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1 Introduction
The main aim of this paper is to prove that the fundamental group from
categorical Galois theory [20] may be computed as a Kan extension:

NExtΓpC q

t
δCod

v�

Ker

�)
C

π1p´,Iq
,2X

(A)
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This makes it a satellite in the sense of Janelidze [17], Guitart–Van den
Bril [13, 12] and two authors of the present paper [10]. Here Γ is a Galois
structure, consisting of an adjunction I % H : C Ñ X and certain classes
of morphisms, NExtΓpC q is the category of normal extensions, which are
defined via the Galois structure Γ, Ker is the kernel functor and Cod is the
codomain functor.

In fact, we will see this in two steps. First we show that the following is
a Kan extension:

NExtΓpC q

tκ
Cod

v�

GalΓp´,0q

!*
C

π1p´,Iq
,2 GppX q

(B)

Here GalΓp´, 0q gives the Galois group of a normal extension, as defined in
the context of categorical Galois theory by Janelidze [20]. This step uses
that the Galois group functor is a Baer invariant with respect to the codo-
main functor, in the following sense: any two morphisms between objects
in NExtΓpC q which agree on the codomain of the objects are sent to the
same morphism between the Galois groups. This makes it possible to define
π1pB, Iq by taking a weakly universal normal extension u : U Ñ B of B, and
then applying the Galois group functor to it. The above property ensures
that this assignment is well defined, i.e. independent of the choice of u, and
functorial in B.

To attain the first-mentioned Kan extension from this one, we use the
fact that the underlying object of the Galois group of a normal extension
p : E Ñ B can be computed as the intersection of the kernel of p with the ker-
nel of the unit ηE : E Ñ HIpEq. This makes it a subobject of Kerppq, and so
gives a component-wise monic natural transformation ι : GalΓp´, 0q ñ Ker.
We then show that, for any given functor F : C Ñ X , any natural transform-
ation F˝Cod ñ Ker lifts over this ι. This implies that the universal property
of the Kan extension (B) carries over to (A).

Our arguments go through under fairly weak assumptions on the Galois
structure Γ, and can moreover be adapted to situations where the funda-
mental group functor is not everywhere defined. In the latter case, we obtain
a Kan extension similar to (A) and (B), by replacing C with its full sub-
category of objects B for which π1pB, Iq is defined, and restrict NExtΓpC q
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accordingly.
When C is pointed, exact and Mal’tsev, and X is a Birkhoff subcategory

of C , we show that (A) induces a Kan extension

ExtΓpC q

t
Cod

v�

Ker ˝I1

�(
C

π1p´,Iq
,2X

where ExtΓpC q is the category of regular epimorphisms (=extensions) in C ,
and I1 is left adjoint to the inclusion functor NExtΓpC q Ñ ExtΓpC q. In
the case of a semi-abelian C , this Kan extension was first obtained in [10],
where it was also shown that, for a given extension p, the p-component of the
universal natural transformation defining it is a connecting homomorphism
in the long exact homology sequence induced by p.

The latter result, we will see, has a topological counterpart: for a certain
Galois structure, the components of the universal natural transformation δ
defining the Kan extension (A) (or, actually, the “restricted” version, since
here the fundamental group functor is not everywhere defined) are connect-
ing maps in an exact homotopy sequence.

Note that we have used the same notation π1p´, Iq for functors C Ñ

GppX q and C Ñ X and have called both “fundamental group functor”,
while the image of an object B P |C | under the latter is actually the underly-
ing object of the fundamental group π1pB, Iq. A similar remark can be made
regarding the Galois group functor GalΓp´, 0q. This does not pose any prob-
lems when X is Mal’tsev, since then any internal group is determined, up to
isomorphism, by its underlying object. However, the latter is of course not
true in general, and it is in particular false for the topological example just
referred to.

2 Galois structures
To define the ingredients of the Kan extensions considered in this paper, we
need a Galois structure and the concept of normal extension arising from it,
as introduced by Janelidze [18, 19].
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Definition 2.1. A Galois structure Γ “ pC ,X ,H, I, η, ε,E ,F q on a cat-
egory C consists of an adjunction

C
I ,2
K X
H

lr

with unit η : 1C ñ HI and counit ε : IH ñ 1X , as well as classes of morph-
isms E in C and F in X such that

(i) E and F contain all isomorphisms;

(ii) E and F are pullback-stable, meaning here that the pullback of a
morphism in E (resp. F ) along any morphism exists and is in E (resp.
F );

(iii) E and F are closed under composition;

(iv) HpF q Ď E ;

(v) IpE q Ď F .

We will use the terminology of [19] and call the morphisms in E fibrations.

Given such a Galois structure, some fibrations have some additional use-
ful and interesting properties. We write pE Ó Bq for the full subcategory of
the slice category pC Ó Bq determined by morphisms in E .

Definition 2.2. A trivial covering is a morphism f : A Ñ B in E such that

A
ηA ,2

f
��

HIpAq

HIp f q
� �

B ηB
,2 HIpBq

is a pullback. A monadic extension is a fibration p : E Ñ B such that the
pullback functor p˚ : pE Ó Bq Ñ pE Ó Eq is monadic. A covering (some-
times called central extension) is a fibration f : A Ñ B whose pullback
p˚p f q along some monadic extension p is trivial. A normal extension is
a monadic extension p such that p˚ppq is a trivial covering, i.e. a monadic
extension with trivial kernel pair projections.
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The trivial coverings are exactly those fibrations which are cartesian with
respect to the functor I : C Ñ X .

For many uses of such Galois structures, we need Γ to satisfy an extra
property called admissibility. For this we consider the induced adjunction

pE Ó Bq
IB
,2

K pF Ó IpBqq
HB
lr

for any object B P C ; here IB : pE Ó Bq Ñ pF Ó IpBqq is the restriction of I,
and HB sends a fibration g : X Ñ IpBq to the pullback of Hpgq along ηB:

A
ηA ,2

HBpgq
��

HpXq

Hpgq
��

B ηB
,2 HIpBq

Definition 2.3. A Galois structure Γ “ pC ,X ,H, I, η, ε,E ,F q is admissi-
ble when all functors HB are full and faithful.

An important consequence of admissibility is

Lemma 2.4. [22, Proposition 2.4] If Γ is admissible, then I : C Ñ X pre-
serves pullbacks along trivial coverings. In particular, the trivial coverings
are pullback-stable. �

So if the Galois structure is admissible, we can view the class of all trivial
coverings as the pullback-closure of HpF q, while the coverings are locally
trivial. In certain situations the coverings are also pullback-stable:

Lemma 2.5. If Γ is admissible and monadic extensions are pullback-stable,
then normal extensions and coverings are pullback-stable.

Proof. The proof of [21, Proposition 4.3] remains valid under our assump-
tions. �

Examples 2.6. There are many different kinds of categorical Galois struc-
tures; we list a few which are relevant for the present article.
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(i) Take C “ Gp and X “ Ab, the subcategory of abelian groups in the
category of groups, and let I be the abelianisation functor sending a
group G to the quotient G{rG,Gs, which is left adjoint to the inclusion
H. Then choosing E and F to be the classes of surjective group ho-
momorphisms defines an admissible Galois structure Γ as above. Here
every map in E is a monadic extension, the trivial coverings are those
surjective homomorphisms A Ñ B whose restriction to the commuta-
tor subgroups rA, As Ñ rB, Bs is an isomorphism, and the coverings
are the central extensions in the usual sense: surjective homomorph-
isms whose kernel lies in the centre of the domain. Normal extensions
and coverings coincide. (See [18].)

(ii) More generally, taking for C an exact Mal’tsev (or Goursat) category
and for X a Birkhoff subcategory (= a full reflective subcategory
closed under subobjects and regular quotients), and all regular epi-
morphisms for E and F , defines an admissible Galois structure Γ,
whose coverings are studied in [21]. Normal extensions and coverings
still coincide, and every regular epimorphism is a monadic extension.
In particular, C could be a Mal’tsev variety and X its subvariety of
abelian algebras, in which case the coverings are the central extensions
arising from commutator theory in universal algebra: those surjective
homomorphisms f : A Ñ B for which the commutator rEqp f q, Aˆ As
of the kernel congruence Eqp f q of f with the largest congruence AˆA
on A is trivial (see [23, 11]). Or, C could be a variety of Ω-groups [15]
and X an arbitrary subvariety of C . Now the coverings are the (relat-
ive) central extensions studied by Fröhlich and others (see [21]).

(iii) Consider C “ LoCo to be the category of locally connected topo-
logical spaces and X “ Set the category of sets. Take I “ π0, the
connected components functor, H “ Dis the discrete topology functor,
E the class of étale maps (= local homeomorphisms), and F the class
of all maps in Set. This gives another admissible Galois structure.
Here the monadic extensions are exactly the surjective local homeo-
morphisms, the trivial coverings and the coverings are, respectively,
the disjoint unions of trivial covering maps, and the covering maps,
in the usual topological sense. For connected A and B, a normal ex-
tension f : A Ñ B is the same as a regular covering map: a covering
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map f : A Ñ B such that for every pair of elements x, y P A which
are in the same fibre of f there is a unique continuous map a : A Ñ A
(actually, a covering) such that f “ f ˝a and apxq “ y. See [1, Chapter
6] for more details.

(iv) Similarly, take C to be the category of simplicial sets and X “ Set
with the adjunction consisting of I “ π0 and H giving the discrete
simplicial set on a given set. Then taking E and F to be the classes of
all morphisms gives an admissible Galois structure. For this example,
monadic extensions are degree-wise surjective functions. The cover-
ings are precisely the coverings in the sense of Gabriel–Zisman [9]:
Kan fibrations whose “Kan liftings” are uniquely determined. See [1,
A.3.9] for more details.

(v) For a different Galois structure Γ on the category C of simplicial sets,
let X be the category of groupoids, and I and H be the fundamental
groupoid and nerve functors, and take for E and F the classes of Kan
fibrations, and of fibrations in the sense of Brown [2], respectively.
This particular Γ is studied in [3] where its covering morphisms are
called second order covering maps. It is not admissible.

(vi) Example (iii) has an obvious “pointed” version, obtained by replacing
LoCo and Set by the categories LoCo˚ and Set˚ of pointed locally
connected spaces and of pointed sets, respectively. E and F now con-
sist of those étale maps and maps that preserve the basepoint. Clearly,
this is still an (admissible) Galois structure; the monadic extensions,
trivial coverings, coverings and normal extensions are “the same” as
in the non-pointed case, only now they are required to be basepoint-
preserving.

(vii) Categorical Galois theory does indeed capture classical Galois theory,
as the name suggests. For this, let k be some fixed field and take C
to be the dual of the category of finite-dimensional commutative k-
algebras with E op all algebra morphisms, X the category of finite sets
with F the class of all functions, and I : C Ñ X defined through
idempotent decomposition. See [1, A.2] or [18] for further details.
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For the rest of this paper, we will assume that our Galois structures are
admissible and that H is in fact an inclusion of a full reflective subcategory
X into C . We will also assume that monadic extensions are pullback-stable.
Note that this is the case for each of the examples above, with the exception
of (v).

One of the important concepts in categorical Galois theory is the Galois
groupoid:

Definition 2.7. [18, 20] Let p : E Ñ B be a normal extension of B. Then the
Galois groupoid GalΓppq of p is the image under I of the kernel pair Eqppq
of p.

Eqppq
d ,2
c

,2

ηEqppq

� �

E

ηE

��

p ,2 B

IpEqppqq
Ipdq ,2

Ipcq
,2 IpEq

Note that this image of the kernel pair is indeed a groupoid: since the
functor I preserves pullbacks along trivial coverings (by Lemma 2.4), the
image of any groupoid with trivial domain and codomain morphisms is again
a groupoid (see the definition of groupoids 3.1). And since p is normal, its
kernel pair projections are indeed trivial coverings.

3 Internal groupoids
We have already seen groupoids enter the picture above, so we recall the
definition.

Definition 3.1. An internal category in a category C is a diagram

R1

d ,2

c
,2 R0elr

such that de “ 1R0 “ ce, together with a multiplication (or composition)

m : R1 ˆR0 R1 Ñ R1

EVERAERT, GOEDECKE & VAN DER LINDEN - FUNDAMENTAL GROUP FUNCTOR...

- 192 -



making the following diagrams commute, where the pullback (1) defines the
object R1 ˆR0 R1 of “composable arrows”:

R1 ˆR0 R1

(1)

p1 ,2

p2

��

R1

c
��

R1 d
,2 R0

R1 ˆR0 R1
m ,2

p1

��
(2)

R1

d
��

R1 d
,2 R0

R1 ˆR0 R1
m ,2

p2

��
(3)

R1

c
��

R1 c
,2 R0;

furthermore, the composition m makes the diagrams

R1
x1R1 ,scy

,2 R1 ˆR0 R1

m
� �

R1
xsd,1R1ylr

R1

and

R1 ˆR0 R1 ˆR0 R1
1ˆm ,2

mˆ1
� �

R1 ˆR0 R1

m
��

R1 ˆR0 R1 m
,2 R1

commute. An internal category R is an internal groupoid when there exists
a morphism s : R1 Ñ R1 such that ds “ c and cs “ d and both squares

R1
x1R1 ,sy,2

d
� �

R1 ˆR0 R1

m
� �

R0 e
,2 R1

R1
xs,1R1y,2

c
� �

R1 ˆR0 R1

m
��

R0 e
,2 R1

commute. Such an s is necessarily unique. In fact, it is well known that an
internal category R is an internal groupoid if and only if (2) and (3) are also
pullbacks.

An internal functor between two internal categories R and S is a pair of
morphisms p f0, f1q making the three squares with d, c and e as on the left

R1
f1 ,2

c

� �

d

� �

S 1

c

� �

d

� �
R0

f0 ,2

e

LR

S 0

e

LR R1 ˆR0 R1
f1ˆ f1 ,2

m
� �

S 1 ˆR0 S 1

m
� �

R1 f1
,2 S 1

as well as the right hand square commute.
An internal groupoid R with R0 “ 1, the terminal object, is called an

internal group. We shall write GppC q for the category of internal groups
and internal functors.
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Definition 3.2 (Internal natural transformations and isomorphisms). Given
two internal functors f , g : R Ñ S between internal categories R and S , an
internal natural transformation from f to g is a morphism µ : R0 Ñ S 1 as
in

R1

f1 ,2
g1

,2

c

��

d

��

S 1

c

� �

d

��
R0

µ

9D

f0 ,2

e

LR

g0
,2 S 0

e

LR

satisfying

(i) dµ “ f0,

(ii) cµ “ g0,

(iii) mx f1, µcy “ mxµd, g1y.

R1
x f1,µcy ,2

xµd,g1y

��

S 1 ˆS 0 S 1

m
��

S 1 ˆS 0 S 1 m
,2 S 1

For fixed internal categories R and S , the internal functors R Ñ S and the
internal natural transformations between them form a category: the compos-
ition of two natural transformations µ : f Ñ g and ν : g Ñ h is given by
the morphism mxν, µy; the identity on f is given by the morphism e f0. In
particular, an internal natural transformation µ is an internal natural iso-
morphism when there is a (unique) internal natural transformation ν from g
to f such that mxµ, νy “ e f0 and mxν, µy “ eg0.

Remark 3.3. When R and S are internal groupoids, an internal natural trans-
formation is automatically a natural isomorphism between f and g.

Remark 3.4. If S is a relation, then d and c are jointly monic, so (iii) is
automatically satisfied.

In particular, for effective equivalence relations we have

Lemma 3.5. Given two morphisms f “ p f1, f0q and g “ pg1, g0q from
b : B1 Ñ B0 to c : C1 Ñ C0 satisfying f0 “ g0, there is an internal natural
isomorphism between the induced internal functors from Eqpbq to Eqpcq.
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Proof. The condition f0 “ g0 implies that c f1 “ f0b “ g0b “ cg1. So let
µ “ x f1, g1y. Then (i) and (ii) from Definition 3.2 are satisfied by definition,
and (iii) is satisfied automatically, as Eqpcq is a kernel pair and so a relation.

�

In the special case that B0 “ C0 “ A and f0 “ 1A, we say that f is a
morphism over A.

From now on, let C be a finitely complete pointed category. Then for
any groupoid R in C , we may restrict R0 to the zero object 0, and R1 to
KerpdqXKerpcq, which gives us the internal group of “loops at 0” or “internal
automorphisms at 0”, which we denote by AutRp0q. When we restrict to this
group of internal automorphisms, natural isomorphisms as above collapse
the two functors onto each other:

Lemma 3.6. Any two naturally isomorphic functors f , g : R Ñ S between
internal categories induce the same morphism AutRp0q Ñ AutS p0q.

Proof. Consider the diagram

Kerpdq X Kerpcq
f ,2

g
,2

k

��

Kerpdq X Kerpcq

l

� �
R1

f1 ,2
g1

,2

c

��

d

� �

S 1

c

� �

d

��
R0

f0 ,2

e

LR

g0
,2

µ

3:

S 0

e

LR

in which k and l are the inclusions of Kerpdq X Kerpcq into R1 and S 1, re-
spectively. We wish to show that f “ g, or equivalently, that l f “ lg, as
l is a monomorphism. From Condition (iii) we know that mx f1k, µcky “
mxµdk, g1ky. But since dk “ 0 “ ck and dl “ 0 “ cl, we can reformulate
this as

mx f1k, µcky “ mxl f , ecl f y “ mx1S 1 , ecyl f “ l f ,
mxµdk, g1ky “ mxedlg, lgy “ mxed, 1S 1ylg “ lg

giving l f “ lg as required. �
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4 The Galois group and the fundamental group
Let Γ “ pC ,X ,H, I, η, ε,E ,F q be an admissible Galois structure on a fi-
nitely complete pointed category C with H a full inclusion, and assume that
monadic extensions are pullback stable. Note that this excludes the classical
Galois theory Example 2.6 (vii), but it includes Examples 2.6 (i) and (vi), as
well as all the Galois structures of Example 2.6 (ii) for which C is pointed.

Definition 4.1. [20] For a normal extension p : E Ñ B, its Galois group

GalΓpp, 0q “ AutGalΓppqp0q

is the group of automorphisms at 0 of the Galois groupoid:

Eqppq
d ,2
c

,2

ηEqppq

� �

E

ηE

��

p ,2 B

GalΓpp, 0q “ KerpIdq X KerpIcq ,2 IpEqppqq
Ipdq ,2

Ipcq
,2 IpEq

The resulting functor

GalΓp´, 0q : NExtΓpC q Ñ GppX q

has some very useful properties: it is a Baer invariant [7, 8] with respect
to the codomain functor Cod: NExtΓpC q Ñ C , in the sense that any two
maps between normal extensions which agree on the codomains also induce
the same map between the Galois groups. To show this, we will use some
properties of Section 3.

Lemma 4.2. If two internal functors f , g : R Ñ S between internal catego-
ries with source and target morphisms d, c being trivial coverings are natur-
ally isomorphic, then the functors Ip f q, Ipgq : IpRq Ñ IpS q are still naturally
isomorphic.

Proof. Recall that I preserves pullbacks along trivial coverings, so IpRq and
IpS q are still internal categories. In particular,

IpS 1 ˆS 0 S 1q “ IpS 1q ˆIpS 0q IpS 1q
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and Ipmq is the multiplication of IpS q.
Let µ : R0 Ñ S 1 be an internal natural isomorphism between f and g.

Then functoriality of I and the preservation of the multiplication ensures
that Ipµq is still an internal natural transformation. �

Proposition 4.3. Let p : E Ñ B and p1 : E1 Ñ B1 be normal extensions. Any
two morphisms p f , bq : p Ñ p1 and pg, bq : p Ñ p1 in NExtΓpC q with the
same codomain component induce the same morphism

GalΓpp, 0q Ñ GalΓpp1, 0q

on the Galois groups.

Proof. This follows from Lemmas 3.5, 4.2 and 3.6. �

In particular, this means that any endomorphism p f , 1Bq : p Ñ p induces
the identity on the Galois group GalΓpp, 0q. This means that we can now
sensibly introduce the following definition. Recall that a normal extension
u : U Ñ B is called weakly universal if it is a weak initial object in the
full subcategory NExtΓpBq of pC Ó Bq given by all normal extensions of B,
i.e. for every normal extension p : E Ñ B there exists a morphism e : U Ñ E
such that p˝e “ u.

Definition 4.4. [20] Given an object B of C , its fundamental group (with
coefficient functor I) is the Galois group

π1pB, Iq “ GalΓpu, 0q

of some weakly universal normal extension u : U Ñ B, assuming such ex-
ists.

Note that π1pB, Iq is independent of the choice of weakly universal nor-
mal extension u : U Ñ B, by Proposition 4.3 and weak universality of u. As-
suming a weakly universal normal extension u : U Ñ B exists for every B,
we moreover have:

Proposition 4.5. The above definition of fundamental group gives a functor

π1p´, Iq : C Ñ GppX q.
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Proof. Consider f : A Ñ B in C , and let u : U Ñ B and v : V Ñ A be weak-
ly universal normal extensions of B and A, respectively. Pulling back u
along f gives another normal extension of A by Lemma 2.5, so v factors over
it, giving a morphism v Ñ u which need not be unique. However, Propo-
sition 4.3 ensures that any two such morphisms induce the same morphism
on π1. It is then clear that π1p´, Iq preserves identities and composition. �

Remark 4.6. Not every Galois structure has the property that every object
admits a weakly universal normal extension into it. Note, however, that even
when this is not the case, the fundamental group still defines a functor, but
its domain is restricted to the full subcategory of C of those B for which
π1pB, Iq is defined.

Examples 4.7. (i) For the Galois structure Γ of Example 2.6 (i), there is a
weakly universal normal extension for every group B: if p : P Ñ B is
a surjective group homomorphism with a free domain P, then the in-
duced central extension P{rKerppq, Ps Ñ B is easily seen to be weakly
universal. The fundamental group π1pB, Iq “ H2pBq in this case is the
second (integral) homology group of B. (See [20].)

(ii) More generally, for Galois structures Γ of the type considered in Ex-
ample 2.6 (ii), NExtΓpBq is a reflective subcategory of pE Ó Bq for
every B (see [5, 23]), and the reflection into NExtΓpBq of any regular
epimorphism P Ñ B with a projective domain P is weakly universal.
Hence, if C is pointed with enough projectives, π1pB, Iq is well defined
for every B.

When C is a semi-abelian category with a monadic forgetful functor
to Set, then π1pB, Iq “ H2pB, Iq is the second Barr-Beck homology
group of B with coefficient functor I (see [6]).

(iii) For Example 2.6 (iii), not every locally connected topological space B
admits a weakly universal normal extension u : U Ñ B. However, it
is well known that there exists a (surjective) covering map u : U Ñ B
with a simply connected domain U for every connected, locally path-
connected and semi-locally simply connected space B (see, for in-
stance, [14, 26]). Such a u has the following property: for every co-
vering map f : A Ñ B and every pair of elements x P U and y P A
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in corresponding fibres there is a unique continuous map a : U Ñ A
(actually, a covering map) such that u “ f a and apxq “ y. Hence such
a u is in particular a regular covering map which is clearly a weakly
universal normal extension.

Choosing base points x P U and y P B such that upxq “ y, the
map u : pU, xq Ñ pB, yq becomes a weakly universal normal exten-
sion with respect to the Galois structure Γ of Example 2.6 (vi). In
fact, in this case it is even an initial object of NExtΓpBq (rather than
merely a weakly initial one), which agrees with the usual terminology
of calling such a u a universal covering map. Now π1ppB, yq, Iq is the
classical Poincaré fundamental group of pB, xq (see [1, Chapter 6]).

5 The fundamental group functor as a Kan ex-
tension of the Galois group functor

Throughout this section and the next, Γ “ pC ,X ,H, I, η, ε,E ,F q will, as
before, be an admissible Galois structure on a finitely complete pointed cat-
egory C with H a full inclusion, and such that monadic extensions are pull-
back stable. For simplicity we shall moreover assume that every object of C
admits a weakly universal normal extension into it. However, our results can
easily be adapted to situations where this is not the case (see Section 8).

In the diagram

NExtΓpC q

tκ
Cod

v�

GalΓp´,0q

!*
C

π1p´,Iq
,2 GppX q

we now know all ingredients except the natural transformation

κ : π1p´, Iq˝Cod ñ GalΓp´, 0q.

For a normal extension p : E Ñ B, we define the component

κp : π1pB, Iq Ñ GalΓpp, 0q
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as GalΓpph, 1Bq, 0q : GalΓpu, 0q Ñ GalΓpp, 0q for a weakly universal normal
extension u : U Ñ B and any induced

U h ,2

u
��

E
p
��

B B

in NExtΓpC q. Again by Proposition 4.3, any such ph, 1Bq will induce the
same morphism GalΓpph, 1Bq, 0q “ κp. It is easy to check that κ is natural.

To prove that the above diagram really is a Kan extension, we just have
to show that this natural transformation κ is universal.

Theorem 5.1. The following is a Kan extension:

NExtΓpC q

tκ
Cod

v�

GalΓp´,0q

!*
C

π1p´,Iq
,2 GppX q

Proof. Given another functor F : C Ñ GppX q with a natural transforma-
tion

NExtΓpC q

t
γCod

v�

GalΓp´,0q

!*
C

F
,2 GppX q,

define α : F ñ π1p´, Iq by αB “ γu for some weakly universal normal ex-
tension u of B. This α is really natural: given f : A Ñ B in C , the morphism

π1p f , Iq : π1pA, Iq Ñ π1pB, Iq

is defined as in Proposition 4.5 using a morphism

V
v
��

g ,2 U
u
��

A
f
,2 B
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between weakly universal normal extensions of A and B. Using naturality of
γ on this morphism in NExtΓpC q gives naturality of α, because

π1p f , Iq “ GalΓppg, f q, 0q : GalΓpv, 0q “ π1pA, Iq Ñ GalΓpu, 0q “ π1pB, Iq.

Naturality of γ also implies that κ˝αCod “ γ: For each normal extension
p : E Ñ B, any morphism

U h ,2

u
��

E
p
��

B B

gives

FB
γu“αB

��

FB
γp

��
π1pB, Iq

κp“Galpph,1Bq,0q
,2 GalΓpp, 0q

and so κp˝αB “ γp.
To see that α is unique, notice that, for a weakly universal normal ex-

tension u, the component κu is an isomorphism. So if β : F ñ π1p´, Iq also
satisfies κ˝βCod “ γ, taking a weakly universal normal extension of B imme-
diately implies αB “ βB, for all B. �

Remark 5.2. In fact, in the definition of π1p´, Iq and the above proof of the
universality of κ, we have only used the following properties of GalΓp´, 0q
and Cod:

Given two functors

N
F

x�

G

�%
C D

such that

(i) for all f , g P N , Fp f q “ Fpgq implies Gp f q “ Gpgq;

(ii) for all C P C , there exists U P N such that FpUq “ C and, for all
N P N , the function

HomN pU,Nq Ñ HomC pC, FNq

giving the action of F is surjective.

Then it is possible to define a functor H : C Ñ D via HpCq “ GpUq and a
natural transformation κ : HF ñ G giving a Kan extension as we have done
in our specific case above.
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6 The fundamental group functor as a Kan ex-
tension of the kernel functor

To compare this construction of the fundamental group given in the context
of categorical Galois theory with other viewpoints on semi-abelian homo-
logy or with universality properties of connecting homomorphisms in long
exact sequences, we actually need a slightly different Kan extension, namely

NExtΓpC q

t
δCod

v�

Ker

 )
C

π1p´,Iq
,2X .

In this section we construct this Kan extension from the one we have already
obtained. We first recall that the underlying object of a Galois group can also
be calculated in another way:

Lemma 6.1. [20, Theorem 2.1] Given a normal extension p : E Ñ B, the
underlying object of its Galois group can be computed as the intersection
GalΓpp, 0q “ Kerppq X KerpηEq. �

This lemma implies that there is a component-wise monic natural trans-
formation

ι : U˝GalΓp´, 0q ñ Ker

from the functor giving the underlying object of the Galois group to the
kernel functor.

NExtΓpC q

Cod

z�

U˝GalΓp´,0q

ιt

�$

Ker


�
C

π1p´,Iq
,2

t
κ

X

It is clear that the big triangle in this diagram is still a Kan extension, for-
getting only the internal group structure in the Kan extension of Section 5,
since this internal group structure is not used anywhere in the proof. We
now show that, for any functor F : C Ñ X , any natural transformation
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γ : F˝Cod ñ Ker factors over ι. Then universality of κ implies that δ “ ι˝κ
also defines a Kan extension. However, we need a small extra condition to
make this work: we now assume that

all morphisms of the kind IE Ñ 0 are in the class F .

Being split epimorphisms, this implies that they are monadic extensions (see
[24]), hence normal extensions, since the kernel pair projections are clearly
trivial coverings, as they are in X . Notice that this is indeed the case for all
of our examples.

Lemma 6.2. Let F : C Ñ X be a functor and γ : F˝Cod ñ Ker a nat-
ural transformation. For any normal extension p : E Ñ B, the component
γp factors over the inclusion Kerppq X KerpηEq Ñ Kerppq.

Proof. Since the above inclusion is the kernel of Kerppq
ker p ,2E

ηE ,2 IE , it
is sufficient to show that the composite

FB
γp ,2Kerppq

ker p ,2E
ηE ,2 IE

is zero. To do this, consider the three normal extensions

E
p
��

ηE ,2 IE

� �

0

��

lr

B ,2 0 0

with the given morphisms between them. Naturality of γ gives

FB
γp

� �

,2 F0

0
� �

F0

��
Kerppq

ηE˝ker p
,2 IE 0lr

which shows that γp does indeed factor over Kerppq X KerpηEq Ñ Kerppq.
�

So, using universality of κ and this lemma, we obtain
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Theorem 6.3. The diagram

NExtΓpC q

t
δCod

v�

Ker

�)
C

π1p´,Iq
,2X

is a Kan extension. �

7 When normal extensions are reflective
Assume that C is a semi-abelian category with enough regular projectives,
that X is a Birkhoff subcategory of C , and that E and F consist of all
regular epimorphisms (so we are in the situation of Example 2.6 (ii)). It was
shown in [10] that there is a Kan extension

ExtΓpC q

t
BCod

v�

Ker ˝I1

�(
C

π1p´,Iq“H2p´,Iq
,2X .

Here ExtΓpC q is the full subcategory of ArrpC q given by all monadic exten-
sions,

I1 : ExtΓpC q Ñ NExtΓpC q

is left adjoint to the inclusion functor NExtΓpC q Ñ ExtΓpC q and, for every
monadic extension p : E Ñ B, the morphism Bp : H2pB, Iq Ñ KerpI1p f qq is a
connecting morphism in the long exact homology sequence associated with
f and I. In order to deduce this result from ours, we need a lemma.

Lemma 7.1. If the left hand triangle

N

tδ
F

y�

G

�%
C

K
,2 D

M

t
δL

F˝L

y�

G˝L

�%
C

K
,2 D

is a Kan extension and the functor L : M Ñ N admits a fully faithful right
adjoint, then the right hand triangle is a Kan extension as well.
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Proof. Write R for the fully faithful right adjoint of L, and ε : LR ñ 1M

for the counit. By [25, Proposition 3 in X.7], the natural transformation
Gε : GLR ñ G defines a Kan extension, as pictured in the top triangle of the
right hand diagram:

N

t
Gε

LR

x� G

�$

N

tδ
G

&-

F

y�
C

K
,2 D

N

t
Gε

R

x� G

�$

M

tδL
GL

&-

FL

y�
C

K
,2 D

We want the bottom triangle in the right hand diagram to be a Kan extension
as well. Since ε is a natural isomorphism, this will be the case if the outer
triangle and the natural transformation Gε˝δLR : KFLR ñ G form a Kan ex-
tension. And indeed this is true, since the two outer triangles coincide, and
in the left hand diagram both triangles are Kan extensions: the bottom one
by assumption and the top one again by [25, Proposition 3 in X.7], because
LR : N Ñ N is right adjoint to the identity functor, since R is fully faith-
ful. �

Theorem 6.3 and Lemma 7.1 imply in particular:

Corollary 7.2. Under the assumptions of Section 6, and when, moreover, the
inclusion functor NExtΓpC q Ñ ExtΓpC q admits a left adjoint

I1 : ExtΓpC q Ñ NExtΓpC q,

the diagram
ExtΓpC q

t
δI1

Cod

v�

Ker ˝I1

�(
C

π1p´,Iq
,2X

is a Kan extension.

Proof. It suffices to observe that I1 leaves the codomains intact since every
identity morphism is a normal extension and NExtΓpC q is a replete subcat-
egory of ExtΓpC q (see Corollary 5.2 in [16]). �
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The inclusion functor NExtΓpC q Ñ ExtΓpC q admits a left adjoint not
only in the semi-abelian case mentioned above, but more generally, when-
ever C is an exact Mal’tsev category, X is a Birkhoff subcategory and E
and F consist of all regular epimorphisms (see [5]). Another class of ex-
amples is given in [4].

8 Exact homotopy sequence
As remarked above, the Galois structure Γ of Example 2.6 (vi) satisfies all
conditions assumed in Sections 5 and 6, except one: it is admissible, the cat-
egory LoCo˚ is finitely complete and pointed, the discrete topology functor

Dis : Set˚ Ñ LoCo˚

is fully faithful, monadic extensions are pullback stable and, for every poin-
ted set pX, xq, the map pX, xq Ñ 0 is in F (since here F consists of all
base-point preserving maps); yet not every pointed topological space admits
a weakly universal normal extension into it. We do know, however, that a
universal normal extension exists for every connected, locally path connec-
ted, semi-locally simply connected space B with base-point y P B, namely
its universal covering map in the usual topological sense: a covering map
u : pU,wq Ñ pB, yq with U connected and simply connected. Theorems 5.1
and 6.3 and their proofs can easily be adapted to this situation. Thus we
obtain Kan extensions

NExtΓpLoCo˚q

tκ
Cod

u~

GalΓp´,0q

�(
LoCo˚

π1p´,π0q
,2 Gp

NExtΓpLoCo˚q

t
δ

Cod

u~
Ker

�(
LoCo˚

π1p´,π0q
,2 Set˚

where LoCo˚ is the full subcategory of LoCo˚ consisting of all connected,
locally path connected, semi-locally simply connected pointed spaces, and
the full subcategory NExtΓpLoCo˚q of NExtΓpLoCo˚q is determined by those
normal extensions whose codomain is in LoCo˚. Notice that GppSet˚q »
GppSetq » Gp.
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Now let p : pE, xq Ñ pB, yq be a Γ-normal extension of a connected,
locally path-connected, semi-locally simply connected pointed space pB, yq
with kernel pF, xq (meaning in this context of course the fibre over y). Let
u be the universal covering map pU,wq Ñ pB, yq, write e for the unique
continuous base-point preserving map pU,wq Ñ pE, pq such that pe “ u
and recall that it is a covering map. Since U is connected, the image of e
is contained in the connected component Ex of x and the left hand triangle
restricts to the commutative right hand triangle

pU,wq

e
��

u

�(
pE, xq p

,2 pB, yq

pU,wq

e1

��

u

�(
pEx, xq p1

,2 pB, yq

Now e1 is still a covering map, and it is surjective since its codomain is
connected—the image of a covering map is always both open and closed.
Moreover, since U is connected and simply connected, e1 is the universal
covering map of pEx, xq. Taking kernels yields an exact sequence of pointed
sets

0 Ñ Kerpe1q Ñ Kerpuq Ñ Kerpp1q Ñ 0

hence an exact sequence of groups

0 Ñ π1pE, xq Ñ π1pB, yq Ñ pF X Ex, xq Ñ 0

where pF X Ex, xq is the Galois group of the normal extension p1. As we
clearly have an exact sequence of pointed sets

0 Ñ pF X Ex, xq Ñ pF, xq Ñ π0pE, xq Ñ 0

and because pF, xq “ π0pF, xq since F is a discrete space, we can paste the
two sequences together to obtain an exact sequence

0 Ñ π1pE, xq Ñ π1pB, yq Ñ π0pF, xq Ñ π0pE, xq Ñ 0

and this is the low-dimensional part of the usual exact homotopy sequence
induced by the fibration

pF, xq Ñ pE, xq Ñ pB, yq.

EVERAERT, GOEDECKE & VAN DER LINDEN - FUNDAMENTAL GROUP FUNCTOR...

- 207 -



Notice that π0pB, yq “ 0 as B is connected. What we would like to point out
here is that the morphism π1pB, yq Ñ π0pF, xq “ pF, xq is the p-component
δp of the natural transformation defining the right hand Kan extension pic-
tured above. Hence, we are in a similar situation as with the algebraic case
studied in the previous section, where the Kan extension of Corollary 7.2
expresses a universal property of the connecting morphisms in an exact ho-
mology sequence.

References
[1] F. Borceux and G. Janelidze, Galois theories, Cambridge Stud. Adv.

Math., vol. 72, Cambridge Univ. Press, 2001.

[2] R. Brown, Fibrations of groupoids, J. Algebra 15 (1970), 103–132.

[3] R. Brown and G. Janelidze, Galois theory of second order covering
maps of simplicial sets, J. Pure Appl. Algebra 135 (1999), 23–31.

[4] M. Duckerts-Antoine, Fundamental groups in E-semi-abelian catego-
ries, Ph.D. thesis, Université catholique de Louvain, 2013.
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