
Résumé. Nous étudions les représentations de petites catégories comme les
monoı̈des dans trois bicatégoies monoı̈dales, étroitement liées. Les catégories
peuvent être exprimées comme certains types de monoı̈des dans la catégorie
Span. En fait, ces monoı̈des sont aussi dans Rel. Il y a une équivalence bien
connue, entre Rel et une sous-catégorie pleine de la catégorie des treillis
complets et des morphismes qui préservent les sups. Cela nous permet de
représenter une catégorie comme un monoı̈de dans Sup. Les monoı̈des dans
Sup s’appellent des quantales, et sont intéressants dans plusieurs domaines.
Nous étudions aussi dans ce contexte la représentation d’autres structures
catégoriques, par exemple, les foncteurs, les transformations naturelles, et les
profoncteurs.

Abstract. We study the representation of small categories as monoids in three
closely related monoidal bicategories. Categories can be expressed as special
types of monoids in the category Span. In fact, these monoids also live in
Rel. There is a well-known equivalence between Rel, and a full subcategory
of the categorySup, of complete lattices and sup-preserving morphisms. This
allows us to represent categories as a special kind of monoid in Sup. Monoids
in Sup are called quantales, and are of interest in a number of different areas.
We will also study the appropriate ways to express other categorical
structures such as functors, natural transformations and profunctors in these
categories.
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1. Introduction

This research was originally conceived as an attempt to understand the
following natural construction:

From a category C, we can form a quantale QC as follows:
– Elements of QC are sets of morphisms in C.
– The product of elements A and B in QC is the set tab|a P A, b P Bu of

composites.
– Join is union.

Examples 1.1.
1. When C is the indiscrete category on a set X, this is the quantale of all

relations on X.

2. When C is a group, G, viewed as a 1-element category, this quantale
is the quantale of all subsets of G.

These two examples are of interest because they give a deeper under-
standing of the well-known connection between equivalence relations on a
set, and subgroups of a group. In both cases, these can be viewed as sym-
metric idempotent elements above 1 in their respective quantales.

This construction has also been studied in more detail in the case of étale
groupoids by Resende [6]. In this case, instead of all sets of morphisms, he
takes only open sets. Because he is considering only groupoids, the quantale
is in addition involutive.

The question arises: which quantales occur in this way? We will answer
this question indirectly by firstly producing a correspondance between cat-
egories and certain monoids in Rel. Using this, we will be able to describe
which quantales correspond to categories, using a well-known equivalence:

Proposition 1.2. The category of sets and relations is equivalent to the cat-
egory of complete atomic Boolean algebras and sup-morphisms.

Proof. On objects, there is a well-known correspondance between power
sets and complete atomic Boolean algebras. We need to show that the direct
image of a relation is a sup-morphism, and that every sup-morphism is the
direct image of a relation. This is straightforward to check �
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The correspondance with certain monoids in Rel, or in Span, has the
additional advantage of holding for internal categories in other categories.
However, there is not such a correspondence between internal relations in a
category and quantales in that category, so for example, describing topolog-
ical categories as quantales would need a different approach.

2. Monoids in Span and Rel

We begin by listing some basic properties of general monoids in Span
and in Rel, and the relation between the two. These properties will be of
interest later when we are studying the particular monoids in Span and Rel
that correspond to categories.

2.1 Preliminaries

To start with, we will clarify exactly what we mean by monoids in Span,
since this could be interpreted in several different ways. Firstly, we will view
Span as a bicategory in the following way:

Objects Sets X

Morphisms Spans X Y
f

oo
g

//Z in Set.
2-cells Commutative diagrams:

Y1
f1

��~~
~~

~~
~

α

��

g1

��?
??

??
??

X Z

Y2

f2

__@@@@@@@ g2

??�������

in Set.

This is furthermore, a monoidal bicategory, with tensor product b given
by cartesian product of sets, and the obvious tensor products of morphisms.

Of course, we can extend all of this to spans in an arbitrary category C,
with pullbacks and products, and all the results we present are equally valid
for this context. However, the equivalence between Rel and CABAsup is
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specific to Set, so the results about quantales cannot be applied to internal
categories in a category C.

Now, by a monoid in Span, we really mean a pseudomonoid with respect
to the tensor product (rather than the categorical product, which is disjoint
union in Span) – i.e. a diagram C b C M //C 1Ioo of morphisms in Span,
with the associativity and unit laws for a monoid commuting only up to iso-
morphism, with these isomorphisms satisfying the usual coherence axioms.
The first reference for a monoid with respect to the tensor product of a tensor
category appears to be [1].

Besides being the natural choice for the definition of monoid in Span,
this definition also makes sense when we pass to the category of relations,
because when we view relations as jointly monic spans, if two relations are
isomorphic as spans, then the isomorphism is unique – indeed if two spans
are isomorphic, and one is a relation, then the other is also a relation, and the
isomorphism is unique. It will therefore be clear for the monoids which cor-
respond to categories, that the isomorphisms present in the monoid axioms
are unique, and therefore satisfy coherence conditions.

To save rewriting the same thing many times, we will begin by fixing our
usual notation for monoids, in Span, Rel, or CABAsup. We will then use this
notation without restating it each time.

We will denote monoids in these categories by C b C M //C 1Ioo and

D b D N //D 1Joo . In the case of Span, we will furthermore use the name
of a span to denote the set that is the domain of both morphisms of the span.

For instance the span C b C M //C will denote the span C � C Mmoo m1

//C .

2.2 Monoids in Span

Proposition 2.1. In any monoid in Span, the opposite of the unit is a partial
function.

Proof. By the unit laws, we get that there are pullbacks:

C
f1 //

p1,dq
��

M

��

C � I // C � C

and
C

f2 //

pc,1q
��

M

��

I � C // C � C
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for some choices of functions, C d // I, C
f1 // M, C c // I and C

f2 // M

satisfying C
fi // M // C is the identity for i � 1, 2. From this, in the

following diagram, where the back square is a pullback, and the morphism
f is the unique factorisation through the front pullback:

P
f

""

//

��

C
p1,dq

##G
GGGGGGGG

f1

��

I � I //

��

C � I

��

C

pc,1q ""E
EE

EE
EE

EE
f2 // M

##G
GG

GG
GG

GG

I � C // C � C

The front is clearly a pullback and the right and bottom squares are pullbacks
by the unit laws. Therefore, by a standard argument, the top and left-hand
squares are also pullbacks. We start by showing that P is isomorphic to I. In
the following diagram:

P
f

//

��

I � I

��

π1 // I

��

C // C � I π1
// C

where the left-hand square is a pullback, we know that the right-hand square
is a pullback, and the bottom composite is the identity, so the whole rectangle
is a pullback, and the top composite is an isomorphism, and so P � I. Thus,
for the morphism f in the above cube, π1 f must be an isomorphism.

This means that the induced morphism C d // I is a splitting (up to iso-
morphism) of the morphism I // C, which is therefore monic. �

If pC,M, Iq is a monoid in Span, then we have functions M m // C � C

and M m1

// C. Using these three functions from M to C, we partition M as
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Proof. Consider the pullback squares:

M //

&&MMMMMMMMMMMM

��

M1 //

''NNNNNNNNNNNN

��

M

&&NNNNNNNNNNNN

C � C
��

��

// M � C //

��

C � C

C � C //

&&MMMMMMMMMMM C � M

''NNNNNNNNNNN

C � I � C // C � C � C

The front and bottom squares are pullbacks by the unit laws. The right square
in the cube is the pullback in the definition of a categorical monoid. The top
right square is the pullback in the definition of M1. Also by the unit law, the
top front composite C � C // M � C // C � C is the identity, so we
know that the top left arrow is isomorphic to the morphism M // C � C.
However, the front left morphism is monic, since it is split by the projection.
Therefore M // C � C is also monic. �

Proposition 2.3. If M is a partial function, then the following are equivalent:

1. The monoid is categorical

2. There is a (necessarily unique) 2-cell:

C b C M //

pMbCqop

��

t

C

Mop

��

C b C b C CbM
// C � C

in Span.

Proof. Firstly suppose the monoid is categorical. Now in the diagram in Set:

KENNEY & PARE - CATEGORIES AS MONOIDS IN Span, Rel AND Sup

- 215 -



C � C � C C � Moo // C � C

M � C

OO

��

M1

OO

//

��

oo M

OO

��

C � C M //oo C

all except the lower right square are pullbacks. Because the lower right
square commutes, it must factor through the pullback:

N //

��

M

��

M // C

This factorisation is exactly the 2-cell we require.
Conversely, suppose that the 2-cell exists. Now in the diagram:

C � C � C C � Moo // C � C

M � C

OO

��

M1

a

OO

b //

c
��

d
oo M

OO

��

C � C M //oo C

The top right and bottom left squares are pullbacks by associativity, and the
top left square must factor through the pullback:

N w //

z
��

C � M

��

M � C // C � C � C

We will denote this factorisation M1 f
// N.

On the other hand, because of the 2-cell, we get a commutative diagram:
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C � C � C C � Moo // C � C

M � C

OO

��

N

w

OO

x //

y
��

z
oo M

OO

��

C � C M //oo C

The top right and bottom left squares of this diagram have M1 as the pullback.
We will denote the factorisation of the bottom left square through the pull-
back by N

g
// M1. Now we have that dg f � z f � d. Since M // C � C

is monic, the pullback d is also monic, so we have that g f � 1M1 . On
the other hand, we also have that z f g � dg � z, and z is a pullback of
C�M // C�C�C, which is monic. Therefore, z is also monic, showing
that f and g are inverses, yielding an isomorphism between N and M1. It
is straightforward to check that this extends to an isomorphism between the
labelled morphisms in the diagrams. �

2.3 Premonoidal Structures

The study of monoids in Span is of some interest as they correspond
to Day’s premonoidal structures on discrete categories [2]. As such, they
correspond to monoidal closed structures on products of the category of sets

¹
C

Set � SetC � Set{C

If C is a set, then a premonoidal structure on C, considered as a discrete
category with values in Set, consists of:
(1) a triplely indexed family of sets xMab

c ya,b,cPC;
(2) a singlely indexed family of sets xIayaPC;
(3) isomorphisms αabc

d :
°

xPC Mab
x � Mxc

d Ñ
°

xPC Mbc
x � Max

d ;

(4) isomorphisms λa
b :
°

xPC Ix � Mxa
b �

"
1 if a � b
0 otherwise

(5) isomorphisms ρa
b :
°

xPC Ix � Max
b �

"
1 if a � b
0 otherwise

satisfying the well-known coherence conditions.
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Remark 2.10. Note that we have determined all the monoid structures on
2 in Span, as far as the identity and multiplication. However, we have not
shown that the isomorphisms are unique. If there are any non obvious ways
of defining the α, they will give a non-symmetric tensor product on Set�Set.

For our treatment of categories as monoids in Span, the choice of iso-
morphism for the pseudomonoids will be unique, because the multiplication
and unit of monoids corresponding to categories are relations, so there will
be a unique isomorphism, and so it will obviously satisfy the coherence con-
ditions. Therefore, we will not have to worry about coherence conditions in
that section.

Remark 2.11. In the introduction, we said that we are most interested in the
monoids in Span that come from categories, using the construction we will
give in Section 3. There are three categories with exactly two morphisms –
the discrete two-object category, and two monoid structures. We already said
that the discrete category corresponds to the discrete monoid structure on 2.
The two monoids correspond to the cases A � 0, B � 1, and A � 1, B �
0, above. This is not surprising, because in these cases, we see that the
multiplication for the monoid in Span actually becomes a function, and the
unit is already a function, because I is a one-element set, so these monoids
in Span actually live in the subcategory Set.

2.5 Monoids in Rel

There is a morphism of monoidal bicategories from Span to Rel, sending
sets to themselves, and sending a span A S r //loo B to it’s underlying
relation – i.e. the relation that relates an element a of A to an element b of B
if and only if there is at least one element sa,b of S satisfying lpsa,bq� a and
rpsa,bq� b. This functor preserves monoids, so from a monoid in Span, we
get a monoid in Rel.

In the other direction, we can view a relation as a jointly monic span.
However, this is merely an oplax morphism, because the composite of two
jointly monic spans need not necessarily be jointly monic. Therefore, not
all monoids in Rel are monoids in Span. Being a monoid in Span imposes
additional equations on a monoid in Rel. We will call a monoid in Rel which
can be viewed as a monoid in Span, by sending the multiplication and unit
to the corresponding jointly monic spans, spanish.
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Example 2.12. There is a monoid in Rel, on the 4-element set te, x, y, zu,
where e is the unique identity, and multiplication is given by the following
table. (The sets in the table are the collection of all elements related to the
pair given by the row and the column.)

e x y z
e teu t xu t yu t zu
x txu t y, zu t x, zu t x, yu
y tyu t x, zu t x, yu t y, zu
z tzu t x, yu t y, zu t x, y, zu

It is straightforward to check that this is indeed associative in Rel, and so a
monoid. However, it is not a monoid in Span, since for example,

Mpxyqz
y �

¸
wPte,x,y,zu

Mxy
w � Mwz

y � 2

by taking the values w � x and w � z. However, on the other hand,

Mxpyzq
y �

¸
vPte,x,y,zu

Mxv
y � Myz

v � 1

with the only non-zero value when v � z.

In this section, we will show that monoids in Rel that satisfy that the
multiplication is a partial morphism are spanish.

Lemma 2.13. If 1 I //C C b CMoo is a monoid in Rel, then

I b I // //

∆op

��

C b C

M
��

I // // C

commutes in Rel, where I represents the subset of all elements in C that are

related to the unique element of 1, and I ∆ // I � I is the diagonal function,
viewed as a relation.
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Proof. From the unit law:

C

1C
))TTTTTTTTTTTTTTTTTTTT C b Ioo // C b C

M
��

C

we see that the relational composite C b I // C b C M // C is less than

or equal to the first projection C b I
π1 // C. Similarly, from the other unit

law, we see that the composite IbC // CbC M // C is less than or equal

to the second projection I b C
π2 // C. Restricting to the subset I b I, we

get that the composite I b I // C b C M // C is less than or equal to both

projections I b I
π1 // I // C and I b I

π2 // I // C. The intersection

of these projections is I b I ∆op
// I // C, so one inclusion in the square is

proved.
Since I // C is a function, the inequality we have proved means that

we have a commutative square

I b I //

f
��

C b C

M
��

I // C

for some relation f 6 ∆op. We want to show that f � ∆op. By the unit

law, the composite I
π1

op
// I b I // C bC M // C is the inclusion I // C.

Therefore, we know that

I
π1

op
// I b I

f
// I // C � I

π1
op

// I b I ∆op
// I // C

Since I // C is monic, this gives that fπ1
op � 1I , and f 6 ∆op. It is

easy to see that the only solution to this is f � ∆op, giving the required
commutativity. �

In the case where the multiplication M is a partial function, the commu-
tative diagram in the above proposition lives entirely within the bicategory
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similar argument will show the same for the other unit law, giving that the
monoid is spanish. We consider the diagram of pullbacks:

P3 $$
p j,k, f q

$$JJJJJJJJJ
// //

��

��

P1 //
��

��

P
��

pi, f q
��

P2 // //

��

I � I � C //

��

I � C

��

P
pi, f q

// I � C // C

We see that we can describe P3 entirely by the morphisms j, k, and f . We
will show that j � k. However, j � ia and k � ib. Furthermore, we already
know that f a � f b, and that pi, f q is a monomorphism. Thus, we can deduce
that a � b, and so f is a monomorphism.

To show that j � k, we consider the commutative diagram in Rel:

I � I � C // //

∆op�1C
��

C � C � C
1�M //

M�1
��

C � C

M
��

I � C // // C � C M
// C

The right-hand square is associativity, while the left hand square is from
Lemma 2.13. Since all morphisms are partial functions, the diagram lifts to
Span. In Span, the top-right composite is

I � I � C P3
p j,k, f q
oo // P // M // C

Since the diagram commutes in Span, the left-hand leg of this span must

factor through the diagonal I ∆ // I � I, and so j � k as required.
Using the other unit law in a similar way, we can deduce that it also lifts

to a commutative diagram in Span, so that the monoid is spanish. �
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3. Categories, Functors, Profunctors and Natural Transfor-
mations in Span

3.1 Categories

In this section, we will establish a bijective correspondence between cat-
egories and certain types of monoid in Span, or equivalently in Rel. We
will fix some notation. For a category C, the corresponding monoid will be
C b C M //C 1Ioo . For a category D, the corresponding monoid will be

D b D N //D 1Joo .
Given a small category C, we can form a monoid inSpan as follows: The

underlying set is the set C of morphisms of C. Composition gives a partial
function from C�C to C, defined on composable pairs, i.e. pairs p f , gq such
that dom f � cod g. The identity is the opposite to the partial function from
C to 1 that is defined only on identity morphisms. It is easy to check that
this is indeed a monoid in Span. This also works for internal categories in
any category with all finite limits, and the following theorems also all apply
in this case, with the exception of Proposition 3.2.

Theorem 3.1. A monoid in Span can be expressed as the result of the above
construction for a category if and only if the multiplication is a partial
morphism and there is a (necessarily unique) 2-cell

C b C M //

pMbCqop

��

t

C

Mop

��

C b C b C CbM
// C b C

in Span.

Proof. It is easy to see that the monoid we obtain from a category using the
above construction, has a partial function for its multiplication, and also has
the unique 2-cell in the above theorem.

Conversely, given a monoid C b C M //C 1Ioo in Span, where M is
a partial function and Iop is also a partial function, C will be the object of
morphisms. The domain of Iop will be the object I of objects. The left
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identity law for the monoid:

C
Ib1C // C b C M // C � 1C

says that for every element f of C, there is exactly one element j of I such
that the composite j f � f , and no other composites are possible. We will
call this unique j the codomain of f . Similarly, there is exactly one element
j of I such that f j � f . We will call this the domain of f . These give the

functions C dom // I and C cod // I, needed for a category. Also, M must be
the object of composable pairs in the category. We need to show that it is
the object of pairs p f , gq such that domp f q� codpgq, as is required for a
category.

The 2-cell shows that if the composites f g and gh both exist, then the
composite p f gqh also exists. Associativity then gives us that f pghq also ex-
ists, and is equal to p f gqh. Also, associativity gives us that if either f pghq or
p f gqh exists, then the other also exists, and they are equal. This means that
in this case, both f g and gh must exist.

Finally, from the case where g is an identity, we know that the composite
f h exists if and only if the domain of f is equal to the codomain of h. This
is exactly what we need for a category. �

We note that since the multiplication is a partial morphism, and the
unit is the opposite of a partial morphism, they are both relations. From
Lemma 2.14, we see that a monoid in Rel comes from a category if and only
if the multiplication is a partial morphism, and the same 2-cell exists.

In the particular case of Set, it is possible to write the third condition in
a different way. This will be useful when we discuss categories as quantales.

Proposition 3.2. A monoid in Rel can be expressed as the result of the
above construction for a category if and only if the multiplication is a partial
morphism and whenever the products xy and yz are both defined, then so is
xyz.

Proof. We need to show that for a monoid in Rel, whose multiplication is a
partial morphism, the condition about products being defined is equivalent
to the condition in Theorem 3.1.

We know that if the products xy and yz both exist, then the composite
pC � MqpM � Cqop relates pxy, zq to px, yzq. Therefore, by the condition in
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Theorem 3.1, the composite MopM must also relate them. For this to happen,
Mpxy, zq�p xyqz must be defined.

Conversely, suppose we have that whenever xy and yz are both defined,
so is xyz. Now suppose that pC � MqpM � Cqop relates pa, bq to pc, dq. This
means that there is a triple pc, x, bqwhich is related to pa, bq by M�C, and to
pc, dq by C � M. Thus, cx � a and xb � d are both defined, so the products
pcxqb and cpxbq are both defined (and equal by associativity). Now M relates
both pa, bq and pc, dq to cxb, so the composite MopM relates pa, bq to pc, dq.
Since pa, bq and pc, dq were an arbitrary pair related by pC � MqpM � Cqop,
this means that pC � MqpM � Cqop 6 MopM in Rel. �

To make the description from Theorem 3.1 internal in Span, or Rel, we
need to give a way of identifying which spans are partial functions.

Proposition 3.3. A span is a relation if and only if it is a subterminal object
in its hom-category in the bicategory Span.

Proposition 3.4. A relation X R // Y is a partial function if and only if there
is a 2-cell RRop +3 1Y in Rel, or equivalently in Span.

Proof. If R is a partial function, then in Span, the composite RRop is given
by the pullback:

R
1

����
��

��
�

1

��?
??

??
??

R

����
��

��
� ��

��?
??

??
??

R
��

����
��

��
�

��?
??

??
??

Y X Y

The function from R to Y then gives the required 2-cell in Span, and in Rel.
Conversely, suppose R has the required 2-cell, then the composite RRop

is a span in which both functions are the same. Because the composite is the
pullback square, and the morphisms from R to X and to Y are jointly monic,
this means that the two functions f and g of the pullback square:

KENNEY & PARE - CATEGORIES AS MONOIDS IN Span, Rel AND Sup

- 228 -



P
f

//

g
��

R

��

R // X

are equal. This can only happen if R // X is a monomorphism, so R is a
partial function. �

3.2 Functors

Proposition 3.5. If C and D are categories, corresponding to the monoids
pC,M, Iq and pD,N, Jq in Span, then functors C F //D correspond biject-
ively to lax monoid homomorphisms from C to D in Span, which are also
functions.

Proof. Given a lax monoid homomorphism C
f

// D in Span, where f is a
function, one lax monoid homomorphism condition says that f m1 admits a
2-cell to n1p f � f q. The composite n1p f � f q is the pullback:

P //
��

��

N n1 //
��

��

D

C � C
f� f

// D � D

The 2-cell therefore says that there is a morphism M // // P. This means
that any morphisms that compose in C are sent to morphisms that compose
inD. We get a commutative square in Set:

M

m1

��

f� f
// N

n1
��

C f
// D

This is exactly the functoriality condition involving composition. Similarly,
the other lax monoid homomorphism condition for f gives the square
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1 //

tI
��

1
J
��

C f
// D

in Span, with a 2-cell from f I to J. This gives a morphism from I to J,
sending an identity 1X to Fp1Xq, which this 2-cell shows is an identity. Since
f preserves composition, this must be 1FX.

Conversely, supposeC F //D is a functor. Then its action on morphisms

is a function C
f

// D such that the following diagram commutes:

M
f� f

��

m1

// C
f

��

Iioo

��

N
n1

// D Jj
oo

This induces a morphism from M to the pullback of N // // D � D along
f � f , and a morphism from I to the pullback of J along f . These give the
2-cells required to make f into a lax monoid homomorphism in Span. �

Composition of functors is the obvious composition of functions. We can
identify morphisms as the spans with right adjoints. The situation is identical
in Rel – lax monoid homomorphisms in Rel remain lax homomorphisms in
Span, and functions are relations with a right adjoint.

Remark 3.6. The reader may find it strange that categories correspond to
pseudomonoids, and yet functors only correspond to lax monoid homo-
morphisms. This leads us to consider what lax monoids correspond to. There
is a correspondance between certain kinds of protocategories [3], and certain
lax monoids (unbiassed in Leinster’s [4] terminology). Given a protocate-
gory C, with at most one composite for each pair of protomorphisms, we
form a lax monoid in Span as follows: C is the set of protomorphisms; M is
the set of composable pairs of protomorphisms; I is the set of objects.

It turns out that this is a lax monoid. However, we can view a category
as a protocategory in which every morphism has exactly one source and tar-
get. From this point of view, any function between categories that preserves
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the protocategory structure (i.e. preserves identities and composition) is a
functor. These are lax monoid homomorphisms.

Strict monoid homomorphisms are functors that are injective on objects,
since for the 2-cell to be an isomorphism would require that any pair of
morphisms whose images are composable inD must also be composable in
C.

3.3 Natural Transformations

Proposition 3.7. Given functors C F //D and C G //D, corresponding to

lax monoid morphisms C
f

// D and C
g

// D in Span, respectively, nat-
ural transformations correspond to functions C a // D such that we have
(necessarily unique) 2-cells:

C b C
pabgq

//

M
��

t

D b D

N
��

C a
// D

and
C b C

p fbaq
//

M
��

t

D b D

N
��

C a
// D

Proof. Given a natural transformation α, the function C a // D sends the

morphism X h // Y in C, to the morphism FX
αX // GX Gh // GY , or equiv-

alently FX Fh // FY
αY // GY . It is straightforward to check that the 2-cells

above do indeed exist.
Conversely, given a morphism a such that the above 2-cells exist, in

Span, we can form a natural transformation α by αX � ap1Xq. If we ap-
ply the left-hand 2-cell to pcodphq, hq, the lower-left way around sends it
to aphq, while the upper-right way sends it to apcodphqqFphq. We deduce
that these are equal. On the other hand, if we apply the right-hand 2-cell to
ph, domphqq, we get that aphq� Gphqapdomphqq. The equality of these two
is exactly the commutativity of the naturality square. �

Again, the existence of these 2-cells does not depend whether we are in
Span or Rel.

For composition of natural transformations, there are two types to con-
sider. The easier type is horizontal composition. It is easy to see that this
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and 2-cells are just 2-cells between the top morphisms in these triangles,
subject to the obvious compatibility conditions with the 2-cells in the trian-
gles. It is straightforward to see that the same argument as above makes this
into a monoidal bicategory. In this monoidal bicategory, for another monoid

D in C, a lax monoid homomorphism D
f

// C becomes a monoid in this
slice category C�C.

We see that when we view a category C as a monoid, C, in Span, we can
view a functor with codomain C as a certain monoid in the slice Span �C.
Now for two functors from D to C, we have the corresponding monoids
in the slice category Span �C. Now a natural transformation is a kind of
bimodule between these monoids, in this slice category.

3.4 Profunctors

In this context, the best way to view a profunctor P : Cop �D // Set,
is through the collection of elements, i.e.

°
APobpCq,BPobpDq PpA, Bq. This

collection admits a sort of left action by C, and a right action by D. When
we look at the corresponding monoids C and D in Span, these actions are
partial functions. We therefore see that a profunctor is a special kind of
bimodule.

Proposition 3.9. Given categories C and D, and corresponding monoids C
and D in Span, a bimodule E (a left C, right D module with the obvious
coherence conditions between the actions) comes from a profunctor from C
toD if and only if it satisfies the following conditions:

1. The actions C b E a // E and E b D b // E are partial functions.

2. There are (necessarily unique) 2-cells:

C b E
Cbaop

//

a
��

w

C b C b E

MbE
��

E aop
// C b E

and
E b D

bopbD //

b
��

w

E b D b D

EbN
��

E bop
// E b D

Proof. We will denote the actions ap f , eq by f .e and bpe, gq by e � g. It is
obvious that for a profunctor, the actions a and b are partial functions. Now
we consider the first 2-cell in condition 2: The top-right composite is a span

KENNEY & PARE - CATEGORIES AS MONOIDS IN Span, Rel AND Sup

- 233 -



that above any pairs of elements ph, eq and p f , e1q of C b E, has the set of
triples p f , g, eqP C b C b E, such that f g � h and g.e � e1. Therefore, the
2-cell in question sends all triples p f , g, eq such that f g and g.e both exist,
to an element e2 of E, satisfying both f .pg.eq� e2 and p f gq.e � e2. Thus,
the existence of this 2-cell simply indicates that if p f gq and g.e both exist,
then p f gq.e also exists (the fact that it is equal to f .pg.eq is automatic by the
associativity conditions required for a bimodule). Also, by the associativity
conditions, we know that if p f gq.e exists, then both p f gq and g.e must also
exist.

Furthermore, by the unit laws for a bimodule, for any e P E, there is a
unique identity i P C such that i.e exists, and for this i, we have that i.e � e.
We will call this i, the codomain of e. Now if we substitute this codomain of
e for g in the above observation, we see that f .e exists if and only if f codpeq
exists, or equivalently, if and only if codpeq� domp f q.

By a similar argument, we see that e � d exists if and only if dompeq�
codpdq. From these conditions, it is clear that E comes from a profunctor.

�

For composition of profunctors, let C, D and E be categories, and let

C
P //D and D

Q
//E be profunctors. Let the corresponding sets in Span

be C, D, E, P and Q respectively. We know that the composite profunctor
has as elements, equivalence classes of “composable” pairs pp P P, q P Qq
under the equivalence relation that relates two pairs pp, qq and pp1, q1q if there
is f P D such that p � f p1 and q1 � q f . This is the product of P and Q over
D, as bimodules in Span, or Rel.

4. Quantales

Just as monoids in Span corresponded to premonoidal structures on dis-
crete categories and consequently monoidal closed structures on powers of
Set, monoids in Rel correspond to 2-enriched premonoidal structures on dis-
crete sets and thus monoidal closed structures on powers of 2. These are
quantale structures on power sets, ordered by inclusion. In this way a small
category gives a quantale. In this section, we study the interplay between
categorical constructions and quantale ones. Niefield considers the closely
related questions of the quantale of subsets of a monoid and quantales of
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subobjects of the unit object in certain closed categories (see [5] and the
references cited there).

4.1 The Quantale of a Category

To determine which quantales occur as the quantale from a category, we
just need to translate our characterisation of categories as monoids in Rel
through the equivalence between categories Rel and CABAsup. Rosenthal
[7] calls a quantale whose underlying lattice is a power set, a power quantale.

The most direct translation is just in terms of atoms (or equivalently join-
irreducible elements). A morphism of powersets corresponding to a relation,
corresponds to a partial morphism if and only if it sends atoms to either
atoms or the empty set. The final condition for a monoid in Rel to be cat-
egorical says that if the composites f g and gh both exist, then so does the
triple composite f gh. (By associativity, it doesn’t matter which way we ex-
press the triple composite.) We can express this for a quantale by using the
contrapositive – if the triple composite f gh of three atoms is 0 (i.e. unde-
fined) then either f g � 0 or gh � 0.

However, conditions involving atoms are not natural conditions on quan-
tales, except in the case where the lattices are CABAs. We therefore seek to
rephrase these conditions in a way that looks more natural for all quantales.
We hope that these conditions might give a better guide for how we might
be able to generalise our results to internal categories, for example in Ord or
Loc. However, such a generalisation would still require significant further
work, and we would expect further conditions to be necessary. In such cases,
we may find that we no longer get a strict quantale, but a lax quantale.

Lemma 4.1. A sup-morphism between CABAs corresponds to a partial func-
tion if and only if its right adjoint preserves all non-empty sups.

Proof. Let f be a relation. The right adjoint to its direct image is just its
inverse image – i.e. it sends a subset A to the set tx| f pxq� Au, where f pxq
represents the set of things to which x is related. To say that this preserves
non-empty sups says that if the image of a point x is contained in

�
Ai, then

it is contained in one of the Ai. Since we can express any set as the union of
its points, this means that the image of x is either empty or a singleton, i.e. f
is a partial function. �
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Proof. This is automatic from the equivalence between Rel and CABAsup.
�

4.2 Retrieving the Category

We have shown that categories correspond to certain types of quantale.
We now consider the inverse part of this bijection – given one of these quan-
tales, how can we recover the category we started with?

This can actually be done fairly easily – we know that a category can be
described by the collection of functors from the cocategory object

1
//
// 2oo ////// 3

in Cat. More explicitly, objects of the category correspond bijectively with
functors from 1 to the category. Morphisms correspond to functors from 2
to the category, and the composite of a composeable pair is calculated by
looking at the functor from 3 to the category. We can describe these functors
explicitly for quantales. The quantale corresponding to the one morphism
category is the two-element quantale. A functor from this to another quantale
must send 0 to 0, so the only question is where it must send 1. It must send
1 to a join-irreducible element below 1, which is idempotent. The objects
of the category therefore correspond to join-irreducible idempotent elements
below 1 in the quantale. Similarly, morphisms correspond to triples px, y, f q,
where x and y are objects, and f is an irreducible element such that y f x � f .
Finally, the composite of two morphisms px, y, f q and py, z, gq is px, z, g f q.

If the quantale corresponds to a category, then this will give us the corre-
sponding category.

However, it is worth observing that while the above is a cocategory object
in Cat, it is not a cocategory object when we extend to the category of all
quantales and lax quantale homomorphisms whose right adjoint is also a sup-
morphism. This means that for a general quantale, we do not get a category
using this approach.
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[1] J. Bénabou. Algèbre élémentaire dans les catégories avec multiplication.
C. R. Acad. Sci. Paris, 258:771–774, 1964.

KENNEY & PARE - CATEGORIES AS MONOIDS IN Span, Rel AND Sup

- 239 -



[2] B. Day. On closed categories of functors. In Reports of the Midwest
Category Seminar IV, volume 137, pages 1–38. Springer, 1970.

[3] P. J. Freyd and A. Scedrov. Categories, allegories. North-Holland, 1990.

[4] T. Leinster. Higher Operads, Higher Categories. Number 298 in Lon-
don Mathematical Society Lecture Notes. Cambridge University Press,
2003.

[5] S. Niefield. Constructing quantales and their modules from monoidal
categories. Cah. Top. Geo. Diff., 37:163–176, 1996.

[6] P. Resende. Etale groupoids and their quantales. Advances in Mathe-
matics, 208:147–209, 2007.

[7] K. I. Rosenthal. Relational monoids, multirelations and quantalic recog-
nizers. Cah. Top. Geo. Diff., 38:161–171, 1997.

Toby Kenney
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