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Résumé. Dans le contexte des catégories régulières de Mal’tsev et protomo-
dulaires, nous développons les conséquences d’une caractérisation, acquise
dans le simple cadre des catégories unitales sans condition de colimites, du
fait que le sup de deux sous-objets qui commutent est leur commun codo-
maine. Nous retrouvons ainsi, mais avec des preuves conceptuelles, quelques
résultats bien connus de la catégorie Gp des groupes.

Abstract. We develop, in the contexts of regular Mal’tsev and protomodu-
lar categories, the consequences of a characterization, obtained in a mere
unital category without any cocompleteness assumption, of the fact that the
supremum of two commuting subobjects is their common codomain. In this
way we recover, with conceptual proofs, some well-known results in the cat-
egory Gp of groups.
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Introduction
This work is devoted to unfold as far as possible the consequences of the
mere observation according to which, in the unital setting, the construc-
tion of the supremum of two subobjects does not need on the ground cat-
egory more cocompleteness than the regular [1] assumption provided that
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these two subobjects commute (Lemma 2.1). From that, in a pointed regular
Mal’tsev setting, such a pair of subobjects is necessarily a pair of normal
subobjects, and, in the homological setting, the supremum of two commut-
ing normal subobjects is necessarily normal. We are then able to set in the
homological setting a result already noticed in the much stricter context of
semi-abelian categories by T. Everaert and M. Gran (and published in [14]),
namely that, given two equivalence relations pR, S q on an object X such that
the supremum of their normalizations is 1X, they centralize each other if and
only if their normalizations commute.

From that, we can derive two non-pointed applications:
1) in a regular Mal’tsev category, the centralizers of equivalence relations are
stable under product provided that their base objects have global supports
2) in a regular protomodular category, the change of base functors f � :
PtYCÑ PtXC with respect to the fibration of points, reflect the commutation
of normal subobjects if and only if they reflect the mutual centralization of
equivalence relations.
This last point extends to the non-pointed context some aspects of results
obtained in different pointed situations in [9] and [19].

1 Direct image of a normal monomorphism
In this article any category will be assumed to be finitely complete. The
aim of this section is to show that, in a regular Mal’tsev category, the direct
image of a normal monomorphism along a regular epimorphism is still a
normal monomorphism. Let us begin by the following observation:

Lemma 1.1. Given any commutative right hand side cube in E:

Rrts

Rpcq
�'

Rpaq

�	

,2
,2
T t ,2

c
�#

a

��

T 1

a1

��

�$
c1

�$
Rrys

Rpbq

�	

,2
,2
Y

b

��

y
,2 Y 1

b1

��

Rrxs

Rpdq �'

,2
,2
X

d �#

x
,2 X1

d1

�$
Rrzs ,2

,2
Z z

,2 Z1
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where the face containing a and b is a pullback and the map c1 is a mono-
morphism, the left hand side square given by the extensions to the kernel
equivalence relations of the central quadrangles is a pullback.

Proof. We denote by Rr f s the kernel equivalence relation of the morphism
f . Now consider the following pullback of equivalence relations:

R γ
�)

α

~�
Rrys

Rpbq

��
Rrxs

Rpdq
�(
Rrzs

It produces an equivalence relation RÑ T on the object T and consequently
a monomorphism of equivalence relations j : Rrts� R. On the other hand
RÑ T is coequalized by the map t since it is coequalized by y.c � c1.t where
c1 is a monomorphism. Accordingly we have an inclusion j1 : R � Rrts in
the other direction. �

Recall that a Mal’tsev category is a category in which any reflexive relation
is an equivalence relation, see [10], [11].

Proposition 1.1. Suppose C is a regular Mal’tsev category. Consider any
cube satisfying the previous conditions:

T t ,2,2
c
�$

a

��

T 1

a1

�


�% c1

�%
Y

b

��

y
,2,2 Y 1

b1

�


X

d �$
x
,2,2

CK

X1
�% d1

�%

BJ

Z z
,2,2

CK

Z1

BJ

and which, in addition, is such that x, y, z, t are regular epimorphisms and
the maps a, b, a1, b1 are split epimorphisms such that all the squares are
morphisms of split epimorphisms. Then the square with pd1, c1q is a pullback
of split epimorphisms.
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Proof. Since c1 is a monomorphism and pd1, c1q is a morphism of split epi-
morphisms, the map d1 is a monomorphism as well. Now let Θ be the vertex
of the pullback of b1 along d1 and τ : T Ñ Θ the induced factorization.
According to the previous lemma we have Rrts� Rrτs:

Rrts
p1
,2

p0 ,2

�
��

Tlr t ,2,2 T 1
��

j
��

Rrτs
p1
,2

p0 ,2
Tlr

τ
,2 Θ

and the induced factorization j is a monomorphism. Since C is a regular
Mal’tsev category and both T and Θ are the vertices of pullbacks of split epi-
morphisms, the factorization τ is a regular epimorphism (see Lemma 2.5.7
in [2]), since so are x, y and z; consequently the map j is also a regular
epimorphism, and thus an isomorphism. �

Given a finitely complete category E, recall that PtpEq denotes the cat-
egory whose objects are the split epimorphisms in E and whose arrows
are the commuting squares between such split epimorphisms, and that ¶E :
PtpEqÑ E denotes the functor associating its codomain with any split epi-
morphism: it is the fibration of points. The ¶-cartesian maps are nothing but
the pullbacks of split epimorphisms. Recall that a category C is protomodu-
lar [3] when any change of base functor with respect to this fibration reflects
isomorphisms.

Corollary 1.1. Let C be a regular Mal’tsev category. Then, in the category
PtC, the images along a regular epimorphism of a ¶-cartesian monomorph-
ism is a ¶-cartesian monomorphism. In the category GrdC, the images along
a regular epimorphic functor of a monomorphic discrete fibration is a mono-
morphic discrete fibration.

Proof. This comess from the fact that in PtC the regular epimorphisms are
levelwise, and in GrdC as well, see [13]. �

Recall from [3] the following:
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Definition 1.1. A monomorphism u in E is said to be normal to an equiva-
lence relation R when: i) we have: u�1pRq� ∇U the indiscrete relation on U
ii) the induced internal functor is a discrete fibration:

U � U ,2 ũ ,2

p1
��

p0
��

R
d1
��

d0
��

U ,2
u
,2

LR

X

LR

In the set theoretical context, when U is not empty, it is equivalent to
saying that U is an equivalence class of R. Clearly, in this context, a mono-
morphism can be normal to several equivalence relations. It is also the case
in a Mal’tsev setting. In a protomodular category a monomorphism is nor-
mal to at most one equivalence relation, see [2]; any kernel monomorphism
is normal, but a normal monomorphism in this algebraic sense is not neces-
sarily a kernel one.

Corollary 1.2. Let C be a regular Mal’tsev category. Let q : X � Y be
a regular epimorphism, R an equivalence relation on X and u : U � X
a monomorphism which is normal to the equivalence relation R. Then the
direct image v : V � Y of u along q is normal to the direct image qpRq of R
along q.

Proof. Consider the following diagram:

U � U
qu�qu ,2,2

�' ũ

�'

��
��

V � V

�	
�	

 ) ṽ
 )

v�v ,2 Y � Y

R

~�
~�

qR
,2,2 qpRq

|�
|�

5? pd0,d1q

5?

U �)
u �)

qu
,2,2

?H

V �(
v
�(

?I

X q
,2,2

>H

Y

<F

Since qu � qu is a regular epimorphism and pd0, d1q a monomorphism, there
is a factorization ṽ which shows that v�1pqpRqq� ∇V . The previous proposi-
tion shows that pv, ṽq is underlying a discrete fibration since so is pu, ũq. �

This corollary shows that a weaker version of the Hofmann axiom [15] fol-
lowing which the kernel monomorphisms are stable under direct image is
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already valid in the non-pointed context and under the mild assumption that
the base category is a regular Mal’tsev one. Finally we get:

Proposition 1.2. Let C be a regular Mal’tsev category. Then, in the cat-
egory PtC, the direct image along a regular epimorphism of a ¶-cartesian
equivalence relation is a ¶-cartesian equivalence relation.

Proof. The regular epimorphisms in PtC are levelwise. Consider the follow-
ing diagram in PtC:



�� ��

,2,2 

�� ��
 ,2,2

LR



LR

where the vertical parts are equivalence relations. Suppose the left hand side
one is ¶-cartesian which means that any of its maps is ¶-cartesian. This is
the case in particular for the vertical monomorphism. According to Corol-
lary 1.1 the vertical monomorphism on the right hand side is ¶-cartesian as
well. The fact that the whole relation is ¶-cartesian is a consequence of the
following lemma. �

Lemma 1.2. Suppose C is a Mal’tsev category. Then an equivalence rela-
tion in PtC is ¶-cartesian if and only if its subdiagonal is ¶-cartesian. Any
equivalence relation contained in ¶-cartesian one is itself ¶-cartesian.

Proof. Let be given any equivalence relation in PtC such that the right hand
side square is a pullback:

RX

R f
��

dX
1

,2

dX
0 ,2

X
f
��

lr RX

R f
��

X
f
��

sX
0lr

RY
dY

1

,2

dY
0 ,2

Rs

LR

Y

s

LR

lr RY

Rs

LR

Y

s

LR

sY
0

lr

The pullback of R f along sY
0 is nothing but the equivalence relation RXXRr f s.

Accordingly, saying that the right hand side square is a pullback is equivalent
to saying that the intersection RX X Rr f s is the discrete equivalence relation
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∆X. Now consider the following diagram where the lower square is a pull-
back and φ is the natural factorization:

RX

R f

$,

dX
0

�%φ
��

P
π f
��

πX ,2
X

f
��

lr

Ze

RY
dY

0 ,2

Rs

3:

σ

LR

Y

s

LR

lr

Thanks to the Yoneda embedding, it is easy to check that, in any kind of
category, RX X Rr f s� ∆X implies that φ is a monomorphism. When, in
addition, the category C is a Mal’tsev category, the factorization φ, being
involved in a pullback of split epimorphisms, is necessarily a strong epi-
morphism. Accordingly φ is an isomorphism and the leg d0 of the relation R
in PtC is ¶-cartesian. Clearly the same holds for the leg d1.

Consider the following inclusion of equivalence relations in PtC:

��

��

,2
,2
lr

 ,2
,2
lr

Suppose the lower one is ¶-cartesian. Its subdiagonal is ¶-cartesian. Since
the vertical left hand side map is a monomorphism, the leftward square is a
pullback, so that the upper subdiagonal is ¶-cartesian, and so is the whole
upper equivalence relation. �

2 Commutation and supremum
In this section, we shall show that, in a homological category, given two
equivalence relations R and S on an object X, if the supremum of their nor-
malizations is 1X, then R and S centralize each other as soon as u and v
commute in the sense of [16] and [4]. Let us begin by the following:

Lemma 2.1. Let C be a unital category, and pu : U � X, v : U � Xq a
pair of commuting subobjects with cooperator φ : U � V Ñ X. Then 1X is
the supremum of the pair pu, vq if and only if φ is an extremal epimorphism.
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Suppose, in addition, that C is regular; the supremum of a commuting pair
pu, vq of monomorphisms is the image of their cooperator φ.

Proof. Suppose we have 1X � u _ v and a factorization φ � j.ψ with j :
J � X a monomorphism. Then we have factorizations ψ.ιU : U � J and
ψ.ιV : V � J; and j is an isomorphism. Accordingly φ is an extremal
epimorphism. Conversely suppose φ is an extremal epimorphism. and j :
J � X a monomorphism with factorizations u1 : U Ñ J, v1 : V Ñ J. Since
u and v commute and j is a monomorphism, so do u1 and v1. Whence a map
ψ : U � V Ñ J such that φ � j.ψ. Since φ is an extremal epimorphism, the
monomorphism j is an isomorphism.

Suppose in addition that C is regular. Let pu, vq be a pair of commuting
subobjects with cooperator φ : U�V Ñ X, and φ � j.ψ its canonical regular
decomposition. Now consider the following diagram:

V ,2 v1

,2

��

J1��

j1

��

U ιU
,2

u1

07

U � V
ψ ����

3;

J ,2
j

,2

k

9D

X

where J1 is a subobject containing U and V . Since j1 is a monomorphism,
and u and v commute, so do u1 and v1; whence a cooperator ψ1 : U � V Ñ J1

such that j1.ψ1 � φ � ψ. j. Now, since ψ is a regular epimorphism and j1 a
monomorphism, we get the desired factorization k. �

From that, we can extend, rather unexpectedly, to any pointed regular
Mal’tsev setting, a well known result of the category Gp of groups:

Proposition 2.1. Let C be a pointed regular Mal’tsev category, and pu :
U � X,v : V � Xq a pair of commuting subobjects such that their su-
premum is 1X. Then u and v are normal to two equivalence relations on X
which centralize each other.

Proof. A pointed Mal’tsev category is unital. According to the previous
lemma the cooperator φ : U � Y Ñ X is a regular epimorphism. The
inclusion ιU : U � U � V is normal to ∇U � V , while ιV : V � U � V
is normal to U � ∇V . According to Corollary 1.2, the monomorphism u is
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normal to the direct image φp∇U�Vqwhile the monomorphism v is normal to
the direct image φpU�∇Vq. Now since we have p∇U�VqXp U�∇Vq� ∆U�V ,
the equivalence relations ∇U �V and U�∇V centralize each other, and since
φ is a regular epimorphism, it is the case for their direct images along φ, see
[6]. �

In a pointed category, any equivalence relation R on X produces a normal

subobject called its normalization, just take: KerdR
0

k
� R

dR
1Ñ X.

Corollary 2.1. Let C be a homological (i.e. pointed, regular and protomo-
dular) category. Let R and S be two equivalence relations on X. Suppose
that their normalizations u : U � X and v : V � X are such that 1X is
their supremum. Then R and S centralize each other if and only if u and v
commute.

Proof. We know that the normalizations of two equivalence relations which
centralize each other do commute. Conversely suppose that the normaliza-
tions u and v of R and S do commute [7]. If, moreover, 1X is their supremum,
then, according to the previous proposition and the fact that any protomodu-
lar category is a Mal’tsev one, the unique R and S of which they are the
normalizations centralize each other. �

This last point was already observed in the stricter context of semi-
abelian categories, see Proposition 4.6 in [14].

3 Supremum of two normal monomorphisms
In this section, we shall show that, in a homological category, the supremum
of two normal subobjects which commute is necessarily normal. Let us start
with the following:

Lemma 3.1. Let us consider, in a category E, any left hand side diagram
where any commutative square is a pullback and the map u is a monomorph-
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ism; then the right hand side square is a pullback:

U ,2 u ,2

a

��

b
�%

Y
ā

��

b̄
�$

U ,2 u ,2

pa,bq

��

Y

pā,b̄q

��

B
β

,2 B̄

A α
,2 Ā A � B

α�β
,2 Ā � B̄

Accordingly the following diagram is a discrete fibration between equiva-
lence relations:

Rrpa, bqs

d0

��

d1

��

,2 Rpuq ,2 Rrpā, b̄qs

d0

��

d1

��
U ,2

u
,2

LR

Y

LR

Proof. The first assertion can be easily checked in S et. The second one is a
consequence of the fact that the right hand side square is a pullback. �

Recall that in a regular Mal’tsev category C, the supremum of a pair
pR, S q of equivalence relations on an object X is nothing but their composi-
tion R � S .

Proposition 3.1. Let C be a regular Malt’sev category. Given any pair
of monomorphic discrete fibrations between equivalence relations above a
monomorphism u as on the left hand side below:

R

dR
0

��

dR
1

��

,2 ũ ,2 S

dS
0

��

dS
1

��

R1

dR1

0

��

dR1

1

��

,2 ũ1

,2 S 1

dS 1

0

��

dS 1

1

��

R � R1

d0

��

d1

��

,2 w ,2 S � S 1

d0

��

d1

��
U ,2

u
,2

LR

Y

LR

U ,2
u

,2

LR

Y

LR

U ,2
u

,2

LR

Y

LR

the induced monomorphism between the associated suprema, on the right
hand side, is still a discrete fibration.

Proof. The category C being a regular Mal’tsev one, the supremum of the
pair pR, R̄q is R � R̄ which is given by the following construction where the
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upper quadrangle on the left hand side is a pullback and the pair pd0, d1q on
the right hand side is jointly monic:

T
δ0

z�
δ1

�$

T

dR
0 .δ0

z�

dR̄
1 .δ1

�$

q ����

R
dR

0

z�
dR

1

�$

R̄
dR̄

0

z�
dR̄

1

�$

R � R̄

d0s{ d1 #+U U U U U

Accordingly, when we have discrete fibrations between equivalence rela-
tions, the following left hand side diagram is such that any of the commut-
ative squares is a pullback, where Σ is defined in the same way as T with
respect to S � S 1:

T ,2 ǔ ,2

dR
0 .δ0

��

dR̄
1 .δ1

�&

Σ

dS
0 .δ0

��

dS̄
1 .δ1

�$

T ,2 ǔ ,2

��

qR�R̄
"*"*

Σ

��

qS �S̄
!)!)

U ,2
u

,2 Y R � R̄t}
t}

,2
w

,2 S � S̄u}
u}

U ,2
u

,2 Y U � U ,2
u�u

,2 Y � Y

So, according to the previous lemma, the induced vertical rectangle on the
right hand side is a pullback. Now, the category being regular, the right hand
side upper quadrangle is a pullback, and the factorization w is necessarily a
monomorphism. Finally, since the following rectangle is also a pullback, the
lower quadrangle is a pullback as well:

T ,2 ǔ ,2

dR
0 .δ0

��

qR�R̄
�(�(

Σ

dS
0 .δ0

��

qS �S̄
�'�'

R � R̄

d0v�

,2
w

,2 S � S̄

d0w�
U ,2

u
,2 Y

which means that the morphism of equivalence relations R � R̄� S � S̄ above
u is a discrete fibration. �

Theorem 3.1. Let C be a homological category. Suppose that two normal
subobjects u and v commute. Then their surpremum (which exists by Lemma
2.1) is a normal monomorphism.
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Proof. Let φ : U � V Ñ X be the cooperator of the commuting pair; their
supremum is given by the image j : J � X of φ. Let R and S be the
equivalence relations to which u and v are normal. The inverse image of
the normal monomorphism u along j is ψ.ιU ; it is normal to R1 � j�1pRq
which is equal to the direct image ψp∇U � Vq by Lemma 2.1, since C is
protomodular. Similarly S 1 � j�1pS q is ψpU � ∇Vq. On the other hand the
supremum of ∇U�V and U�∇V is the indiscrete equivalence relation ∇U�V ,
and the image of the equivalence relations along the regular epimorphism ψ
preserves the supremum. Then the supremum of R1 and S 1 is the indiscrete
equivalence relation ∇J. Now consider the diagram:

U � U

p0

��

p1

��

,2 ,2 R1

dR1

0

��

dR1

1

��

,2 j̃ ,2 R

dR
0

��

dR
1

��
U ,2

ψ.ιU
,2

LR

J

LR

,2
j
,2 X

LR

The category C being protomodular, the right hand side part of the diagram
is a discrete fibration, since so are the left hand part and the whole diagram.
The same holds for S and S 1 � j�1pS q. Now, according to Proposition 3.1
the following diagram is a discrete fibration:

J � J � R1 � S 1

p0

��

p1

��

,2 ,2 R � S

d0

��

d1

��
J ,2

j
,2

LR

X

LR

which means that the supremum j of u and v is normal to R � S . �

4 Applications

4.1 Action distinctive categories
Here we shall investigate the product of centralizers of equivalence relations
in the regular Mal’tsev setting. Recall, from [5], the following:
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Definition 4.1. A Mal’tsev category C is said to be action distinctive when,
in the category PtC, any object p f , sq admits a largest ¶-cartesian equivalence
relation on it, called its action distinctive equivalence relation.

Given any split epimorphism p f , sq : X Õ Y in C, we shall denote its
associated action distinctive equivalence relation Dr f , ss in PtC in the fol-
lowing way in C:

DXr f , ss
D f
��

δX
1

,2

δX
0 ,2

X
f
��

lr

DYr f , ss
δY

1

,2

δY
0 ,2

Ds

LR

Y

s

LR

lr

A Mal’tsev category C is action distinctive if and only if any equivalence
relation pd0, d1q : R Ñ X admits a centralizer [5] which is nothing but the
ground equivalence relation of the action distinctive equivalence relation of
the split epimorphism pd0, s0q : RÕ X:

DRrd0, s0s

Dd0
��

δR
1

,2

δR
0 ,2

R

d0
��

d1

nu

lr

DXrd0, s0s
δX

1

,2

δX
0 ,2

Ds0

LR

X

s0

LR

lr

Examples. From the previous observation, it is clear that the categories Gp
of groups is action distinctive; starting with any split epimorphism p f , sq :
X Õ Y , the equivalence relation DYr f , ss is nothing but the kernel equiva-
lence relation of its associated canonical action φ : Y Ñ AutK, where K is
the kernel of the homomorphism f . The categories R-Lie of Lie R-algebras,
Rg of non-commutative rings, Rg� of non-commutative rings with unit and
the category TopGp of topological groups are action distinctive as well. It
is clear also that this notion is stable under coslicing and easy to show that
it is stable under slicing (given an equivalence relation R on the object h of
C{T , its centralizer in C{T is ZrRsX Rrhs). Accordingly the notion of action
distinctiveness is stable under the passage to the fibres PtYC.

Proposition 4.1. Let C be a regular Mal’tsev category which is action dis-
tinctive. Any regular epimorphism in PtC has an extension up to the level of
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the action distinctive equivalence relations.

Proof. Consider the following diagram in PtC where py, xq is a regular epi-
morphism and R the image of Dr f , ss along it:

Dr f , ss

�� ��

,2,2 R

�� ��

,2 ,2 Dr f 1, s1s

u~
u~

p f , sq
py,xq

,2,2

LR

p f 1, s1q

LR 5>

By Proposition 1.2 the equivalence relation R is ¶-cartesian; accordingly
there is the dotted factorization. �

Theorem 4.1. Let C be a regular Mal’tsev category which is action dis-
tinctive. The action distinctive equivalence relations are stable under finite
products provided that the base objects of the split epimorphisms have global
supports. If, in addition, the category is pointed, the action distinctive equiv-
alence relations are stable under finite products without any restriction.

Proof. Given any pair p f , sq and p f 1, s1q of split epimorphisms, then the
product Dr f , ss� Dr f 1, s1s is a ¶-cartesian equivalence relation and produces
an inclusion Dr f , ss� Dr f 1, s1s� Dr f � f 1, s� s1s. Suppose the base object Y
of the split epimorphism p f , sq has a global support; its domain X has a global
support as well. If Y 1 and X1 denote respectively the codomain and the do-
main of p f 1, s1q, then the projections pY 1 : Y�Y 1 Ñ Y 1 and pX1 : X�X1 Ñ X1

are regular epimorphisms and, according to the previous proposition, we get
an extension: Dr f � f 1, s � s1sÑ Dr f 1, s1s. Similarly when Y 1 has a global
support we get an extension: Dr f � f 1, s � s1sÑ Dr f , ss. These two exten-
sions led to an inverse factorization Dr f � f 1, s� s1s� Dr f , ss� Dr f 1, s1s. �

Corollary 4.1. Let C be a regular Mal’tsev category which is action distinct-
ive. The centralizers of equivalence relations are stable under finite products
provided that the base objects of these relations have global supports. If, in
addition, the category is pointed, the centralizers of equivalence relations
are stable under finite products without any restriction.

An action distinctive category C is said to be functorially action dis-
tinctive when, in addition, there is a (unique) functorial extension of any ¶-
cartesian map up to the level of the ¶-distinctive equivalence relations. Any
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action accessible category [8] is functorially action distinctive. According to
Proposition 5.10 in [5], any functorially action distinctive Mal’tsev category
is such that any fibre PtYC is functorially action distinctive and any change
of base functor with respect to the fibration of points preserves the central-
izers of equivalence relations. Let us end this section by a result we shall
need as an illustration of the next section:

Corollary 4.2. Let C be any functorially action distinctive protomodular
category. Then any change of base functor with respect to the fibration of
points reflects the centralization of equivalence relations.

Proof. In a protomodular category the change of base functors with respect
to the fibration of points reflects the inclusion of equivalence relations since
it is the case for any left exact functor which reflects the isomorphisms. If
moreover C is functorially action distinctive, the change of base functors
preserve the centralizers; accordingly they reflect the centralization of equiv-
alence relations. �

4.2 Reflection of commutation and centralization
In the pointed Mal’tsev setting, when two equivalence relations centralize
each other [23] [22] [6], then their normalizations commute, see [7]. A poin-
ted Mal’tsev category is said to satisfy the condition (SH) when the converse
is true. The condition (SH) is satisfied in any pointed strongly protomodular
category (see Theorem 6.1 in [7]), in any action accessible category [8], [12]
and in any category of interest [20], [21]. See also [18] for other remarks.
Let us recall the following conditions introduced in [9]:

(C) any change of base functor with respect to the fibration of points re-
flects the commutation of normal subobjects;

(C̄) any change of base functor with respect to the fibration of points re-
flects the centralization of equivalence relations.

We noticed at the end of the previous section that any functorially action
distinctive protomodular category satisfies condition (C̄). It is showed in [9]
that, in a Mal’tsev category C, (C) implies (C̄) and that, when in addition the
category C is pointed, the first condition is equivalent to the condition (SH).
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It is also proved that the two conditions are stable under slicing and cosli-
cing. This section will be devoted to prove that, in the regular protomodular
setting, we have the converse, namely: (C̄) implies (C). Let us begin with the
two following lemmas:

Lemma 4.1. Let R � T be two equivalence relations on X in E. Then the
following left hand side upper diagram determines a regular epic discrete
fibration in E:

RrdT
0 sX d�1

1 pRq

d0

��
d1

��

δR
1 ,2,2 R

dR
0
��

dR
1
��

RrdT
0 sX d�1

1 pRq

d0

��
d1

��

δR
1 ,2,2 R

dR
0
��

dR
1
��

T
dT

1

,2,2

dT
0
��

LR

X

LR

T
dT

1

,2,2

dT
0
��

LR

X

LR

f
��

X

sT
0

LR

X

sT
0

LR

f
,2 Y

such that RrdT
0 sX d�1

1 pRq is an equivalence relation on the point pdT
0 , s

T
0 q in

PtXE. The equivalence relation RrdT
0 sX d�1

1 pRq is the unique one to satisfy
these two properties. Accordingly, when the equivalence relation T is effect-
ive, namely equal to some Rr f s, the equivalence RrdT

0 sX d�1
1 pRq is obtained

by the right hand side iterated pullbacks above.

Proof. The fact that RrdT
0 sX d�1

1 pRq is an equivalence relation on the point
pdT

0 , s
T
0 q in PtXE means that dT

0 coequalizes the pair pd0, d1q. By the Yoneda
Lemma, it is sufficient to check the assertion of the lemma in S et which is
straightforward. �

Lemma 4.2. Given a monomorphic discrete fibration between equivalence
relations:

S

dS
0
��

dS
1
��

,2 j̃ ,2 T

dT
0
��

dT
1
��

J ,2
j
,2

LR

X

LR
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and an equivalence relation R � T, there is a unique map ǰ:

RrdS
0 sX d�1

1 p j�1pRqq

d0

��
d1

��

,2 ǰ ,2 RrdT
0 sX d�1

1 pRq

d0

��
d1

��

δR
1 ,2,2 R

dR
0
��

dR
1
��

S

dS
0
��

,2 j̃ ,2

LR

T

dT
0
��

dT
1

,2,2

LR

X

LR

J ,2
j

,2

LR

X

LR

making the left hand side upper part a monomorphic discrete fibration be-
tween equivalence relations; namely the left hand side vertical diagram in
the fibre PtJE is the image by the change of base funtor j� : PtXEÑ PtJE of
the middle vertical diagram in the fibre PtXE.

Proof. Consider the following pullback of equivalence relations in E where
the morphisms of equivalence relations are only labelled by their underlying
maps in E:

Θ

dS
1
��

,2 j̃ ,2 RrdT
0 sX d�1

1 pRq

dT
1

��
j�1pRq ,2

j
,2 R

The equivalence relation Θ is a relation on the object S which is coequal-
ized by dS

0 since it is coequalized by dT
0 . j̃ � j.dS

0 and j is a monomorph-
ism. On the other hand, the discrete fibrations being stable under pull-
back, the morphism labelled by dS

1 is a discrete fibration since so is the
one labelled by dT

1 .Then, according to the previous lemma, we have Θ �
RrdS

0 sX d�1
1 p j�1pRqq. Moreover, since j : S � T is a discrete fibration, and

R � T , the morphism j�1pRq� R is a discrete fibration, and consequently
so is:

j̃ : Θ � RrdS
0 sX d�1

1 p j�1pRqq� RrdT
0 sX d�1

1 pRq

�

Then we get:
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Proposition 4.2. Suppose C is a homological category. Then the condition
(C̄) implies the condition (SH) (which is equivalent to the condition (C)). Ac-
cordingly, in the homological setting, the conditions (C) and (C̄) are equiva-
lent.

Proof. Suppose that pR, S q is a pair of equivalence relations on X such that
their normalizations u and v commute. Let us denote by j : J � X their
supremum. Then, according to the construction of Lemma 2.1, the factoriz-
ations u1 : U � J of u and v1 : V � J of v commute and their supremum
is 1J; according to Corollary 2.1 the equivalence relations R1 � j�1pRq and
S 1 � j�1pS q on J centralize each other. Moreover the supremum j is normal
by Theorem 1.2 via the following discrete fibration :

J � J
p0

��
p1

��

,2 j̃ ,2 R � S

d0
��

d1
��

J ,2
j

,2

LR

X

LR

Now, R and S being contained in their supremum R � S , we can apply them
Lemma 4.2 with respect to this discrete fibration. So, considering the change
of base functor j� : PtXCÑ PtJC, we have:

j�pRrdR�S
0 sX d�1

1 pRqq� RrpJ
0sX d�1

1 pR1q

On the other hand, by Lemma 4.1, RrpJ
0sX d�1

1 pR1q is nothing but the pullback
of R1 along the terminal map τJ : J Ñ 1 since the indiscrete equivalence rela-
tion∇J is effective. Accordingly since R1 and S 1 commute in C, so do RrpJ

0sX
d�1

1 pR1q� j�pRrdR�S
0 sX d�1

1 pRqq and RrpJ
0sX d�1

1 pS 1q� j�pRrdR�S
0 sX d�1

1 pS qq
in the fibre PtJC. Now since the category C satisfies the condition (C), the
equivalence relations RrdR�S

0 sX d�1
1 pRq and RrdR�S

0 sX d�1
1 pS q commute in

the fibre PtXC and thus in C. Now the direct images of these equivalence
relations (in C) along the regular epimorphism dR�S

1 are nothing but R and S
(see Lemma 4.1), which consequently commute in C. �

This equivalence is set in the stricter context of semi-abelian categories
in [19].

Theorem 4.2. Let C be any regular protomodular category. Then the condi-
tion (C) is equivalent to the condition (C̄).
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Proof. In any Mal’tsev context, (C) implies (C̄). Suppose now C is regular,
protomodular and satisfies (C̄). Then any fibre PtXC is homological. Since
the condition (C̄) is stable under slicing and coslicing, any fibre PtXC satis-
fies (C̄). According to the previous proposition any fibre PtXC satisfies (SH).
The fact that, for any change of base functor f � : PtYC Ñ PtXC, the two
conditions are equivalent is now a consequence of the following lemma. �

Lemma 4.3. Let U : CÑ D be a left exact functor between pointed Mal’tsev
categories. When C satisfies (SH), then U reflects the centralizing equiva-
lence relations as soon as it reflects the commutation of normal monomorph-
isms. When D satisfies (SH), then U reflects the commutation of normal
monomorphisms as soon as it reflects the centralized equivalence relations.
When both C and D satisfy (SH), the two conditions on U are equivalent.

Proof. Suppose C satisfies (SH) and U reflects the commutation of normal
monomorphisms. Start with a pair pR, S q of equivalence relations whose im-
ages pUpRq,UpS qq centralize each other. Denote by u and v their normaliza-
tions. Then the normalizations Upuq and Upvq of UpRq and UpS q commute
in D. Since U reflects the commutation of normal monomorphisms, u and v
commute in C; since C satisfies (SH), pR, S q centralize each other.

Suppose D satisfies (SH) and U reflects the centralized equivalence rela-
tions. Denote by u and v the normalizations of two equivalence relations R
and S in C and suppose that Upuq and Upvq commute. Then UpRq and UpS q
centralize each other in D. Since U reflects the centralized equivalence rela-
tions, R and S centralize each other in C. So their normalizations u and v do
commute. �
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