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Combinatorial model categories were introduced by J. H. Smith as model
categories which are locally presentable and cofibrantly generated. There are
of course cofibrantly generated model categories which are not combinato-
rial – the first example is the standard model category of topological spaces.
This model category is Quillen equivalent to the combinatorial model cate-
gory of simplicial sets. G. Raptis [6] has recently proved a somewhat sur-
prising result saying that, assuming Vopěnka’s principle, every cofibrantly
generated model category is Quillen equivalent to a combinatorial model cat-
egory. Vopěnka’s principle is a set-theoretical axiom implying the existence
of very large cardinals (see [2]). A natural question is whether Vopěnka’s
principle (or other set theory) is needed for Raptis’ result.
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GEOMETRIE DIFFERENTIELLE CATEGORIQUES

Abstract. G. Raptis has recently proved that, assuming Vopĕnka’s principle,

every cofibrantly generated model category is Quillen equivalent to a combina-

torial one. His result remains true for a slightly more general concept of a cofi-

brantly generated model category. We show that Vopĕnka’s principle is equiva-

lent to this claim. The set-theoretical status of the original Raptis’ result is open.

Résumé. G. Raptis a récemment démontré que, sous le principe de Vopĕnka,

chaque catégorie de modèles à engendrement cofibrant est Quillen équivalente à

une catégorie de modèles combinatoire. Son résultat est valable pour un concept

un peu plus général de catégorie de modèles à engendrement cofibrant. On va

démontrer que le principe de Vopĕnka est équivalent à cette assertion. Le statut

ensembliste du résultat de Raptis est ouvert.
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A model category is a complete and cocomplete categoryM together with
three classes of morphisms F , C and W called fibrations, cofibrations and
weak equivalences such that

(1) W has the 2-out-of-3 property and is closed under retracts in the arrow
categoryM→, and

(2) (C,F ∩W) and (C ∩W,F) are weak factorization systems.

Morphisms from F ∩W are called trivial fibrations while morphisms from
C ∩W trivial cofibrations.

A weak factorization system (L,R) in a category M consists of two
classes L andR of morphisms ofM such that

(1) R = L�, L = �R, and
(2) any morphism h ofM has a factorization h = gf with f ∈ L and g ∈
R.

Here, L� consists of morphisms having the right lifting property w.r.t. each
morphism fromL and �R consists of morphisms having the left lifting prop-
erty w.r.t. each morphism fromR.

The standard definition of a cofibrantly generated model category (see [5])
is that the both weak factorization systems from its definition are cofibrantly
generated in the following sense. A weak factorization system (L,R) is
cofibrantly generated if there exists a set X of morphisms such that

(1) the domains of X are small relative to X -cellular morphisms, and
(2) X� = R.

Here,X -cellular morphisms are transfinite compositions of pushouts of mor-
phisms of X . The consequence of this definition is that L is the smallest
cofibrantly closed class containing X . A cofibrantly closed class is defined
as a class of morphisms closed under transfinite compositions, pushouts and
retracts in M→. Moreover, one does not need to assume that (L,R) is a
weak factorization system because it follows from (1) and (2). This obser-
vation led to the following more general definition of a cofibrantly generated
weak factorization system (see [1]).

A weak factorization system (L,R) is cofibrantly generated if there ex-
ists a set X of morphisms such that L is the smallest cofibrantly closed class
containing X . The consequence is that X� = R. A model category is cofi-
brantly generated if the both weak factorization systems from its definition
are cofibrantly generated in the new sense. It does not affect the definition
of a combinatorial model category because all objects are small in a locally
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presentable category. Moreover, the proof of Raptis [6] works for cofibrantly
generated model categories in this sense as well.

We will show that Vopěnka’s principle follows from the fact that every
cofibrantly generated model category (in the new sense) is Quillen equivalent
to a combinatorial model category. We do not know whether this is true for
standardly defined cofibrantly generated model categories as well. Our proof
uses the trivial model structure on a category M where all morphisms are
cofibrations and weak equivalences are isomorphisms.

Given a small full subcategory A of a category K, the canonical functor

EA : K → SetA
op

assigns to each object K the restriction

EAK = hom(−, K)
/
Aop

of its hom-functor hom(−, K) : Kop → Set to Aop (see [2], 1.25).
A small full subcategory A of a category K is called dense provided that

every object of K is a canonical colimit of objects from A. It is equivalent
to the fact that the canonical functor

EA : K → SetA
op

is a full embedding (see [2], 1.26). A category K is called bounded if it has
a (small) dense subcategory (see [2]).

Dense subcategories were introduced by J. R. Isbell [4] and called left
adequate subcategories. The following result is easy to prove and can be
found in [4].

Lemma 1. LetA be dense subcategory of K and B a small full subcategory
of K containing A. Then B is dense.

Proposition 2. Let K be a cocomplete bounded category. Then (K, Iso) is a
cofibrantly generated weak factorization system.

Proof. Clearly, (K, Iso) is a weak factorization system. The canonical func-
tor

EA : K → SetA
op

has a left adjoint F (see [2], 1.27). The weak factorization system

(SetA
op

, Iso)

in SetA
op

is cofibrantly generated (see [9], 4.6). Thus there is a small full
subcategory X of SetA

op

such that each morphism in SetA
op

is a retract of
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a X -cellular morphism. Hence each morphism in K is a retract of a F (X )-
cellular morphism. Thus (K, Iso) is cofibrantly generated. �

Given a complete and cocomplete categoryK, the choice C = K andW =
Iso yields a model category structure on K. The corresponding two weak
factorization systems are (K, Iso) and (Iso,K) and the homotopy category
Ho(K) = K. We will call this model category structure trivial.

Corollary 3. Let K be a complete, cocomplete and bounded category. Then
the trivial model category structure on K is cofibrantly generated.

Proof. Following Proposition 2, it suffices to add that the weak factorization
system (Iso,K) is cofibrantly generated by X = {idO} where O is an initial
object of K. �

Theorem 4. Vopěnka’s principle is equivalent to the fact that every cofi-
brantly generated model category is Quillen equivalent to a combinatorial
model category.

Proof. Necessity follows from [6]. Under the negation of Vopěnka’s prin-
ciple, [2], 6.12 presents a complete bounded category A with the following
properties

(1) For each regular cardinal λ, there is a λ-filtered diagram Dλ : Dλ → K
whose only compatible cocones δλ are trivial ones with the codomain
1 (= a terminal object),

(2) For each λ, id1 does not factorize through any component of δλ.
Since, following (1), δλ is a colimit cocone for each λ, (2) implies that 1
is not λ-presentable for any regular λ. Condition (2) is not stated explicitly
in [2] but it follows from the fact that there is no morphism from 1 to a
non-terminal object of A. In fact, A is the full subcategory of the category
Gra consisting of graphs A without any morphism Bi → A where Bi is the
rigid class of graphs indexed by ordinals (whose existence is guaranteed by
the negation of Vopěnka’s principle). The existence of a morphism 1 → A
means the presence of a loop in A and, consequently, the existence of a
constant morphism Bi → A (having a loop as its value).

Assume that the trivial model category A is Quillen equivalent to a com-
binatorial model category M. Since HoM is equivalent to A, it shares
properties (1) and (2). Moreover, since HoK = K, the diagrams Dλ are
diagrams in K. It follows from the definition of Quillen equivalence that the
corresponding diagrams in HoM (we will denote them by Dλ as well) can
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be rectified. It means that there are diagramsDλ inM such thatDλ = PDλ;
here, P : M→ HoM is the canonical functor. Following [3] and [8], there
is a regular cardinal λ0 such that the replacement functor R : M → M
preserves λ0-filtered colimits. R sends each object M to a fibrant and cofi-
brant object and the canonical functor P can be taken as the compositionQR
whereQ is the quotient functor identifying homotopy equivalent morphisms.

Let
(δλd : Dλd→Mλ)d∈Dλ

be colimit cocones. Then

(Rδλd : RDλd→ RMλ)d∈Dλ

are colimit cocones for each λ > λ0. Following (1), RMλ
∼= 1 for each λ >

λ0. The object RMλ0 is µ-presentable inM for some regular cardinal λ0 <
µ. Since RMλ0 and RMµ are homotopy equivalent, there is a morphism
f : RMλ0 → RMµ. Since f factorizes through some Rδµd, id1 factorizes
through some component of δµ, which contradicts (2). �

While the weak factorization system (Iso,K) is cofibrantly generated in
the sense of [5], it is not true for (K, Iso) because the complete, cocomplete
and bounded category in [2], 6.12 is not locally presentable just because it
contains a non-presentable object. Thus we do not know whether Vopěnka’s
principle follows from the original result from [6].

The proof above does not exclude that A has a combinatorial model, i.e.,
that there is a combinatorial model categoryM such that A is equivalent to
HoM.

Proposition 5. Assume the existence of a proper class of compact cardinals
and let K be a complete, cocomplete and bounded category. Then the trivial
model category K has a combinatorial model if and only if K is locally
presentable.

Proof. If K is locally presentable the trivial model category K is combinato-
rial. Assume that the trivial model category K is equivalent to HoM where
M is a combinatorial model category. Let X be a dense subcategory of K.
Following [8], 4.1, there is a regular cardinal λ such that

(1) X ⊆ P (Mλ) whereMλ denotes the full subcategory ofM consisting
of λ-presentable objects,

(2) The composition H = EP (Mλ) · P preserves λ-filtered colimits.
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Since P (Mλ) is dense in K (see Lemma 1), EP (Mλ) is a full embedding.
Hence K is the full image of the functor H , i.e., the full subcategory on
objects H(M) with M inM. Following [7], Corollary of Theorem 2, K is
locally presentable. �

Vopěnka’s principle is stronger than the existence of a proper class of
compact cardinals. Thus, assuming the negation of Vopěnka’s principle but
the existence of a proper class of compact cardinals, there is a cofibrantly
generated model category without a combinatorial model.
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