorphic, yielding - essentially - one path functor (2.3);
the latter will be crucial in defining and studying cubical limits.

In the first two sections, after reviewing the (non symmetric) monoidal biclosed
structure of ordinary cubical sets [BH2], we study symmetric cubical sets and their
path functor. Then, Section 3 recalls the definition of a cubical category and of a
symmetric one, from [G3], and introduces the path functors of these two structures
(3.6). Again, in the symmetric case there is one path functor, which produces one
internal hom (3.7(c)). The definition of the weak case, introduced in [G3], is only
sketched here (in 3.5) as it would be too long to completely rewrite it.

The next two sections are devoted to examples: after recalling the weak sc-
categories  !Sp(X)  and  !Cosp(X)  of cubical (co)spans, also introduced in [G3],
we construct the strict sc-category of cubical relations  !Rel  (4.2, 4.3). Then, we
reconsider the passage from  !Sp(Set)  to  !R el,  abstracting the notion of a
quotient of weak sc-categories modulo transversal maps of reduction, a kind of
rewriting procedure with normal forms (Section 5). The dual procedure allows us to
construct a strict sc-category  !Cat  of (small) categories and cubical profunctors
(5.7), from a quotient of the weak sc-category  !Cosp(Emb)  of cospans of full
embeddings of categories.
 We end in Section 6 by defining the symmetric tensor product of symmetric
cubical sets (and categories); after the internal hom of Section 3, this completes the
symmetric monoidal closed structure; it also yields a cylinder functor, by tensoring
with an obvious 'standard interval'. However, the computation of the tensor product
(and of the cylinder) is complicated and - likely - not really needed.

References to the rich literature on higher categories can be found in two recent
books, by T. Leinster [Le] and E. Cheng - A. Lauda [CL]; but this literature is
mostly developed in the globular geometry, rather than the cubical one. Strict cubical
categories with connections (and without transversal maps) have been studied in
[ABS], and proved to be equivalent to (globular) !-categories.

The author is pleased to acknowledge helpful discussion with J. Baez and R.
Paré.

Size aspects (for categories of cubical categories, for instance) can be easily
settled working with a suitable hierarchy of universes.
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1. Cubical sets and internal homs

While reviewing the (non symmetric) monoidal biclosed structure of the category
Cub  of ordinary cubical sets [BH2], we want to stress the role of the 'transposer'  S,
which reverses the order of faces; in particular, we are interested in the external
symmetry  s: S(X#Y)  (SY)#(SX),  which somewhat surrogates here the
'internal' symmetry of a symmetric tensor product. The binary index  $  takes values
0, 1,  written  –, +  in superscripts.

1.1. Cubical sets. A cubical set  X = ((Xn), (%$i ), (ei)),  in the usual sense [K1, K2,
BH1, BH2], has faces  (%$i )  and degeneracies  (ei)

(1) %$i :  Xn               Xn–1  :ei   (i = 1,..., n;  $ = ±),

satisfying the cubical relations :

(2) %$i .%&j   =  %&j .%$i +1   (j ' i), ej.ei  =  ei+1.ej      (j ' i),
%$i .ej  =  ej.%$i –1     (j < i), or   id   (j = i), or    ej–1.%$i    (j > i).

Elements of  Xn  are called n-cubes; vertices and edges for  n = 0  or 1,
respectively. Every n-cube  x ( Xn  has  2n  vertices:  %$1%

&
2%

)
3(x)  for  n = 3  and  $,

&, ) = ±.
A morphism  f = (fn): X  Y  is a sequence of mappings  fn: Xn  Yn  which

commute with faces and degeneracies.
Small cubical sets and their morphisms form a category  Cub,  which has all

limits and colimits and is cartesian closed. In fact, it is the presheaf category of
functors  X: Iop  Set,  where  I   is the subcategory of  Set  consisting of the
elementary cubes  2n = {0, 1}n,  together with the maps  {0, 1}m  {0, 1}n  which
delete some coordinates and insert some 0's and 1's, without modifying the order of
the remaining coordinates [GM].

The terminal object    is freely generated by one vertex  *  and will also be
written  {*};  but notice that each of its components is a singleton. The initial object
is empty, i.e., all its components are; the other cubical sets have a non-empty
component in each degree.

The category  Cub  has two (covariant) involutive endofunctors, which we shall
call reversor and transposer

(3) R: Cub  Cub, RX  =  Xop  =  ((Xn), (%–
i
$), (ei)) (reversor),

(4) S: Cub  Cub, SX  =  ((Xn), (%$n +1–i), (en+1–i)) (transposer).
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The first reverses the 1-dimensional direction; the second can be thought to
reverse 'the 2-dimensional one', in a sense which will appear below (see 1.6.5). If  x
( Xn,  the corresponding element in  (RX)n = Xn  will often be written as  xop,  so
that  %–

i (xop) = (%+
i x)op.

A cubical set  X  is said to be reversive if  RX  X  and permutative if  SX  X.

1.2. Tensor product. The category  Cub  has a monoidal structure [K1, BH2]

(1) (X#Y)n  =  (*p+q=n Xp×Yq)/ n,

where  n  is the equivalence relation generated by identifying  (er+1x, y)  with
(x, e1y),  for all  (x, y) ( Xp × Yq  (where  p+q = n–1).

Writing  x#y  the equivalence class of  (x, y),  faces and degeneracies are defined
as follows, when  x  is of degree  p  and  y  of degree  q

 (%$i x)#y, if  1 ' i ' p,
(2) %$i (x#y)  = 

 x#(%$i –py), if  p < i ' n,

 (eix)#y, if  1 ' i ' p+1,
(3) ei(x#y)  =

 x#(ei–py), if  p+1 ' i ' n+1.

Note that  ep+1(x#y) = (ep+1x)#y = x#(e1y)  is well defined precisely because of
the previous equivalence relation.

The identity of the tensor product is the terminal object   = {*}  (1.1), obvi-
ously reversive and permutative.

1.3. The external symmetry. The tensor product is not symmetric, but is related to
reversor and transposer (1.1.3, 1.1.4) as follows

(1) R(X#Y)  =  RX#RY,
(2) s(X, Y):  S(X#Y)    (SY)#(SX), x#y    y#x.

(R  is a strict isomorphism of the monoidal structure, while the pair  (S, s)  is an
anti-isomorphism.) Therefore, reversive objects are stable under tensor product while
permutative objects are stable under tensor powers: if  SX  X,  then  S(X#n) 
(SX)#n  X#n.

Notice that the symmetry  s: A×B  B×A  of the cartesian product of sets (i.e.,
0-truncated cubical sets) becomes, here, the external symmetry (2), which is an
isomorphism of functors  Cub × Cub  Cub.  Its inverse is  S(s(SY, SX)).
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1.4. The standard interval. The (elementary) directed interval, or standard
interval,  +i = 2  is the cubical set freely generated by a 1-cube,  u

  u
(1) 0           1 %–

1(u)  =  0,    %+
1(u)  =  1.

This cubical set is reversive and permutative. It is the representable presheaf  y(2)
= I(– , 2): Iop  Set.

The directed n-cube is its n-th tensor power  +i#n = +i#...#+i  (for  n , 0),
freely generated by its n-cube  u#n,  still reversive and permutative. It is the
representable presheaf  y(2n) = I(– , 2n): Iop  Set.  The directed square  +i2 =
+i#+i  can be represented as follows, showing the generator  u#u  and its faces

  u#0
 00  10   1

(2)  0#u   u#u    1#u    2

 01  11
 u#1

(The face  %–
1(u#u) = 0#u  is orthogonal to direction 1, a criterion which works

in every dimension.)  By the Yoneda Lemma,  Cub(+i#n, X) = Xn.

1.5. Left and right cylinder functors. Let us start from the standard interval  +i,
and work with the monoidal structure recalled above, with unit  {*}  and reversor  R.
Recall that  u  denotes the 1-dimensional generator of  +i,  and  uop  is the
corresponding edge of  +iop  (1.1).

The cubical set  +i  has a structure consisting of two faces  (%$),  a degeneracy
(e)  and a reflection or external reversion  (r):

(1) %$: {*}  +i, %$(0)  =  $ ($ = 0, 1),
e: +i  {*}, e(t)  =  *,   e(u)  =  e1(*),
r: +i  +iop, r(0)  =  1op,      r(1)  =  0op,      r(u)  =  uop.

Since the tensor product is not symmetric, the elementary directed interval yields
a left (elementary) cylinder  +i#X  and a right cylinder  X#+i.  These functors are
not isomorphic, but each of them determines the other, using the transposer  S  (1.1)
and the property  S(+i) = +i

(2) I: Cub  Cub, IX  =  +i#X,
SIS: Cub  Cub, SIS(X)  =  S(+i # SX)  =  X # +i.
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The last equality is actually the canonical isomorphism  s(+i, SX)  (1.3.2); but we
will realise  SIS  as described above.

The left cylinder,  IX = +i#X,  inherits from the structure of  +i  (1.5.1) two
faces, a degeneracy and a reflection, as follows

(3) %$  =  %$#X:  X  IX,    %$(x)  =  $#x ($ = 0, 1),
e  =  e#X:  IX  X,   e(u#x)  =  e1(*)#x  =  *#e1(x)  =  e1(x),
r  =  r#RX:  IRX  RIX,
r($#xop)  =  ((1 – $)#x)op, r(u#xop)  =  (u#x)op ($ = 0, 1).

1.6. Left and right path functors. The category  Cub  has a left path functor  P,
right adjoint to the left cylinder functor  IX = +i#X.

The functor  P  shifts down all components discarding the faces and
degeneracies of index 1; the latter are then used to build three natural
transformations, the faces and degeneracy of  P

(1) P: Cub  Cub, PY  =  ((Yn+1), (%$i +1), (ei+1)),
%$  =  %$1 : PY  Y, e  =  e1: Y  PY.

The transposer  S  (1.1.4) produces the right path functor  SPS,  right adjoint to
the right cylinder  SIS(X) = X#+i.  Explicitly,  SPS  shifts down all components and
discards the faces and degeneracies of highest index (used again to build the
corresponding three natural transformations)

(2) SPS: Cub  Cub, SPS(Y)  =  ((Yn+1), (%$i ), (ei)),
%$: SPS(Y)  Y, %$  =  (%$n +1: Yn+1  Yn)n,0,
e: Y  SPS(Y), e  =  (en+1: Yn  Yn+1)n,0.

An (elementary or immediate) left homotopy  f: f– L f+: X  Y  is defined as
a map  f: X  PY  with  %$f = f$.  This leads immediately to a simple expression of
f  as a family of mappings

(3)  fn: Xn  Yn+1, %$i +1 fn  =  fn–1 %$i , ei+1 fn–1  =  fn ei,

%$1  fn  =  f$ ($ = ±;  i = 1,..., n).

Similarly, an (elementary) right homotopy  f: f– R f+: X  Y  is a map  f:
X  SPS(Y)  with faces  %$f = f$.  This amounts to a family  (fn)  such that

(4) fn: Xn  Yn+1, %$i  fn  =  fn–1 %$i , ei fn–1  =  fn ei,
%$n +1 fn  =  f$ ($ = ±;  i = 1,..., n).
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The transposer can be viewed as an isomorphism  S: CubL  CubR  between
the left and the right structure. One can define an external transposition  s
(replacing, from a formal point of view, the transposition  s: P2  P2  of topological
spaces, which permutes the two variables); it is actually an identity  PP' = P'P

(5) s: PSPS  SPSP, sn  =  idYn+2,

since both functors shift down all components of two degrees, discarding the faces
and degeneracies of lowest and highest index.

1.7. Internal homs. The category  Cub  has left and right internal homs [BH2].
The right internal hom  CUB(A, Y)  can be built with the left cocylinder functor

P  and its natural transformations (which give a cubical object  P•Y  in  Cub)

(1) – # A    CUB(A, –), CUBn(A, Y)  =  Cub(A, PnY).

The natural bijection

(2) -(X, Y):  Cub(X # A, Y)    Cub(X, CUB(A, Y)),

is constructed as follows, on an arbitrary morphism  f = (fn): X # A  Y.  Its n-
component  fn  decomposes into a family of mappings

(3) fpq: Xp × Aq  Yp+q,

consistent with the equivalence relations  n  (1.2.1). By the exponential law in  Set,
these amount to mappings  gpq: Xp  Set(Aq, Yp+q).  At fixed  p,  we get a mapping

(4) gp = ( gpq):  Xp  Cub(A, PpY)  =  CUBp(A, Y)  .  /q Set(Aq, Yp+q),

whose family forms a morphism of cubical sets  g = (gp): X  CUB(A, Y).

1.8. Higher path functors. We have seen that the two path functors  P, P': Cub 
Cub  commute (1.6.5). Therefore, every composition of  n  occurrences of them can
be written as

(1) Pn
i   =  Pn–i.P'i  =  Pn–i.SPiS: Cub  Cub (i  =  0,..., n).

Pn
i (X)  has p-component  Xp+n;  its faces  and degeneracies  Xp+n               Xp+n–1    

are part of those of  X,  corresponding to the directions  n–i+1,..., n–i+p
(renumbered as  1,..., p).  In particular,  P1

0  =  P  and  P1
1  =  P'.

There are generalised faces linking higher path functors

(2) Pi.%$.Pj.SPkS:  Pi+j+1.SPkS  Pi+j.SPkS,
Pi.SPj%$PkS:  Pi.SPj+k+1S  Pi+j.SPkS,
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and similar generalised degeneracies.

2. Symmetric cubical sets and their closed structure

We consider now symmetric cubical sets, equipped with transpositions. In the
singular cubical set of a topological space, this amounts to transposing variables.

Lifting the previous left or right path functors (1.6) to the symmetric case, we get
isomorphic functors, and essentially one path functor. The latter produces one
internal hom, and a symmetric monoidal closed structure. The real points of interest
are the path functor and the internal hom, which in the next section will allow us to
define the cubical transformations of sc-functors.

On the other hand, the symmetric tensor product (of symmetric cubical sets) and
the corresponding cylinder functor are complicated and - perhaps - not really
needed; they will be sketched in Section 6.

2.1. Symmetric cubical sets. As in [G3], a symmetric cubical set, or sc-set, is a
cubical set which is further equipped with mappings, called transpositions

(1) si: Xn  Xn (i = 1,..., n–1;  n , 2).

These have to satisfy the Moore relations

(2) si.si  =  1, si.sj.si  =  sj.si.sj    (i = j–1), si.sj  =  sj.si    (i < j–1),

 and the following equations of coherence with faces and degeneracies:

j < i j = i j = i+1 j > i+1
(3) %$j .si = si–1.%$j %$i +1 %$i si.%$j ,

si.ej =  ej.si–1 ei+1 ei ej.si.

Assigning the mappings (1) under conditions (2) amounts to letting the symmet-
ric group  Sn  operate on  Xn.  Indeed, it is well known that  Sn  is generated, under
the Moore relations, by the 'ordinary' transpositions  s1,..., sn–1,  where  si,  acting on
the set  {1,..., n},  exchanges  i  with  i+1  (see Coxeter-Moser [CM], 6.2; or
Johnson [Jo], Section 5, Thm. 3).

A morphism  f = (fn): X  Y  is a sequence of mappings  fn: Xn  Yn  which
commute with faces, degeneracies and transpositions. The category  sCub,  of small
sc-sets and their morphisms, is again a category of presheaves  X: Isop  Set,  for
the symmetric cubical site  Is.  The latter can be defined as the subcategory of  Set
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consisting of the elementary cubes  2n = {0, 1}n  together with the maps  2m  2n

which delete some coordinates, permute the remaining ones and insert some 0's and
1's. It is a subcategory of the extended cubical site  K  of  [GM], which also contains
the 'connections' (higher degeneracies).

The reversor and transposer of  Cub  (1.1.3, 1.1.4) have obvious liftings

(4) R: sCub  sCub,      RX  =  Xop  =  ((Xn), (%–
i
$), (ei), (si)) (reversor),

(5) S: sCub  sCub,      SX  =  ((Xn), (%$n +1–i), (en+1–i), (sn+1–i)) (transposer).

But here the transpositions make  S  isomorphic to the identity functor, and not
essential (as we will see in 2.6).

2.2. Reduced presentations of symmetric cubical sets. In a symmetric cubical
set, the presence of transpositions makes all faces and degeneracies determined by
the 1-directed ones,  %–

1, %+
1  and  e1.  In fact, from  %$i +1 = %$i .si  and  ei+1 = si.ei,  we

deduce that:

(1) %$i   =  %$1 .s'i, ei  =  si.e1 (i = 2,..., n;  $ = ±),

where we are using the inverse 'permutations'  si  and  s'i
(2) si  =  si–1. ... .s1, s'i  =  s1. ... .si–1.

This leads to a more economical presentation of our structure, as proved in [G5].
Namely, an sc-set can be equivalently defined as a system

(3) X  =  ((Xn), %–
1, %+

1, e1, (si)),

under the Moore relations for transpositions (2.1.2) and the axioms:

(4) %$1 .%&1  =  %&1.%$1 .s1, e1.e1  =  s1.e1.e1, %$1 .e1  =  id,
si.%$1   =  %$1 .si+1, e1.si  =  si+1.e1.

In other words,  X  can be presented as a system  ((Xn), %–
1, %+

1, e1)  where each
Xn  is an Sn-set (equipped with an action of the symmetric group  Sn)  and the
axioms (4) are satisfied.

2.3. The symmetric path functor. We define now the path functor  P  of sc-sets,
by lifting the left path functor of ordinary cubical sets (1.6):  P  (acting on an sc-set
in the complete presentation, 2.1) shifts down all components, discarding the faces,
degeneracy and transpositions of index 1

(1) P: sCub  sCub,
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PX  =  ((Xn+1), (%$i +1), (ei+1), (si+1)), (Pf)n  =  fn+1.

Again, the discarded faces and degeneracy are used to build three natural
transformations, the faces and degeneracy of  P  (while the discarded  s1  will give
the transposition of  P2,  cf. 2.4)

(2) %$: PX  X, %$  =  (%$1 : Xn+1  Xn)n,0,
e: X  PX, e  =  (e1: Xn  Xn+1)n,0.

Also here the transposer  S  (2.1.5) yields the right path functor  P' = SPS,
which shifts down all components discarding the mappings of highest index. But  S

 id  and  SPS  P  (as we will see in 2.6), so that one path functor is sufficient.

2.4. The transposition of the path functor. The 'second order' path functor is
computed as:

(1) P2: sCub  sCub,
P2X  =  ((Xn+2), (%$i +2), (ei+2), (si+2)), (P2f)n  =  fn+2.

It has two pairs of faces  P%$,  %$P: P2  P  and two degeneracies  Pe, eP:
P  P2  (i = 1, 2)

(2) P(%$X)  =  (%$1 : Xn+2  Xn+1)n,0, %$(PX)  =  (%$2 : Xn+2  Xn+1)n,0,
P(eX)  =  (e1: Xn+1  Xn+2)n,0, e(PX)  =  (e2: Xn+1  Xn+2)n,0.

Because of these formulas, it would be appropriate to label the faces  P%$  as  %$1 ,
and the faces  %$P  as  %$2 .  Similarly for degeneracies. (But such labels are not
really necessary here and will be avoided. In various papers on homotopy theory, we
have made the opposite choice, guided by the path functor of topological spaces.)

The important fact is that we have a transposition for the path functor  P

(3) s: P2  P2, x    s1.x.

First,  s: P2X  P2X  is indeed a morphism of sc-sets, as it follows immediately
from the symmetric cubical relations (2.1)

 s1   s1
 Xn+2  Xn+2    Xn+2  Xn+2

(4)   %$i +2   ei+2   %$i +2   ei+2 si+2   si+2

Xn Xn     Xn+2  Xn+2
 s1   s1
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Second, always because of the symmetric cubical relations (more precisely, of
some of them, not applied above), the involution  s  interchanges the 1-directed faces
(or degeneracies) of  P2  with the 2-directed ones, independently of how we choose
to label them

(5) %$P.s  =  P%$, s.eP  =  Pe.

2.5. Internal homs. We define the internal-hom functor as

(1) sCUB:  sCubop × sCub  sCub, sCUBn(A, Y)  =  sCub(A, PnY).

Notice that

(2) sCUB({*}, Y)  =  Y, sCUB(+i, Y)  =  PY,

where  +i = y(2)  is the (representable) symmetric cubical set freely generated by
one 1-cube  u.  This is the same as the cubical set  +i  of Section 1, equipped with
the unique symmetric structure which permutes its (degenerate) cubes of degree , 2.

2.6. The right path functor. This point is not technically needed for the sequel, but
makes clear how the previous structure of ordinary cubical sets is simplified by the
addition of symmetries.
(a) Firstly, the transposer  S  is (here) isomorphic to the identity endofunctor.

Consider the involutive permutation  0n ( Sn

(1) 0n  =  (s1s2...sn–1) ... (s1s2s3)(s1s2)s1,

which, acting on  {1,..., n},  reverses all indices. It is easy to verify that, for  i < n

(2) %$n .0n  =  0n–1.%$1 , en.0n–1  =  0n.e1,  si.0n  =  0n.sn+1–i.

We have thus a natural isomorphism (according to the reduced presentation of
symmetric cubical sets which was given in 2.2):

(3) 0X: X  SX, x    0n.x,

 0n  0n
  Xn   Xn      Xn   Xn

%$1   e1 %$n   en si   sn+1–i

 Xn–1   Xn–1      Xn   Xn
  0n–1  0n
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(b) Secondly, and as a consequence, there is a natural isomorphism  c: P  SPS
between the left and the right path functors, which is computed with the main cyclic
permutation  )n = sn. ... .s1 ( Sn+1

(4) )  =  0PS.P0:  P  SPS, )n: Xn+1  Xn+1,
x    (0PSX)n.(P(0X))n(x)  =  0n.0n+1.x  =  sn. ... s1.x  =  )n.x (x ( Xn+1).

Its inverse is computed with the inverse cyclic permutation  ) 'n = s1. ... .sn ( Sn+1

(5) )': SPS  P, ) 'n: Xn+1  Xn+1,   x  ) 'n.x.

(c) Finally, combining these isomorphisms with the external transposition of 1.6.5:

(6) s: PSPS  SPSP, sn  =  idYn+2,

we obtain again the transposition of the path functor  s: P2  P2  (2.4.3)

(7) s  =  )'P.id.P):  P2  PSPS  SPSP  P2,
x    (s2...sn+1)(sn+1... s1)x  =  s1x.

3. Cubical categories and the symmetric case

First, we recall the main definitions on cubical categories, introduced in [G3]; we
refer to this paper for a complete formulation of the weak structures. Then we
introduce the path functor of cubical categories and of symmetric cubical categories
(strict or weak), which will be a crucial tool for further developments.

3.1. Reduced cubical categories. We begin by considering a cubical set equipped
with compositions in all directions; these are assumed to be strictly categorical (i.e.,
strictly associative and unital) and to satisfy the interchange property.

(cub.1) A reduced cubical category  A  is, first of all, a cubical set (1.1):

(1) A  =  ((An), (%$i ), (ei)).

(cub.2) Moreover, for  1 ' i ' n,  the i-concatenation  x +i y  (or i-composition) of
two n-cubes  x, y  is defined when the latter are i-consecutive, i.e.  %+

i (x) = %–
i (y);  the

following 'geometrical' interactions with faces and degeneracies are required:

(2)  %–
i (x +i y)  =  %–

i (x), %+
i (x +i y)  =  %+

i (y),

 %$j (x) +i–1 %$j (y), if  j < i,
 %$j (x +i y)  =

 %$j (x) +i %$j (y), if  j > i,
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 ej(x) +i+1 ej(y), if  j ' i ' n,
(3)   ej(x +i y)  =

 ej(x) +i ej(y), if  i < j ' n+1.

(cub.3) For  1 ' i ' n,  we have a category  An
i  = (An–1, An, %–

i , %+
i , ei, +i),  where

faces give domains and codomains, and degeneracy yields the identities. In other
words, we have the following equations for i-consecutive n-cubes  x, y, z:

(4) (x +i y) +i z  =  x +i (y +i z), ei%–
i x +i x  =  x  =  x +i ei%+

i x.

(cub.4) For  1 ' i < j ' n,  and n-cubes  x, y, z, u,  we have

(5) (x +i y) +j (z +i u)  =  (x +j z) +i (y +j u) (middle-four interchange),

whenever these compositions make sense:

(6) %+
i (x)  =  %–

i (y), %+
i (z)  =  %–

i (u),    x    y    i

   j
%+

j (x)  =  %–
j (z), %+

j (y)  =  %–
j (u),    z    u

A cubical functor  F: A  B  between reduced cubical categories is a morphism
of cubical sets which preserves all composition laws.

3.2. Commutative cubes. Let  X  be an ordinary category. As a simple example of
the previous structure, we recall the construction of the reduced cubical category
!Cub(X)  of commutative cubical diagrams in  X.

An n-cube can be viewed as a functor  x: in  X,  where  i = 2 = {0  1}  is
the category corresponding to the ordinal two. This category has the basic structure
of a formal interval (or reflexive cograph), with respect to the cartesian product in
Cat:  in other words, it comes equipped with two (obvious) faces  %$,  defined on the
singleton category  1 = {*} = i0  and a (uniquely determined) degeneracy  e

  %$
(1) {*}               i %$(*)  =  $ ($ = 0, 1).

   e

These maps (trivially) satisfy the equations  e%$ = id.  A 1-cube  x: i  X
amounts to an arrow  x: x0  x1  and has faces  %$(x) = x.%$ = x$,  while the
degeneracy, or identity, of an object  x  is  e(x) = x.e: i  X.
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Then, as usual in abstract homotopy theory based on a formal interval (with
respect to the cartesian product), the functors

(2) (–)n
i   =  ii–1 × – × in–i:  Cat  Cat (1 ' i ' n),

produce the higher faces and degeneracies of the interval

(3) %$i : in–1  in, %$i (t1,..., tn–1)  =  (t1,..., $,..., tn–i),
ei: in  in–1, ei(t1,..., tn)  =  (t1,..., t̂i,..., tn) (tj = 0, 1).

(Note that these functors between order-categories are determined by their action
on objects. The dimension  n  is generally omitted.)

By a contravariant action, we get the faces and degeneracies of the cubical set
!Cub(X),  denoted by the same symbols

(4) %$i (x)  =  x.%$i ,  ei(x)  =  x.ei (i = 1,..., n;  $ = ±).

Concatenation of 1-cubes is the ordinary composition in  X.  But it will be useful
to give a formal construction, based on the concatenation pushout  i2 = 3  (in  Cat),
equipped with a concatenation map  c

 %+
{*}    i i2  =  3  =  {0  1  2},

(5) %–    c– c: i  i2,
   i   i2 c(0)  =  0,   c(1)  =  2.

c+

And indeed, given two consecutive 1-cubes  x, y: i  X,  their (ordinary)
composite  z = yx  can be expressed with the functor  [x, y]: i2  X  determined by
the pushout, and the map  c

(6) z  =  [x, y].c: i  i2  X (%+
1x = %–

1y).

Now, acting on the concatenation pushout and the concatenation map  c,  the
functors  (–)n

i   produce the n-dimensional i-concatenation pushout  ini
2   and the n-

dimensional i-concatenation map  ci: in  ini
2

%+
i

in–1   in in i
2   =  ii–1 × i2 × in–i,

(7) %–
i    c–

i

  in  ini
2 ci  =  ii–1 × c × in–i:  in  ini

2 .
  c+

i
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Given two i-consecutive n-cubes  x, y: in  X  (with  %+
i x = %–

i y),  their i-
concatenation  z = x +i y  is computed using the functor  [x, y]: ini

2   X
determined by the pushout in  X

(8) z  =  [x, y].ci: in  ini
2   X.

A functor  F: X  Y  can obviously be extended to a cubical functor  F*,  which
coincides with  F  in degree 0  (identifying  X  with  Cub0(X))

(9) F*: !Cub(X)  !Cub(Y), F*(x: in  X)  =  F˚x: in  Y.

Our formal interval  i,  in  Cat,  has no reversion (a peculiar fact of directed
algebraic topology, see [G1, G2] and references therein). But it has transpositions

(10) s: i2  i2, s(t1, t2)  =  (t2, t1),
si  =  ii–1 × s × in–1–i:  in  in (i = 1,..., n–1).

They operate, contravariantly, on every category  Cubn(X) = Cat(in, X)

(11) si(x)  =  x.si: in  X,

generating an action of the whole symmetric group  Sn.

3.3. Cubical categories. The reduced cubical category  !Cub(X)  has a natural
extension  !Cub(X)  (notice the different notation), where we introduce transversal
maps  f: x  x'  of n-cubes (also called n-maps, or (n+1)-cells, or structural
maps) as natural transformations  f: x  x': in  X,  so that the n-th component
C ubn(X) = Cat(in, X)  is now a category. The new faces, degeneracy and
composition are written

(1) %–
0f  =  x, %+

0f  =  x', e0x  =  id(x), c0(f, g)  =  gf: x  x",

where  gf  is the ordinary (vertical) composition of natural transformations.
The new structure we are interested in, a cubical category  A  [G3], is a category

object within reduced cubical categories (and their cubical functors)

  %
$
0  c0

(2) A(0)               A(1)               A(2) ($ = ±),
 e0

or, equivalently, a reduced cubical category within categories

(3) A  =  ((tvnA), (%$i ), (ei), (+i)), tvnA  =  (An, Mn, %$0 , e0, c0).
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Explicitly, this statement means that  A  is a reduced cubical category where each
component  tvnA   is a category (namely, the category of n-cubes of  A  and their
transversal maps, called the transverse category of  A  of degree  n),  while the
cubical faces, degeneracies and concatenations are functors

(4) %$i : tvnA                tvn–1A  : ei, +i:  tvnA  ×i tvnA     tvnA.

(The pullback  tvnA  ×i tvnA    is the category of pairs of i-consecutive n-cubes.)
A cubical functor  F: A  B   between cubical categories strictly preserves the

whole structure. A reduced cubical category amounts to a cubical category all of
whose n-maps are identities.

A transversal (or structural) transformation  h: F  G: A  B  between
cubical functors assigns, to every n-cube  x  of  A,  a transversal map in  B

(5) h(x): F(x)  G(x),

consistently with faces, degeneracies, concatenations, and satisfying the naturality
condition

(nat) hy˚Ff  =  Gf˚hx, (for every n-map  f: x  y  in  A).

In a cubical category, as well as in all the weaker cases considered below, a
transversal n-map  f: x  x'  is said to be special if its  2n  vertices are identities

(6) %$$$$f:  %$$$$x  %$$$$x' %$$$$  =  %$1 1 %$2 2 ... %$n n ($i = ±).

In degree 0, this just means an identity.
Recalling that a k-map between k-cubes is viewed as a (k+1)-dimensional cell, an

n-truncated cubical category is called an (n+1)-cubical category. For instance
2C ub*(X) = tr2C ub*(X)  is a 3-cubical categories; and, indeed, its 2-maps are
commutative 3-dimensional cubes.

Thus, a 1-cubical category is a category, a 2-cubical category amounts to a (strict)
double category, and a 3-cubical category amounts to a (strict) triple category of a
particular kind, with:
- objects (of one type);
- arrows in directions 0, 1 and 2, where the last two types coincide;
- 2-dimensional cells in directions 01, 02, 12, where the first two types coincide;
- and 3-dimensional cells (of one type).

3.4. Symmetric cubical categories. A symmetric cubical category, or sc-category
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(1) A  =  ((tvnA ), (%$i ), (ei), (+i), (si)),

is a cubical category (3.3) equipped with cubical functors  si: tvnA  tvnA  (1 = 1,...,
n–1)  called transpositions, which make it a symmetric cubical set. Furthermore,
concatenations and transpositions must be consistent, in the following sense

(2) si–1(x +i y)  =  si–1(x) +i–1 si–1(y), si(x +i y)  =  si(x) +i+1 si(y),
sj(x +i y)  =  sj(x) +i sj(y) (j 1 i–1, i).

As for symmetric cubical sets (see 2.2), all faces, degeneracies and concatena-
tions are now determined by the 1-directed ones  (%$1 ,  e1, +1),  together with trans-
positions.

!C ub(X)  is a symmetric cubical category, with transpositions defined as above
(3.2.11). The involutive case, further equipped with reversions under axioms which
can be easily deduced from [GM], is also of interest, e.g. for higher relations and
higher spans or cospans; however, we will not go here into such details.

A symmetric cubical functor, or sc-functor, is a cubical functor which also
preserves transpositions. A symmetric transversal (or structural) transformation  h:
F  G: A  B  between sc-functors is defined as above (3.3), by further requiring
that the transversal maps  h(x): F(x)  G(x)  commute with all transpositions.

3.5. Symmetric weak cubical categories. (a) First, a reduced symmetric pre-
cubical category

(1) A  =  ((An), (%$i ), (ei), (si), (+i)),

is a symmetric cubical set with compositions, satisfying the consistency axioms
(cub.1-2) of 3.1, where transpositions and compositions agree (in the sense of
3.4.2). We are not (yet) assuming that i-compositions behave in a categorical way or
satisfy interchange, in any sense, even weak; and there are no transversal maps.

(This notion has been introduced in [G3], 3.4, under the name of 'symmetric pre-
cubical category'; but here this term will be used for the stronger notion below,
which was also introduced in [G3], 4.1, without a specific name.)
(b) Next, a symmetric pre-cubical category will be a category object  A  within the
category of reduced symmetric pre-cubical categories and their (structure-
preserving) morphisms
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  %
$
0  c0

(2) A(0)               A(1)               A(2)  ($ = ±).
 e0

We have thus:

(wcub.1) A reduced symmetric pre-cubical category  A(0) = ((An), (%$i ), (ei), (si),
(+i)),  whose entries are called n-cubes, or n-dimensional objects of  A.

(wcub.2) A reduced symmetric pre-cubical category  A(1) = ((Mn), (%$i ), (ei), (si),
(+i)),  whose entries are called n-maps, or (n+1)-cells, of  A.

(wcub.3) Morphisms  %$0   (0-faces) and  e0  (0-degeneracy), with  %$0 .e0 = id.

(wcub.4) A composition law  c0  which assigns to two 0-consecutive n-maps  f:
x  x',  h: x'  x"  (of the same dimension), an n-map  hf: x  x"  (also written
h.f).  This composition law is (strictly) categorical, and forms a category  tvnA =
(An, Mn, %$0 , e0, c0),  for every  n , 0.  It is also consistent with the symmetric pre-
cubical structure, in the following sense

(3) %$i (hf)  =  (%$i h).(%$i f), ei(hf)  =  (eih)(eif), si(hf)  =  (sih)(sif),

 %–i f  %–i h

 x – f – h   x"

(h +i k).(f +i g)  =  hf +i kg,    0

 y – g – k   y"    i

 %+
i g  %+

i k

(c) Finally, a symmetric weak cubical category  A  [G3, 4.2] is a symmetric pre-
cubical category, as defined above in (b), which is further equipped with assigned
invertible special transversal maps (see 3.3.6). The latter play the role of
comparisons for units, associativity (in direction 1) and cubical interchange (in
direction 1, 2), the other comparisons being generated by transpositions.

Essentially, we have the following additional structure and conditions:

(wcub.5) For every n-cube  x  (n > 0),  we have an invertible special n-map  21x,
natural on n-maps

(4) 21x: (e1%–
1x) +1 x    x (left-unit 1-comparison).
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(wcub.6) For every n-cube  x  (n > 0),  we have an invertible special n-map  31x,
natural on n-maps

(5) 31x: x    x +1 (e1%+
1x), (right-unit 1-comparison).

(wcub.7) For every three n-cubes  x, y, z,  which are consecutive in direction 1, we
have an invertible special n-map  41(x, y, z),  natural on n-maps

(6) 41(x, y, z):  x +1 (y +1 z)   (x +1 y) +1 z (associativity 1-comparison).

(wcub.8) Given four n-cubes  x, y, z, u  making the following concatenations
legitimate, we have an invertible n-map  51(x, y, z, u),  which is natural on n-maps

(7) 51(x, y, z, u): (x +1 y) +2 (z +1 u)    (x +2 z) +1 (y +2 u)
(interchange 1-comparison).

(wcub.9) Finally, these comparisons are coherent (coherence axiom).

The complete axioms (wcub.5-9), written in [G3], 4.2-4.3, give conditions on the
cubical faces of these comparisons and an explicit list of coherence conditions.

Truncation works as described at the end of 3.3. Since the symmetric groups  S0
and  S1  are trivial, a 1-truncated symmetric weak cubical category has no trans-
positions and is the same as a weak double category.

3.6. Path functors of cubical categories. We will write  cbCat  the 2-category of
(small) cubical categories, cubical functors and their transversal transformations; we
will write  scCat  the symmetric analogue.

Cubical categories have a left and a right path 2-functor, which are obvious
liftings of the ones of cubical sets

(1) P: cbCat  cbCat, P'  =  SPS: cbCat  cbCat.

In every degree,  P  discards faces, degeneracies and concatenations in direction 1
while  P'  discards the ones in the last direction. Again,  P  and  P'  are linked by the
transposer  S: cbCat  cbCat,  which in every degree reverses the order of faces,
degeneracies and concatenations.

Also here,  P  and  P'  have isomorphic liftings to the symmetric case (where  S
 id),  and we will only use the path 2-functor which discards direction 1, written

(2) P: scCat  scCat.

The symmetric weak case is similar, and has a path 2-functor

(3) P: wscCat  wscCat,

GRANDIS - SYMMETRIES IN CUBICAL SETS AND CUBICAL CATEGORIES

- 121 -



for the 2-category of weak sc-categories, their (strict) sc-functors and their
transversal transformations.

For  cbCat,  scCat  and  wscCat,  we always have the relation

(4) tvn˚P  =  tvn+1.

3.7. Exponentials. (a) First, for a small ordinary category  X  and a symmetric pre-
cubical category  A,  we have the symmetric pre-cubical category of level functors
and their natural transformations

(1) AX  =  Lv(X, A), tvn(Lv(X, A)  =  Cat(X, tvnA).

An n-cube is an ordinary functor  F: X  tvnA,  and will also be called an n-
level functor with values in  A;  an n-map is a natural transformation  f: F  G:
X  tvnA.  Their faces, degeneracies, transpositions and concatenations are obtain-
ed by post-composition with the structural functors of  A  (3.3, 3.4)

(2) %$i : tvnA                tvn–1A  :ei,

si: tvnA                tvnA, +i:  tvnA ×i tvnA     tvnA.

(b) If  A  is a weak sc-category, also  AX  is, with comparisons obtained from the
ones of  A.

(c) Now, let  X  be a small weak sc-category and  A  a weak sc-category. We define
the weak sc-category of higher sc-functors from  X  to  A  and their transversal (or
structural) transformations

(3) AX  =  Wsc(X, A).

An n-cube is an sc-functor  F: X   PnA ,  an n-map is a transversal
transformation of such functors. Faces, degeneracies, transpositions are obtained by
post-composition with the structure of the path functor  P  of weak sc-categories
(3.6.3)

(4) %$i :  PnA                Pn–1A  :ei, si: PnA  PnA.

Similarly, one obtains concatenations and the comparisons of the weak structure
of  AX.

If  X  is the free weak sc-category on a small category  X,  we obtain the 'same'
structure  AX  considered above, in (b).
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(d) Cubical transformations. The cubical geometry allows us to view these n-cubes
as higher homotopies. Thus, a 1-cube  F: X  PA  can be viewed as a cubical (or
geometric) transformation of sc-functors

(5) F: F–  F+: X  A, F$  =  %$F,

and more generally an n-cube  F: X   PnA   is an n-dimensional cubical
transformation, with  2n  faces  %$i F.

Notice that in the non-symmetric case, the presence of two non-isomorphic path
functors makes things much more complicated. We would have left and right cubical
transformations

(6)  X  PA, X  P'A,

and, in higher degree, we should replace  Pn  with n-ary compositions  Pn
i  = Pn–i.P'i

(1.8.1).

3.8. Transversal invariance. Extending a property of double categories
(introduced in [GP1], 2.4, under the name of horizontal invariance, and charac-
terised in [GP2], 1.5, we say that the symmetric pre-cubical category  A   is
transversally invariant if, for every n-cube  x  and every pair of transversal (n–1)-
isomorphisms  f$: %$1 x  y$  ($ = ±),  there exist some transversal n-isomorphism
f: x  y  with  %$1 f = f$  (and therefore  %$1 y = y$)

  f–
   y–    0

(1)  x f    y    1

   y+

f+

Of course, because of symmetries, the same property holds for every pair of
faces  %$i ,  with  i = 1,..., n.

3.9. Weak double categories and coskeleton. A weak double category will
generally be viewed in  wscCat  via the coskeleton functor, right adjoint to cubical 1-
truncation  wscCat  wDbl

(1) cosk1: wDbl  wscCat, tr1  cosk1.

GRANDIS - SYMMETRIES IN CUBICAL SETS AND CUBICAL CATEGORIES

- 123 -



Concretely, if  A  is a weak double category, the weak sc-category  B = cosk1(A)
coincides with  A  in cubical degree 0 and 1. Then, in the component  tv2B,  a 2-cube
is a 'shell' of 1-cubes of  A

 v
  A     B    1 %–

1u  =  %–
1v, %+

1u'  =  %+
1v',

(2)    u #    u'    2

  C     D %+
1u  =  %–

1v', %+
1v  =  %–

1u',
v '

under no further condition. A transversal 2-map is a similar 'shell' of 1-maps of  A.
Notice that the #-marked square (2) is not assumed to commute under concatenation
of 1-cubes, in any sense (strict, weak or lax). Similarly, one defines all the higher
components, by n-dimensional shells of 1-cubes and 1-maps of  A.

Faces and degeneracies are obvious: for instance, for the 2-cube  U  represented
above,  %–

1U = u  and  %–
2U = v.  Concatenations are also obvious, and computed with

the concatenation of 1-cubes (or 1-maps) in  A;  thus, in dimension 2 and direction 1,
we get

 v  w    v + w
  A     B     B'   A   B'

(3)    u #    u' #    u"    u   #    u"

  C     D     D'   C   D'
v ' w'   v' + w'

Finally, the comparisons for associativity and units are families of comparisons
of  A,  while interchange is necessarily strict.

Viewing weak double categories in this way leads us to define a cubical (or
geometric) transformation of double functors (between weak double categories)  F:
F–  F+: X  A  as a cubical transformation of the corresponding 1-coskeletons

(4) F: cosk1F–  cosk1F+: cosk1X  cosk1A.

Explicitly, this means to assign:

(a) to every object (0-cube)  X  of  X  a 1-cube  FX: F–X  F+X  of  A,
(b) to every 0-map  f: X  Y  of  X,  a 1-map  Ff: F–f  F+f  of  A,

consistently with the transversal structure (faces, degeneracies and composition):

(5) F(%$0 f)  =  %$0 (Ff), F(e0X)  =  e0(FX), F(gf)  =  Fg.Ff.
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Notice that there is no 'naturality' condition based on a 1-cube  u: X  X'  of  X:
the latter is simply sent to a 2-dimensional shell, with 1-directed faces  F!(u)  and 2-
directed faces  FX,  FX'

FX
  F–X    F+X'    1

(6)  F–u #    F+u    2

  F–X'   F+X'
   FX'

Moreover, the consistency with concatenation of 1-cubes is simply 'managed' by
the cubical functors  F–, F+.

More generally, we define in the same way a cubical transformation  F–  F+:
X  A  of weak (or lax, or colax) cubical functors  F!:  the only comparisons
which we need are those of the latter.

This notion is certainly simpler than a 'strong vertical transformation of lax
double functors', as defined in [GP1], 7.4 - where a weak naturality condition was
assumed. Further study will show whether the present notion does work better.

4. Examples of symmetric weak or strict cubical categories

After the strict sc-category  "Cub(X),  described in 3.2, we describe here the
weak sc-categories  "Cosp(X)  and  "Sp(X)  of cubical (co)spans. Then we
construct the strict sc-category  "Rel  of cubical relations of sets, and we end with a
sketch of a strict sc-category  "Cat  of cubical profunctors. These two constructions
will be made precise in the next section.

All these examples are transversally invariant (3.8).

4.1. Cubical cospans. We begin our examples by reviewing the symmetric weak
cubical category  "Cosp(X)  of higher cubical cospans, introduced in [G3] to study
cubical cospans in Algebraic Topology and higher (cubical) cobordism. Its cubical
1-truncation (3.3, 3.5) is the weak double category  Cosp(X)  studied in [GP1].

Let  X  be a category with a full choice of distinguished pushouts: in other words,
to every span  (f, g)  we assign one distinguished pushout  (f', g'),  under the unitarity
constraint for which the distinguished pushout of the span  (f, 1)  is  (1, f)  (and
symmetrically)
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 f  f
   x    x'

(1)    g    f'    1    1

   x    x'
 g'  f

The 'geometric model' of the construction of our cubical structure is the category
"""",  called the formal cospan, and its cartesian powers

(2)  –1 0   1 """",

 (–1,–1)   (0,–1)   (1,–1)

   1

 (–1, 0)   (0, 0)   (1, 0)    2

 (–1, 1)   (0, 1)   (1, 1) """"2.

An n-cube of  !Cosp(X)  is a functor  x: """"n  X,  and an n-map is a natural
transformation  f: x  y: """"n  X;  these objects and maps form the category

(3) Cospn(X)  =  Cat(""""n, X).

It is now easy to construct a symmetric cubical object in  Cat,  based on the
structure of the category  """"  as a formal symmetric interval, with respect to the
cartesian product (in  Cat)

(4) %$: 1               """",       e: """"  1, s: """"2  """"2 ($ = ±),

%$(*)  =  $1, s(t1, t2)  =  (t2, t1).

Namely, faces, degeneracies and transpositions of n-cubes and n-maps are
defined by pre-composition with the following maps between cartesian powers of  """"
(for  $ = ±  and  i = 1,..., n)

(5) %$i : """"n–1  """"n, %$i (t1,..., tn–1)  =  (t1,..., $1,..., tn–1),
ei: """"n  """"n–1, ei(t1,..., tn)  =  (t1,..., t̂i,..., tn),
si: """"n+1  """"n+1, si(t1,..., tn+1)  =  (t1,..., ti+1, ti,..., tn),

so that the  2n  faces of an n-cube  x: """"n  X  are  %$i (x) = x˚%$i : """"n–1  X,  and
so on.
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4.2. The cubical category of relations. We define now the strict sc-category of
cubical relations of small sets  !Rel = !Rel(Set);  of course, the same can be done
in more general settings.

We will construct  !Rel  as a quotient of  !Sp(Set),  extending the construction
of ordinary (binary) relations as equivalence classes of spans.

First, at the level of n-cubes, the equivalence relation is generated by pairs of
cubical spans  x, x': 6666n  Set  which admit a special transversal map  p: x  x'  all
whose components  p(t): x(t)  x'(t)  are surjective mappings  (t ( {–1,  0, 1}n).

Every equivalence class  [x]  of n-cubes contains some representative which is a
jointly monic n-span, in the sense that each pair of mappings with the same domain
and having the same direction  i  (for  i = 1,..., n)  is jointly monic. The existence of
such representatives is trivial in degree 0, obvious and well known in degree 1. In
degree 2, represented in the diagram below, we begin by choosing a jointly monic
representative for each of the four faces  %$i   (the four spans at the boundary)

a
a'   b

(1)    1

b'    2

Then we choose a jointly monic span  (a, b)  in direction 1 (say), which induces a
consistent choice for the span  (a', b').  The latter is also jointly monic, as it follows
from the fact that the four composites from the centre to the vertices are jointly
monic. In higher dimension one proceeds in the same way. A jointly monic
representative of an equivalence class of n-cubes is determined up to an invertible
special transversal map of cubical spans.

Second, at the level of n-maps, the equivalence relation is generated by pairs of n-
maps of cubical spans  f: x  y,  f': x'  y'  for which there exists a commutative
diagram

 f
   x   y

(2)    p    q

  x'   y'
f'
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The concatenation  x +i y  of two n-cubes which are i-consecutive (i.e.,  !+
i (x) =

!–
i (y))  is computed in the obvious way, by  3n–1  distinguished pushouts whose

'vertices' are the ones of the common face. More precisely, concatenation can be
given a formal definition (as in [G3], and along the same lines of 3.2.5), for which
we only give here some hints. It is based on the model of binary composition (for
ordinary cospans), the category  """"2  displayed below, with one non-trivial distin-
guished pushout

 0
(6)   a    c

–1 b   1  """"2.

Indeed, given two consecutive cospans  x, y  in  X,  we get an obvious functor
[x, y]: """"2  X,  from which we deduce the concatenation  x +1 y: """"  X  by pre-
composing  [x, y]  with the concatenation map  c: """"  """"2,  already displayed
above by the labelling of objects in  """"2.
  Then, 1-concatenation of n-cubes is based on the cartesian product  """"2 × """"n–1

  (0,-1)

(-1,-1) (a,-1)   (b,-1) (c,-1)   (1,-1)

   1

(7) (-1, 0) (a, 0)   (b, 0) (c, 0)   (1, 0)    2

(-1, 1) (a, 1)   (b, 1) (c, 1)   (1, 1)  """"2 × """".

Comparisons for associativity and interchange can be defined taking advantage
of this formal construction, see [G3], Section 3. On the other hand, degeneracies
work as strict units, because of the unitarity constraint recalled above for the choice
of pushouts.

Of course, cubical spans are obtained by the dual procedure, for a category  X
with assigned pullbacks:

(8) #Sp(X)  =  #Cosp(Xop), Spn(X)  =  Cat($$$$n, X),

where the category  $$$$  is the formal span:  –1   0  1.
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where  p, q  are special transversal maps whose components are surjective mappings.
Equivalently, since  p, q  are the identity on each vertex, a transversal map  f:

[x]  [y]  between n-cubical relations can be defined as a family of mappings
between the vertices of  x  and  y

(3) ft): x(t)  y(t), t ( {–1, 1}n,

which can be extended to a transversal map of cubical spans  x  y  between jointly
monic representatives. This extension is unique, because of the cancellation
property of such representatives.

Faces, degeneracies, transpositions and concatenations are induced on the
quotient, by the ones of cubical spans. Since the comparisons of  !Sp(Set)  are
invertible transversal maps, all their components are surjective and the quotient we
are considering is a strict symmetric cubical category.

The quotient procedure we have used will be abstracted in the next section, and
its dual will be used to define cubical profunctors.

4.3. Cubical relations as subsets of products. One can give a more concrete
description of  !Rel,  whose worse drawback is that the construction of degeneracies
becomes cumbersome.

Items will be indexed on the three-element set  {0, u, 1}  and its powers. A 1-
cubical relation is an ordinary relation  a: a0  a1  of sets, viewed as a subset  au .
a0 × a1,  and will be written with a dot-marked arrow; their composition will be
written in additive notation.

A 2-cubical relation  a  consists of:
- four vertices  (aij): 2×2  Set  (where  2×2 = {0, 1}2  is a discrete category on
four objects),
- four (binary) relations on the sides of a square, written  auj  and  aiu  (see the
diagram below, no condition of commutativity is assumed)
- and one quaternary relation  auu . /  aij  whose projection on each side is
contained in the corresponding binary relation

   au0

a00 a10    1 auu  .  a00 × a01 × a10 × a11,
(1)    a0u auu    a1u    2 (p0j, p1j)(auu)  .  auj,

a01 a11 (pi0, pi1)(auu)  .  aiu.
au1
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(We write  pij  the four cartesian projections of  / aij.)  The 1-concatenation  c =
a +1 b  is defined when the 2-cubes  a, b  are consecutive in direction 1, i.e.  a1u =
b0u,  and is computed below, at the right

au0     bu0  au0 + bu0

a00 a10 = b00 b10 a00   b10

(2)    a0u auu    a1u =   b0u bu u    b1u    a0u cuu    b1u

a01 a11 = b01 b11 a01   b11au1 bu 1   au1 + bu1

Obviously, the subset

(3) cuu  =  auu +1 buu  .  a00 × a01 × b10 × b11,

contains those 4-tuples  (x00, x01, z10, z11)  for which there is some pair  (y, y') (
a10 × a11 = b00 × b01  such that  (x00, x01, y, y') ( auu   and  (y, y', z10, z11) ( buu.  In
other words,  auu +1 buu  is an ordinary composition of relations, provided we view
auu  and  buu  as binary relations, as follows:

(4) auu: a00 × a01  a10 × a11, buu: b00 × b01  b10 × b11.

This proves that 1-concatenation is strictly associative, with strict units provided
by the following degeneracies  e1(a)  of ordinary relations

 id
  a0   a0

(5)      au  (e1a)uu    au

  a1   a1 id

(e1a)uu  =  {(x0, x1, x0, x1) ( a0 × a1 × a0 × a1 | (x0, x1) ( au}.

The same holds for 2-concatenation, which can be defined in the symmetric way,
or by transposition of the previous operation:

(6) a  +2 a'  =  s1(s1a  +1 s1a').

We proceed analogously in higher dimension. The definition of degeneracies,
extending (5), looks unnatural.

4.4. Cospans of embeddings of categories. Cubical profunctors can be
constructed by a quotient procedure, whose formal aspects are transversally dual to
the procedure sketched above (4.2): we will start from cubical cospans of full
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embeddings of categories, and identify them when they have the same reduced form,
in a suitable sense. This will be done at the end of the next section, after formalising
this kind of quotients.

The crucial point is the fact that an ordinary profunctor  x: x–1  x1  has a
collage  x0,  which consists of the sum of the categories  x–1  and  x1,  supplemented
with new homs  x0(a, b) = x(a, b),  for  a  in  x–1  and  b  in  x1.  (Formally, the
collage of a profunctor is a double colimit, the cotabulator, in the weak double
category of categories, functors and profunctors, see [GP1].)

Thus, the profunctor  x  can be described as a cospan

 x–   x+

(1)   x–1 x0  x1

characterised by the following conditions (which imply that  x–, x+  have disjoint
images)

(i)  x–, x+  are full embeddings,
(ii) there are no arrows in  x0  going from an object of  x1  to an object of  x–1,
(iii) the embeddings  x–, x+  cover (together) all the objects of  x0.

We have already seen how a profunctor yields such a cospan. Conversely, given
the cospan (1), the profunctor is reconstructed as:

(2) x: (x–1)op × x1  Set, (a, b)    x0(x–(a), x+(b)).

Now, the first two conditions above are closed under concatenation, but the third,
a sort of jointly-epi condition, is not (in the same way as jointly monic spans are not
closed under concatenation). Which is why we will obtain (cubical) profunctors as
equivalence classes of (cubical) cospans, with reduced representatives satisfying the
(cubical extension of the) third condition (5.7).

5. Weak cubical categories, cubical rewriting and quotients

We formalise the procedure which has been used above to pass from the weak
sc-category of cubical spans to the strict sc-category of cubical relations (4.2), as a
'quotient' which forces certain transversal maps to become identities. Then, the dual
procedure is used to construct a strict sc-category of cubical profunctors. These
techniques are a sort of term rewriting, based on the existence of 'normal forms',
determined up to transversal isomorphism.
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5.1. Rewriting and normal forms. Let us first recall a classical case of term
rewriting, the description of the free group on a set  X.

One begins with the disjoint union  Y = X 7 X–1  of the set  X  with a isomorphic
copy, adding for each  x ( X  an element  x–1  (which will become its inverse). Then,
we let  Y* = * Yn  be the free monoid on the set  Y,  consisting of words  w = y1,...,
yn  of elements of  Y;  they are multiplied by juxtaposition, and the unit is the empty
word  e.

We define an order relation  w'  w,  generated by the following (elementary)
rewrite rule:
(1)  the word  w'  can be obtained from  w  by omitting one occurrence of the
sequence  x, x–1  or one occurrence of the sequence  x–1, x   (for some  x ( X).

This order is obviously consistent with juxtaposition, and it spans an equivalence
relation  w  w'  which is a congruence of semigroups. It is easy to prove that the
quotient semigroup  F = Y*/   is a group, and actually the free group on the set  X:
the embedding  X . Y . Y*  Y*/   satisfies the usual universal property.

Now, in order to better understand the construction, it is convenient to notice that
an equivalence class of words in  Y*  is determined by a word in normal form, to
which the rewrite rule (1) cannot be applied (i.e., a minimal element for the order
relation).

Plainly, every equivalence class  [w]  contains some minimal word, which cannot
be further reduced. But the crucial fact is that the ordered set  [w]  has a minimum,
the normal form  ŵ,  which, therefore, does not depend on the reduction process
which yields it. (One begins with proving that two distinct immediate predecessors
of  w  always have a common immediate predecessor; since the number of
immediate predecessors of a given word is finite, the existence of the minimum is an
easy consequence.)

Notice that normal forms are not closed under multiplication: we only have that
(w.z)ˆ = (ŵ.ẑ)ˆ.  Thus, the quotient  Y*/   cannot be embedded as a subsemigroup
of  Y*  (as soon as  X  is not empty).

Notice also that the fact of having a normal representative in every equivalence
class is an effective way of describing the elements of the free group, but is not
formally necessary for the construction of the latter. In other situations, as the ones
considered below, it may happen that the existence of normal forms is crucial in
order to prove that some operation passes to the quotient.
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5.2. Rewriting for cubical spans. The passage from cubical spans to cubical
relations (of sets) is based on a preorder  x'  x  between cubical spans, given by
the existence of a reduction  p: x  x',  or domain-rewriting: a special transversal
map whose components are surjective mappings (so that we can think of  x'  as a
'simpler form' of  x).  The following diagram shows the 1-dimensional case

x– x+
  x–1    x0   x1

(1)   p0

  x–1   x'0   x1
x'–   x'+

Now, in the equivalence relation between n-cubes  x  x'  generated by this
preorder:

(*) every equivalence class  [x]  has a least representative  x̂,  determined up to
transversal isomorphism (and we choose one).

This representative will be called the reduced form, or normal form, of  x.  It is
the essentially unique jointly monic n-span which belongs to  [x]  (in the usual sense
for  n = 1,  and in the sense of 4.2 for higher  n).

As a second crucial fact,

(**) for every cubical span  x,  there is precisely one reduction  px: x  x̂,

which will be called the least reduction, or normal reduction, of  x.  It is also charac-
terised, directly (i.e. without using  x̂),  as 'the' minimum in the set of reductions
starting from  x,  with respect to the usual preorder of epimorphisms:  p'  p  if  p'
factors through  p.  (Actually, since  x̂  is jointly monic, there is a unique special
transversal map  x  x̂,  and for every n-cube  y  at most one special transversal
map  y  x̂,  but these stronger facts will not be used.)

In the definition below, we are not assuming that each reduction be special, but
this will always be the case in the present applications.

Notice also that, generally speaking, the transversal isomorphisms of a weak
cubical category do not satisfy the uniqueness condition (**) and cannot be taken
as reductions, by themselves. Thus, the quotient procedure which we are establishing
cannot be used to 'strictify' an arbitrary weak cubical category. (In the same way as
spans up to invertible cells do not form a 2-category.)

In the dual procedure, from cubical cospans to cubical corelations, the preorder
relation  x'  x  is given by the existence of a coreduction, or codomain-rewriting
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m: x'  x,  i.e. a special transversal map whose components are injective mappings
(so that, again, we can think of  x'  as a 'simpler form' of  x,  within cospans)

x– x+
  x–1    x0   x1

(2)   m0

  x–1   x'0   x1
x'– x'+

5.3. Cubical reduction systems. Let  A  be a symmetric pre-cubical category
(3.5(b)), which is transversally invariant (3.8).

A (cubical) reduction system  RdA  of  A  satisfies the following conditions:

(i) RdA  is a wide substructure of  A  (i.e., it is closed under faces, degeneracies,
transpositions, concatenations and transversal composition, and contains all the
cubes of  A);  moreover, it contains all the invertible transversal maps of  A;

(ii) every transversal n-map  p: x  x'  which is a reduction, i.e. belongs to  RdA,  is
an epimorphism (in the category  tvnA);

(iii) for every n-cube  x,  the set of reductions  p: x  x',  preordered by the usual
preorder relation of epimorphisms  (p'  p  if  p'  factors through  p)  has a mini-
mum  px: x  x̂  (and we choose one of them, determined up to transversal
isomorphism);  px  will be called the least reduction, or normal reduction, of  x,  and
x̂  the reduced form, or normal form, of  x;

(iv) for every n-cube  x,  px: x  x̂  is the unique reduction from  x  to its reduced
form;

(v) for every transversal n-map  f: x  y  of  A,  there is a consistent map  f̂: x̂  ŷ
(in the sense that  f̂.px = py.f);  since  px  is epi,  f̂  is uniquely determined (by the
choice of  px  and  py)  and called the reduced form of  f;

(vi)  %$i x̂  is isomorphic to the reduced form of the face  %$i x.

5.4. Lemma (The associated congruence). In the situation described in 5.3, the
following properties hold.
(a) For every n-cube  x,  if the reduced form  x̂  is transversally isomorphic to  x',
then there is a unique reduction  x  x'  and a unique reduction  x̂  x';  the latter
is invertible.
(b) The procedure  f  f̂  is consistent with transversal composition

GRANDIS - SYMMETRIES IN CUBICAL SETS AND CUBICAL CATEGORIES

- 134 -



 f g
   x   y    z

(1) px    py    pz (gf)ˆ  =  ĝ.f̂.
   x̂   ŷ    ẑ

(c) The equivalence relation  x  x'  generated by the existence of a reduction
between n-cubes amounts to the existence of a transversal isomorphism  u: x̂  x̂',
which is uniquely determined (and a reduction)

   px u  px'
(2)    x   x̂   x̂'   x'

so that each equivalence class of cubes has precisely one reduced representative, up
to isomorphism.
(d) The equivalence relation  f  f'  between transversal n-maps generated by the
existence of a commutative square  f'p = qf,  where  p, q  are reductions, amounts to
the fact that  f̂  and  f̂'  be transversally isomorphic, i.e. to the existence of a
commutative square  f̂'u = vf̂,  where  u, v  are transversal isomorphisms

  px u px'
   x    x̂    x̂'   x'

(3)    f   f̂   f̂'   f'

   y   ŷ    ŷ'   y'
  py v py''

therefore, each equivalence class of transversal maps has precisely one reduced
representative, up to transversal isomorphism;
(e) Reduced forms are consistent with faces, degeneracies, transpositions and
composition of transversal maps.
(f) On the other hand, the reduced form of a concatenation is smaller than the
concatenation of reduced forms: more precisely, for a concatenation  x +1 y,  one can
choose two least reductions  px: x  x̂,  py:   ŷ  which are 1-consecutive, so that
px +1 py: x +1 y  x̂ +1 ŷ  is a reduction (generally not the least one).
(g) The equivalence relations  x  x'  and  f  f'  are consistent with faces, degen-
eracies, transpositions, concatenations and composition of transversal maps.

Proof. (a)  Let  u: x̂  x'  be a transversal isomorphism and  v: x̂  x'  any reduc-
tion; then  u–1v.px: x  x̂  is a reduction and must coincide with  px,  whence  u–1v
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= idx̂  and  v = u;  moreover, a  reduction  p: x  x'  necessarily factors through  px,
and coincides with  u.px.
(b) Obvious, since reductions are epimorphisms.
(c) Relation (1) is obviously an equivalence relation. It implies  x  x',  because
every transversal isomorphism is a reduction. Conversely,  if  p: x  x'  is a reduc-
tion, then  x, x'  have the same reduced form, up to transversal isomorphism, hence
they are in relation (1).
(d) Has a similar proof.

(e) For faces, this is assumed in point (vi) of the definition. For degeneracies, a
reduction  p: x  x'  gives a reduction  eip: eix  eix',  and conversely a reduction
q: eix  eix'  gives  %$i q: x  x'.  For transpositions, the property follows from
their being invertible. Composition of transversal maps has already been considered
in (b).
(f) For a concatenation  x +1 y,  with  %+

1x = %–
1y,  the normal reductions  px: x  x̂

and  py: y  ŷ  give, up to transversal isomorphism, the normal reductions  %+
1px

and  %–
1py  of the common face  %+

1x = %–
1y;  now, if  u: %+

1x̂  %–
1ŷ  is a transversal

isomorphism, let  v: x̂  x'  be a transversal isomorphism such that  %+
1v = u  and

%+
1x' = %–

1ŷ  (it exists, by transversal invariance of  A ).  Then  v.px: x  x'  is a
normal reduction of  x  which can be concatenated with  py,  giving a reduction  v.px
+1 py: x +1 y  x' +1 ŷ.  One can now rename  v.px: x  x'  as   px: x  x̂.

The least reduction of  x +1 y  can be strictly smaller than the concatenated
reduction. For instance, in the case of spans and relations (5.2), it is well known that
the concatenation of two jointly monic spans need not be jointly monic.
(g) Follows from the last two points. The only non-obvious aspect being concatena-
tion, let us suppose we have  x +1 y  and  x' +1 y',  with  x  x'  and  y  y'.  By (f),
we can choose the same reduced forms  x̂  and  ŷ,  in such a way that they are
consecutive in direction 1, and we get two reductions with values in the same form

(4) x +1 y    x̂ +1 ŷ    x' +1 y'.

Therefore  x +1 y  x' +1 y'  (even if  x̂ +1 ŷ  need not be normal).

5.5. Theorem and Definition (Quotients modulo cubical reductions). (a) Given a
transversally invariant, symmetric pre-cubical category  A  (3.5(b)) and a reduction
system  RdA  (5.3), one can form a symmetric pre-cubical category  B = A/ ,  as a
quotient modulo the equivalence relations of n-cubes and n-maps defined in 5.4.  B
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will be written as  A/RdA  and called the quotient of  A   modulo reductions (of
RdA).

The projection  Q: A  B  is a symmetric pre-cubical functor such that:
(i)  all reductions of  A  are sent by  Q  to transversal identities,
(ii)  Q  is universal for this property.

If all the reductions of  A  are special transversal maps (3.3.6), one can identify
tv0A  and  tv0B.

(b) If  A  is a (transversally invariant) weak sc-category, then  B  is a strict sc-
category.

Proof. (a) Form  B = A /  as specified above. We already know that the induced
concatenation  [x] +i [y] = [x +i y]  does not depend on the choice of a pair of i-
consecutive representatives, but we must show that it is defined whenever the given
classes  [x], [y]  are i-consecutives. Indeed, if  %+

i x  %–
i y,  then

(1) %+
i (x̂)    (%+

i (x))ˆ    (%–
i y)ˆ    %–

i (ŷ),

and, up to modifying  x  by a transversal isomorphism constructed with property
(vii), we can assume that  %+

i (x̂) = %–
i (ŷ),  so that

(2) [x] +i [y]  =  [x̂ +i ŷ],

is defined.
Similarly, we already know from the previous lemma that the induced

composition of transversal maps  [g].[f] = [gf]  does not depend on the choice of a
pair of composable representatives. But we must also show that, if the given classes
[f], [g]  are transversally consecutive then they admit composable representatives.
Indeed, if the transversal maps  f: x  y  and  g: y'  z  become composable in the
quotient, i.e.  y'  y,  then  f  is equivalent to  py.f: x  ŷ  and  g  is equivalent to
ĝ.u: ŷ  ẑ,  for the unique isomorphism  u: ŷ  ŷ'  (which is a reduction).

Now,  B  is also a symmetric pre-cubical category and the universal property of
the projection  Q  is obvious. The last statement on special maps is obvious.

(b) In the new, stronger hypotheses on  A,  comparisons and all the axioms pass to
quotient. But all comparisons are invertible transversal maps, whence they are
reductions and become identities in  B,  which is therefore a strict sc-category.

5.6. From cubical spans to cubical relations. We can now review 4.2 at the light
of the previous points.

GRANDIS - SYMMETRIES IN CUBICAL SETS AND CUBICAL CATEGORIES

- 137 -



In the weak sc-category  Sp(Set),  we say that a transversal map  f: x  y:
6666n  X  is a reduction if:
- all its components  f(t): x(t)  y(t)  (t ( {–1, 0, 1}n)  are surjective mappings,
-  f  is special (i.e., all its vertices  f(t),  for  t ( {–1, 1}n  are identities).

The reduced form of an ordinary span is the associated jointly monic span; the
same holds in higher dimension, according to the definition of a jointly monic
cubical span given above (4.2). The conditions (i)-(vii) of 5.3 are satisfied.

The quotient of  Sp(Set)  modulo these reductions is  R el(Set),  as a strict
symmetric cubical category.

5.7. Cubical profunctors. Following the ideas of 4.4, we begin with considering
the weak sc-category  E = !Cosp(Emb)  of cubical cospans of full embeddings of
(small) categories.

This is legitimate, because the category  Emb,  of small categories and their full
embeddings, has pushouts (which are also pushouts in  Cat):  given a span of such
embeddings  A  X  B,  let us rename the items of  A  and  B  so that these
functors are full inclusions and  X = A 8 B.  Then the pushout  W  contains the
obvious set-theoretical union  A 7 B,  supplemented with:

- new arrows  [&$]: a  x  b  (modulo the equivalence relation generated by
identifying  &$ = &'$'  if there exists some  9: x  x'  in  X  such that  $' = 9$  in  A
and  & = &'9  in  B),
- and, symmetrically, new arrows  [$&]: b  x  a.

The composition in  W  is easily defined, as in the following examples:

(1) [&$].$'  =  [&($$')], for  $': a'  a,   $: a  x,   &: x  b,
[$'.&'].[&$]  =  $'.(&'&).$, for  $: a  x,  &: x  b,   &': b  x',   $': x'  a',

where the last composition is in  A  (&'&: x  x'  belongs to the full subcategory  X
= A 8 B).

A coreduction, or rewriting of the codomain, will be any special transversal map
of  E  (notice that all its components are full embeddings). This gives a wide
substructure  CrdE . E ,  which satisfies the axioms transversally dual to those of
5.3.

The reduced form of an n-cospan  x: """"n  Emb  is obtained in a way similar to
the construction for spans, in 4.2, actually simpler: the vertices of the cube (marked
with bigger bullets, below) are unchanged, but we replace each other category  x(t)
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(t ( Ob""""n)  with the full subcategory determined by the objects which are reached
by some object of a category occupying a vertex of the cube

(2)

Now, the quotient  E' = E/CrdE  is a symmetric cubical category, where each n-
cube  [x]  has precisely one reduced representative  x̂  (up to special transversal
isomorphisms).

Coming back to the conditions (i)-(iii) of 4.4, we have taken (i) and (iii) into
account, by restricting to cospans of full embeddings and passing to the quotient.
We consider now condition (ii), by selecting some n-cubes of  E',  which are defined
to be cubical profunctors, and taking all the transversal maps of  E'  between them.

We say that an n-cube  [x]  of  E'  is an n-profunctor if it admits a representative
x  such that, for each ordinary cospan which appears in  x  in a given direction  i

(3) x(t')  x(t)  x(t") (t'i = –1,  ti = 0,  t"i  = 1;   t'j = tj = t"j   for  j 1 i ),

condition (ii) of 4.4 is satisfied: there are no arrows in  x(t)  going from an object of
x(t")  to one of  x(t').  Equivalently, we can ask that this condition be satisfied by the
normal form  x̂.

Degeneracies make some problems (as it is also the case within cospans in the
domain of cobordism, see [G5]). Indeed, already in degree 1, the degenerate cospan
of a (non-empty) category  e1(x)  = (x = x = x)  is reduced and does not satisfy the
previous condition. However (as in [G5]) we can replace degeneracies with
cylindrical degeneracies: the 1-cube  E1(x)  on the category  x  is the following
cospan of disjoint embeddings (which is also reduced):

  x–   x+
(4)   x x0  x

where the category  x0 = x × 2  is the collage of the identity profunctor of  x  (and
x–, x+  are the obvious embeddings). It is easy to see that  [E1(x)]  is a strict identity
for concatenation with 1-profunctors (but not with general 1-cubes of  E').
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Finally, we have obtained a strict sc-category  !Cat  of cubical profunctors,
contained in  E';  the embedding preserves all the structure, except degeneracies, and
is transversally full.

The fact that we have realised a strict cubical category should not surprise too
much. The crucial point is the fact that a special transversal map  f: x  x'  between
two profunctors is uniquely determined (while the same is not true of arbitrary
cospans of categories). Another realisation of the bicategory of ordinary profunctors
as a strict 2-category has been recalled in [GP1]: a profunctor  u: A  B  can be
defined as a colimit-preserving functor

(5) û: SetA  SetB, û(F)(b)  =  a u(a, b) × F(a).

6. Complements on symmetric cubical sets

We prove now that the internal homs of symmetric cubical sets constructed in
Section 2 come from a symmetric monoidal closed structure. The tensor product
and the corresponding cylinder functor are complicated, which is why we preferred
to work with the path functor.

6.1. Remarks. The ordinary tensor product  X#Y  of two symmetric cubical sets
can not be directly equipped with transpositions. For instance, if  x, y  are 2-cubes in
X  and  Y,  we might define  s1(x#y) = (s1x)#y  and  s3(x#y) = x#(s1y),  but
s2(x#y)  cannot be obtained from the transposition  s1  of  X2  or  Y2,  and has to be
formally introduced.

Therefore, we will define a symmetricy tensor product  X #̂ Y  with n-component
the free Sn-set on  X#Y,  modulo the identifications exemplified above.

We still write  2 = {0, 1},  but the symmetric group  Sn  will be viewed as the set
of all bijections  u: n  n,  where  n = {1,..., n};  in fact, this set of  n  elements is
here more convenient then the cardinal  n  = {0,..., n–1}.

6.2. The action of permutations.  Recall, from 2.1, that  sCub  is the category of
functors  X: Isop  Set,  where the symmetric cubical site  Is  is (realised here as)
the subcategory of  Set  consisting of the elementary cubes  2n,  together with the
maps  2m  2n  which delete some coordinates, permute the remaining ones and
insert some 0's and 1's.

Let  X: Isop  Set  be a symmetric cubical set. It will be useful, for the sequel,
to give an explicit description of the left action of the symmetric group  Sn  on the
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component  Xn = X(2n).  In fact, the group  Sn  (of permutations  u: n  n)  acts
contravariantly on the set  2n = Set(n, 2)  and then covariantly on the set  Xn

(1) û: 2n  2n, û: t  t˚u (t: n  2),
u: Xn  Xn, u.x  =  X(û)(x) (x ( Xn).

(For instance, let  X  be the singular cubical set of a topological space  S,  with
components  Xn = Top([0,1]n, S);  take  u, v ( Sn,  an n-cube  x: [0,1]n  S,  and
let  t: n  [0,1]  denote the variable of  [0,1]n.  Then  (u.x)(t) = x(tu),  where  (tu)i =
tu(i).  It is indeed a left action, since:  (v.(u.x))(t) = (u.x)(tv) = x(tvu) = (vu.x)(t).)

The permutation  u ( Sn  acts as follows on the face  %$1 : Xn  Xn–1  and the
degeneracy  e1: Xn–1  Xn

(2) %$1 ˚u  =  u'˚%$i , where  u(i) = 1  and
  u'(j) = u(j) – 1  for  j < i,  u'(j) = u(j+1) – 1  for  j , i,

e1˚u  =  u"˚e1, where  u" = id × u: n  n.

6.3. Theorem and Definition. The category  sCub  of symmetric cubical sets has
a symmetric monoidal closed structure, whose internal-hom is the functor  sCUB
defined in 2.5.

The n-th component of the symmetric tensor product  X #̂ Y  of symmetric
cubical sets

(1) (X #̂ Y)n  =  Sn((X # Y)n) / :n,

is a quotient of the free Sn-set generated by the n-th component of the ordinary
tensor product  X#Y,  containing all the formal permutations  u.(x#y)  (u ( Sn).
The quotient is taken modulo the congruence  :n  of Sn-sets generated by the
following 'identifications'

(2) si(x#y)  =  si(x)#y  for  i < p = dim(x),    si(x#y)  =  x#si–p(y)  for  i > p.

Faces and degeneracies in direction 1 are defined as follows, letting  %$1 ˚u = u'˚%$i
and  e1˚u  =  u"˚e1 (with  u', u"  as in 6.2.2)

 [u'.((%$i x)#y))], if  i ' p,
(3) %$1 [u.(x#y)]  =  [u'.%$i (x#y)]   =

 [u'.(x#(%$i –py))], if  i > p,

e1[u.(x#y)]  =  [u".e1(x#y)]  =  [u".(e1x)#y)].

This completes the definition of the symmetric cubical set  X #̂ Y,  in the reduced
form 2.2
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(4) X #̂ Y  =  (((X #̂ Y)n), (%$1 ), (e1), (si)).

Proof. The verification of the axioms 2.2.4 is left to the reader. To obtain the
exponential law, as a natural bijection

(5) sCub(X #̂ A, Y)  sCub(X, sCUB(A, Y)),

let us take a morphism  f = (fn): X #̂ A  Y.  Its n-component  fn  decomposes into
a family of mappings

(6) fpq: Sn(Xp × Aq)  Yn (n = p + q),

consistent with the action of  Sn,  the equivalence relation  n  (1.2.1) and the new
equivalence relation  :n.  Their restrictions

(7) fpq: Xp × Aq  Yn,

amount to mappings  gpq: Xp  Set(Aq, Yp+q).  Keeping  p  fixed, we get mappings

(8) gp = ( gpq):  Xp  sCub(A, PpY)  =  sCUBp(A, Y)  .  /q Set(Aq, Yp+q),

which form a morphism of symmetric cubical sets  g = (gp): X  sCUB(A, Y).

6.4. The cylinder functor. We have already considered the representable
symmetric cubical set  +i = y(2)  freely generated by one 1-cube  u  (2.5.2),  and
observed that  sCUB(+i, Y) = PY.

The cylinder functor

(1) I: sCub  sCub, I(X)  =  X #̂ +i,

is thus left adjoint to the path functor  P: sCub  sCub,

(2) sCub(X #̂ +i, Y)  =  sCub(X, sCUB(+i, Y))  =  sCub(X, P(Y)).
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