
Abstract

Nous démontrons par contre-exemple que la catégorie des 3-
computads (ou “3-polygraphes”) n’est pas cartésienne fermée;
ce résultat était démontré premièrement par Makkai et Zawad-
owski. Nous donnons un 3-computad B et nous démontrons que
le foncteur ×B n’a pas d’adjoint à droit, de la façon suivante:
nous donnons un conoyau qui n’est pas respecté par ce foncteur.

We prove by counterexample that the category of 3-computads
is not cartesian closed, a result originally proved by Makkai and
Zawadowski. We give a 3-computad B and show that the functor
×B does not have a right adjoint, by giving a coequaliser that

is not preserved by it.
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Introduction

Makkai and Zawadowski proved in [7] that the category of (strict) 3-
computads is not cartesian closed and hence is not a presheaf category.
The result can be considered surprising—for example, the opposite was
erroneously claimed in [3] (and corrected after Makkai and Zawadowski,
in [4]).

The reason is related to the Eckmann-Hilton argument, but the proof
given in [7], while having this reason at its heart, uses some sophisticated
technology to bring this “reason” to fruition—some technical results of
[3] for Artin glueing, which in turn rely on some technical results of Day
[6].
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In this paper we give a direct counterexample, that is, we give a
3-computad B and a coequaliser

E A C

that is not preserved by the functor × B, hence × B does not have
a right adjoint.

The idea behind this counterexample is the same as the idea behind
the proof in [7], and the result is, evidently, not new. However, we
believe it is of value to provide this direct argument.

The root of the problem is that 2-cells having 1-cell identities as
source and target do not behave “geometrically”—by an Eckmann-
Hilton argument, horizontal and vertical composition for such cells must
be the same and commutative. Intuitively, this means that cells do not
have well-defined “shape”; a little more precisely, this means for exam-
ple that if we have 2-cells a and b with identity source and target, then a
3-cell with source ab (= ba) cannot have well-defined faces, as we cannot
put the putative faces a and b in any order.

This argument obviously does not constitute a proof, but it is the
idea at the root of the argument in [7] and at the root of the argument
we give here. We begin in Section 1 by recalling the basic definitions;
in Section 2 we give the counterexample, and in Section 3 we give the
justification. Experts will only need to read Section 2.

Note that unless otherwise stated, all n-categories are strict.
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1 Basic definitions

We begin by recalling the definition of the category of 3-computads.
However, we will only need a small fragment of it for our counterexam-
ple, so we will focus on that part. 2-computads are defined by Street in
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[8]; the higher-dimensional generalisation is given by Burroni under the
name “polygraphs” in [2] (see also [1]).

The idea is that a 3-computad is a 3-category that is “level-wise
free”. From another point of view it is the underlying data for a 3-
category in which k-cells are allowed to have source and target that are
pasting diagrams of (k−1)-cells, rather than the single (k−1)-cells that
are the only allowed source and target for globular sets. Crucially for us,
this means in particular that the source and target can be degenerate,
that is, identities.

The definition proceeds inductively. At each dimension we must
specify the k-cells and then generate pasting diagrams freely in order
to specify the boundaries of cells at the next dimension. This is done
using a free 3-category functor and is the technically tricky part of the
definition. However, we will not actually need the full construction of
this functor.

Definition 1.1. A 3-computad A is given by, for each 0 ≤ k ≤ 3� a set Ak of k-cells, and� a boundary map Ak PAk−1.

Here PAk−1 denotes the set of parallel pairs of formal composites of
(k− 1)-cells of A. A morphism of 3-computads A B is given by,
for each 0 ≤ k ≤ 3 a morphism

fk : Ak Bk

making the obvious squares commute. We write 3Comp for the cate-
gory of 3-computads and their morphisms.

In general it is quite complicated to make P precise, but each of the
computads involved in our counterexample will have only one 0-cell and
no 1-cells. In this case, the free 2-category on the 2-dimensional data
is simply the free commutative monoid on A2 (regarded as a doubly
degenerate 2-category). We use the following terminology.

Definition 1.2. A 3-computad A is called 2-degenerate if A0 is termi-
nal and A1 is empty. Thus by the Eckmann-Hilton argument it consists
of
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� sets A2 and A3, equipped with� source and target maps
A3 A∗

2

s

t

where A∗

2 denotes the free commutative monoid on A2.

A morphism A B of such 3-computads is given by morphisms

A2
f2

B2

A3
f3

B3

such that the following diagram commutes serially.

A∗

2

B∗

2

f∗

2

B3

A3

f3

s

s

t

t

2 The counterexample

All the 3-computads involved here will be 2-degenerate. When we check
universal properties we will of course need to check them against all
computads a priori, but we quickly see that the diagrams will ensure
2-degeneracy of any 3-computads involved.

We will write 2-cells as a, b, . . . and the commutative composition as

a.b = b.a.

In all that follows, every 3-cell will have a single 2-cell as target, but
this is largely to ease the notation; a “smaller” counterexample would
be possible with empty targets, eliminating the need for the 2-cells a3
and y.

To show that 3Comp is not cartesian closed we need to show that
there exists B ∈ 3Comp such that ×B does not have a right adjoint,
so it suffices for × B not to preserve all colimits. So we exhibit a
coequaliser

E A C
α1

α2

β

and a computad B such that the functor ×B does not preserve it.
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Step 1: the coequaliser

1. Let A be the 2-degenerate 3-computad with 2-cells a1, a2, a3 and
a single 3-cell

a1.a2
f

a3.

2. Let E be the 2-degenerate 3-computad with 2-cells x, y and no
3-cells.

3. Define the morphism α1 by

x a1

y a3

and define α2 by

x a2

y a3

4. Thus the coequaliser C simply identifies a1 and a2; it has 2-cells
ā, a3 and a single 3-cell

ā.ā
f̄

a3.

Step 2: the functor × B

5. Let B be the 2-degenerate 3-computad (isomorphic to A) with
2-cells b1, b2, b3 and a single 3-cell

b1.b2
g

b3.

6. E×B has 2-cells (x, bj) and (y, bj) for j = 1, 2, 3. It has no 3-cells.

7. A × B is the key structure. It has 2-cells (ai, bj) for i, j = 1, 2, 3
and two 3-cells

(a1, b1).(a2, b2)
(f,g)1 (a3, b3)

(a2, b1).(a1, b2)
(f,g)2 (a3, b3)

This is probably the most interesting part of the argument; we
give the full proof later.
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8. C × B has 2-cells (ā, bj) and (a3, bj) for j = 1, 2, 3 and a single
3-cell

(ā, b1).(ā, b2)
(f̄ ,g)

(a3, b3).

Step 3: non-preservation

9. We now examine the coequaliser

E × B A× B P
α1 × 1

α2 × 1

and show that it is not isomorphic to C ×B.

Now the morphism α1 × 1 is given by

(x, bj) (a1, bj)

(y, bj) (a3, bj)

and α2 × 1 by

(x, bj) (a2, bj)

(y, bj) (a3, bj)

Thus the coequaliser P simply identifies (a1, bj) with (a2, bj) for
each j. So it has 2-cells which we may call (ā, bj) and (a3, bj)
(which is to be expected as the coequaliser is preserved up to 2
dimensions).

P has two distinct 3-cells

(ā, b1).(ā, b2)
(f,g)1 (a3, b3)

(ā, b1).(ā, b2)
(f,g)2 (a3, b3).

Since C × B has only one 3-cell it is clear that C × B is not
isomorphic to this coequaliser P , that is, ×B does not preserve
the original coequaliser.

Note that the canonical factorisation

P C ×B

identifies the 3-cells (f, g)1 and (f, g)2.
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3 Universal properties

In this section we check all the universal properties required for the
counterexample. In principle we only need to check the 3-cells, as
2-computads form a presheaf category so we know that the lower di-
mensions behave pointwise. However we include the full argument for
completeness, and because it is straightforward.

Lemma 3.1. The product A × B is as given in the previous section,

with the obvious projections.

Proof. We exhibit its universal property. Consider a 3-computad Y

and morphisms

A

A× B

Y

B

p q

u v

k

We seek to exhibit a unique factorisation k as shown. On 0-, 1- and
2-cells, A× B is just a product, so we define the factorisation at these
dimensions as for products ie

k(t) = (u(t), v(t)).

Note in particular that A and B have no 1-cells, so for the morphisms u
and/or v to exist, Y cannot have any 1-cells either. So this map respects
boundaries trivially.

We now discuss the factorisation on 3-cells. Let e be a 3-cell in Y .
Now A and B have only one 3-cell each, f and g respectively. So we
must have

u(e) = f

v(e) = g

thus e must have boundary as follows

y1.y2
e

y3

CHENG - THE CATEGORY OF 3-COMPUTADS IS NOT CARTESIAN CLOSED

- 9 -



for some 2-cells y1, y2, y3 ∈ Y . Then since the action of u and v respect
the boundary of e we know y3 must be sent to a3 and b3 respectively.
However considering the source there is some ambiguity as the product
is commutative, so for each of u and v there are two possibilities—
either the subscripts are left the same, or they are switched. That is,
on ordered pairs the action of u is

either (y1, y2) (a1, a2)

or (y1, y2) (a2, a1)

and similarly the action of v is

either (y1, y2) (b1, b2)

or (y1, y2) (b2, b1).

There are thus 4 cases, but in each case k(e) is uniquely determined to
be either (f, g)1 or (f, g)2 by the condition that k preserves boundary.
Explicitly, k(e) is specified by examining the action of u and v as shown
by the following table.

v

(y1, y2) (b1, b2) (y1, y2) (b2, b1)

(y1, y2) (a1, a2) (f, g)1 (f, g)2
u

(y1, y2) (a2, a1) (f, g)2 (f, g)1

2

The other products follow similarly, but more easily. It remains to
check the universal properties of the two coequalisers in question, which
is much more straightforward.

Consider a diagram
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E A C
α1

α2

q

Y

u k

with uα1 = uα2. We seek a unique factorisation k as shown.� On 0-cells: A and C only have one 0-cell each; writing each as ∗
we must have k(∗) = u(∗) ∈ Y .� On 1-cells: A and C have no 1-cells, so as before Y cannot have
any either.� On 2-cells: To make the triangle commute we must put

k(ā) = u(a1) [= u(a2)]

k(a3) = u(a3).

This respects boundaries as all 2-cells involved are degenerate.� On 3-cells: To make the triangle commute, we must have k(f̄) =
u(f). This respects boundaries, by our definition of k on 2-cells.

The other coequaliser proceeds in the same way, but with two 3-cells.

Remark 3.2. Note that this sort of counterexample cannot arise for
2-computads, as 2 is the lowest dimension of cell for which the Eckmann-
Hilton argument can be used. Note also that this problem does not arise
for weak 3-computads as weak identity 1-cells impede the Eckmann-
Hilton argument on degenerate 2-cells. This difference between the
commutativity of degenerate 3-cells in weak and strict structures also
arises in [5].
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