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Summary: Initially inspired by the case of the standard borromean link,
we introduce the notion of a borromean object in a category. We provide ex-
amples in groups, boolean algebras, semi-rings, rings, fields. But the notion is
introduced mainly for the case of the famous Klein’s group G168 = GL3 (F2),
that we describe as a borromean object in groups.

Résumé : Inspiré d’abord par le cas classique de l’entrelac borroméen,
nous introduisons la notion d’objet borroméen dans une catégorie. Nous don-
nons des exemples dans les groupes, les algèbres de Boole, les semi-anneaux,
les anneaux, les corps. Mais la notion est introduite surtout pour comprendre
la structure du fameux groupe de Klein G168 = GL3 (F2), comme en effet un
objet borroméen dans la catégorie des groupes.

Key words: borromean object, borromean rings, Klein’s group, Klein’s
quartic.
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This paper is a continuation of the paper [6] (Amiens, 2005). It is the expanded
version of some of the results announced in the conference [7] (Calais, 2008).

1 Borromean diagram, circular borromean algebra

Roughly speaking a borromean diagram for an object B is a presentation of
this object B as a glueing of three components R, S, I such that if one of the
three is eliminated, then the resulting situation is just a trivial composition
of the other two objects. More precisely:
Definition 1 [borromean diagram] Let C be a category with null morphisms,
cokernels, and a bi-functor T : C×C → C. A borromean diagram for an object
B in C relatively to T consists of three objects R, S, I in C and an epimorphic
family of monomorphisms in C, r : R → B, s : S → B, i : I → B such that
B/r # T (S, I), B/s # T (I, R), B/i # T (R,S). Given such a diagram for B,
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we say that B is a borromean object.
Two usual special cases are with T (X, Y ) = X + Y or T (X, Y ) = 1:
Definition 1s [standard borromean diagram] Let C be a category with null
morphisms, cokernels and finite sums. A standard borromean diagram for
an object B in C consists of three objects R, S, I in C and an epimorphic
family of monomorphisms in C, r : R → B, s : S → B, i : I → B such that
B/r " S + I, B/s " I + R, B/i " R + S.
Definition 1r [reduced borromean diagram] Let C be a category with null
morphisms, cokernels and terminal object 1. A reduced borromean diagram
for an object B in C consists of three objects R, S, I in C and an epimorphic
family of monomorphisms in C, r : R → B, s : S → B, i : I → B such that
B/r " 1, B/s " 1, B/i " 1.
Remark 1 : We do not assume in these definitions the extra condition that
each of the families (r, s), (s, i) and (i, s) is not epimorphic. We let the study
of this more strict structure for another occasion.

Furthermore in the idea of a borromean diagram we could assume that
the three components are isomorphic and trivial and that they play similar
parts, and then we speak of a circular borromean diagram. Precisely:
Definition 2 [circular borromean algebra] In a variety of Ω-algebras with
unit

(
e.g. in groups (with 1 as unit), rings (with 0 as unit), lattices (with 0

as unit), etc.
)
[1, p. 162], an object B is a circular borromean algebra (cba) if

and only if the two following conditions hold:
1) B " F (r, s, i)/R with F (r, s, i) the free algebra on three generators r, s and
i, with R a congruence invariant by the cyclic permutation r #→ s #→ i #→ r.
2) B/(r = 1) " E0(s, i), B/(s = 1) " E0(i, r), B/(i = 1) " E0(r, s), where
E0(u, v) is a given algebra generated by two generators u and v (i.e. a given
quotient of the free algebra on two generators F (u, v), which is thought as
“the” easy or trivial glueing of u and v).
Mainly we consider two cases for E0(u, v):
(1) E0(u, v) = F (u, v) (the free algebra of rank two): we get a case of Defi-
nition 1s.
(2) E0(u, v) = F (u, v)/(u = v = 1) = T (the terminal algebra): we get a case
of Definition 1r.
Remark 2 [analogue of Remark 1] : We do not assume in these definitions
the extra condition that in B the structure generated by each of the pairs
(r, s), (s, i) or (i, s) is not B. So this condition is not satisfied for G168.



2 Borromean links, and some other examples

Proposition 1 [The group of the borromean link as a borromean group] If we
look at the group of the ordinary standard borromean link, its computation
by the method of Dehn provides its circular generation by r, s, i with the
relations

rir−1sr = srs−1is = isi−1ri.

In this way this group is a circular borromean group (as in definition 2, case
(1)). And this fact expresses exactly the borromean property of the link itself.
Clearly if we put r = 1 we get is = is = is, that is to say no conditions, and
the resulting group is the free group of rank two. Furthermore it is known
that if the group of a link is a free group of rank 2, then the link is a trivial
link with two components (see [9, p. 74]).
Proposition 2 [The borromean group S(3)]. The group S(3) is a circular
borromean group (as in definition 2, case (2)), generated by u, v, w, with the
relations

u2 = v2 = w2 = 1, uv = vw = wu, vu = uw = wv.

We consider that

u = (12), v = (23) w = (31),

uv = vw = wu := c+ = (123), vu = uw = wv := c− = (132).

And if we add u = 1 then we get w = vw, v = 1, and w = uv, w = 1.
Proposition 3 [The borromean group Z/7Z]. The additive group Z/7Z is
a circular borromean group (def. 2 case (2)) generated (in multiplicative
notations) by u, v, w, with the relations

u2 = v, v2 = w, w2 = u, uv = vu = w6, vw = wv = u6, wu = uw = v6.

We construct Z/7Z in additive notations with u = 1, v = 2, w = 4. And if
u = 1 we get v = u2 = 1, w = v2 = 1.
Proposition 4 [The non-borromean group Z/2Z×Z/2Z]. The additive group
Z/2Z×Z/2Z admits a circular generation given by u, v, w, with, the relations

u2 = v2 = w2 = 1, uv = vu = w, vw = wv = u, wu = uw = v.

But this group is not a circular borromean group (def. 2 case (2)).
We construct Z/2Z × Z/2Z in additive notations with u = (0, 1), v = (1, 0),
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and w = (1, 1). It is, up to permutations, the only possible circular genera-
tion, and this one is not borromean: if we add u = 1, then we only get v = w
and v2 = 1, but not necessarily v = w = 1.

In the next section we will see a more complex example of a borromean
group, the case of the Klein’s group. But before that, let us see some ex-
amples in other categories, namely in the categories of boolean algebras, of
semi-rings, of rings, of fields. For example by a borromean ring we mean a
borromean object in the category of rings! So for the classical topological
object called “borromean link” but also called “borromean rings”, we prefer
the first name, the second one being now confusing.
Proposition 5 [A borromean boolean algebra] Let E be a set, let A, B,C
be a partition in three parts of E. Then the boolean algebra P(E) is equipped
with a boolean diagram in the sense of Definition 1s, taking

R = P(A), S = P(B), I = P(C)

Conversely, a boolean diagram on P(E) determines a partition in three parts
on E. So a borromean object is a natural extension of the Sesmat-Blanché
hexagram (extending itself the Aristotle square).
Proposition 6 [A borromean sub semi-ring of Mat3({F, T})] We consider
{F, T} as a semi-ring, with the conjunction as multiplication and the disjonc-
tion ∨ as addition, and Mat3({F, T}) is the associated semi-ring of square
boolean matrices of order 3. In this semi-ring we consider (with F = 0 and
T = 1)

R =
[

1 0 0
0 0 1
0 1 0

]
, S =

[
0 0 1
0 0 1
1 0 0

]
, I =

[
0 1 0
1 0 0
0 0 1

]
.

In fact R, S, I generate by product the subgroup Inv
(
Mat3({F, T})

)
of in-

vertible elements of Mat3({F, T}); the sub semi-ring < R, S, I > of the semi-
ring Mat3({F, T}) generated by R, S, I consists of 49 elements, and it is
freely generated by R, S, I with the relations:

RR = SS = II, RS = SI = IR, SR = IS = RI,

R ∨ S ∨ I = R(R ∨ S ∨ I) = S(R ∨ S ∨ I) = I(R ∨ S ∨ I).

It is a circular borromean semi-ring.
Proposition 7 [The borromean ring Mat2(F2)] The ring Mat2(F2) is a cir-
cular borromean object in the category of rings (as in definition 2, case (2)),
generated by r, s, i with the relations

r + r = s + s = i + i = 0, r2 = s2 = i2 = 1,



rs = si = ir, sr = is = ri, r + s + i = 0.

Of course if we put r = 0, then 0 = 1 = r = s, and, as expected the structure
becomes trivial. In order to generate Mat2(F2) we takes

r =
[

0 1
1 0

]
, s =

[
1 0
1 1

]
, i =

[
1 1
0 1

]
.

These matrices satisfy the given relations. With c+ = rs = si = ir and
c− = sr = is = ri, the sixteen elements of Mat2(F2) are :

0, 1, r, s, i, c+, c−, 1 + r, 1 + s, 1 + i, r + c+, s + c+, i + c+, r + c−, s + c−, i + c−.

We verify that, because of the generating relations, each product on the left
or on the right of these elements with r, s, i, c+, c− is again in the list, and
the same for additions.
Proposition 8 [The borromean field F8]. The field F8 with 8 elements could
be presented as F8 = {0, 1, a, b, c, a−1, b−1, c−1}, with the relations

a + a = b + b = c + c = 0, ab = ba, bc = cb, ca = ac,

abc = 1, ab + bc + ca = 0, a + b + c = 1,

a−1 = c + 1 = bc, b−1 = a + 1 = ca, c−1 = b + 1 = ab,

a2 = b, b2 = c, c2 = a,

a + a−1 = b, b + b−1 = c, c + c−1 = a.

and so it is a circular borromean field.
This presentation of F8 is used in [6]. In fact a, b and c are the roots of
X3 + X + 1 = 0, and a−1, b−1, c−1 are the roots of X3 + X2 + 1.

3 The circular borromean group G168 = GL3 (F2)

In a previous paper [6] we proved that for every n and every k, every function(
F2n

)k → F2n is a composition of constants, ∧,¬ and (−)2, where (∧,¬)
is a boolean structure on F2n associated to a normal basis, and (−)2 the
Frobenius map of the field. In fact the Frobenius is expressible as a composite
of the given constants, ∧,¬, with the ∧i,¬i, i = 1, 2, 3 for three precise other
boolean structures on F2n , isomorphic to the first one, but different of it. In
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the case of F8 (i.e. n = 3) an explicit symmetric solution exists, which is
associated to three special bases of F8 over F2 given by the three matrices

r =
[

1 1 1
1 0 1
0 1 1

]
, s =

[
1 0 1
1 1 1
1 1 0

]
, i =

[
0 1 1
1 1 0
1 1 1

]
,

which are, with respect to the unique normal basis, the matrices of the three
other strictly auto-dual bases. These facts are proved (fully although in a
rather compact way) in [6]. So are introduced computations in Moving Logic
(cf. also [5]). It was for such a logical calculus that the three elements r,
s and i were introduced. But now we would like to leave the area of logic,
and to concentrate our attention on these r, s and i and there significance
with respect to the symmetry of the structure of the group GL3 (F2) (for the
counterpart in the symmetry of Moving Logic, see [6, théorème 5]).

This group GL3 (F2) is well known as being isomorphic to G168 (the only
simple group with 168 elements), which appeared in the work of Felix Klein
[10] in 1879, as PSL2(F7), and also as the group of homographies of P2(C)
which let invariant the Klein’s quartic

X(7) = {[x : y : z] ∈ P2(C) ; x3y + y3z + z3x = 0}.

A lot of informations on X(7) and its group G168 ' PSL2(F7) ' GL3 (F2)
are available in the book [11]. In fact X(7) is a smooth algebraic curve, and
so is riemannian, and its genus is 3. Its group of homographic symmetries
G168 is the maximal group in genus 3 (see [8]). On X(7) we can inscribe a
borromean link without double points, with a nice ternary symmetry, and
so the borromean link is of genus 3. It was the reason for which we would
like to understand X(7) or its group G168 as itself a borromean object in a
convenient category. In fact we will see here that the system of the r, s , i is
an algebraic analogue in G168 of the borromean link in X(7).

Proposition 9 [transposition by conjugaison]. 1 — We have r−1 = r6,
s−1 = s6, i−1 = i6, and

r−1 =
[

1 0 1
1 1 0
1 1 1

]
, s−1 =

[
1 1 1
1 1 0
0 1 1

]
, i−1 =

[
1 0 1
1 1 1
0 1 1

]
2 — The transposed rt, st, it of the matrices r, s, i are given by :

rt = rir−1, st = srs−1, it = isi−1.

- 149 -

GUITART - KLEIN'S GROUP AS A BORROMEAN OBJECT 



Proposition 10 [Circular symmetry among r, s, i] There is a representation
of GL3 (F2) in S(7) such that

r = [1746325], s = [1647235], i = [1564327],

and such that, with j = (142)(356) we get:

jrj−1 = s, jsj−1 = i, jij−1 = r,

and this situation could be observed on the following figure:

1

2

3

4

5

6

7

This in fact is already proved in [6], looking to the left action of r, s, i on the

columns 1 =
[

0
0
1

]
, 2 =

[
0
1
0

]
, . . . , 7 =

[
1
1
1

]
. The figure shows concretely

this circular symmetry, algebraically realized by the conjugaison by j.
NB : j is not in the image of GL3 (F2) in S(7).
Proposition 11 [ The circular borromean group G168 = GL3 (F2)].
1 — The group GL3 (F2) is generated by r, s and i above, with, among others,
the relations

(srs−1rir−1)2 = 1, (is3i−1)7 = 1,
((is3i−1)(srs−1rir−1))3 = 1, ((is3i−1)4(srs−1rir−1))4 = 1.

2 — r7 = s7 = i7 = 1.
3 — Furthermore if w(r, s, i) = 1 is satisfied, with w(r, s, i) any word in r, s,
i, then also w(s, i, r) = 1, w(i, r, s) = 1.
4 — If in the group GL3 (F2) one (e.g. r) of the three generators r, s or i
is cancelled (by adjonction of r = 1) then the quotient group reduces to the
trivial one.
So the group GL3 (F2) is a circular borromean algebra in the sense of the defi-
nition 2, case (2). We speak also here of a borromean spanning of GL3 (F2).

In [6] this result is only announced (Theorem 3 in [6]), without proof, and
in fact with a mistake (the srs−1 were unfortunately replaced by s).
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For a proof now we know [2, p.303] that the group GL3 (F2) is freely generated
modulo Dyck’s relations ([3, p.41]):

T 2 = I, S7
1 = I, (S1T )3 = I, (S4

1T )4 = I,

by T =
[

1 0 0
0 1 0
0 1 1

]
, and S1 =

[
1 1 1
1 0 1
1 0 0

]
.

So, in order to conclude for the first point, we need only to observe that

rs = T t, i3 = St
1,

and then, with Proposition 9 we get

T = (rs)t = strt = srs−1rir−1, S1 = (it)3 = is3i−1,

that is to say:
T = srs6rir6, S1 = is3i6.

For the next part of the proposition, it is a consequence of Proposition 10.
The last affirmation is just a consequence of the fact that GL3 (F2) is simple;
it is also an easy consequence of the relations given in (1—) and (2 —).
Let us remark that the relations (2 –-) (r, s and i are of order 7) cannot be
deduced from the relations (1 —) (which come from the Dyck’s relations).
Without these relations (2 —), the group generated under relations (1 —)
is not G168, because its quotient by r = 1 is not trivial and so the group is
not simple. But if the relations (2 —) could be deduced from one, then the
quotient by r = 1 would be trivial.
Of course an analogue of this proposition is possible starting from any system
of generators of G168. For example:
Proposition 12 [for a variant of proposition 11]. Starting with the generation
of G168 = GL3 (F2) given (cf. [12]) by the two generators

A =
[

1 0 1
0 1 0
0 0 1

]
, B =

[
0 0 1
1 0 0
0 1 0

]
,

we could conclude that r, s, i generate G168, as we have:

A = srisr2sris, B = sris.

Proposition 13 [The generation of G168 is not strict] The circular bor-
romean generation of G168 by the r, s, i is not strict, in the sense that it is
false that G168 is not generated by r, s, or by s, i or by i, r. More precisely
we have:

r = s4i6s, s = i4r6i, i = r4s6r.
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But also we can obtain our result (that G168 is a circular borromean group)
directly, without Dyck’s or Müller-Ritzenthaler’s results, in the following way.
Proposition 14 In G168 = GL3 (F2) we have an isomorphic image

S = {Id3, U, V,W,C+, C−}

of S(3) (as presented in Proposition 2) with

U = ri, V = sr, W = is,

C+ = UV = V W = WU, C− = V U = UW = WV.

To u, v and w in S(3) are associated U , V , W in G168 = GL3 (F2) .
Proposition 15 In G168 = GL3 (F2) we have an isomorphic image

H = {Id3, R, S, I, R−1, S−1, I−1}

of Z/7Z (as presented in Proposition 3) with

R = ir2, , S = rs2 , I = si2, R−1 = i3sr, S−1 = r3is, I−1 = s3ri.

To u, v and w in S(3) are associated R, S, I in G168 = GL3 (F2).
So H is also an isomorphic image of the group of invertible elements of the
borromean field F8, with R, S, I the images of the a, b, c (Proposition 3). In
fact H is a Fano plane, i.e. a model of the projective plane P2(F2), in which
the seven lines are:

R⊥ = {S−1, S, I}, S⊥ = {R, I−1, I}, I⊥ = {R,S, R−1},

(S−1)⊥ = {R,S−1, Id3}, (I−1)⊥ = {S, I−1, Id3}, (R−1)⊥ = {I, R−1, Id3},

(Id3)⊥ = {S−1, I−1, R−1}.

It is known that the incidence graph of P2(F2), as it could be described from
the end of the previous Proposition 15, is the Heawood’s graph Hwd, and
furthermore Aut(Hwd) ' PGL(2, 7) is of order 336 and contains G168 as a
subgroup of index 2. From that we easily obtain:
Proposition 16 [G168 as the group of automorphisms of a graph] The Hea-
wood graph Hwd consists of 14 summits on a circle in the order

0, 2′, 1, 3′, 2, 4′, 3, 5′, 4, 6′, 5, 0′, 6, 1′, 0,
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linked in this order, with the additional links 04′, 15′, 26′, 30′, 41′, 52′, 63′.
We augment it as Hwd+ with 7 new summits 0′′, 1′′, 2′′, 3′′, 4′′, 5′′, 6′′ and the
links 00′′, 11′′, 22′′, 33′′, 44′′, 55′′, 66′′. Then G168 = Aut(Hwd+).

These facts suggested that it could be possible to generate G168 as a kind
of extension of its subgroup H, as we will do now.
NB: [Notation] Do not confuse in G168 = GL3 (F2) the elements R, S and
I with the elements r, s, i. We introduce the notation:

B = {Id3, r, s, i}.

Proposition 17 The group G168 = GL3 (F2) is a circular borromean group,
generated by r, s, i; and more precisely, every element m of GL3 (F2) could
be written in a unique way as a composition

m = hbk, with h ∈ H, b ∈ B, k ∈ S,

and so every m is a word in r, s, i of length less or equal to 10.
In order to prove that GL3 (F2) = HBS, we compute the 28 compositions

hb, with h ∈ H and b ∈ B, and we get the following values:

I3 =

2

4
1 0 0
0 1 0
0 0 1

3

5, r =

2

4
1 1 1
1 0 1
0 1 1

3

5, s =

2

4
1 0 1
1 1 1
1 1 0

3

5, i =

2

4
0 1 1
1 1 0
1 1 1

3

5,

R =

2

4
0 1 0
1 0 1
0 1 1

3

5, Rr =

2

4
1 0 1
1 0 0
1 1 0

3

5, Rs =

2

4
1 1 1
0 1 1
0 0 1

3

5, Ri =

2

4
1 1 0
1 0 0
0 0 1

3

5,

S =

2

4
1 0 1
0 0 1
1 1 0

3

5, Sr =

2

4
1 0 0
0 1 1
0 1 0

3

5, Ss =

2

4
0 1 1
1 1 0
0 1 0

3

5, Si =

2

4
1 0 0
1 1 1
1 0 1

3

5,

I =

2

4
0 1 1
1 1 0
1 0 0

3

5, Ir =

2

4
1 1 0
0 1 0
1 1 1

3

5, Is =

2

4
0 0 1
0 1 0
1 0 1

3

5, Ii =

2

4
0 0 1
1 0 1
0 1 1

3

5,

R−1 =

2

4
1 1 1
1 0 0
1 0 1

3

5, R−1r =

2

4
0 0 1
1 1 1
1 0 0

3

5, R−1s =

2

4
1 0 0
1 0 1
0 1 1

3

5, R−1i =

2

4
0 1 0
0 1 1
1 0 0

3

5,

S−1 =

2

4
1 1 0
1 1 1
0 1 0

3

5, S−1r =

2

4
0 1 0
0 0 1
1 0 1

3

5, S−1s =

2

4
0 1 0
1 0 0
1 1 1

3

5, S−1i =

2

4
1 0 1
0 1 0
1 1 0

3

5,

I−1 =

2

4
0 0 1
0 1 1
1 1 1

3

5, I−1r =

2

4
0 1 1
1 1 0
0 0 1

3

5, I−1s =

2

4
1 1 0
0 0 1
1 0 0

3

5, I−1i =

2

4
1 1 1
0 0 1
0 1 0

3

5.

By a simple inspection we see that these 28 matrices are really 28 distinct
objects, and that each one is associated exactly to one of the 28 non-order
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bases of the F2-field F3
2. So, to conclude and to get the 168 elements of

the group G168 = GL3 (F2) , we have just to produce the permutations of
columns by a multiplication on the right with one of the 6 elements of S.
The final point then is a consequence of the facts that elements of H are
written with words of length at most 5, and elements of S are written with
words of length at most 4.

And to conclude, let us indicate that the system r, s, i is not at all unique
as a circular borromean generation of G168 = GL3 (F2). At least we have a
kind of mirror image of it:
Proposition 18 [another circular borromean generation of G168 = GL3 (F2)]
1 — In G168 = GL3 (F2) we introduce (with the help of the description of
transposition in Proposition 9) three new elements :

A = rtit, B = strt, C = itst,

with
rt = rir−1, st = srs−1, it = isi−1.

Then we have
ir = At, rs = Bt, si = Ct,

r = ACB, s = BAC, i = CBA.

2 — In the representation in S(7) (Proposition 10) A, B,C are:

A = (46)(57), B = (23)(67), C = (15)(37).

We have
A2 = B2 = C2 = 1,

and so this generation is not isomorphic to the generation by the r, s, i.
3 — In the representation by matrices in GL3 (F2) the elements A, B,C are
the three basic transvections:

A =
[

1 0 0
1 1 0
0 0 1

]
, B =

[
1 0 0
0 1 0
0 1 1

]
, C =

[
1 0 1
0 1 0
0 0 1

]
.

4 — A, B,C is a circular borromean presentation of G168 = GL3 (F2).
Just we remark that the transvections A, B,C generate SL3 (F2) = GL3 (F2)
(see [4, p. 94]), and so we get a third proof that r, s, i generate GL3 (F2).
Furthermore it is borromean, because if we add A = 1, then ir = At = 1t = 1,
and also r = CB = i, so r2 = 1, and with r7 = 1 we get r = 1.
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