
Résumé. Dans cet article, nous étendons la construction de l’algèbre de Hall
dérivée de Toen, dans laquelle il obtient des algèbres associatives avec unité
à partir de certaines categories de modèles stables, au cas où ces algèbres
sont obtenues à partir de théories homotopique stables plus génèrales, en
particulier espaces de Segal complets stables satisfaisant des hypothèses de
finitude appropriées.

Abstract. In this paper we extend Toën’s derived Hall algebra construction,
in which he obtains unital associative algebras from certain stable model
categories, to one in which such algebras are obtained from more general
stable homotopy theories, in particular stable complete Segal spaces satisfy-
ing appropriate finiteness assumptions.
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1 Introduction
Hall algebras associated to abelian categories play an important role in rep-
resentation theory. In particular, when the abelian category in question is
the category of Fq-representations of a quiver associated to a simply-laced
Dynkin diagram, there is a close relationship between the Hall algebra and
the quantum enveloping algebra of the Lie algebra associated to the same
Dynkin diagram. Recent attempts to strengthen this relationship have led to
the problem of associating some kind of Hall algebra to categories which are
triangulated rather than abelian. In particular, it is conjectured that one could
recover the quantum enveloping algebra from an appropriate Hall-type alge-
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bra associated to Peng and Xiao’s root category, which is, roughly speaking,
the derived category of the category of this abelian category of representa-
tions, modulo a double shift relation [15].

In [22], Toën constructs “derived Hall algebras” associated to triangu-
lated categories arising as homotopy categories of model categories whose
objects are modules over a sufficiently finitary differential graded category
over Fq. In doing so, he develops a formula for the multiplication in this al-
gebra in such a way that it can be regarded as a generalization of the formula
for the multiplication in an ordinary Hall algebra. This formula was verified
for more general triangulated categories, still satisfying certain finiteness
conditions, by Xiao and Xu [24]. However, none of these methods can yet
be applied to the root category, as it does not satisfy these finiteness assump-
tions.

In this paper, we seek to generalize Toën’s development of derived Hall
algebras. Specifically, we modify his proof to establish derived Hall algebras
corresponding to triangulated categories arising as homotopy categories for
more general stable homotopy theories. Most triangulated categories can be
realized as homotopy categories of such stable homotopy theories. Although
such triangulated categories are covered by Xiao and Xu’s work, our objec-
tive is rather to broaden the context in which we can make use of homotopy-
theoretic methods. We expect that these ideas will shed light on the question
of how to find a similar algebra arising from a triangulated category which
is not finitary. Also, it seems that this more flexible setting should be more
amenable than the model category world for finding a coalgebra or even a
Hopf algebra structure on derived Hall algebras, extending these structures
which are significant in the study of ordinary Hall algebras. This idea will
be the subject of future work in collaboration with Robertson.

We expect that the methods of this paper will be applicable to other set-
tings, enabling one to use more general stable homotopy theories in settings
in which the additional structure of stable model categories is too restrictive.
For example, not all derived categories arise from actual model categories,
but they do always come from a stable homotopy theory. It is expected that
the ability to work with such homotopy theories, which contain more infor-
mation than their associated derived categories, will facilitate progress in the
many areas in which derived categories appear.

In this paper, we use the complete Segal space model for homotopy the-
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ories. If we regard a homotopy theory as a category with weak equivalences,
then there are several equivalent models for homotopy theories as mathe-
matical objects, in particular objects of model categories with appropriate
weak equivalences. Complete Segal spaces were developed by Rezk [17];
they are simplicial spaces satisfying conditions enabling one to regard them
as something like a simplicial category up to homotopy. Their associated
model category is in fact equivalent to the model structure on the category
of simplicial categories [3], as well as to the model structures for Segal cat-
egories [3] and quasi-categories [10]. While any one of these models could
be used, we prefer the complete Segal space model here because it is partic-
ularly well-suited for understanding fiber products of model categories [2],
one of the key tools used by Toën in his proof of the associativity of de-
rived Hall algebras. Specifically, we are able to use homotopy pullbacks of
complete Segal spaces where he used the homotopy fiber product of model
categories.

There is, in fact, another perspective on complete Segal spaces (and
equivalent objects); they are also models for (∞, 1)-categories, or∞-categories
with n-morphisms invertible for n > 1. While the motivation for using com-
plete Segal spaces in this paper arises from the viewpoint that they are gen-
eralizations of model categories, it is also useful, in particular when we need
to define categorical notions such as colimits within them, to remember that
they can be thought of as generalizations of ordinary categories in this way.

In Section 2, we give a review of stable model categories. These ideas
are generalized in Section 3, where we explain how Lurie’s methods for sta-
ble quasi-categories can be translated to stable complete Segal spaces. We
review our main tool of interest, homotopy fiber products of model cate-
gories and homotopy pullbacks of complete Segal spaces, in Section 4, then
introduce Toën’s derived Hall algebras in Section 5. The main results of the
paper can be found in Section 6, where we establish derived Hall algebras
for stable complete Segal spaces.
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2 Stable model categories
Recall that a model categoryM is a category with three distinguished classes
of morphisms: weak equivalences, fibrations, and cofibrations, satisfying
five axioms [5, 3.3]. Given a model category structure, one can pass to the
homotopy category Ho(M), which is a localization ofM with respect to the
class of weak equivalences [8, 1.2.1]. In particular, the weak equivalences,
as the morphisms that we wish to invert, make up the most important part of
a model category. An object x in a model categoryM is fibrant if the unique
map x → ∗ to the terminal object is a fibration. Dually, an object x in M is
cofibrant if the unique map φ → x from the initial object is a cofibration.

The standard notion of equivalence of model categories is given by the
following definitions. First, recall that an adjoint pair of functors F : C ¿
D : G satisfies the property that, for any objects X of C and Y of D, there is
a natural isomorphism

ϕ : HomD(FX, Y ) → HomC(X,GY ).

The functor F is called the left adjoint and G the right adjoint [14, IV.1].

Definition 2.1. [8, 1.3.1] An adjoint pair of functors F : M ¿ N : G be-
tween model categories is a Quillen pair if F preserves cofibrations and G
preserves fibrations. The left adjoint F is called a left Quillen functor, and
the right adjoint G is called the right Quillen functor.

Definition 2.2. [8, 1.3.12] A Quillen pair of model categories is a Quillen
equivalence if for all cofibrant X inM and fibrant Y inN , a map f : FX →
Y is a weak equivalence inD if and only if the map ϕf : X → GY is a weak
equivalence in M.

We also consider model categories with the additional data that their ho-
motopy categories are triangulated. Recall that a triangulated category T is
an additive category, together with an equivalence Σ: T → T called a shift
functor, and a collection of distinguished triangles

x α // z
γ //y β // Σx
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satisfying four axioms [11, §2.1].
For a model category to have a triangulated homotopy category, it must

first be pointed, in that its initial and terminal objects coincide. Such an
object is called a zero object.

Definition 2.3. [8, 7.1.1] A pointed model categoryM is stable if its homo-
topy category Ho(M) is triangulated.

Example 2.4. Let R be a ring and Ch(R) the category of chain complexes
of R-modules. Then the model category structure on Ch(R) is triangulated.
In fact, its homotopy category is equivalent to the derived category D(R),
formed by taking Ch(R) modulo the equivalence relation given by chain
homotopies of maps, and formally inverting the quasi-isomorphisms [11,
§1.2].

3 Stable complete Segal spaces

3.1 Simplicial spaces and complete Segal spaces
Recall that the simplicial indexing category ∆op is defined to be the category
with objects finite ordered sets [n] = {0 → 1 → · · · → n} and morphisms
the opposites of the order-preserving maps between them. A simplicial set
is then a functor

K : ∆op → Sets.

We denote by SSets the category of simplicial sets, and this category has a
natural model category structure equivalent to the standard model structure
on topological spaces [6, I.10].

One can consider more general simplicial objects; in this paper we work
with simplicial spaces (also called bisimplicial sets), or functors

X : ∆op → SSets.

Given a simplicial set K, we also denote by K the simplicial space which
has the simplicial set K at every level. We denote by Kt, or “K-transposed”,
the constant simplicial space in the other direction, where (Kt)n = Kn,
where on the right-hand side Kn is regarded as a discrete simplicial set. The
category of simplicial spaces has a model category structure called the Reedy
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structure in which weak equivalences are given levelwise and all objects are
cofibrant [16].

Specifically, we consider simplicial spaces satisfying additional condi-
tions, namely, those inducing a notion of composition up to homotopy. These
Segal spaces and complete Segal spaces were first introduced by Rezk [17],
and the name is meant to be suggestive of similar ideas first presented by
Segal [21].

Definition 3.1. [17, 4.1] A Segal space is a Reedy fibrant simplicial space
W such that the Segal maps

ϕn : Wn → W1 ×W0 · · · ×W0 W1︸ ︷︷ ︸
n

are weak equivalences of simplicial sets for all n ≥ 2.

Given a Segal space W , we can consider its objects ob(W ) = W0,0, and,
between any two objects x and y, the mapping space mapW (x, y), given by
the homotopy fiber of the map W1 → W0 ×W0 given by the two face maps
W1 → W0. The Segal condition stated above guarantees that a Segal space
has a notion of n-fold composition of mapping spaces, up to homotopy.

The homotopy category of W , denoted Ho(W ), has as objects the ele-
ments of the set W0,0, and

HomHo(W )(x, y) = π0mapW (x, y).

A homotopy equivalence in W is a 0-simplex of W1 whose image in Ho(W )
is an isomorphism. We consider the subspace of W1 whose components
contain homotopy equivalences, denoted Whoequiv. Notice that the degener-
acy map s0 : W0 → W1 factors through Whoequiv; hence we may make the
following definition.

Definition 3.2. [17, §6] A complete Segal space is a Segal space W such
that the map W0 → Whoequiv is a weak equivalence of simplicial sets.

Given this definition, we can describe the complete Segal space model
structure on the category of simplicial spaces.
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Theorem 3.3. [17, 7.2] There is a model structure CSS on the category of
simplicial spaces such that the fibrant and cofibrant objects are precisely the
complete Segal spaces. Furthermore, CSS has the additional structure of a
cartesian closed model category.

The fact that CSS is cartesian closed allows us to consider, for any com-
plete Segal space W and simplicial space X , the complete Segal space WX .
In particular, using the simplicial structure, the simplicial set at level n is
given by

(WX)n = Map(X ×∆[n]t,W ).

3.2 Stable quasi-categories and stable complete Segal spaces
As with model categories, we need to consider complete Segal spaces which
are stable, in the sense that their homotopy categories are triangulated. It
should be noted that, although we have given this simple definition of a
stable complete Segal space, one could define it in a more technical way
which permits a better understanding of the structure of a stable complete
Segal space; Lurie has explained these ideas extensively for stable quasi-
categories in [12], and they can fairly easily be translated into the equivalent
setting of complete Segal spaces.

Although we do not go into this level of detail on this point in this paper,
there are other notions that have been developed for quasi-categories which
are useful here for complete Segal spaces. Thus, we give a very brief sum-
mary of quasi-categories and their relationship with complete Segal spaces.

Recall that a quasi-category X is a simplicial set satisfying the inner Kan
condition, so that for any n ≥ 1 and 0 < k < n, a dotted arrow lift exists in
any diagram of the form

V [n, k] //

² ²

X

∆[n].

<<y
y

y
y

y

The notion of quasi-category goes back to Boardman and Vogt [4], but is has
received extensive attention more recently, especially by Joyal [9] and Lurie
[13]. In particular, Joyal proves that there is a model structure on the cate-
gory of simplicial sets such that the fibrant and cofibrant objects are precisely
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the quasi-categories. We denote this model category QCat. Furthermore,
Joyal and Tierney have proved that the model category QCat is Quillen
equivalent to Rezk’s model category CSS [10]. Remarkably, they prove
that there are actually two different Quillen equivalences between these two
model categories. Here, we make use of the one that is particularly easy to
describe, the right adjoint CSS → QCat given by W 7→ W∗,0.

Using this relationship we return to the matter of explaining some neces-
sary structures on complete Segal spaces. For a complete Segal space to be
stable, we need it to be pointed, or to have a zero object, denoted 0. As we
have seen, in an ordinary category, a zero object is one which is both initial
and terminal, so for any object x, there are unique morphisms x → 0 and
0 → x. As a complete Segal space is a homotopical generalization of a cat-
egory, we require a homotopical notion of initial and terminal objects. The
following definitions, given by Joyal [9] and Lurie [13, 1.2.12.1, 1.2.12.6]
for quasi-categories, are easy to reformulate for complete Segal spaces.

Definition 3.4. An object x ∈ W0,0 of a complete Segal space is initial if it is
initial as an object of Ho(W ), i.e., if mapW (x, y) is weakly contractible for
any y ∈ W0,0. Dually, x is terminal if it is terminal as an object of Ho(W ),
i.e., if mapW (y, x) is weakly contractible for any y. An object is a zero object
of W if it is both initial and terminal.

In addition to having a zero object, we need to have a notion of “pushout”
within a complete Segal space, another analogue of a standard categorical
idea within this generalized setting. Fortunately, formal definitions of lim-
its and colimits within quasi-categories have been established by Lurie [13,
1.2.13.4]. We give a brief exposition here, enough to translate his definition
into the world of complete Segal spaces; see [13, 1.2.8, 1.2.13] for a detailed
treatment.

Let X and Y be simplicial sets. We can define their join X ? Y by

(X ? Y )n = Xn q Yn q
∐

i+j=n−1

Xi × Yj.

Note that the operation defines a monoidal product on SSets with unit the
empty simplicial set φ. Then, for a fixed simplicial set X , we can define a
functor

X ? (−) : SSets → SSets
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by
Y 7→ X ? Y

and notice that the map φ → Y is sent to the map X?φ = X → X?Y . Thus,
the simplicial set X ? Y comes equipped with a canonical map X → X ? Y ,
and so we can regard X ? Y as an object of the undercategory or category of
simplicial sets under X [14, II.6], denoted X ↓ SSets. In doing so, we can
think of our functor as

X ? (−) : SSets → X ↓ SSets.

This functor has a right adjoint given by

(p : X → Y ) 7→ Y.

To remember that Y has come from some map p : X → Y , Lurie denotes
the image of this functor Yp/. We can think of Yp/ as the simplicial set Y
with a specified X-shaped diagram inside it.

Such an object can be used to define colimits in a quasi-category. If Y is
a quasi-category and p : X → Y is a map of simplicial sets, then a colimit
for p is an initial object of Yp/. Dually, one could use the functor (−)?X , its
right adjoint, and the resulting definition of Y/p to define a limit in a quasi-
category Y .

Now, we translate this definition into CSS.

Definition 3.5. Let W be a complete Segal space and X a simplicial set,
together with a map p : X t → W . A colimit for p in W is an initial object of
(W∗,0)p/, regarded as an object of W .

In this paper, we consider the case where the simplicial set X is ∆[1]q∆[0]

∆[1], forming the diagram ·←·→·, so that the colimit is a “pushout” in
the complete Segal space W . One can show that if W is stable, the fact
that Ho(W ) is triangulated guarantees that colimits must always exist in W .
Again, we refer the reader to Lurie’s manuscript on stable quasi-categories
[12] for greater depth on this point.

3.3 Model categories and complete Segal spaces
We conclude this section with a brief exposition on the relationship between
model categories and complete Segal spaces. Since we are translating a
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construction on model categories to one on complete Segal spaces, we need
to understand how to regard a model category as a specific kind of complete
Segal space.

As described by Rezk [17], any category with weak equivalences gives
rise to a complete Segal space via the functor we denote LC ; given such a
category C, LCC is given by

(LCC)n = nerve(we(C [n]))

where we(C[n]) denotes the category of weak equivalences of chains of n
composable morphisms in C.

If M is a model category, then we can apply this construction, but, as
explained in [2], it is only a functor when the morphisms between model
categories preserve weak equivalences. Since we want a construction which
is functorial on the category of model categories with left Quillen functors
between them, we can modify the construction by restricting to the full sub-
category of M whose objects are cofibrant.

The main result of [1] is that this construction is well-behaved with re-
spect to other natural ways of getting a complete Segal space from a model
category; in particular, the resulting complete Segal space is weakly equiv-
alent to the one obtained from taking the simplicial localization and then
applying any one of several functors from simplicial categories to complete
Segal spaces. There is an up-to-homotopy characterization of the resulting
complete Segal space as well. While we do not make use of this description
explicitly in this paper, it is key to the proof of Theorem 4.1 below.

4 Fiber products of model categories and homo-
topy pullbacks of complete Segal spaces

A key tool in Toën’s proof that his derived Hall algebras are associative is
the fiber product of model categories. We begin with his definition as given
in [22]. First, suppose that

M1
F1 //M3 M2

F2oo

is a diagram of left Quillen functors of model categories. Define their fiber
product to be the model category M = M1 ×h

M3
M2 whose objects are
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given by 5-tuples (x1, x2, x3; u, v) such that each xi is an object ofMi fitting
into a diagram

F1(x1)
u //x3 F2(x2).

voo

A morphism of M, say f : (x1, x2, x3; u, v) → (y1, y2, y3; z, w), is given by
maps fi : xi → yi such that the following diagram commutes:

F1(x1)
u //

F1(f1)
² ²

x3

f3

²²

F2(x2)
voo

y3 F2(y2).
woo

F2(f2)
² ²

F1(y1)
z //

This category M can be given the structure of a model category, where
the weak equivalences and cofibrations are given levelwise. In other words,
f is a weak equivalence (or cofibration) if each map fi is a weak equivalence
(or cofibration) in Mi.

A more restricted definition of this construction requires that the maps
u and v be weak equivalences in M3. Unfortunately, if we impose this ad-
ditional condition, the resulting category cannot be given the structure of a
model category because it does not have sufficient limits and colimits. How-
ever, it is still a perfectly good category with weak equivalences, and in some
cases we can localizeM so that the fibrant-cofibrant objects of the localized
model category have u and v weak equivalences [2]. Although Toën uses
the model structure given above, at the point where he really makes use of
the fiber product he restricts to the case where the maps u and v are weak
equivalences. Thus, we assume here this extra structure.

Consider the functor LC , described in the previous section, which takes
a model category (or category with weak equivalences) to a complete Se-
gal space. Given a fiber square of model categories where we require the
maps u and v to be weak equivalences, we can apply this functor to obtain a
commutative square

LCM //

² ²

LCM2

² ²
LCM1

// LCM3.

Alternatively, we could apply the functor LC only to the original dia-
gram and take the homotopy pullback, which we denote P , and obtain the
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following diagram:
P //

² ²

LCM2

² ²
LCM1

// LCM3.

Theorem 4.1. [2] The complete Segal spaces LCM and P = LCM1×h
LCM3

ŁCM2 are weakly equivalent.

This theorem allows us to use the homotopy pullback of complete Segal
spaces to generalize the situations in which Toën uses the fiber product of
model categories. In particular, we generalize a scenario given by Toën [22,
4.2] as follows.

Let
W

H1 //

H2

² ²

X

F1

² ²
Y

F2 // Z

be diagram of complete Segal spaces equipped with an isomorphism α : F1 ◦
H1 ⇒ F2 ◦H2, and define a map

F : W → V = X ×h
Z Y

by
w 7→ (H1(w), H2(w); αw).

Lemma 4.2. If Ho(W ) → Ho(V ) is an equivalence of categories, then the
diagram

nerve(Ho(wW )) //

² ²

nerve(Ho(wX))

² ²
nerve(Ho(wY )) // nerve(Ho(wY ))

is homotopy cartesian.

Proof. We want to show that the map

nerve(Ho(wW )) → nerve(Ho(wX))×h
nerve(Ho(wZ)) nerve(Ho(wY ))
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is a weak equivalence of simplicial sets. By our assumption, we know that
the map

Ho(W ) → Ho(X ×h
Z Y )

is an equivalence of categories. Notice that the homotopy category Ho(wW )
is the maximal subgroupoid of Ho(W ) and analogously for the other com-
plete Segal spaces in the diagram. Hence, we have an equivalence of cate-
gories

Ho(wW ) → Ho(w(X ×h
Z Y )) ' Ho(wX ×h

wZ wY )

' Ho(wX)×h
Ho(wZ) Ho(wY ).

Since nerves of equivalent categories are weakly equivalent simplicial sets,
the lemma follows.

5 Hall algebras and derived Hall algebras

5.1 Classical Hall algebras
Let A be an abelian category. Throughout this section, we assume that A
is finitary, in that, for any objects x and y of A, the groups Hom(x, y) and
Ext1(x, y) are finite.

Definition 5.1. [20] Given an abelian category A, its Hall algebra H(A) is
defined as

1. the vector space with basis isomorphism classes of objects in A, with

2. multiplication given by

[x]· [y] =
∑

[z]

gz
x,y[z]

where the Hall numbers gz
x,y are given by

gz
x,y =

|{0 → x → z → y → 0 exact}|
|Aut(x)|· |Aut(y)| .
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Notice that our assumptions on A guarantee that each Hall number re-
ally is a finite number. It can be shown that this definition gives H(A) the
structure of a unital associative algebra [18].

Although Hall algebras have been investigated for a number of purposes,
recent interest in them has arisen from the close relationship between Hall
algebras and quantum groups in the following situation. Suppose that g is
a Lie algebra of type A, D, or E. Then g has an associated simply-laced
Dynkin diagram, which is just an unoriented graph with no cycles. Assign-
ing an orientation to each of the edges in this graph gives a quiver, or oriented
graph, which we denote Q. Given a finite field Fq, let A be the category of
Fq-representations of this quiver Q. It can be shown that A is in fact an
abelian category satisfying our finiteness assumptions, and hence we have
an associated Hall algebra H(A) [18]. The Hall algebra as we have defined
it is not independent of the chosen orientation on the quiver, but a slight mod-
ification by Ringel makes it so; this algebra is often called the Ringel-Hall
algebra [19].

However, another algebra can be obtained from g, namely the quantum
enveloping algebra Uq(g). This algebra can be given its triangular decompo-
sition

Uq(g) = Uq(n
+)⊗ Uq(h)⊗ Uq(n

−).

Work of Ringel, further developed by Green, has shown that there is a close
relationship between the Hall algebraH(A) and the positive part of the quan-
tum enveloping algebra,

Uq(b
+) = Uq(n

+)⊗ Uq(h)

[7], [18].
A natural question to ask is whether there is some kind of enlarged ver-

sion of the Hall algebra from which one could recover not just Uq(b
+), but all

of Uq(g). Work of Peng and Xiao [15] has led to the conjecture that such an
algebra should be obtained from the following category. Using the abelian
category A of quiver representations as above, consider its bounded derived
categoryD[(A), which is no longer abelian, but is instead a triangulated cat-
egory. As such, it has a shift functor Σ: D[(A) → D[(A). We then define
the root category of A to be D[(A)/Σ2, the triangulated category obtained
from D[(A) by identifying an object with its double shift.
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It is still an open question how to find a “Hall algebra” associated to this
root category. To begin with, the usual definition does not apply because the
root category is not abelian. It is, however, triangulated, and recent efforts in
this area have focused on finding Hall algebras for triangulated categories.
In the rest of this section, we describe derived Hall algebras, defined by
Toën, which can be obtained from certain triangulated categories. Thus far
the necessary restrictions on these triangulated categories prohibit us from
being able to define a derived Hall algebra for the root category.

5.2 Derived Hall algebras
Recall that a differential graded category or dg category, is a category en-
riched over Ch(R), the category of cochain complexes of modules over a
ring R. Thus, given any objects x and y in a dg category T , we have a
cochain complex T (x, y). Here, we assume that R = Fq, the finite field with
q elements. Toën defines a dg category T to be locally finite if for any objects
x and y in T , the cochain complex T (x, y) is cohomologically bounded and
has all cohomology groups finite dimensional [22, 3.1].

Given a locally finite dg category T , we considerM(T ), the category of
dg T op-modules, or functors T → Ch(Fq). This category has the structure
of a stable model category, with levelwise weak equivalences and fibrations
[23, §3]. We have made finiteness assumptions about the dg category T ,
but in taking the module category, we may have cochain complexes in the
image which do not satisfy these kinds of conditions. If we restrict to func-
tors which are appropriately finitary, we no longer have a model structure,
since this subcategory does not possess enough limits and colimits. So, we
work with the model category M(T ) of all modules but consider also the
full subcategory P(T ) of perfect objects. A module in M(T ) is perfect if
it belongs to the smallest subcategory of Ho(M(T )) containing the quasi-
representable modules (see [23, 3.6] for a definition) and which is stable by
retracts, homotopy pushouts, and homotopy pullbacks [22]. Perfect objects
coincide with the compact objects in the triangulated category Ho(M(T )).
(Recall that if T is a triangulated category with arbitrary coproducts, then
an object x of T is compact if any map x → qiyi factors through a finite
coproduct [11, 6.5].)

Since HoM(T ) is a triangulated category, it has a shift functor; we de-
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note maps from x to the ith shift of y in this category by [x, y[i]] or by
Exti(x, y). Notice that for perfect modules, these Ext groups are all finite.

Theorem 5.2. [22, 1.1, 5.1] Let T be a locally finite dg category over a finite
field Fq. Define DH(T ) to be the Q-vector space with basis the characteris-
tic functions χx, where x runs through the set of weak equivalence classes of
perfect objects inM(T ). Then there exists an associative and unital product

µ : DH(T )⊗DH(T ) → DH(T )

such that
µ(χx, χy) =

∑
z

gz
x,yχz

and these derived Hall numbers gz
x,y are given by the formula

gz
x,y =

|[x, z]y|·
∏

i>0 |Ext−i(x, z)|(−1)i

|Aut(x)|·∏i>0 |Ext−i(x, x)|(−1)i ,

where [x, z]y denotes the subset of [x, z] of morphisms f : x → z whose cone
is isomorphic to y in Ho(M(T )).

6 More general derived Hall algebras
In this section, we establish the existence of derived Hall algebras for suf-
ficiently finitary stable complete Segal spaces. Our strategy follows that of
Toën, and some proofs of his continue to hold without change. However,
without the restrictions of a model structure, some of the proofs are greatly
simplified.

Throughout this section, suppose that W is a pointed stable complete
Segal space, so that Ho(W ) is a triangulated category with a zero object. As
in the previous section, we define for any objects x, y in W

Exti(x, y) = [x, y[i]]

where the outside brackets denote maps in Ho(W ) and the inside brackets
denote the shift functor giving the triangulated structure of Ho(W ).
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Definition 6.1. A stable complete Segal space W is finitary if in Ho(W ) we
have that Exti(x, y) is finite for all pairs of objects (x, y) and all values of i,
and zero for sufficiently large values of i.

We assume for the rest of the paper that all our stable complete Segal
spaces are finitary.

Since the model category CSS is cartesian closed, the simplicial space
W∆[1] is also a complete Segal space. Notice that W itself is isomorphic to
the mapping object W∆[0], and so we can use the two maps ∆[0] → ∆[1]
to define “source” and “target” maps s, t : W∆[1] → W . Since an object of
W∆[1] is a 0-simplex u ∈ mapW (x, y) for some x and y objects of W , these
two maps can be defined by s(u) = x and t(u) = y. We also have a “cone”
map c : W∆[1] → W given by c(u) = yqx 0, where such a cone object exists
because we have required that W be stable; in the homotopy category, it is
just the completion of u : x → y to a distingushed triangle.

Using these maps, we can put together the diagram

W∆[1] t //

s×c

² ²

W

W ×W

analogous to Toën’s diagram of model categories [22, §4].
Because we are no longer working with model categories, a number of

aspects of this diagram have been simplified, compared to the analogous
one in Toën’s paper. Because the objects are complete Segal spaces, rather
than model categories, we no longer have to be concerned with whether
these maps are left Quillen functors. Furthermore, we are able to impose
conditions on W from the beginning so that its objects are already “perfect”
in that all the necessary finiteness conditions are already satisfied.

A word on this point would perhaps be helpful here. It is likely that a
stable complete Segal space that would arise in nature would not have all
pairs of objects x and y satisfying the necessary finiteness conditions on
Exti(x, y). However, we can show that restricting to the sub-complete Segal
space with objects satisfying such conditions is still a complete Segal space.
Explicitly, given a complete Segal space W , consider the doubly constant
simplicial space W0,0, and the sub-simplicial space Z0,0 given by the perfect
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objects of W . Then define Z to be the simplicial spaces given by the pullback

Z //

² ²

W

²²
Z0,0

// W0,0.

Since W0,0 is discrete, the map W → W0,0 is a fibration in CSS, from which
it follows that the map Z → Z0,0 is a fibration also. Thus, Z is a fibrant
simplicial space in CSS, or a complete Segal space. Furthermore, since
compact objects of a triangulated category form a triangulated subcategory
[11, 6.5], Ho(Z) is triangulated and Z is stable. Thus, we can restrict to
the appropriate setting without losing the structure that we need, and so we
always assume that, given an arbitrary stable complete Segal space W , we
have implicitly restricted to Z.

Now, as Toën does, we restrict to the sub-complete Segal spaces of W
and W∆[1], whose mapping spaces are sent to isomorphisms in the homotopy
category; we call these spaces wW and wW∆[1], respectively. Taking the
nerve of the homotopy categories, we obtain a diagram

nerve(Ho(wW∆[1]))
t //

s×c

² ²

nerve(Ho(wW ))

nerve(Ho(wW ))× nerve(Ho(wW )).

For simplicity of notation, we write this diagram

X(1) t //

s×c
² ²

X(0)

X(0) ×X(0).

To get an algebra with a well-defined multiplication, we need to show
that this diagram of spaces satisfies some properties.

Definition 6.2. [22, 2.1] An object X in the homotopy category of spaces is
locally finite if it satisfies the conditions

1. for any base point x ∈ X and i > 0, the group πi(X, x) is finite, and
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2. for any base point x ∈ X , there is some n, depending on x, such that
πi(X, x) = 0 for all i > n.

Lemma 6.3. The spaces X(0) and X(1) are locally finite.

Proof. For any x ∈ π0(X
(0)), we use the facts that

π1(X
(0)) ⊆ Ext0(x, x) = [x, x]

and
πi(X

(0)) = Ext1−i(x, x)

for i > 1 [22, 3.2]. Our assumption on W guarantees that these groups are
all finite, and that they are zero for sufficiently large i. Thus, X(0) is locally
finite.

To show that X(1) = nerve(Ho(wW∆[1])) is locally finite, notice that this
space is weakly equivalent to

nerve(Ho(wW ))×∆[1] = X(0) ×∆[1]

which is also locally finite.

Definition 6.4. [22, 2.5] A morphism f : X → Y of locally finite homotopy
types is proper if, for any y ∈ π0(Y ), there are only finitely many x ∈ π0(X)
with f(x) = y.

Notice that f is proper if and only if, for any y ∈ π0(Y ), the set π0(Fy)
is finite. The proof of the following lemma follows just as it does in Toën’s
paper [22, 3.2].

Lemma 6.5. The map s× c is proper.

With these properties established for our diagram, we can use it to define
an algebra analogous to that of Toën [22, §4].

Definition 6.6. [22, 2.2] Let X be a space. The Q-vector space of rational
functions with finite support on X is the Q-vector space of functions on the
set π0(X) with values in Q and finite support, and is denoted by Qc(X).

Definition 6.7. As a vector space, the derived Hall algebra DH(W ) of W
is given by Qc(X

(0)).
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Given a morphism f : X → Y of locally finite spaces, we define a push-
forward morphism f! : Qc(X) → Qc(Y ) as follows. Given y ∈ π0(Y ), let
Fy denote the homotopy fiber of f over y, and let i : Fy → X be the natural
map. Using the long exact sequences of homotopy groups, one can see that
for any z ∈ π0(Fy), the group πi(Fy, z) is finite for all i > 0 and zero for
sufficiently large i. Furthermore, the fibers of the map π0(Fy) → π0(X) are
all finite. Then, for any α ∈ Qc(X) and y ∈ π0(Y ), define the function f! by

f!(α)(y) =
∑

z∈π0(Fy)

α(i(z))·
∏
i>0

|πi(Fy, z)|(−1)i

.

The assumption that α have finite support guarantees that f! is well-defined.
If f : X → Y is a proper map of locally finite spaces, then we have

a well-defined pullback f ∗ : Qc(Y ) → Qc(X) defined in the usual way as
f ∗(α)(x) = α(f(x)) for any α ∈ Qc(Y ) and x ∈ π0(X). The requirement
that f be proper guarantees that f ∗(α) has finite support, so that f ∗ is in fact
well-defined.

The following lemma is key for establishing associativity.

Lemma 6.8. [22, 2.6] Consider a homotopy pullback diagram of locally
finite spaces

X ′ v //

g

² ²

X

f

²²
Y ′ u // Y

with u proper. Then the map v is also proper, and

u∗ ◦ f! = g! ◦ v∗ : Qc(X) → Qc(Y
′).

To define the multiplication on DH(W ), first notice that we have an
isomorphism

DH(W )⊗DH(W ) → Qc(X
(0) ×X(0))

given by
(f, g) 7→ ((x, y) 7→ f(x)· g(x)).

Then we can consider the map

µ = t! ◦ (s× c)∗ : DH(W )⊗DH(W ) → DH(W ).

BERGNER - DERIVED HALL ALGEBRAS...

- 47 -



The algebra structure on DH(W ) is then given by

x· y =
∑

z

gz
x,yz

where
gz

x,y = µ(χx, χy)(z)

where χx denotes the characteristic function of x.

Proposition 6.9. With this multiplication, DH(W ) is a unital algebra.

Our proof essentially follows the one given by Toën [22, 4.1], with the
necessary changes being made as we translate to the complete Segal space
setting.

Proof. Given any object x in W , let χx denote its characteristic function; in
particular, consider χ0, the characteristic function of the zero object of W .

Notice that the set π0(X
(1)) is isomorphic to the set of isomorphism

classes of objects in Ho(wW∆[1]). Thus, fix some 0-simplex u : x → y
of mapW (x, y), regarded as an object of Ho(wW∆[1]). Then

(s× c)∗(u) =

{
1 if y ∼= 0 and x ∼= z in Ho(wW )

0 otherwise.

In other words, (s × c)∗(χ0, χx) is the characteristic function of the subset
of π0(X

(1)) consisting of maps 0 → z with z ∼= x in Ho(wW ).
Define X to be the simplicial set contained in X(1) consisting of all the

support of (s × c)∗(χ0, χx), and notice that X is a connected simplicial set.
Then using the definition of the product map µ, we get

µ(χ0, χx)(x) =
∏
i>0

(
|πi(X)|(−1)i· |πi(X

(0), x)|(−1)i+1
)

.

Notice in particular that whenever y 6= x,

µ(χ0, χx)(y) = 0.

Restricting the target map t : W∆[1] → W to the maps y → z such
that y ∼= 0 in Ho(wW ), we see that on such objects t is fully faithful, up
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to homotopy. Thus, the induced map t : X → X(0) induces isomorphisms
t∗ : πi(X) → πi(X

(0)) for all i > 0, and the simplicial set X can be identified
with a connected component of X(0). Hence, µ(χ0, χx)(x) = 1, so that
µ(χ0, χx) = χx.

Changing the order and following the same argument, one can see that
we also have µ(χx, χ0) = χx, thus proving that χ0 is a unit element for
DH(W ).

Theorem 6.10. With this multiplication, DH(W ) is an associative algebra.

Proof. Consider the complete Segal space W∆[2], and, as with W∆[1] and
W , denote by X(2) the simplicial set nerve(Ho(wW∆[2])). Notice that there
are three natural maps

f, g, h : W∆[2] → W∆[1]

induced by the three inclusion maps ∆[1] → ∆[2], where f sends x → y →
z to x → y, g sends it to y → z, and h sends it to x → z. There is also a
cone map

k : W∆[2] → W∆[1]

given by
(x → y → z) 7→ (y qx 0 → z qx 0),

with the pushouts defined as before in a stable complete Segal space, and a
map between the two given by the universal property. This map may not be
unique, but all such maps form a weakly contractible space.

Using these maps, we get two diagrams:

X(2)
g //

f×(c◦k)
² ²

s×c
² ²

X(0)

X(1) ×X(0)
t×id //

X(1) t //

(s×c)×id
²²

X(0) ×X(0)

(X(0) ×X(0))×X(0)
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and
X(2) h //

(s◦f)×k
² ²

X(1) t //

s×c
² ²

X(0) ×X(0)

X(0) × (X(0) ×X(0))

which both give the same result taking composites across the top and down
the left side:

X(2) //

X(0)

X(0) ×X(1)
id×t //

² ²

X(0)

X(0) ×X(0) ×X(0).

Thus, to prove associativity of DH(W ), it suffices by Lemma 6.8 to
prove that the square in each of these diagrams is homotopy cartesian. In
fact, it suffices to show that the diagrams

X(2)
g //

X(1) t //

k
² ²

id×(s×c)
²²

f

² ²

X(1)

s

² ²
X(0)

X(2) h // X(1)

c

² ²
X(1) t // X(0)

are homotopy cartesian. For the first diagram, this fact follows immediately
from the fact that the original diagram

W∆[2]
g //

f

² ²

W∆[1]

s

² ²
W∆[1] t // W

is a homotopy pullback diagram of complete Segal spaces. To show that the
second diagram is homotopy cartesian requires more effort.

In this second diagram, let Z denote the homotopy pullback W∆[1] ×h
W

W∆[1]. Using Lemma 4.2, it suffices to prove that Ho(W∆[2]) → Ho(Z) is
fully faithful and essentially surjective. We begin with the argument for the
latter. Suppose we have an object (x → z, w → z qx 0) in Ho(Z); we want
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to find an object y of W such that x → y → z is an object of Ho(W∆[2]) with
yqx 0 = w. Such a y can be found by applying the axioms for a triangulated
category to the diagram

x / /___

=

² ²

y / /____

²² Â
Â
Â w //

² ²

y′ //
² ²

z

² ²
x′ //

²²

z

²²

²²

x[1]

=

² ²
x // z // z qx 0 // x[1].

To prove that the functor is fully faithful, we need to prove that, for any
objects x → y → z and x′ → y′ → z′ in Ho(W∆[2]), the map

HomHo(W∆[2])(x → y → z, x′ → y′ → z′) →
HomHo(Z)((x → z, y qx 0 → z qx 0), (x′ → z′, y′ qx′ 0 → z′ qx′ 0))

is an isomorphism. Elements of the set on the left-hand side are triples of
maps making the diagram

x // y //

x′ // z′

commute, where elements of the set on the right-hand side are 4-tuples of
maps making the pair of diagrams

x //

² ²
z′,

y qx 0 // z qx 0

²²
y′ qx′ 0 // z′ qx′ 0

commute. Given an element of the right-hand set, we can use the axioms
for a triangulated category to find a map y → y′ compatible with the maps
x → x′ and z → z′ to obtain an element of the left-hand set. Thus, the map
is surjective. A similar argument can be used to prove that it is injective.

The proof of the following formula is essentially the same as the one
given by Toën [22, 5.1]; we give it here with the necessary changes to our
situation.
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Proposition 6.11. The derived Hall numbers are given by

gz
x,y =

|[x, z]y|·
∏

i>0 |Ext−i(x, z)|(−1)i

|Aut(x)|·∏i>0 |Ext−i(x, x)|(−1)i ,

where [x, z]y denotes the subset of [x, z] of morphisms f : x → z whose cone
is isomorphic to y in Ho(W ).

Proof. Given the target map t : X(1) → X(0) and an object z of Ho(W ),
let F z denote the homotopy fiber of t over z. Using the definitions of X(1)

and X(0), notice that F z is weakly equivalent to the nerve of the category
equiv(W ↓ z) whose objects are maps from arbitrary objects of W to z,
and whose morphisms are the homotopy equivalences of W , making the
resulting triangular diagram commute.

Given two other objects x and y of W , let F z
x,y denote the nerve of the

full subcategory of equiv(W ↓ z) whose objects are the maps u : x′ → z,
where x′ ' x, and whose cofiber is equivalent to y. Notice that F z

x,y is
locally finite, since both X(1) and X(0) are; moreover, π0(F

z
x,y) is finite, and

it is isomorphic to [x, z]y/Aut(x).
Using F z

x,y, we can reformulate our definition of the derived Hall number
gz

x,y as

gz
x,y =

∑

(u : x′→y)∈π0(F z
x,y)

∏
i>0

|πi(F
z
x,y, u)|(−1)i

.

We first prove that
∏
i>0

|πi(F
z
x,y, u)|(−1)i

= |Aut(f/z)|−1·
∏
i>0

|Ext−i(x, z)|(−1)i· |Ext−i(x, x)|(−1)i+1

,

where Aut(f/z) denotes the stabilizer of a map f ∈ [x, z]y under the action
of Aut(x).

Notice that we get a homotopy cartesian square of mapping spaces

mapW↓z(x, x) //

² ²

mapW (x, x)

² ²
∗ // mapW (x, z)
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where the bottom horizontal map specifies the map u : x → z. Thus, we have
a fibration of simplicial sets, and hence a long exact sequence of homotopy
groups

· · · → π2(map(x, z)) → π1(mapW↓z(x, x)) → π1(mapW (x, x)) → π1(mapW (x, z))

→ π0(mapW↓z(x, x)) → π0(mapW (x, x)) → π0(mapW (x, z)) → 0.

Composing the last two maps between nontrivial sets, we get a surjection

π0(mapW↓z(x, x)) → Aut(f/z).

Furthermore, notice that πi(mapW (x, z)) = [x, z[−i]] = Ext−i(x, z)
and, similarly, that πi(mapW (x, x)) = Ext−i(x, x). Finally, observe that
πi(mapW↓z(x, x)) is weakly equivalent to πi+1(nerve(equiv(W ↓ z)), u),
which, as we have noted previously, is equivalent to πi+1(F

z
x,y, u). Thus, we

have a long exact sequence

· · · → Ext−2(x, z) → π2(F
z
x,y, u) → Ext−1(x, x) → Ext−1(x, z)

→ π1(F
z
z,y, u) → Aut(f/z) → 0.

Using properties of long exact sequences, we obtain the equation given
above.

To prove the statement of the proposition, we use the fact that, since
Aut(x) is a finite group and [x, z]y is a finite set, we get that

|[x, z]y|
|Aut(x)| =

∑

f∈([x,z]y/Aut(x))

|Aut(f/x)|.

The formula follows.
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