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Résumé. En étandant un article précédent (avec R. Paré) sur les adjonctions
pour les catégories doubles, on traite maintenant les catégories cubiques
symétriques (de dimension infinie). Ici aussi, une "adjonction cubique"
générale est formée d'un foncteur cubique colax qui est adjoint à gauche
d'un foncteur cubique lax. Cela ne peut pas être envisagé comme une
adjonction interne à une bicatégorie, car en composant des morphismes lax
et colax on détruit leurs structure. Toutefois, comme dans le cas des
adjonctions doubles, les adjonctions cubiques vivent dans une catégorie
double intéressante; celle-ci est formée des catégories cubiques symé-
triques, avec les foncteurs cubiques lax  et colax  en tant que flèches
horizontales et verticales, liées par des cellules doubles convenables.

Abstract. Extending a previous article (with R. Paré) on adjoints for double
categories, we deal now with weak symmetric cubical categories (of infinite
dimension). Also here, a general 'cubical adjunction' has a colax cubical
functor left adjoint to a lax one. This cannot be viewed as an adjunction in
some bicategory, because composing lax and colax morphisms destroys all
comparisons. However, as in the case of double adjunctions, cubical
adjunctions live in an interesting double category; this now consists of weak
symmetric cubical categories, with lax and colax cubical functors as
horizontal and vertical arrows, linked by suitable double cells.

Mathematics Subject Classifications (2000): 18D05, 18A40, 55U10,
20B30.
Key words: weak cubical category, weak double category, adjoint functor,
cubical set, symmetries.

Introduction

This is the third paper in a series on weak symmetric cubical categories. The first
[G4] explores the role of symmetries. The second [G5] deals with cubical limits and
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can be viewed as an infinite-dimensional extension of the study of double limits in
[GP1]. We now investigate cubical adjunctions, extending the study of double
adjoints in [GP2]. (See the acknowledgements at the end of this Introduction.)

Weak cubical categories were introduced in [G1-G3], as a basis for the study of
cubical cospans in Algebraic Topology and higher cobordism. They have a cubical
structure, with faces and degeneracies, weak compositions in countably many
directions (indexed as 1, 2,..., n,...) and a strict composition in one direction, called
the transversal one (and indexed as 0).

As a leading example, one can think of the weak cubical category  !Sp(X)  of
cubical spans in a category with pullbacks  X.  An n-dimensional object is a functor
x: """"n  X,  where  """"  is the 'formal span' category

 (-1,-1)   (0,-1)   (1,-1)

   1

(1) –1    0    1  (-1, 0)   (0, 0)   (1, 0)    2

"""",
 (-1, 1)   (0, 1)   (1, 1) """"2.

(In these diagrams, identities and composites are understood.) A transversal n-
map is a natural transformation  f: x  x': """"n  X  of such functors; notice that it
is a diagram of dimension  n+1,  as a functor defined on  2×""""n,  and should be
viewed as an (n+1)-cell of our structure.

The ordinary categories  Spn(X) = Cat(""""n, X)  form a cubical object in  Cat,
with obvious faces and degeneracies. Moreover, n-dimensional spans (and their
maps) have cubical composition laws (or concatenations)
(2) x +i y (f +i g: x +i y  x' +i y'),

in direction  i = 1,..., n,  that are computed with (a fixed choice of) pullbacks; these
compositions are consistent with faces, but only behave well up to invertible
transversal maps, the comparisons for associativity, unitarity and interchange.

As already stressed in [G1],  !Sp(X)  is a weak symmetric cubical category,
when equipped with the obvious action of the symmetric group  Sn  on the category
Cat(""""n, X),  by permuting variables in  """"n.  These symmetries – which only
permute the weak directions – reduce all faces, degeneracies and cubical composi-
tions to the 1-indexed case (for instance), and allow us to simplify the coherence
conditions.
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Notice also that cubical 1-truncation keeps i-cubes and i-transversal maps (i.e.
(i+1)-cells) for  i # 1;  it yields the weak double category  Sp(X) = tr1(!Sp(X))  of
morphisms and ordinary spans, studied in [GP1, DPR2], with one weak direction
and the strict transversal one. Here, all symmetries 'disappear', since the symmetric
groups  S0  and  S1  acting on 0- and 1-objects (and their transversal maps) are
trivial. In other words, a weak double category is trivially symmetric, in the present
sense.
Outline. In Section 1 we review the construction of  !Sp(X),  in order to clarify the
general structure of symmetric cubical categories; a formal definition of this
structure can be found in [G1] and [G4]. We also sketch a natural cubical colax/lax
adjunction between cubical spans and cospans. (Other examples will be studied in a
sequel.)

In Section 2 we introduce the strict double category  Wsc  of weak sc-categories,
lax and colax sc-functors and suitable double cells. Comma sc-categories are also
considered. Both topics extend notions of weak double categories developed in
[GP2]. It is interesting to note that the double category  Wsc  seems not to be the
truncation of any cubical category of interest.

Section 3 reviews the notions of companions and adjoints in a double category,
from [GP2]. The next two sections introduce and study cubical colax/lax
adjunctions, as adjoint arrows in the double category  Wsc.

Finally, Section 6 deals with the preservation of (co)limits by adjoints, for weak
sc-categories.
Literature. Besides the articles mentioned above, weak double categories - also
called pseudo double categories - are studied in various works, like [BM, BMM, Da,
DP1, DP2, DPR1, DPR2, Fi, FGK, P2]; the strict case was introduced by C.
Ehresmann (see [E1, E2, BE]). Relations between weak cubical and globular (infinite
dimensional) categories are dealt with in [GP5].

Acknowledgements. This paper is a natural extension of a joint work with R. Paré
[GP2] on double adjunctions, for the cubical framework introduced in [G1, G4].
The paper was originally planned and discussed as a joint work with Bob. Then, his
interests took other directions and the joint work will hopefully appear at a later date.
He would like, however, to join me in wishing René all the best.

This work is partially supported by a research contract of Università di Genova.
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1. Basic examples

The formal definition of a weak symmetric cubical category, or weak sc-category,
is long and involved (see [G1, G4]). Rather than rewriting it, we use here - as a
leading example - the weak symmetric cubical category  !Sp(X)  of higher cubical
spans (on a category  X  with pullbacks), that extends the weak double category
Sp(X)  studied in [GP1]. This should be sufficient to give a clear idea of the general
structure of a weak sc-category, and to show how it extends weak double categories
to the infinite-dimensional case. The dual case of cospans is also mentioned.

Then we recall a colax/lax double adjunction  SpX        CospX  studied in [GP2]
and extend it to a colax/lax cubical adjunction  !SpX          !CospX,  preparing the
way for the study of this notion.

Cubical structures have two faces  $%i   in each direction  i,  that are distinguished
by a binary variable  %;  the values of the latter are written as  0, 1  or  –, +,  and can
be read as lower and upper.

1.1. Cubical spans. Let  X  be a category with a (full) choice of distinguished
pullbacks: in other words, to every cospan  (f, g)  we assign one distinguished
pullback  (f', g'),  in a symmetric way (assigning  (g', f')  to the cospan  (g, f)).

The 'geometric model' of cubical spans of dimension  n  is the category  """"n,  a
cartesian power of the formal span  """"

 (-1,-1)   (0,-1)   (1,-1)

   1

(1) –1    0    1  (-1, 0)   (0, 0)   (1, 0)    2

"""",
 (-1, 1)   (0, 1)   (1, 1) """"2.

(In these diagrams, identities and composites are understood.) An n-cube of
!Sp(X)  is a functor  x: """"n  X;  in particular, a 0-cube 'is' an object of  X,  and
will also be called an object of  !Sp(X).

A transversal map of n-cubes is a natural transformation  f: x  y: """"n  X;  it
is also called an n-map, but should be viewed as an (n+1)-dimensional cell, as it is
represented by the associated functor  f: 2×""""n  X  (a diagram of dimension
n+1).

These objects and maps form a category
(2) Spn(X)  =  Cat(""""n, X).
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Its composition law, written  g.f  or  gf,  is called the transversal composition of
!Sp(X)  in degree  n  and direction 0. The domain and codomain of a transversal n-
map  f: x  y  are written as  $–

0(f) = x  and  $+
0(f) = y.  The identity of  x  is written

as  id(x).
It is now easy to construct a symmetric cubical object in  Cat,  based on the

structure of the category  """"  as a formal symmetric interval (with respect to the
cartesian product in  Cat);  this structure consists of two faces  ($%),  a degeneracy
(e)  and a transposition  (s):
(3) $%: 1               """",        e: """"  1, s: """"2  """"2 (% = ±),

$%(*)  =  %1,        e(t)  =  *, s(t1, t2)  =  (t2, t1).

Faces, degeneracies and transpositions of n-cubes and n-maps are defined by
(contravariant!) pre-composition with the corresponding maps between cartesian
powers of  """"  (for  % = ±  and  i = 1,..., n)

(4) $%i   =  """"i–1×$%×""""n–i: """"n–1  """"n, $%i (t1,..., tn–1)  =  (t1,..., %1,..., tn–1),
ei  =  """"i–1×e×""""n–i: """"n  """"n–1, ei(t1,..., tn)  =  (t1,..., t̂i,..., tn),
si  =  """"i–1×s×""""n–i: """"n+1  """"n+1, si(t1,..., tn+1)  =  (t1,..., ti+1, ti,..., tn+1),

so that the  2n  faces of an n-cube  x: """"n  X  are  $%i (x) = x.$%i : """"n–1  X,  and
so on.

An n-cube has  2n  vertices, the objects  $%1
1 $

%2
2 ...$%n

n (x).  Similarly, a transversal
n-map  f  has  2n  vertices, the 0-maps  $%1

1 $
%2
2 ...$%n

n (f);  f  is said to be special if its
vertices are identities. A 0-object  x  determines a sequence of totally degenerate
cubes  en(x)  of any dimension:
(5) en(x)  =  en... e1(x)  =  e1... e1(x).

The i-concatenation  x +i y,  or cubical composition in direction  i,  of two n-
cubes that are i-consecutive (i.e.  $+

i (x) = $–
i (y))  is computed in the obvious way, by

3n–1  distinguished pullbacks whose 'vertices' are those of the common face (for  i =
1,..., n).  This operation is then extended to transversal n-maps, in the obvious way:  f
+i g  is defined when  $+

i (f) = $–
i (g).

This operation can be given a formal definition, based on the model of binary
composition (for ordinary spans), the category  """"2  displayed in the commutative
diagram below, with one non-trivial pullback

–1  b  1
(6)   a    c

  0  """"2.
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Indeed, two consecutive spans  x, y  in  X  define a functor  [x, y]: """"2  X
(sending the previous pullback to a distinguished one, in  X ).  Then the
concatenation  x +1 y: """"   X  is obtained by pre-composing  [x, y]  with the
concatenation map  m: """"  """"2,  a full embedding (displayed in the diagram above
by the names of the objects of  """"2).  Similarly two transversal 1-maps  f: x  x',  g:
y  y'  define a natural transformation  [f, g]: [x, y]  [x', y']: """"2  X  and then:

f +1 g  =  [f, g].m:  x +1 y   x' +1 y:'  """"  X.

  Then, i-concatenation of n-cubes (and n-maps) is based on the cartesian product
""""i–1 × """"2 × """"n–i,  as shown below for the concatenation of 2-cubes in direction  i = 1

  (0,-1)

(-1,-1)  (a,-1)   (b,-1)  (c,-1)   (1,-1)

   1

(7) (-1, 0)  (a, 0)   (b, 0)  (c, 0)   (1, 0)    2

(-1, 1)  (a, 1))   (b, 1)  (c, 1)   (1, 1)  """"2 × """".

Comparisons for unitarity, associativity and interchange can be defined taking
advantage of this formal construction (as proved in [G1], Section 3). These
comparisons are invertible, special transversal maps:
(8) &1x: e1$–

1x +1 x  x ,    '1x: x +1 e1$+
1x  x (unit 1-comparisons),

(1(x, y, x): x +1 (y +1 z)  (x +1 y) +1 z (associativity 1-comparison),

)1(x, y, z, u): (x +1 y) +2 (z +1 u)  (x +2 z) +1 (y +2 u)
(interchange 1-comparison).

Of course, we are assuming that all concatenations above are legitimate.
The comparisons  &i, 'i, (i, )i  in the other directions are provided by transposi-

tions, a fact that simplifies the structure and the coherence axioms. (The comparison
)i  deals with the interchange of  +i  and  +i+1.)

One can easily obtain a unitary (or normal) weak sc-category, where the unit
comparisons are transversal identities, by assuming that our choice of distinguished
pullbacks satisfies the unitarity constraint:
(*) the distinguished pullback of the cospan  (f, 1)  is the span  (1, f)  (and sym-
metrically).
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1.2. Cubical cospans. Cubical cospans are obtained by the dual procedure, for a
category  X  with distinguished pushouts:
(1) !C osp(X)  =  !Sp(Xop), C ospn(X)  =  Cat(****n, X).

Here the category  **** = """"op  is the formal cospan:  –1  0  1.  This case is
of interest in Algebraic Topology and higher cubical cobordism, see [G1-G4].

Again,  !Cosp(X)  is a unitary weak sc-category if the choice of distinguished
pushouts satisfies the unitarity constraint: the distinguished pushout of the span
(f, 1)  is the cospan  (1, f)  (and symmetrically).

From now on, we adopt the unitarity constraint for pullbacks and pushouts, for
the sake of simplicity.

1.3. Truncation. Truncating a weak sc-category  !A   at the level of 1-cubes and 1-
transversal maps (that are 2-dimensional!) we get a weak double category  A.

In particular,  !Sp(X)  gives the weak double category  Sp(X)  of sets, mappings
and spans on  X,  while  !Cosp(X)  gives the weak double category  Cosp(X)  of
sets, mappings and cospans [GP1] (where the category  X  has distinguished
pullbacks or pushouts, respectively).

More specifically, given a weak sc-category  !A:
- the 0-cubes and the transversal 0-maps  f: A  A'  of  !A  give the objects and the
horizontal arrows of the weak double category  A = tr1(!A);
- each 1-cube becomes a vertical arrow  u: A  B  (marked with a dot), where  A =
$–

1(u),  B = $+
1(u);

- each transversal 1-map  a: u  v  becomes a double cell as below

  f
  A  A' u = $–

0(a), v = $+
0(a),

(1)   u a    v    0

  B  B'    1 f = $–
1(a), g = $+

1(a),
g

whose boundary is displayed as  a: (u f
g v)  or  a: u  v;

 - the transversal composition (of 0-maps and 1-maps) becomes the horizontal one,
while concatenation (of 1-cubes and 1-maps) becomes the vertical composition; the
former is strictly categorical, while the latter is weakly categorical, up to the invertible
special comparisons of  !A  (in degree 1).
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1.4. A double adjunction. The weak double categories  SpX  and  CospX   of
spans and cospans on the category  X  (with distinguished pullbacks and pushouts)
are linked by an obvious colax/lax adjunction
(1) F:  SpX           CospX :R, +: 1  RF,     ,: FR  1,

that we describe here in an informal way. (Writing  +: 1  RF  and  ,: FR  1  is
an abuse of notation, since we cannot compose the comparisons of  F  and  R.  The
precise definition of a colax/lax adjunction of weak double categories can be found
in [GP2]; but the reader will find here its cubical extension, in Section 4, and can
easily recover the truncated notion.)

At the level 0 (of objects and arrows of  X),  everything is an identity. At the level
1 (of 1-cubes and 1-maps),  F  operates by pushout and  R  by pullbacks; the special
transversal 1-maps  +x: x  RFx  and  ,y: FRy  y  are obvious:

  
x '   y'

(2)  U - +x  - ,y  V

x"   y"
  

The triangle identities are plainly satisfied:
,(Fx).F(+x)  =  id(Fx), R(,y).(+Ry)  =  id(Ry).

Finally it is easy to check that  F  is, in a natural way, a colax double functor
(dually,  R  is lax). The comparison cell  F(x, y): F(x +1 y)  Fx +1 Fy  for
concatenation is given by the natural mapping from the pushout of  (x'z', y"z")  to
the cospan  Fx +1 Fy  (at the right-hand of the diagram below)

  x'
  U

  z'   x"

(3)  W
 z"   y'

  V
  y"
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Since we agreed to follow the unitarity constraint for the choice of pullbacks and
pushouts in  X,  the adjunction is unitary, in the sense that so are the weak double
categories  SpX,  CospX  and the colax/lax double functors  F, R.  It is also special,
in the sense that the restricted adjunction at the level of 0-objects and 0-maps
(4) F0:  X            X  :R0 +0: 1  R0F0,     ,0: F0R0  1,

is composed of identity functors and identity transformations.
Notice also that the natural transformations  F+,  ,F,  +R,  R,  are invertible

(which means that the adjunction is idempotent).

1.5. The cubical adjunction. The unitary colax double functor  F: SpX 
C ospX  can be extended to a unitary colax sc-functor  F: !SpX  !CospX.

Moving one degree up, for a 2-dimensional span  x,  F2(x)  is constructed with
the pushout of faces  F1($%i x)  and the colimit of the whole diagram  x
(1) $%i (F2(x))  =  F1($%i x) for  % = 0, 1  and  i = 1, 2,

F2(x)(0, 0)  =  colim(x).

This colimit exists in  X,  since it can be easily constructed as a pushout of
pushouts; but its choice must agree with transposition and preserve units. (See [P2]
for a general characterisation of the dual topic: limits 'generated' by pullbacks).

The 2-dimensional span  x  of the left diagram below becomes thus the right-
hand 2-dimensional cospan  F2(x)

x (-1,-1)   x(0,-1)   x(1,-1)  x(-1,-1)   F($–
2x)(0)    x(1,-1)

(2) x(-1, 0)   x(0, 0)   x(1, 0) F($–
1x)(0)    colim(x)   F($+

1x)(0)

 x(-1, 1)   x(0, 1)   x(1, 1)  x(-1, 1)   F($+
2x)(0)    x(1, 1)

The definition of  F2  on transversal 2-maps is obvious, as well as the compari-
son cells for 1-directed concatenation  F(x, y): F(x +1 y)  Fx +1 Fy.

One proceeds in a similar way, defining  Fn  after  Fn–1

(3) $%i (Fn(x))  =  Fn–1($%i x) for  % = 0, 1  and  i = 1,..., n,
Fn(x)(0)  =  colim(x), for  0 = (0,..., 0) - """"n.

The unitary lax double functor  R:  CospX  SpX  is similarly extended, using
distinguished limits instead of colimits, and gives a unitary lax sc-functor  R:
!C ospX  !SpX.
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One extends the unit  +: 1  RF  by a similar inductive procedure:
(4) $%i (+(x))  =  +($%i x) for  % = 0, 1  and  i = 1,..., n,

(+x)(0): x(0)  RF(0) = lim(Fx), for  0 = (0,..., 0) - """"n,

where the map  (+x)(0)  is given by the universal property of the limit  lim(Fx).
Analogously for the counit  ,: FR  1.  The triangular identities hold.

1.6. Transversal invariance. Extending a notion of double categories (introduced
in [GP1], 2.4, under the name of horizontal invariance), we say that the weak sc-
category  A  is transversally invariant if, for every n-cube  x  and every pair of
transversal (n–1)-isomorphisms  f%: $%1 x  y%  (where  % = ±),  there exists some
transversal n-isomorphism  f: x  y  with  $%1 f = f%  (and therefore  $%1 y = y%)

  f–
   y–    0

(1)  x  f    y    1

   y+
f+

Of course, because of transpositions, the same property holds for every pair of i-
directed faces  $%i .

2. The double category of lax and colax symmetric cubical functors

In the 2-dimensional case, weak double categories, with lax and colax double
functors and suitable double cells form a strict double category  Dbl,  a crucial,
interesting structure introduced in [GP2] to define colax/lax double adjunctions.

We now extend this construction forming the strict double category  Wsc  of
weak sc-categories, lax and colax sc-functors and suitable double cells, in order to
define colax/lax adjunctions between weak sc-categories. Comma sc-categories are
also considered, extending again the case of double categories dealt with in [GP2].

Notice that, as far as we can see, the double category  Wsc  is not the truncation
of any cubical category of interest. Therefore we write it according to the notation
for double categories used since [GP1]: the horizontal and vertical compositions of
cells are written as  (% | .)  and  ( 

%
/

 ),  or more simply as  %|.  and  %0/.  Horizontal
identities, of an object or a vertical arrow, are written as  1A  and  1u: (u  AB  u) ;
vertical identities, of an object or a horizontal arrow,  as  1•

A  and  1•
f : (A  ff  A').
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2.1. Lax sc-functors. As defined in [G5], 1.5, a lax symmetric cubical functor  R:
X  A  between weak sc-categories, or lax sc-functor, strictly preserves faces,
transpositions, transversal composition and transversal identities, but has special
transversal maps, called comparisons, for the cubical operations, namely degenera-
cies (or units) and concatenation in direction 1 (those of the other cubical directions
being generated by transpositions):
(1) R(x): e1(Rx)  R(e1x) (for any cube  x  in  X),

R(x, y): Rx +1 Ry  R(z)        (for any concatenation  z = x +1 y  in  X).

Recall that a transversal n-map is said to be special if its  2n  vertices are identi-
ties. Notice that in  R(x),  the cube  x  has an arbitrary degree  n 1 0,  while in  R(x,
y)  the cubes  x, y  must have degree  1 1  and be 1-consecutive:  $+

1x = $–
1y.

These comparisons must satisfy the following axioms of coherence (writing  +1
as  +  in most diagrams)

(i)  (naturality) for a transversal n-map  f: x  x'  in  X  and a concatenation  f +1 g
(with  g: y  y'),  we have the following commutative diagrams of transversal maps

  e1(Rf)  Rf+Rg
e1(Rx)  e1(Rx') Rx+Ry  Rx'+Ry'

(2)     R(x)   R(x')  R(x, y)  R(x', y') 

R(e1(x)) R(e1(x')) R(x + y) R(x' + y')
 R(e1f)  R(f+g)

(ii) (coherence laws for degeneracies) for an n-cube  x  in  X,  with 1-indexed faces
$–

1x = a,  $+
1x = b,  the following diagrams of transversal maps commute

 &1(Rx) '1(Rx)
 e1(Ra) + Rx  Rx  Rx + e1(Rb)  Rx

(3)  R(a)+id  R(&1x)     id+R(b) R('1x)  

 R(e1a) + Rx  R(e1a + x)  Rx + R(e1b) R(x + e1b)
  R(e1a, x)   R(x, e1b)

(iii) (coherence hexagon for associativity) for 1-consecutive n-cubes  x, y, z  in  X,
the following diagram of transversal maps is commutative (the index  1  is omitted in
the labels of the arrows)
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  ((Rx,Ry,Rz)
 Rx + (Ry + Rz) (Rx + Ry) + Rz

   id + R(y,z)     R(x,y) + id

(4) Rx + R(y + z) R(x + y) + Rz
  R(x, y+z)     R(x+y, z)

 R((x + (y + z)) R(x + y) + z
R((x,y,z)

(iv) (coherence hexagon for cubical interchange)  for n-cubes  x, y, z, u  in  X
making the following concatenations legitimate, the following diagram of transversal
maps is commutative (the indices 1, 2  are omitted in the labels of the arrows)

  )(Rx,Rz,Ru,Ru)
 (Rx +1 Ry) +2 (Rz +1 Ru) (Rx +2 Rz) +1 (Ry +2 Ru)
  R(x,y) + R(z,u)     R(x,z) + R(y,u)

(5) R(x +1 y) +2 R(z +1 u) R(x +2 z) +1 R(y +2 u)
  R(x+y,z+u)     R(x+z,y+u)

   R((x +1 y) +2 (z +1 u)) R((x +2 z) +1 (y +2 u))
  R()(x,y,z,u))

A lax sc-functor  R  is said to be unitary if its unit comparisons  R(x)  are identi-
ties. If  X,  A  and  R  are unitary, the cells  R(e1$–

1x, x)  and  R(x, e1$+
1x)  are also

identities (by axiom (ii)).
A colax sc-functor  F: X  A  has comparisons in the opposite direction

(6) F(x): F(e1x)  e1(Fx), F(x, y): F(x +1 y)  Fx +1 Fy.

A pseudo sc-functor is a lax (or colax) sc-functor whose comparisons are
invertible.

2.2. Transformations of lax sc-functors. A transversal transformation of lax sc-
functors  h: R  S: X  A   assigns to every n-cube  x  of  X  an n-map  hx:
Rx  Sx  in  A.

This family must be natural on transversal maps, commute with faces and
transpositions and satisfy the coherence conditions (iii) for degeneracies and
concatenations:
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(i) for an n-map  f: x  y  in  A, hy.Ff  =  Gf.hx,

(ii)  $%i (hx)  =  h($%i x), h(six)  =  si(hx),

(iii)  for an n-cube  x  and a 1-consecutive n-cube  y  in  X,  the following squares of
n-maps commute (again, we write  +  for  +1):

  e1(hx)    hx+hy
e1(Rx)   e1(Sx) Rx + Ry   Sx + Sy

(1)  R1(x)    S1(x)   R1(x, y)     S1(x, y)

  R(e1x)   S(e1x) R(x + y)  S(x + y)
 h(e1x)   h(x+y)

Weak sc-categories, lax sc-functors and their transversal transformations form
a 2-category  LxWsc.

Transversal transformations of colax sc-functors are defined in a similar way.
CxWsc  will denote the 2-category of weak sc-categories, colax sc-functors and their
transversal transformations.

2.3. The double category Wsc. Lax and colax sc-functors do not compose well,
since we cannot compose their comparisons. On the other hand, they can be
organised in a strict double category  Wsc,  crucial for our study, where orthogonal
adjunctions (recalled below, in Section 3) will provide our general notion of cubical
adjunction (Section 4) while companion pairs amount to pseudo sc-functors
(Section 5).

The objects of  Wsc  are the weak sc-categories  X, A, B,...; its horizontal arrows
are the lax sc-functors  R, S...;  its vertical arrows are the colax sc-functors  F, G...
A cell  %

 R
  X   A

(1)   F %     G

  B   C
S

is - very roughly speaking - a 'transformation'   %: GR  SF.
But this is an abuse of notation, since the composites  GR  and  SF  are neither

lax nor colax (just morphisms of symmetric 'face-cubical' sets, respecting the
transversal structure): the coherence conditions of  %  require the individual
knowledge of the four 'functors', including the comparison cells of each of them.

Precisely, the cell  %  consists of the following data:
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(a) two lax sc-functors  R, S,  with comparisons as follows:

R: X  A, R(x): e1(Rx)  R(e1x), R(x, y): Rx +1 Ry  R(x +1 y),
S: B  C  , S(x): e1(Sx)  S(e1x), S(x, y): Sx +1 Sy  S(x +1 y),

(b) two colax sc-functors  F,  with comparisons as follows:

F: X  B, F(x): F(e1x)  e1(Fx), F(x, y): F(x +1 y)  Fx +1 Fy,
G: A  C , G(x): G(e1x)  e1(Gx), G(x, y): G(x +1 y)  Gx +1 Gy,

(c) a family of transversal n-maps  %x: GR(x)  SF(x)  of  C  (for every n-cube  x
in  X),    consistent with faces and transpositions
(2) %($%i x)  =  $%i (%x), %(six)  =  si(%x).

These data have to satisfy the naturality condition (c1) and the coherence condi-
tions (c2), (c3)  (with respect to 1-degeneracies and 1-concatenation, respectively)
(c1) SFf.%x  =  %y.GRf: GR(x)  SF(y) (for  f: x  y  in  X),

(c2) SF(x).%e1(x).GR(x)  =  SF(x).e1(%x).GR(x) (for  x  in  X),

 GR(x)  %e1(x)
 Ge1(Rx)   GR(e1x)   SF(e1x)

 GR(x)     SF(x)

   e1GR(x)   e1SF(x)   Se1F(x)
 e1%(x)  SF(x)

(c3) SF(x, y).%z.GR(x, y)  =  S(Fx, Fy).(%x +1 %y).G(Rx, Ry)

(for  z = x +1 y  in  X),

 GR(x,y)  %z
 G(Rx +1 Ry)   GR(z)   SF(z)

G(Rx, Ry)     SF(x, y)

 GRx +1 GRy SFx +1 SFy   S(Fx +1 Fy)
%x +1%y  SF(x, Fy)

The horizontal composition  (% | .)  and the vertical composition  % 0 / = ( 
%

/
 )

of double cells are both defined via the composition of transversal maps (in a weak
sc-category)
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  X R R' 

  F %    G .    H

(3) S S'

 F' /    G' 2    H'

T T' 

(4) (% | .)(x)  =  S'%x..Rx: HR'R(x)  S'GR(x)  S'SF(x),

( 
%

/
 )(x)  =  /Fx.G'%x: G'GR(x)  G'SF(x)  TF'F(x)  (for  x  in  X).

We verify below, in Theorem 2.4, that these compositions are well-defined, and
satisfy the axioms of a double category.

Within  Wsc,  we have the strict 2-category  LxWsc  of weak sc-categories, lax
sc-functors and transversal transformations: namely,  LxWsc  is the restriction of
Wsc  to trivial vertical arrows.

Similarly, the strict 2-category  CxWsc  (resp.  PsWsc)  whose arrows are the
colax (resp. pseudo) sc-functors, also lies in  Wsc.

2.4. Theorem.  Wsc,  as defined above, is indeed a strict double category.

Proof. The argument is much the same as for  Dbl,  in [GP2].
First, to show that the double cells defined in 2.3.4 are indeed coherent, we verify

the condition (c3) for  (% | .),  with respect to a concatenation  z = x +1 y  (written as
x + y)  in  X.  Our property amounts to the commutativity of the outer diagram
below, formed of transversal maps

   .Rz  S'%z
  HR'Rz S'GRz   S'SFz

HR'R   S'GR       S'SF

(1) HR'(Rx+Ry) S'G(Rx+Ry) S'S(Fx+Fy)
HR'R  .(Rx + Ry)

S'GR S'(%x+%y)   S'SF

H(R'Rx + R'Ry) S'(GRx+GRy) S'(SFx+SFy)
HR'R  S'GR   S'SF

HR'Rx+HR'Ry S'GRx+S'GRy S'SFx+S'SFy
.Rx+.Ry  S'%x+S'%y

Indeed, the two hexagons commute applying (c3) to  %  and  .,  respectively; the
upper parallelogram commutes by naturality of  .;  the lower one by consistency of
S'  with the cells  %x, %y  (by 2.1(i)).
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Now, both compositions of double cells have been defined, in 2.3.4, via the
composition of transversal maps (in a weak sc-category), and therefore are strictly
unitary and associative.

Finally, to verify the middle-four interchange law on the four double cells of
diagram 2.3.3, we compute the compositions  (% | .)0(/ | 2)  and  (%0/) | (.02)  on
an n-cube  x,  and we obtain the two transversal maps  H'HR'Rx  T'TF'Fx  of the
upper or lower path of the following diagram

H'.Rx   H'S'%x
 H'HR'Rx  H'S'GRx H'S'SFx

(2)  2GRx     2SFx

T'G'GRx T'G'SFx  T'TF'Fx
  T'G'%x  T'/Fx

But these two paths coincide because the square commutes: it is a consequence
of axiom (c1) for the double cell  2,  namely the naturality of  2  on the transversal
map  %x: GR(x)  SF(x).

2.5. Comma structures. Comma double categories (introduced in [GP2]) also have
a natural extension to the cubical case. Given a colax sc-functor  F: A  C  and a
lax sc-functor  R: X  C   with the same codomain, we can construct the comma
weak sc-category  F  R,  where the projections  P  and  Q  are strict sc-functors, and
3  is a cell of  Wsc

 P
  F  R   A

(1)   Q   3     F

  X   C
  R

An n-cube of  F  R  is a triple  (a, x; c: Fa  Rx)  where  a  is an n-cube of  A,
x  is an n-cube of  X  and  c  is an n-map of  C .  A transversal map  (h, f): (a, x; c)

 (a', x'; c')  comes from a pair of transversal maps  h: a  a'  (in  A,)  and  f: x 
x'  (in  X)  that form in  C  a commutative square of transversal maps

  c
Fa Rx

(2) Fh     Rf Rf.c  =  c'.Fh.
   Fa' Rx'

    c'
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Faces, transposition and transversal composition are obvious. In the 1-
concatenation
(3) (a, x; c: Fa  Rx) +1 (b, y; d: Fb  Ry)

=  (a +1 b, x +1 y; u: F(a +1 b)  R(x +1 y)),
the transversal map  u  is the following composite, defined using the fact that  F  is
colax and  R  is lax:

(4) u  =  R(x, y).(c +1 d).F(a, b):
F(a +1 b)  Fa +1 Fb  Rx +1 Ry  R(x +1 y).

The invertible associativity transversal map for 1-directed concatenation of three
1-consecutive cubes

(a, x; c), (a', x'; c'), (a", x"; c")

is given by the pair  (%(a), 4(x))  of associativity isocells for our two triples of 1-
consecutive cubes, namely  a = (a, a', a")  in  A  and  x = (x, x', x")  in  X  (we write
+1  as  +)

(5) (%(a), 4(x)): ((a,x; c)+(a',x'; c'))+(a",x"; c")  (a,x; c)+((a',x'; c')+(a",x"; c")).

In fact, let  a1 = (a+a') + a",  a2 = a + (a'+a"),  and similarly  x1,  x2.  Let us
consider the transversal maps   5: Fa1  Rx1  and  6: Fa2  Rx2  defined by the
following transversal compositions:

   5  =  R(x+x', x").(R(x, x') + e1Rx")((c+c')+c").(F(a, a') + e1Fa").F(a+a', a"):

Fa1  F(a+a')+Fa"  (Fa+Fa')+Fa"  (Rx+Rx')+Rx"  R(x+x')+Rx"  Rx1,

   6  =  R(x, x'+x").( e1Rx + R(x', x"))(c+(c'+c")).(e1Fa + F(a', a")).F(a, a'+a"):
Fa2  Fa+F(a'+a")  Fa+(Fa'+Fa")  Rx+(Rx'+Rx")  Rx+R(x'+Rx")  Rx2.

Then the coherence of the transversal map (5) is expressed by the equality

6.F%(a)  =  R4(x).5:  Fa1  Rx2,

that follows from the coherence axioms on  F, R  and  C.
Finally, the strict sc-functors  P  and  Q  are the obvious projections, while the

component of the transversal transformation  3  on the n-cube  (a, x; c)  of  F  R  is
the transversal map:

(6) 3(a, x; c)  =  c: Fa  Rx.
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2.6. Theorem (Universal properties of commas). (a) For a pair of lax sc-functors
S, T  and a cell  %  as below (in  W sc)  there is a unique lax sc-functor  L: Z 
F  R  such that  S = PL ,  T = QL  and  % = (. | 3)  where the cell  .  is defined by
the identity  1: QL  T  (a horizontal transformation of lax sc-functors)

   S
    S

  Z   A   Z –  L  F  R   –  P   A
(1)   1   %     F =   1  .   Q  3     F

  Z   X  C   Z   X  C
  T    R  T  R

Moreover,  L  is pseudo if and only if both  S  and  T  are.
(b) A similar property holds for a pair of colax sc-functors  G, H  and a double cell
%': (G 1

R FH).

Proof. (a)  L  is defined as follows on an n-cube  z  and an n-map  f: z  z'  of  Z
(2) L(z)  =  (Sz, Tz; %z: FSz  RTz), L(f)  =  (Sf, Tf).

The comparison transversal maps  L  for  z  and  z = x +1 y  in  Z ,  are
constructed with the laxity transversal maps  S  and  T  (and are invertible if and only
if the latter are)

(3) Lz  =  (Sz, Tz):  e1(Lz)  Le1(z),
L(x, y)  =  (S(x, y), T(x, y)):  Lx +1 Ly  L(z).

Here,  Lx +1 Ly  is the n-cube defined as below (following 2.5.3-4)

(4) Lx +1 Ly  =  (Sx, Tx; %x: FSx  RTx) + (Sy, Ty; %y: FSy  RTy)
=  (Sx +1 Sy, Tx +1 Ty; u),

u  =  R(Tx, Ty).(%x +1 %y).F(Sx, Sy):

F(Sx +1 Sy)  FSx +1 FSy  RTx +1 RTy  R(Tx +1 Ty).

The coherence condition 2.5.2 on the transversal map  L(x, y) = (S(x, y), T(x, y))
of  F  R

 u
F(Sx +1 Sy) R(Tx +1 Ty)

(5) FS(x, y)     RT(x, y) RT(x, y).u  =  %z.FS(x, y),
FS(z) RT(z)

   %z
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follows from the coherence condition (c3) of  %  as a double cell in  Wsc

(6) (RT)(x, y).(%x +1 %y).F(Sx, Sy)  =  %z.FS(x, y),

 FS(x,y)  %z
 F(Sx +1 Sy)   FS(z)   RT(z)

F(Sx, Sy)     1

 FSx +1 FSy RTx +1 RTy   RT(z)
%x +1%y RT(x, y)

where  (RT)(x, y) = RT(x, y).R(Tx, Ty).
The uniqueness of  L  is obvious.

3. Companions and adjoints in double categories

This section, taken from [GP2], Section 1, studies the connections between
horizontal and vertical morphisms in a double category: horizontal morphisms can
have vertical companions and vertical adjoints. Such phenomena are interesting in
themselves and typical of double categories.

A  is always a weak double category, that we assume to be unitary (in the sense
that the identities are strict units), for the sake of simplicity.

3.1. Orthogonal companions. In the weak double category  A,  the horizontal
morphism  f: A  B  and the vertical morphism  u: A  B  are made (orthogonal)
companions by assigning a pair  (+, ,)  of cells as below, called the unit and counit,
that satisfy the identities  +|, = 1•

f   and  +0, = 1u

 f
  A    A   A   B

(1)    1 +    u    u ,    1

  A   B   B    B
 f

Given  f,  this is equivalent (by unitarity) to saying that the pair  (u, ,)  satisfies
the following universal property:
(a) for every cell  ,': (u'  fg  B)  there is a unique cell  &: (u'  Ag  u)  such that  ,' = &|,
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 f  f
  A   B   A    A   B

(2)   u' ,'    1 =   u' &    u ,    1

  A'   B   A'   B    B
g g

In fact, given  (+, ,),  we can (and must) take  & = +0,';  on the other hand, given
(a), we define  +: (A Af  u)  by the equation  +|, = 1•

f   and deduce that  +0, = 1u
because  (+0,) | , = (+|,)0, = , = (1u | ,).

Similarly, also the pair  (u, +)  is characterised by a universal property
(b) for every cell  +': (A  gf  u')  there is a unique cell  µ: (u  gB  u')  such that  +' = +|µ.

Therefore, if  f  has a vertical companion, this is determined up to a unique
special isocell, and will often be written as  f*.  Companions compose in the obvious
(covariant) way: if  g: B  C  also has a companion, then  g*f*: A  C  is

companion to  gf: A  C,  with unit  ( 
+ | 1

1• | +'
 ): (A  Agf  g*f*).

Companionship is preserved by unitary lax or colax double functors.
We say that  A  has vertical companions if every horizontal arrow has a vertical

companion. The weak double categories recalled in Section 1 have vertical
companions, given by the obvious embedding of horizontal arrows into the vertical
ones.

Companionship is simpler for horizontal isomorphisms. If  f  is one and has a
companion  u,  then its unit and counit are also horizontally invertible and determine
each other:
(3) (, | 1•

g | +)  =  + 0 ,  =  1u (g  =  f–1),

as it appears rewriting  (, | 1•
g | +)  as follows, and then applying middle-four

interchange

    A f   B g   A     A
  1   1•

f    1   1•
g    1 +    u

  A f   B g   A f   B
   u ,    1   1•

g    1   1•
f    1

  B     B g   A f   B
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Conversely, the existence of a horizontally invertible cell  +: (A  Af   u)  implies that
f  is horizontally invertible, with companion  u  and counit as above.

3.2. Orthogonal adjoints. Transforming companionship by vertical (or horizontal)
duality, the arrows  f: A  B  and  v: B  A  are made orthogonal adjoints by a
pair  (%, .)  of cells as below

  f
  A   B   B    B

(1)    1 %    v    v .    1

  A    A   A   B
 f

with  %|. = 1•
f   and  .0%  = 1v.  Then,  f  is the horizontal adjoint and  v  the vertical

one. (In the general case, there is no reason of distinguishing 'left' and 'right', unit
and counit; see the examples below).

Again, given  f,  these relations can be described by universal properties for  (v, .)
or  (v, %)
(a) for every cell  .': (v' gf B)  there is a unique cell  &: (v' g

A v)  such that  .' = &|.,

(b) for every cell  %': (A f
g v')  there is a unique cell  µ: (v Bg v')  such that  %' = %|µ.

The vertical adjoint of  f  is determined up to a special isocell and will often be
written as  f*;  vertical adjoints compose, contravariantly:  (gf)*  can be constructed
as  f*g*.

We say that  A  has vertical adjoints if every horizontal arrow has a vertical
adjoint. Plainly, this is the case for the weak double categories recalled in Section 1.

3.3. Proposition. Let  f: A  B  have a vertical companion  u: A  B.  Then  v:
B  A  is vertical adjoint to  f  if and only if  u  v  in the bicategory  VA  (of
vertical arrows and special cells).
Proof. Given four cells  +, ,, %, .  as above (in 3.1, 3.2), we have two special cells

+0%: 1•  u0v, .0,:  u0v  1•,

that are easily seen to satisfy the triangle identities in  VA.  The converse is similarly
obvious.
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4. Cubical adjunctions

A colax/lax cubical adjunction is now defined as an orthogonal adjunction in the
strict double category  Wsc.

4.1. Colax/lax adjunctions. An orthogonal adjunction  (F, R)  in  Wsc  (3.2) gives
a notion of cubical adjunction  (+, ,): F  R  between weak sc-categories, which
occurs naturally in various situations, as already seen in Section 1.

The left adjoint  F: A  X  is a colax sc-functor, the right adjoint  R: X  A  is
lax, and we have two Wsc-cells  +, ,

  R
  A     A   X   A

(1)   F  +  ,    F

  X   A   X    X
 R

satisfying the triangle equalities  +0, = 1F  and  ,|+ = 1•
R.  (As in 2.3, the arrow of a

colax sc-functor is marked with a dot when displayed vertically, in a diagram of
Wsc.)

This general adjunction will be said to be of colax/lax type. We speak of a
pseudo/lax (resp. a colax/pseudo) adjunction when the left (resp. right) adjoint is
pseudo, and of a pseudo adjunction when both adjoints are pseudo (replacing
pseudo with strict when appropriate).

From general properties (see 3.2), we already know that the left adjoint of a lax
sc-functor  R  is determined up to isomorphism (a special invertible cell between
vertical arrows in  Wsc)  and that left adjoints compose, contravariantly. Similarly for
right adjoints.

As in 2.3, we may write the unit of the adjunction as  +: 1  RF,  by abuse of
notation; but one should recall that the coherence conditions of such a transforma-
tion work through the interplay of the comparison cells of  F  and  R.  Similarly for
the counit  ,: FR  1.  Therefore (as with double categories, in [GP2]), a general
colax/lax adjunction cannot be seen as an adjunction in some bicategory; but we
shall prove in the next section that this is possible in particular cases, a pseudo/lax or
a colax/pseudo adjunction.

4.2. Description. To make the previous definition explicit, a colax/lax adjunction
(+, ,): F  R  between the weak sc-categories  A,  X   consists of the following
items.
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(a) A colax sc-functor  F: A  X,  with comparison cells
F(a): F(e1a),  e1(Fa), F(a, b): F(a +1 b)  Fa +1 Fb.

(b) A lax sc-functor  R: X  A,  with comparison cells
R(x): e1(Rx)  R(e1x), R(x, y): Rx +1 Ry  R(x +1 y).

(c) An ordinary adjunction in every degree  n 1 0
+n: 1  RnFn: An  An, ,n: FnRn  1: Bn  Bn

,nFn.Fn+n  =  1Fn, Rn,n.+nRn  =  1Rn.

Explicitly this means that we are assigning:
-  transversal maps  +a: a  RFa  in  A  (for  a  in  A),
-  transversal maps  ,x: FRx  x in  X  (for  x  in  X),
satisfying the naturality conditions (c1) and the triangle identities (c2), for  h: a  b
in  A  and  f: x  y  in  X
(c1) +b.h  =  RFh.+a, ,y.FRf  =  f.,x,
(c2) ,Fa.F+a   =  1Fa, R,x.+Rx  =  1Rx.

(d) These families  + = (+n)  and  , = (,n)  must respect faces and transpositions, and
be coherent with the cubical operations (in terms of the comparison cells of  F  and
R):
(1) +($%i x)  =  $%i (+x), +(six)  =  si(+x),

(2) ,($%i x)  =  $%i (,x), ,(six)  =  si(,x).

(d1') (coherence of  +  with identities)  for  a  in  A:

(3) RFa.+(e1a)  =  RFa.e1(+a) (+(e1a) = e1(+a),  if  F  and  R  are unitary),

(d1") (coherence of  ,  with identities)  for  x  in  X:

(4) ,(e1x).FRx  =  e1(,x).FRx (,(e1x) = e1(,x),  if  F  and  R  are unitary);

(d2') (coherence of  +  with concatenation)  for  c = a +1 b  in  A:

 +c
  c RFc

(5) +a + +b    RF(a, b) RF(a, b).+c
   RFa + RFb R(Fa + Fb)   =  R(Fa, Fb).(+a +1 +b),

RF(a, b)

GRANDIS - ADJOINTS FOR SYMMETRIC CUBICAL CATEGORIES

- 113 -



(d2") (coherence of  ,  with concatenation)  for  z = x +1 y  in  X:

 FR(x, y)
F(Rx + Ry) FRz

(6) F(Rx, Ry)    ,z ,z.FR(x, y)
   FRx + FRy   z =  (,x +1 ,y).F(Rx, Ry).

 ,x + ,y

4.3. A remark. In this colax/lax adjunction, the comparison maps of  R,  together
with the unit  +,  determine the comparison maps of  F.  In fact, the equation of (d1')
says that the adjoint map of  Fa,  that is  (Fa)' = RFa.+e1a,  must be equal to
RFa.e1(+a).  Similarly for  F(a, b),  from (d2').

Dually, the comparison maps of  F  and the counit  ,  determine the comparison
maps of  R.

4.4. Theorem (Characterisation by transversal hom-sets). An adjunction  (+, ,):
F  R  can equivalently be given by a colax sc-functor  F: A  X ,  a lax sc-
functor  R: X  A  and a sequence of functorial isomorphisms  Hn

(1) Hn: Xn(Fn–, .)  An(–, Rn.): Anop × Xn  Set (n 1 0),

Hn(a, x): Xn(Fa, x)  An(a, Rx),

whose components  Hn(a, x)  (that we often write as  H)  commute with faces and
transpositions, and are coherent with the cubical operations (through the
comparison cells of  F  and  R),  i.e. satisfy the following conditions:

(ad.1) Hn($%i a, $%i x)  =  $%i (Hn(a, x)), Hn(sia, six)  =  si(Hn(a, x)),

(ad.2) H(e1(f).F(a))  =  R(x).e1(Hf) (for  f: Fa  x  in  X),

 F(a)  e1(f) e1(Hf)  R(x)
Fe1(a) e1(Fa) e1(x) e1(a) e1(Rx) R(x)

(ad.3) H((f + g).F(a, b))  =  R(x, y).(Hf + Hg) (for  f: Fa  x,  g: Fb  y),

F(a, b)   f+g   Hf+Hg  R(x, y)
F(a+b) Fa+Fb x+y a+b Rx+Ry R(x+y).

In this equivalence,  Hn(a, x)  is defined by the unit  +  as

(2) Hn(a, x)(f)  =  Rf.+a:  a  RFa  Rx (for  f: Fa  x  in  X),

while the component  +n: 1  RnFn: An  An  of the unit is defined by  H  as

(3) +n(a)  =  Hn(a, Fa)(idFa): a  RF(a) (for  a  in  An).
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Proof. We have only to verify the equivalence of 4.2.1-6 with the conditions above.
To show, for instance, that 4.2.5 implies (ad.2), let  f: Fa  x  and  g: Fb  y

be 1-consecutive transversal maps in  X,  and apply  H  as defined above, in (2):
(4) H((f + g).F(a, b))  =  R(f + g).RF(a, b).+(a + b)

=  R(f + g).R(Fa, Fb).(+a + +b) (by 4.2.5)
=  R(x, y).(Rf + Rg).(+a + +b)  (by 2.1(i))
=  R(x, y).(Hf + Hg)

4.5. Corollary (Characterisation by commas). An adjunction amounts to an iso-
morphism of weak sc-categories  H: F  X   A   R  over the product  A × X

 H
  F  X   A  R

(1)
A × X

Proof. It is a straightforward consequence of the previous theorem.

4.6. Theorem (Right adjoint by universal properties). Given a colax sc-functor  F: A
 X,  the existence and choice of a right adjoint lax sc-functor  R  amounts to a

sequence of conditions and choices (rad.n):
(rad.n) for every n-cube  x  in  X  there is a universal arrow  (Rx, ,x: F(Rx)  x)
from the functor  Fn  to the object  x  (and we choose one),

It is also assumed that these choices commute with faces and transpositions
(which can be realised starting in degree zero and going up, one degree at a time).

Explicitly, the universal property means that, for each n-cube  a  in  A  and
transversal map  f: Fa  x  in  X  there is a unique  h: a  Rx  such that  f =
,x.Fh: Fa  F(Rx)  x.

The comparison special transversal maps of  R
(1) R(x): e1(Rx)  R(e1x), R(x, y): Rx +1 Ry  R(x +1 y),

are then provided by the universal property of  ,,  as the unique solution of the
equations 4.2.4, 4.2.6, respectively; and  R  is pseudo if and only if all such cells are
special isocells.

Proof. The conditions (rad.n) are plainly necessary.
Conversely, (rad.n) provides an ordinary adjunction  (+n, ,n): Fn  Rn  for the

categories  An,  Xn,  so that  R,  +  and  ,  are correctly defined – as far as cubes,
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transversal maps, faces, transpositions, transversal composition and transversal
identities are concerned.

Now, we define the R-comparison maps  R  as specified in the statement, so that
the coherence properties of  ,  are satisfied (4.2.4, 4.2.6). One verifies easily, for
such transversal maps, the axioms of naturality and coherence (2.1).

Finally, we have to prove that  +: 1  RF  satisfies the coherence property 4.2.5
(2) RF(a, b).+c  =  R(Fa, Fb).(+a +1 +b),
with respect to a concatenation  c = a +1 b  of n-cubes in  A  (similarly one proves
4.2.3). By the universal property of  ,,  it will suffice to show that the composite
,(Fa + Fa').F(-)  takes the same value on both terms of (2). In fact, on the left-hand
term we get  F(a, b)
(3) ,(Fa + Fa').FRF(a, b).F+c  =  F(a, b).,Fc.F+c  =  F(a, b);

but we get the same on the right-hand term of (2), using 4.2.6, the naturality of  F,
the middle four interchange in  X  and a triangle identity

(4) ,(Fa + Fa').FR(Fa, Fb).F(+a +1 +b)  =  (,Fa + ,Fa').F(RFa, RFb).F(+a +1 +b)
=  (,Fa + ,Fa').(F+a +1 F+b).F(a, b)  =  F(a, b).

4.7. Theorem (Factorisation of adjunctions). Let  F  R  be a colax/lax adjunction
between  A  and  X.  Then, using the isomorphism of weak sc-categories  H: F  X

 A  R  (in Corollary 4.5), we can factor the adjunction as

 F'  H  Q
(1) A F  X A  R X F  =  QHF',    R  =  PH–1R'.

 P    H–1  R'

-  a coreflective colax/strict adjunction  F'  P  (with unit  PF' = 1),
-  an isomorphism  H  H–1,
-  a reflective strict/lax adjunction  Q  R'  (with counit  QR' = 1),

where the comma projections  P  and  Q  are strict sc-functors.

Proof. We define the lax sc-functor  R': X  A   R  by the strong universal
property of commas (2.6(a)), applied to  R: X  A,  1: X  X  and  % = 1•

R  as in
the diagram below
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   R
  R

  X   A   X –  R'  1  R   –  P   A
(2)   1  %     1 =   1 .   Q  3     1

  X   X   A   X   X   A
  T   R  T  R

R'(x)  =  (Rx, x; 1: Rx  Rx),
R'(f, g)  =  (R(f, g), 1): (Rf + Rg, f + g; R(f, g))  (R(f + g), f + g; 1).

Similarly, we define the colax sc-functor  F': A  F  X   by the dual result
(2.6(b))

(3) F'(a)  =  (a, Fa; 1: Fa  Fa),
F'(a, b)  =  (1, F(a, b)): (a + b, F(a + b); 1)  (a + b, Fa + Fb; F(a, b)).

The coreflective adjunction  F'  P  is obvious

(4) +'a  =  1a: a  PF'a,
,'(a, x; f: Fa  x)  =  (1a, f):  (a, Fa; 1: Fa  Fa)  (a, x; f: Fa  x),

as well as the reflective adjunction  Q  R'  and the factorisation above.

5. Cubical adjunctions and pseudo sc-functors

We consider now sc-adjunctions where the left or right adjoint is a pseudo sc-
functor. Adjoint equivalences of weak sc-categories are introduced.

5.1. Comments. Let us recall, from 4.1, that a pseudo/lax sc-adjunction  F  R  is
a colax/lax adjunction between weak sc-categories where the left adjoint  F  is
pseudo.

Then, the comparison cells of  F  are horizontally invertible and the composites
RF  and  FR  are lax sc-functors; it follows (from definition 2.3) that the unit and
counit are horizontal transformations of such functors. Therefore, a pseudo/lax sc-
adjunction gives an adjunction in the 2-category  LxWsc  of weak sc-categories, lax
sc-functors and transversal transformations (2.3); and we shall prove that these two
facts are actually equivalent (Theorem 5.3).

Dually, a colax/pseudo sc-adjunction, where the right adjoint  R  is pseudo, will
amount to an adjunction in the 2-category  CxWsc  of weak sc-categories, colax sc-
functors and transversal transformations. Finally, a pseudo sc-adjunction, where
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both  F  and  R  are pseudo, will be the same as an adjunction in the 2-category
PsWsc,  whose arrows are the pseudo sc-functors.

5.2. Theorem (Companions in  Wsc).  A lax sc-functor  R  has an orthogonal
companion  F  in  Wsc  if and only if it is pseudo; then one can define  F = R*  as
the colax sc-functor which coincides with  R  except for comparison maps transver-
sally inverse to those of  R.

Proof. If  R  is pseudo, it is obvious that  R*,  as defined above, is an orthogonal
companion.

Conversely, suppose that  R: X  A   (lax) has an orthogonal companion  F
(colax). There are thus two cells  +, ,  in  Wsc)

 R
  X    X   X   A

(1)    1 +    F   F  ,    1

  X   A   A     A
R

which satisfy the identities  +|, = 1•
R,  +0, = 1F.

This means two 'transformations'  +: F  R,  ,: R  F,  as defined in 2.3; for
every n-cube  x  in  X,  we have two transversal maps  +x  and  ,x  in  A
(2) +x: Fx  Rx, ,x: Rx  Fx,

consistently with faces and transpositions. These maps are transversally inverse,
because of the previous identities (cf. 2.3.4)

(3) +x.,x  =  (+ | ,)(x)  =  1Rx, ,x.+x  =  (+0,)(x)  =  1Fx.

Applying now the coherence condition (c3) (in 2.3), for the transformations  +, ,
and the concatenation  z = x +1 y  in  X,  we find

(4) +z  =  R(x, y).(+x +1 +y).F(x, y): Fz  Rz,
,x +1 ,y  =  F(x, y).,z.R(x, y): Rx +1 Ry  Fx +1 Fy.

Since all the components of  +  and  ,  are transversally invertible, this proves that
R(x, y)  has a left  inverse and a right inverse transversal map. Similarly for
degeneracies.

Therefore  R  is pseudo (and  F  is transversally isomorphic to  R*).

5.3. Theorem. (a) (Pseudo/lax adjunctions) Any adjunction  F  R  in the 2-
category  LxWsc  has  F  pseudo and is a pseudo/lax sc-adjunction in the sense of
4.1 (or 5.1).
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(b) (Colax/pseudo adjunctions) Any adjunction  F  R  in the 2-category  CxWsc
has  R  pseudo and is a colax/pseudo sc-adjunction in the sense of 4.1 (or 5.1).

More formally, (a) can be rewritten saying that, in the double category  Wsc,  if
the horizontal arrow  R  has a 'horizontal left adjoint'  F  (within the horizontal 2-
category  HWsc = LxWsc),  then it also has an orthogonal adjoint  G  (colax).
(Then, applying 3.3, it would follow that  F  and  G  are companions, whence  F  is
pseudo, by 5.2, and isomorphic to  G.)

Proof. It suffices to prove (a); again, we only deal with the comparisons of a
concatenation.

Let the lax structures of  F: A  X  and  R: X  A  be given by the following
comparison maps, where  c = a +1 b  and  z = x +1 y
(1) &(a, b): Fa +1 Fb  F(a +1 b), R(x, y): Rx +1 Ry  R(x +1 y),

so that we have:

(2) +c  =  R&(a, b).R(Fa, Fb).(+a +1 +b):
c  RFa +1 RFb  R(Fa +1 Fb)  RFc,

,x +1 ,y  =  ,z.FR(x, y).&(Rx, Ry):
FRx +1 FRy  F(Rx +1 Ry)  FR(x +1 y)  z.

We construct now a colax structure  F  for  F

(3) F(a, b)  =  ,(Fa +1 Fb).FR(Fa, Fb).F(+a +1 +b):
Fc  F(RFa +1 RFb)  FR(Fa +1 Fb)  Fa +1 Fb,

and prove that  F(a, b)  and  &(a, b)  are transversally inverse:

(4) &(a, b).F(a, b)  =  &(a, b).,(Fa +1 Fb).FR(Fa, Fb).F(+a +1 +b)
=  ,Fc.FR&(a, b).FR(Fa, Fb).F(+a +1 +b) (by naturality of  ,,  cf. 4.2),
=  ,F(c).F(+c)  =  1Fc (by (2) and a triangle identity);

(5) F(a, b).&(a, b)  =  ,(Fa +1 Fb).FR(Fa, Fb).F(+a +1 +b).&(a, b)
=  ,(Fa +1 Fb).FR(Fa, Fb).&(RFa, RFb).(F+a +1 F+b) (by naturality of  &),
=  (,Fa +1 ,Fb).(F+a +1 F+b) (by (2)),
=  ,Fa.F+a +1 ,Fb.F+b

(by interchange of transversal composition and concatenation),
 =  1Fa +1 1Fb  =  1Fa + Fb (by a triangle identity and unitarity of  X).   
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5.4. Equivalences of weak sc-categories. An adjoint equivalence between two
weak sc-categories  A  and  X  will be a pseudo sc-adjunction  (+, ,): F  R  where
the transversal transformations  +: 1A  RF  and  ,: FR  1X  are invertible.

The following properties of an sc-functor  F: A  X   will allow us to charac-
terise this fact in the usual way, assuming the axiom of choice and under the mild
restriction of transversal invariance (cf. 1.6):
(a) We say that  F  is faithful if all the ordinary functors  Fn: An  Xn  (between
the categories of n-cubes and their transversal maps) are: given two transversal maps
h, k: a  b  of  A  between the same n-cubes,  F(h) = F(k)  implies  h = k.
(b) Similarly, we say that  F  is full if all the ordinary functors  Fn: An  Xn  are:
for every transversal map  f: F(a)  F(b)  in  X,  there is a transversal map  h: a 
b  in  A  such that  F(h) = f.
(c)  Finally, we say that  F  is essentially surjective on cubes if every  Fn  is essen-
tially surjective on objects: for every n-cube  x  in  X,  there is some n-cube  a  in  A
and some invertible transversal map  f: F(a)  x  in  X.

5.5. Theorem (Characterisations of equivalences). Let  F: A  X  be a pseudo sc-
functor between two transversally invariant weak sc-categories (see 1.6). The
following conditions are equivalent (under the axiom of choice):

(i)  F: A  X  is (i.e. belongs to) an adjoint equivalence of weak sc-categories;
(ii)  F  is faithful, full and essentially surjective on cubes (cf. 5.4);
(iii) every ordinary functor  Fn: An  Xn  (between the transversal categories of
n-cubes) is an equivalence of categories.

Proof. By our previous definitions, in 5.4, conditions (ii) and (iii) are about the
sequence of ordinary functors  (Fn)  and are well-known to be equivalent (assuming
(AC)). Moreover, if  F  belongs to an adjoint equivalence  (+, ,): F  R,  every  Fn
is obviously an equivalence of categories.

Conversely, let us assume that every  Fn  is an equivalence of ordinary categories
and let us extend the pseudo sc-functor  F  to an adjoint equivalence, proceeding by
induction on the degree  n 1 0.

First,  F0  is an equivalence of categories and we begin by constructing an adjoint
quasi-inverse  R0: X0  A0  in the usual way.

In other words, we choose for every 0-cube  x  some  R(x)  and some
isomorphism  ,x: FR(x)  x;  then a transversal map  g: x  y  in  X  is sent to
the unique A-map  R(g): R(x)  R(y)  coherent with the previous choices (since
F0  is full and faithful). Finally the isomorphism  +a: a  RF(a)  is determined by
the triangle equations (for every 0-cube  a  of  A).
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Assume now that the components of  R,  ,  and  +  have been defined up to
degree  n – 1 1 0,  and let us define them in degree  n,  taking care that the new
choices be consistent with the previous ones.

First, for every n-cube  x: x– 1 x+  in  X  we want to choose some n-cube
R(x): R(x–) 1 R(x+)  in  A  and some n-isomorphism  ,x: FR(x)  x  in  X .  In
fact, there exists (and we choose) some n-cube  a: a– 1 a+  and some transversal
isomorphism  i: F(a)  x;  but then  F(a%)  x%  FR(x%)  and there are two
transversal (n–1)-isomorphisms  h%: R(x%)  a%.

By transversal invariance in  A,  we can choose a transversal n-isomorphism  h
as in the left square below, and we define  R(x) = $–

1h

h–   Fh–
Rx–   a–  FRx–  Fa–   x–    0

(1)   Rx h   a FRx  Fh   Fa   i    x    1
  Rx+   a+  FRx+  Fa+   x

h+   Fh+

Then we define  ,x = i.Fh: FR(x)  x,  as in the right diagram above.
Now, since  Fn  is full and faithful, a transversal n-map  f: x  y  in  X  is sent

to the unique A-map  R(f): R(x)  R(y)  satisfying the condition  ,y.F(Rf) = f.,x
(naturality of  ,).

Again, the n-isomorphism  +a: a  RF(a)  is determined by the triangle
equations, for every n-cube  a  of  A.

The comparison n-maps  R  are uniquely determined by their coherence
conditions (4.2), for an (n–1)-cube  x  and a 1-concatenation of n-cubes  z = x +1 y
in  X
(2) ,e1x.FRx  =  e1(,x).FRx, ,z.FR(x, y)  =  (,x +1 ,y).F(Rx, Ry).

The construction of  R,  ,  and  +  is now achieved.
One ends by proving that  R  is indeed a pseudo sc-functor, for a cube  a  and a

1-concatenation  c = a +1 b  in  A
(3) RFa.+e1a  =  RFa.e1(+a), RF(a, b).+c  =  R(Fa, Fb).(+a +1 +b),

and that  ,, +  are coherent with the comparison cells of  F  and  R.
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6. Limits and adjoints for weak sc-categories

We recall the definition of cones and limits from [G5], Section 3, and prove that
right adjoints preserve the limits of lax sc-functors.

All weak sc-categories are assumed to be pre-unitary, in the sense that all the
unitarity comparisons  e1(x) +1 e1(x)  e1(x)  are identities.

6.1. The shift. A crucial fact in the theory of weak symmetric cubical categories
(inherited from symmetric cubical sets, see [G4]) is the presence of one strict double
functor of paths (or cocylinder)
(1) P: Wsc  Wsc,

PA  =  ((An+1), ($%i +1), (ei+1), (si+1), (+i+1), &2, '2, (2, )2),
that shifts down all components, discarding the structure of index 1. (On the other
hand, cubical structures without symmetries have a left and a right path functor
[G4], which makes things complicated.)  Plainly,  P  preserves cubical adjunctions.

The faces and degeneracies of index 1 are then used to build three transversal
transformations, the faces and degeneracy of  P
(2) $%  =  $%1 : PA   A, e  =  e1: A  PA.

Here,  $%  and  e  are strict sc-functors:  $%i $%1  = $%1$%i +1,  etc.

6.2. Cones. Let  X  and  A  be weak sc-categories, and let  X  be small. Consider the
diagonal functor (of ordinary categories)
(1) D  =  DA:  tv0A  LxWsc(X, A),

where  tv0A  is the ordinary category of 0-cubes (objects) of  A  and their transversal
maps.

D  takes each 0-object  a  to the constant sc-functor  X  A,  defined as follows
on n-objects  x  and n-maps  f  of  X
(2) Da: X  A, Da(x)  =  en(a), Da(f)  =  id(ena) (x, f  in  tvnX).

It also takes every 0-map  t: a  b  in  A   to the diagonal transversal
transformation

(3) Dt: Da  Db: X  A,       (Dt)(x)  =  en(t): en(a)  en(b) (x  in  tvnX).

Note that  Da: X  A  is strict because  A  is assumed to be pre-unitary.
Let  T: X  A  be a lax sc-functor (2.1), with comparison special cells

T(x): e1(Tx)  T(e1(x)), T(x, y): Tx +1 Ty  T(x +1 y).
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A (transversal) sc-cone for  T  is a pair  (a, h: Da  T)  consisting of an object
a  of A.  (the vertex of the cone) and a transversal transformation

h: Da  T: X  A.

In other words,  (a, h)  is an object of the ordinary comma category  (D  T),
where  T  is viewed as an object of the category  LxWsc(X, A).

By definition (2.2), this amounts to assigning the following data:
- a transversal n-map  hx: en(a)  Tx  of  A,  for every n-object  x  in  X,

subject to the following axioms:

(scc.1)  Tf.hx  =  hy (for  f: x  y  in  X);

(scc.2)  h  commutes with faces and transpositions and  h(e1(x)) = T(x).(e1(h(x));

(scc.3)  h(x +1 y)  =  T(x, y).(hx +1 hy):  en(a)  T(x +1 y) ($+
1x = $–

1y),

  e1(hx)   hx +1 hy
en+1(a)   e1(Tx) en(a) +1 en(a)  Tx +1 Ty

(4)   1     T(x)   1   T(x, y)

  en+1(a) T(e1(x)) en(a)  T(x +1 y)
 h(e1x)   h(x +1 y)

6.3. Definition (Limits and cubical limits). A (transversal) limit  lim(T) = (a, h)  of
the lax sc-functor  T - LxWsc(X, A)  is a universal cone  (a, h: Da  T).  In other
words:
(tl.0) a  is an object of  A  and  h: Da  T: X  A,  is a transversal transformation
of lax sc-functors;
(tl.1) for every cone  (a', h': Da'  T)  there is precisely one 0-map  t: a'  a  in  A
such that  h.Dt = h'.

We say that  A  has limits of degree zero on  X  if all these limits exist. We say
that A  has limits of all degrees on  X  if all sc-categories  PnA   satisfy this condi-
tion, for n 1 0.

We say that  A  has symmetric cubical limits on  X,  or lax functorial sc-limits on
X,  if:
(i)  A  has limits of all degrees on  X;
(ii) the limit-functors  limn: LxWsc(X, PnA)  tvnA  commute with faces,
degeneracies and transpositions.
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Then the universal property gives a unitary lax sc-functor

(1) lim  =  (limn)n10:  LxWsc(X, P•A)  A.

We say that  A  has pseudo functorial sc-limits on  X   if this lax sc-functor
happens to be a pseudo sc-functor.

Without symmetries, things would become complicated. While the condition of
having limits of degree zero can be directly extended to cubical categories, the
conditions (i), (ii) should (perhaps) be rewritten replacing each  Pn  with the family
of all path functors of degree  n,  namely  Pn

i  = Pn-i.SPiS  for  i = 0,..., n  (cf. [G4],
1.8), where  S  is the transposer endofunctor of cubical structures (that reverses the
order of faces). We will not deal with such a situation

6.4. Theorem (Preservation of limits). Let  (+, ,): F  R  be a colax/lax cubical
adjunction, where both functors are unitary.

Then  R: B  A   preserves all (the existing) transversal limits of lax sc-
functors  T: X  B.

Proof. Let  (b, k: DB(b)  T)  be a limit of  T  in  B.  We want to prove that the pair
(1) (Rb, Rk: R.DB(b)  RT),
is a limit of  RT  in  A.  First, since  R  is unitary,  RDB(b) = DA(Rb),  so that the pair
(1) is indeed a cone of the lax sc-functors  RT: X  A.

Moreover, given an n-cone  (a, h': DA(a)  RT)  of  RT,  with transversal
components  h'x: en(a)  RTx,  for every n-object  x  in  X,  the adjunction gives a
family  k'x: Fen(a)  Tx,  that is a cone  (Fa, k': DB(Fa)  T)  in  B.  Therefore
there is precisely one transversal map  g: Fa  b  in  B  such that  k.Dg = k'.  This
means precisely one transversal map  f: a  Rb  in  A  such that  Rk.Df = h'.

The proof can be rewritten using double cells of the double category  W sc.
Given  h',  the pasting of the left diagram can be uniquely factorised as at the right

P  P
  X   1   X   1    1

  1
 T

h'  
 R

   a      a

(2)   X   B   A  =    k   b g    A
   ,      F     F

 X   B    B  X   B    B
 T  T
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Now, the adjoint transversal n-map  f = Rg.+a: a  RFa  Ren(B)  is the
unique transversal map of  A  such that  h = (Rk | f): aQ  RT  (as one sees
pasting the Wsc-cell  +: (F 1R 1)  at the right of both diagrams above).

6.5. Remark. Since the n-shift double functor  Pn: Wsc  Wsc  preserves cubical
adjunctions, it follows that, if the weak sc-category  B  has symmetric cubical limits
on  X,  these are preserved by the right adjoint  R: B  A  (letting  PnR  act on the
cones of  PnB,  of course).
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